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Abstract 

Segmentation and detection of biological objects in fluorescence microscopy is of 

paramount importance in cell imaging. Deep learning approaches have recently 

shown promise to advance, automatize and accelerate analysis. However, most of 

the interest has been given to the segmentation of static objects of 2D/3D images 

whereas the segmentation of dynamic processes obtained from time-lapse acqui-

sitions has been less explored. Here we adapted DeepFinder, a U-Net originally 

designed for 3D noisy cryo-electron tomography (cryo-ET) data, for the detection 

of rare dynamic exocytosis events (termed ExoDeepFinder) observed in temporal 

series of 2D Total Internal Reflection Fluorescence Microscopy (TIRFM) images. 

ExoDeepFinder achieved good absolute performances with a relatively small training 

dataset of 12000 events in 60 cells. We rigorously compared deep learning perfor-

mances with unsupervised conventional methods from the literature. ExoDeepFinder 

outcompeted the tested methods, but also exhibited a greater plasticity to the experi-

mental conditions when tested under drug treatments and after changes in cell line or 

imaged reporter. This robustness to unseen experimental conditions did not require 

re-training demonstrating generalization capability of our deep learning model. 

ExoDeepFinder, as well as the annotated training datasets, were made transparent 

and available through an open-source software as well as a Napari plugin and can 

directly be applied to custom user data. The apparent plasticity and performances 

of ExoDeepFinder to detect dynamic events open new opportunities for future deep 

learning guided analysis of dynamic processes in live-cell imaging.
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Author summary

Until now, deep learning in microscopy has been largely restricted to the detec-
tion of static biological objects. Here, we adapted a neural network designed for 
macromolecule detection in 3D electron microscopy to instead detect dynamic 
exocytosis events from time-lapse fluorescence microscopy, calling it “ExoDeep-
Finder”. Exocytosis detection is of prime interest because of its involvement in 
many fundamental physiological processes, from digestive enzyme secretion to 
neurotransmitter release. Comparing ExoDeepFinder to traditional exocytosis 
detection methods on a large dataset, we demonstrated the superiority of our 
deep learning approach. ExoDeepFinder is more robust than other methods, 
even when faced with experimental conditions unseen during training. Our data-
set and method are transparent and freely available, thus enabling re-training 
and extension for other dynamic cell processes.

Introduction

Technological improvements in imaging accelerate the amount of acquired data. This 
situation requires new methods to automatically extract the tremendous quantity of 
information present in them. It is clearly established that deep learning-based image 
segmentation methods, and especially U-Net [1], surpass conventional techniques 
and exhibit a remarkable generalisation capacity [1,2]. However, most of the studies 
are restricted to the segmentation of static biological objects. Deep learning-methods 
are less regularly applied to dynamic processes in biology [3–9] while several 
model-based methods have been developed in the past decades [10–13]. Here we 
focus on the supervised deep learning-assisted detection of rare dynamic exocyto-
sis events (< 1 event per frame in average) in videos. Exocytosis is a fundamental 
physiological process consisting in the fusion of an intracellular vesicle with the 
plasma membrane to release its content. It is a key step in many biological contexts 
from digestive enzyme secretion to the release of neurotransmitters in the synaptic 
cleft; and therefore represents a topic of interest for biologists over different fields. 
Many conventional methods of exocytosis detection have been already published 
[14–29] including a method partially relying on a deep learning strategy [30]. These 
methods detect exocytosis events visualized by an exocytic reporter protein tagged 
with a pH-sensitive fluorophore [31] imaged in Total Internal Reflection Fluorescence 
Microscopy (TIRFM). In general, a sudden peak of fluorescence intensity followed by 
an exponential decay of the signal (termed “puff”) is detected (Fig 1A and 1B). Unfor-
tunately, these methods are often poorly evaluated on benchmark datasets and are 
not publically available. As a consequence, and despite almost 20 years of progress 
in exocytosis automatic detection methods, no consensual method emerged.

Here we present ExoDeepFinder, an adaptation of DeepFinder [32] (see Meth-
ods), a U-Net deep learning method, for the detection of exocytosis events in large 
2D+Time volumes. DeepFinder was originally developed for the identification of 
macromolecules in 3D noisy cellular cryo-electron tomograms (cryo-ET) and is 

under .txt files representing ImageJ results 
(x,y,t coordinates are given by “X”, “Y” and 
“Slice” columns). The code of ExoDeepFinder 
can be downloaded for free from our GitHub 
website: https://github.com/deep-finder/
tirfm-deepfinder along with accompanying doc-
umentation. Our Github hosts an user-friendly 
software version of ExoDeepFinder with a 
Graphical User Interface (GUI). Our Github 
also hosts a Python version of ExoDeepFinder 
than can be optionally run also with a GUI. 
ExoDeepFinder can be executed with scripts 
using the API (examples are provided) or with 
a GPU. To implement ExoDeepFinder, we used 
Keras (http://keras.io), an open-source toolbox 
written in Python and using the TensorFlow 
framework. All training procedures were 
achieved using a Nvidia A100 running CUDA 
11.4.
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considered as a top-rank method, confirmed in several SHREC challenges [33]. We compared ExoDeepFinder perfor-
mances to two unsupervised conventional detection methods. After demonstrating the advantage of ExoDeepFinder 
over the tested unsupervised methods, we evaluate its robustness to various experimental conditions. We demonstrate 
that our neural network approach is more robust than traditional unsupervised methods. Strikingly, the good robustness 
performances were achieved without re-training, demonstrating the inherent generality capacities of ExoDeepFinder. Our 

Fig 1.  A. Schematic representation of the exocytosis of a VAMP7-pHluorin-positive vesicle: the low pH of the acidic lumen quenches the 
fluorescence of pHluorin. During exocytosis, protons are released and pHluorin starts to emit light. An exocytosis event is followed by the 2D diffusion 
of VAMP7-pHluorin at the plasma membrane. B. TIRFM image of VAMP7-pHluorin in a transfected RPE-1 cell. The inset represents the field in the 
white square showing one exocytosis event at different time points, t  = 0 represents the peak of the exocytosis event. A kymograph is plotted along 
the dashed white line and arrowheads indicate several observed exocytosis events. C. Workflow of the data preparation for ExoDeepFinder training. On 
the one hand, manual annotation gives the coordinates of ‘ground truth’ exocytosis events, on the other hand, spots corresponding to docked vesicle are 
detected thanks to the ATLAS algorithm. Both annotations are merged to produce a multiclass segmentation map. The resulting spatial coordinates are 
converted into a 3D mask. The luminescence of an exocytosis event is isotropic in the (x,y) plane and has an exponential decay in time. Therefore, we 
model an exocytosis event as a tube with an exponentially decaying radius starting at R = 4 pixels and ending at R = 1 pixel, the length of the tube being 
3 frames in the temporal dimension as illustrated in the insight in orange. Hence, our segmentation map is composed of 3 classes: background (class 0, 
not depicted), bona fide exocytosis event (class 1, orange) and docked vesicles/constant spot detected by ATLAS (class 2, gray).

https://doi.org/10.1371/journal.pcbi.1013556.g001

https://doi.org/10.1371/journal.pcbi.1013556.g001
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approach illustrates how ExoDeepFinder architecture initially designed for 3D cryo-EM data, can be transposed to another 
segmentation task.

Results

Implementation of ExoDeepFinder, a deep learning method for exocytosis detection

To train”ExoDeepFinder” we took advantage of our recently published large dataset [34] monitoring lysosomal exocytosis 
events via imaging of VAMP7-pHluorin by TIRFM. The coordinates of all exocytosis events were manually annotated by 
a single expert based on the characteristic “puff” signature (Fig 1A and 1B and S1 Movie). Because DeepFinder perfor-
mances for cryo-ET segmentation substantially increased thanks to a multi-class strategy, we applied a similar approach 
here: we combined manual annotations of exocytosis events with automatic algorithm-generated annotations (termed 
ATLAS) of docked vesicles at the plasma membrane that form bright foci without fusion with the plasma membrane [35] 
(see Methods) (Fig 1C). Because DeepFinder is originally a segmentation method, we modeled exocytosis events as a 
tube with an exponentially decaying radius starting at R = 4 pixels and ending at R = 1 pixel, the length of the tube being 3 
frames in the temporal dimension. This 3-frames decaying radial tube defined voxels that were assigned to the exocytosis 
class (Fig 1C). The centroid of the radial tube was used to convert the prediction of ExoDeepFinder segmentation predic-
tions back into spatiotemporal coordinates (see Methods).

We hypothesized that ExoDeepFinder performances would depend on the quality of the images. Hence, we used 
Signal-to-Background Ratio (SBR) as a measure of image quality. SBR can be defined in two ways for our TIRFM movies, 
i) as a classic ratio between cell signal over background and ii) as a ratio between the local fluorescence intensity F  just 
after the vesicle fusion with the plasma membrane and the fluorescence intensity F0 before this peak. These two SBR 
did not correlate (S1A Fig). We relied on the second SBR, because it directly characterizes single exocytosis events and 
is the usual feature detected by former algorithms. We constituted a dataset of 120 TIRFM movies (for a total of 20 567 
exocytosis events) of 1001 frames (about 6 minutes) that we divided into three groups based on their average SBR (Fig 
2A). Then we split randomly each SBR group into two sub-groups, one dedicated to training of the network and the other 
one to its evaluation (Fig 2A). We made our dataset entirely available (see Methods).

We trained ExoDeepFinder on the three sub-datasets (low, medium, and high SBR values), on different combinations 
of these three datasets (Subsets A to E) (S1 Table) and on the full training dataset (i.e., 60 movies). ExoDeepFinder 
performances for each training set were evaluated in terms of F1-score, Recall and Precision over the whole inference 
dataset (i.e., 60 movies). The precision measures the likelihood that a detected event is an actual exocytosis event while 
the recall measures the sensibility of the network, i.e., the likelihood that an actual exocytosis event will be detected. The 
F1-score is the harmonic mean of the precision and the recall. As commonly observed for neural network approaches, 
the best performances were achieved with the training over the full training dataset with 67.64% for F1, 70.07% for Recall 
and 68.75% for Precision (Table 1). These results demonstrated that the best performances were achieved when a broad 
diversity of events were presented to ExoDeepFinder during the learning phase.

Additionally, we evaluated how the multiclass strategy of ExoDeepFinder impacted performance. Interestingly, the 
addition of ATLAS multiclass annotations increased the precision but decreased the recall score (S1B Fig). Thus, whereas 
the likelihood to detect an actual exocytosis event increased (decrease of false positives), the sensibility of the detection 
decreased (increase in false negatives). Because false positives are often judged more problematic in biological data than 
false negatives, we conserved the multiclass strategy in the rest of the paper.

ExoDeepFinder demonstrates better performances in exocytosis detection than unsupervised methods

Next, we compared the performance of ExoDeepFinder to the two unsupervised, conventional exocytosis detection meth-
ods that are publically available i) ExoJ [28] and ii) ADAE GUI [26,27].
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ExoJ detection method relies on a first step of spot detection by applying the “à trous” wavelet transform similarly to 
the exocytosis detection method proposed by Yuan et al. [21]. Secondly, spots are tracked using the nearest-neighbour 
method, and finally, fusion events are predicted according to a peak of fluorescence followed by an exponential decay. 

Fig 2.  A. Organization of the dataset. The dataset is composed of 120 TIRFM movies of 1001 frames. Each movie has a manual annotation of 
exocytosis event coordinates constituting the ground truth. The dataset is split into 3 equal subgroups according to the average SBR (=F/F

0
) of each 

movie. Then, each SBR group is randomly split into two equal sub-groups, one dedicated to ExoDeepFinder training and the other one to inference, i.e., 
ExoDeepFinder evaluation. B. Comparison of ExoDeepFinder performances with ExoJ and ADAE GUI on the same inference dataset of 60 movies. 
Significance has been evaluated with a Kruskal-Wallis test (p < 0.001) and pairwise comparison with a Dunn’s post-hoc test with a multiple comparison 
Holm correction, ***p < 0.001 (other comparison are not significant, i.e., p > 0.05). ExoJ has less number of movies analyzed (hence less total number of 
events) because the analysis cannot be performed for 30-40% of the data (see method). ExoDeepFinder was trained on the total 60 movies of the train-
ing dataset (model all). C. Performances evaluated by bins of single event SBR (=F/F

0
). The solid line is a loess (with a span of 0.75). D. Venn diagram 

of TP, FP and FN events. Numbers indicated are the absolute counts in each category.

https://doi.org/10.1371/journal.pcbi.1013556.g002

https://doi.org/10.1371/journal.pcbi.1013556.g002
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ExoJ has free parameters (see Methods) that substantially impacted performance on our dataset: i) the wavelet scale σ 
plays a role in the spot detection step, ii) the minimal R² tolerated in fluorescence decay fitting, iii) exocytosis spot radius 
fited with a Gaussian and iv) an intensity ratio (dF/σ), similar to F/F

0
. We screened the ExoJ performances for the afore-

mentioned parameters (see Methods). Note that despite numerous efforts to run the analysis on different computers 
overnight and with sub-parts of the movies, ExoJ failed to produce any results for a high percentage (30–40%) of the 
data (S1C Fig). We identified the best set of parameters of ExoJ as those that maximize the average of the 3 scores: 
σ = 5, decay R² = 0.8, radius R² = 0.7 and dF/σ = 3.8 (S1D Fig). Automatic Detection and Analysis of Exocytosis Events with 
Graphical User Interface (ADAE GUI) is another exocytosis detection method originally written in MATLAB also based on 
a tracking step by Kalman filter followed by a fluorescence variation analysis [26,27,29]. Recently, the authors proposed 
an amelioration called pHusion of the method written in Image-Tank to tackle some the limitations of the previous version 
like the difficulty to modify it to optimize parameters for the dataset of interest. This optimization of ExoJ and ADAE GUI 
performances for our dataset allows a fair comparison with ExoDeepFinder.

We compared ExoDeepFinder’s performances with unsupervised methods (ExoJ and ADAE GUI) over 60 movies 
dedicated to inference (Fig 2A and S2 Movie). ExoDeepFinder performed better than ExoJ and ADAE GUI in terms of 
F1-score and Precision. For Recall, ExoDeepFinder was statistically indistinguishable from ADAE GUI, but better than 
ExoJ (Fig 2B). Scores for ExoJ and ADAE GUI were lower than in their original publications, but in absence of a common 
benchmark these scores are difficult to compare.

As expected, performances increased with single event SBR and reached a plateau for a SBR > 2 (Fig 2C) highlight-
ing that the SBR is a good predictor of task complexity. The dependency of the detection performance on SBR strongly 
argues for the use and development of exocytosis probes that increase contrast, including pH-sensitive probes. A weaker 
correlation was observed between performances and averaged SBR per cell (S2A-S2C Fig). ExoDeepFinder and ADAE 
GUI performances were robust over different frame rates (S2A and S2B Fig) contrarily to ExoJ (S2C Fig), which slightly 
correlated, with the frame rate. Importantly, ExoJ has been designed and evaluated on movies of 5Hz while our dataset 
is ≤ 3Hz, a difference which could partially explain the lower observed performances.

To characterize more precisely the differences in performances between methods, we examined the intersection of 
True Positive (TP), False Positive (FP) and False Negative (FN) events (Fig 2D). Surprisingly, the count of TP events spe-
cific to ExoJ was extremely low (even taking into account that the total number of movies analyzed was lower for ExoJ) 
demonstrating that it only detected obvious events also recognized by ADAE GUI and ExoDeepFinder. ExoDeepFinder 
had the highest specific count of TP events highlighting that learning approaches are able to detect subtle and less stereo-
typed events. In terms of FP events, the intersections were quite small (and could potentially represent ambiguous events 
or even annotation errors) demonstrating that each method has a different way to “hallucinate” events. Still, the count of 

Table 1.  Performances of ExoDeepFinder for the different training datasets defined in S1 Table. Performances has been evaluated over the 60 
movies dedicated for inference. Values are mean ± SD.

F1-score (%) Recall (%) Precision (%)

All 67.64 ± 15.91 70.07 ± 19.81 68.75 ± 16.57

Subset A 54.77 ± 20.50 52.30 ± 23.02 64.65 ± 22.13

Subset B 61.68 ± 20.06 62.75 ± 23.65 65.94 ± 20.35

Subset C 63.62 ± 19.82 63.95 ± 23.68 69.60 ± 20.30

Subset D 62.67 ± 19.39 62.51 ± 23.58 69.67 ± 20.23

Subset E 64.51 ± 19.93 62.95 ± 22.96 70.96 ± 19.51

Low SBR 62.19 ± 18.83 69.91 ± 21.23 61.54 ± 22.20

Medium SBR 58.26 ± 20.22 70.05 ± 23.07 58.31 ± 24.74

High SBR 60.37 ± 21.18 58.26 ± 23.16 68.67 ± 22.70

https://doi.org/10.1371/journal.pcbi.1013556.t001

https://doi.org/10.1371/journal.pcbi.1013556.t001
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FN events specific to ExoJ was high, suggesting that it missed many events and thus explaining its low performances. In 
contrast, the count of FN events specific to ExoDeepFinder was low, indicating that it mainly failed to detect events that 
were ambiguous or represented annotation errors.

We investigated how TP, FP and FN events differed in terms of SBR (defined as F/F
0
) and exponential decay lifetime. 

We found that TP events were characterized by a higher SBR than FP and FN events for all 3 methods (S2 Table). How-
ever, ExoDeepFinder showed the lowest average SBR among TP events suggesting that it additionally relied on other 
information. Similarly, long events were easier to detect, illustrated by the fact that TP events have longer (or similar) 
decay lifetimes for all 3 methods (S3 Table). Interestingly, ExoDeepFinder and ADAE GUI sometimes miss-interpreted 
events with a long fluorescent exponential decay (i.e., high life-time) as exocytosis, contrarily to ExoJ which more often 
confused exocytosis with fast decay events (i.e., small lifetime).

We also compared the methods in terms of localization precision of TP events (see Methods). ExoDeepFinder and 
ADAE GUI showed similar spatial localization precision, which was better than those of ExoJ (S2D Fig). In terms of 
temporal Precision, ExoJ and ADAE GUI had similar performances, which yet were lower than that of ExoDeepFinder 
(S2E Fig).

Finally, we evaluated how performance scores impacted experimental outcomes, especially exocytosis rate. We com-
pared the exocytosis rate of the ground truth with those predicted by the different methods (S2F Fig). We estimated the 
average difference between ground truth and prediction, measured as Cohen’s d value (see methods), to evaluate poten-
tial systematic biases of prediction. We also assessed the level of noise in the predictions that was measured as the cor-
relation between ground truth and predicted exocytosis rates. While ExoJ showed a good correlation with the ground truth 
exocytosis rate (r = 0.89), it still presented a significant bias, leading to an underestimation of exocytosis rate. ADAE GUI 
showed a smaller bias, resulting in an overestimation of the exocytosis rate, but exhibited a weaker correlation (r = 0.67). 
Finally, ExoDeepFinder achieved the highest correlation (r = 0.96) without any measurable biases.

ExoDeepFinder exocytosis rate predictions are robust to drug perturbations

Next, we tested to what extent ExoDeepFinder performances are robust to perturbation, and to what extent it can be 
applied to slightly different datasets without retraining. To investigate these questions, we assessed ExoDeepFinder’s effi-
ciency on cells treated with different drugs which interfere with secretion, without retraining the network. First, we analyzed 
cells before and after treatment with Bafilomycin A1, a drug impairing lysosomal pH homeostasis that leads to decreased 
exocytosis rate and additionally changes cell morphology by creating dynamic bright foci at the plasma membrane (Fig 
3A and 3B and S3 Movie). ExoDeepFinder performances decreased significantly after the drug treatment when compared 
to same cells before treatment (Fig 3C). However, ExoDeepFinder was still able to estimate correctly exocytosis rate and 
produced a correct estimation of drug effect size (Fig 3D) even though it was exclusively trained on exocytosis events 
from untreated cells. Indeed, Cohen’s d predicted by ExoDeepFinder was -1.57, while ground truth was d = -1.67. We next 
compared ExoDeepFinder’s robustness with that of ExoJ and ADAE GUI on the same dataset. Since our objective was 
to evaluate generalization performances without retraining, we used the previously optimized parameters for ExoJ and 
ADAE GUI (Figs 1 and 2) to ensure a fair comparison. Similarly, ExoJ and ADAE GUI performances decreased (S3A and 
S3C Fig), but contrarily to ExoDeepFinder, ADAE GUI and ExoJ made wrong estimations of exocytosis rates, especially 
after treatment (S3B and S3D Fig). Both predicted an effect in the wrong direction (d = 0.10 for ExoJ and d = 0.37 for ADAE 
GUI) likely due to the presence of dynamic bright foci. Thus, the lower performances of detection cannot be attributed to a 
change in SBR (F/F

0
) (S4 Table).

Additionally, we analyzed cells treated with histamine, a drug which stimulates lysosomal exocytosis [34,36]. Contrarily 
to Bafilomycin A1, cell morphology and the profile of individual secretory events were almost totally preserved (including 
their SBR, S4 Table) following histamine treatment, and exocytosis events mainly changed in frequency (Fig 3E and 3F). 
In these conditions, we observed that ExoDeepFinder performances were not impaired (Fig 3G) and estimated precisely 
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Fig 3.  A.Representative TIRFM images of VAMP7-pHluorin in a transfected RPE-1 cell before and after Bafilomycin A1 treatment (100nM, 
60min). Arrows highlight the formation of bright foci at the plasma membrane after the treatment. B. Exocytosis rate before and after Bafilomycin A1 
treatment measured by manual detection (ground truth). C. ExoDeepFinder performances before and after Bafilomycin A1 treatment. Note that one point 
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exocytosis rate as well as effect size (predicted d = 0.87 while ground truth d = 0.88) (Fig 3H). ExoJ and ADAE GUI perfor-
mances were not impacted by histamine treatment either (S3E and S3G Fig). However, due to their inherent lower perfor-
mances, estimated exocytosis frequency and effect size were less accurate (d = 0.37 for ExoJ and d = 0.98 for ADAE GUI) 
(S3F and S3H Fig). This demonstrated in real conditions that ExoDeepFinder produced better estimations of exocytosis 
rates and effect sizes than former methods.

ExoDeepFinder detects exocytosis in unseen cell types and for unseen fluorescent cargos

We continued to evaluate the robustness of ExoDeepFinder in various experimental conditions without re-training by: i) 
changing the cell type but keeping the same cargo (Fig 4A) and ii) changing the cargo but keeping the same cell type (Fig 
4B). Hence, we imaged VAMP7-pHluorin exocytosis events in TIRFM in HeLa cells (Fig 4A), which showed a different 
VAMP7 pattern than compared to RPE-1 cells on which ExoDeepFinder was trained. HeLa cells presented a different spa-
tial organization of the bright foci and a more homogeneous membrane staining (Fig 4A). Additionally, SBR (F/F

0
) in HeLa 

cells was significantly lower than in RPE-1 (S4 Table). Despite this cell change, ExoDeepFinder performed similarly well 
in HeLa as in RPE-1 cells (Fig 4C), and the estimated exocytosis rate was statistically indistinguishable from the ground 
truth (i.e., manual detection) (Fig 4D). Surprisingly, ExoJ performances decreased a lot (S4A Fig): the estimated exocyto-
sis rate decreased significantly compared to ground truth (S4B Fig). This was surprising, because part of the ExoJ valida-
tion was performed on the VAMP7-pHluorin probe expressed in HeLa cells [28]. ADAE GUI Precision decreased slightly 
(S4C Fig), and the predicted exocytosis rate was significantly over-estimated (S4D Fig). These differences highlight 
the overall importance of background staining which can differ from one cell type to another, or may be due to different 
exocytosis dynamics. Thus, a method that was validated in a given cell type can show loss in its performance when used 
in another cell type. Even though ExoDeepFinder’s performance stayed comparable in HeLa cells, the ExoDeepFinder 
model can be re-trained on each additional cell type, contrarily to traditional methods.

Finally, we evaluated the detection of another cargo, CD63, a transmembrane protein of the tetraspanin family that 
is used as a marker of the secretion of multi-vesicular bodies. Exocytosis events in RPE-1 cells were monitored with a 
CD63-pHluorin probe [36] (Fig 4B). The CD63 staining differed from the VAMP7 staining, and the dynamic of correspond-
ing exocytosis events dynamic changed as well. The CD63 probe is found on endosomes as well as on intra-luminal 
vesicles that diffuse in 3D following exocytosis, while the VAMP7 probe remains attached to the plasma membrane and 
diffuses only in 2D. Hence, the CD63 probe is associated with higher SBR than the VAMP7 probe (S4 Table). Once again, 
we found that ExoDeepFinder performances were roughly preserved (Fig 4E), and the observed exocytosis rate was 
statistically indistinguishable from the ground truth (i.e., manual detection) (Fig 4F). ExoJ’s F1-score and Recall sub-
stantially increased for this dataset but the Precision value decreased (S4E Fig). Note that although CD63-pHluorin was 
used to validate ExoJ [28], the exocytosis rate predicted by ExoJ was underestimated, even if not significantly (S4F Fig), 
probably due to the low number of movies that were analyzable with ExoJ. In contrast, ADAE GUI’s F1-score and Preci-
sion decreased substantially (S4G Fig), and the predicted rate was significantly over-estimated compared to ground truth 

is unpaired that represents a cell with no predicted events after treatment (hence, F1-score, Precision and Recall cannot be defined). D. Exocytosis rate 
before and after Bafilomycin A1 treatment predicted by ExoDeepFinder. In B-D, n = 16 cells from three independent experiments with a total 3008 and 
401 exocytosis events before and after drug addition, respectively, are shown. E. Representative TIRFM images of VAMP7-pHluorin in a transfected 
RPE-1 cell before and after histamine treatment (100 µM, cells immediately imaged after histamine addition). F. Exocytosis rate before and after hista-
mine treatment measured by manual detection (ground truth). G. ExoDeepFinder performances before and after histamine (100µM, cells immediately 
imaged) treatment. H. ExoDeepFinder performances before and after histamine treatment. In F-H, n = 17 cells from three independent experiments with 
a total 2292 and 3201 exocytosis events before and after drug addition respectively, are shown. In B-D and F-H, significance has been evaluated with 
paired Wilcoxon test, ns p > 0.05 and ***p < 0.001. In B, D, F and H, effect sizes are measured with the Cohen’s d for paired samples. In C-D and G-H, 
ExoDeepFinder was trained on the total 60 movies of the training dataset (model all).

https://doi.org/10.1371/journal.pcbi.1013556.g003

https://doi.org/10.1371/journal.pcbi.1013556.g003
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Fig 4.  A. On the left, a schematic representation of the exocytosis of a VAMP7-pHluorin-positive vesicle. Once the vesicle starts to fuse with the 
plasma membrane, the pH becomes neutral and the pHluorin is no longer quenched and thus emits a fluorescence signal. On the right, a representative 
TIRFM image of VAMP7-pHluorin in a transfected HeLa cell. B. On the left, a schematic representation of the exocytosis of a CD63-pHluorin-positive 
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(S4H Fig). These data illustrated that changing the cargo probed can influence method performances, even when keeping 
the cell type constant. This conclusion emphasizes both the need for a robust detection method and a method that can 
be easily re-adapted to specific experimental conditions. Under this lens, deep learning approaches seem most suited to 
tackle this challenge.

Discussion

In conclusion, we developed ExoDeepFinder using the U-Net DeepFinder architecture, originally designed for macromole-
cule detection in 3D cryo-electron cell tomograms. We demonstrated that ExoDeepFinder, trained on 60 TIRF movies and 
hybrid annotations, is capable of imitating expert annotations on experimental videos. Moreover, we demonstrated that it 
outperformed unsupervised conventional methods of exocytosis detection (Fig 2B). ExoDeepFinder achieved good perfor-
mances even with smaller training datasets (S1 Table). A multi-class training of ExoDeepFinder increased its performance 
[32] (S1B Fig), but may require additional work for the user such as the segmentation of counter-example events. We also 
demonstrated that ExoDeepFinder – as other exocytosis detection methods – performs less effectively on low SBR (F/F

0
) 

exocytosis events, which highlights the importance for experimentalists to carefully select the frame rate, the pixel size, 
and fluorophores that enhance SBR, such as pH sensitive probes. A particular advantage of ExoDeepFinder is its speed 
to analyze large 2D+time volume data: it takes about 30 seconds (on GPU) to process a video of 300 x 300 x 1000 voxels 
with no parameter adjustments, contrarily to the 10–20 minutes required with the two conventional image analysis algo-
rithms used in our benchmark, and which additionally required manual parameter calibration. The ExoDeepFinder training 
required 8–18 hours of computing (once for all), depending on the desired number of epochs and the GPU performance.

Furthermore, ExoDeepFinder was demonstrated to perform robustly on TIRF videos in variable experimental condi-
tions (various cargo, cell lines, SBRs, etc.) (Figs 3 and 4) while traditional methods’ performances were perturbed by such 
changes (S3 and S4 Figs). For example, ExoDeepFinder was able to reliably detect exocytosis events on signals from 
previously unseen proteins, thus illustrating the generalization capacity of deep learning approaches. Though no method 
has infinite robustness, in contrast to traditional exocytosis detection methods, deep learning methods can be re-trained in 
addition to being fine-tuned. Hence, we endeavored to produce a user-friendly software version of ExoDeepFinder which 
is publicly available (see Data and software availability) to give users the possibility to re-train the network on their own 
data. This possibility to customize ExoDeepFinder to given experimental conditions is crucial, as we demonstrated how 
changes in cell type or cargo, for example, can affect exocytosis detection methods’ performances, especially when using 
traditional methods (Fig 4). Moreover, customization offers the possibility for further improvements such as the combina-
tion of several ExoDeepFinder models, and a consensus prediction based on a voting system. Another possible line of 
improvement would be to implement a “curriculum learning” approach via training from “easy data” to more “difficult data”, 
for instance using SBR. It has been demonstrated that curriculum learning improves the performances of deep learning 
models [37].

In conclusion, our analysis highlights the advantages of using a deep learning approach for the segmentation 
of dynamic processes. We show, how network architecture can be adapted from one problem (segmentation of 

vesicle. Once the vesicle starts to fuse with the plasma membrane, the CD63 + intraluminal vesicles are released in the extracellular medium and the 
pHluorin is exposed to a neutral pH and thus starts to emit a fluorescence signal. On the right, a representative TIRFM image of CD63-pHluorin-positive 
in a transfected RPE-1 cell seeded on ring-shaped micropattern with a diameter of 37µm. C. ExoDeepFinder performances in VAMP7-pHluorin trans-
fected HeLa cells. D. Comparison of the exocytosis rate measured by manual detection (ground truth) and compared to ExoDeepFinder detection. In C 
and D, 14 cells analyzed from a single experiment with a total of 1045 exocytosis events, are shown. E. ExoDeepFinder performances in CD63-pHluorin 
transfected RPE-1 cells. F. Comparison of the exocytosis rate measured by manual detection (ground truth) and compared to ExoDeepFinder detection. 
In E and F, 10 cells analyzed from a single experiment with a total of 972 exocytosis events, are shown. In B, C, F and H, significance has been evalu-
ated with paired Wilcoxon test, ns p > 0.05 and ***p < 0.001. In C-D and G-H, ExoDeepFinder was trained on the total 60 movies of the training dataset 
(model all).

https://doi.org/10.1371/journal.pcbi.1013556.g004

https://doi.org/10.1371/journal.pcbi.1013556.g004
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macromolecules in cryo-EM) to another (segmentation of exocytosis events in TIRFM). We provide i) an open-source 
implementation of the ExoDeepFinder software, ii) the manual annotated dataset for training, and iii) the trained model for 
inference and fine-tuning. Detection of exocytosis events is a difficult task, because exocytosis events are rare (only few 
pixels in a movie) and noisy; with false positive stable bright foci highly similar to bona fide exocytosis event. These chal-
lenges are not specific to exocytosis detection, and we hope that the success of ExoDeepFinder’s performance will open 
the possibility to develop similar deep learning approaches for analysis of other dynamic processes, such as endocytosis, 
or the detection of blinking spots in the context of super-resolution microscopy.

Methods

Cell culture

hTERT-immortalized retinal pigment epithelial cell line (hTERT RPE-1) were cultivated in DMEM/F12 media (Gibco, cata-
log # 21041–025) complemented with 10% Fetal Bovine Serum (Eurobio, catalog # CVFSVF00–01) (without antibiotics). 
HeLa immortalized cell line were cultivated in DMEM high glucose (4.5g/l) media (Gibco, catalog #11965092) (without 
antibiotics). Cells were maintained at 37°C with 5% CO

2
 in a humidified incubator.

Transfection

Cells were transfected with the following constructs: VAMP7-pHluorin [38] and CD63-pHluorin (addgene plasmid 
#130901) [36]. Moreover our dataset includes VAMP7-pHluorin transfected cells co-transfected with mCh-Rab6A or 
Paxillin-mCh [39]. Cells were transfected with 800ng (or 2 × 400ng for co-transfection) of DNA using the JetPrime kit (Poly-
plus). Cells were imaged 24h after transfection.

Drug treatments

Cells were treated with Bafilomycin A1 (MedChemExpress, catalog # HY-100558, 100nM) for 1h before imaging or treated 
with histamine (Merck, catalog # H7125, 100µM) and immediately imaged. For all drug conditions, a paired design was 
used: the same cell was imaged before and after the treatment. Note that for histamine treatment only the first 60s after 
drug addition were analyzed, because the effect of histamine on secretion rate was immediate but transient [34].

Micropatterning

Our dataset included some cells seeded on a micropatterned substrate. We followed the photolithography micropattern-
ing protocol from Azioune et al. [40]. Briefly, coverslips (1.5H ThorLabs, Catalog # CG15XH1) were oxidized by plasma-
cleaner (Harrick Plasma) during 5min. Coverslips were PEG-coated by incubating them on a drop of PLL-g-PEG [Surface 
Solutions, PLL(20)-g[3.5]- PEG(2)] (0.1 mg/mL diluted in water, 10mM HEPES, pH = 7.4) in a moiety chamber during 
1h. After coating, patterns were printed using a deep UV lamp (Jelight Company Inc, catalog # 342–220) with radiation 
passing through a photomask (DeltaMask) during 5min. Finally, patterns were fibronectin-coated by incubating coverslips 
on a drop of fibronectin (Merck/Sigma, catalog # F1141) (50 µg/mL diluted in water) and fibrinogen-Alexa647 (Molecular 
Probes, Invitrogen, catalog # F35200) (or fibrinogen-Alexa488) (5 µg/mL) in a moiety chamber during 1h. Coverslips were 
conserved at 4°C in PBS.

Cell seeding on micropatterns was described in Lachuer et al. [41]. Briefly, coverslips were maintained in magnetic 
chamlides for live imaging. ~ 200,000 trypsinized (Thermo Fisher, catalog # 12605010) cells were added in the chamlide 
chamber. After 10min incubation in 37°C incubator, cells were attached to the substrate. Cells were washed using DMEM/
F12 media with 20mM HEPES (Gibco, catalog # 15630–056) with 2% penicillin/streptomycin (Gibco, catalog # 15140–
122). Cells were incubated at least 3h in the incubator until full spreading on the micropattern. Cells were imaged the 
same day. Two different geometries of micropatterns were used: i) ring-shaped micropatterns with a diameter of 37µm and 
7µm thickness of the adhesive ring; and ii) rectangular micropatterns with 9x40µm dimensions.
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TIRFM

Non-patterned cells were seeded in fluorodishes (World Precision Instrument) coated with fibronectin (or Poly-L-Lysin 
(PLL) (Merck P4707) for some cells of the dataset). Media supplemented with 20mM HEPES was used for imaging. 
The acquisition was made using an inverted Nikon TIRFM equipped with an EMCCD camera (efficiency 95%) with a 
100 × objective (pixel size = 0.160 µm) with the 491nm laser. Time-lapse of VAMP7/CD63-pHluorin was acquired with a 
theoretical frame rate of one image every 300ms during 5min. Frame rate was set according to the half-life of exocytosis 
events. Due to microscopic device delay, the actual frame rate has been computed using the computer time of saved files.

Statistical analysis

All statistical analyses were made with R [R Core Team (2021)]. The number of cells and the number of independent 
repetition is indicated in the legend. Since our cells were mostly isolated when imaged, we performed only single cells 
analysis, each cell was considered as independent, setting the sample size. The statistical test used was indicated in 
the legend. Tests were always conducted in a two-sided manner and a multiple comparison correction was applied when 
needed. To make no hypothesis about data normality we only applied nonparametric tests (Kruskal-Wallis test with Dunn’s 
post-hoc test realised (with a Holm-Bonferroni correction) with the dunn.test package) and applied pairing when possible 
(paired Wilcoxon test). Finally, correlation was measured by Pearson correlation coefficient and tested with a t-test or with 
a Spearman correlation coefficient for non-linear trends.

Effect size of paired data was analyzed with Cohen’s d. Briefly, a value of exocytosis rate x  was obtained before and 
after treatment for each cell. The pairwise difference ∆xi for cell i  was computed as xafter,i – xbefore,i . The Cohen’s d was 
computed as:

	
d =

∆x
s∆x	

With ∆x  the average of the pairwise differences ∆xi, and s∆x the standard-deviation of the pairwise differences ∆xi.

Image analysis

Manual exocytosis detection (Ground truth).  Exocytosis events were detected manually based on the visual 
recognition of a sudden burst of intensity signal followed by an exponential decay. However, this task is prone to error due 
to the size of the dataset and the ambiguity of some events. Our dataset probably includes FP and FN. However, these 
errors are minor, reflect real situations and did not impair ExoDeepFinder training.

Exocytosis detection with ExoJ.  ExoJ is an open-source imageJ pluggin (https://www.project-exoj.com) [28] based 
on the “à trous” wavelet transform (see Yuan et al. [21]) followed by spot tracking using the nearest-neighbour method. 
Fusion events are predicted according to a peak of fluorescence followed by an exponential decay. We used version 1.09 
(2022-09-28) of ExoJ for our analysis. After several trials on out dataset, we determined values of the free parameters that 
produce satisfying results.
Vesicle detection step: the minimal and maximal vesicle radii were set to 2 and 5 pixels, respectively (pixel size is 
160 nm). We did not apply photobleaching correction, because it created artifacts as mentioned by the authors.
Tracking step: the spatial searching range was set to 2 pixels. The temporal searching depth (gap closing) was set to 1 
frame and the minimal event size was set to 2 frames. These values are given by default and were appropriate to process 
our data.
Event detection: we set to 5 the minimal number of points for fitting procedure, 4 the number of expanding frames (pre 
and post peak). We did not specify limits for the number of frames for decay, the estimated radius limit nor the maximum 
displacement.

https://www.project-exoj.com


PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013556  October 14, 2025 14 / 21

The remaining parameters (wavelet scale σ, detection threshold dF/σ, minimal R² for decay and minimal R² for esti-
mated radius) were more difficult to determine. Screening was limited by the fact that ExoJ is not a fully automatized 
algorithm. We run the analysis of the entire training dataset (60 movies) for 4 wavelet scales σ ∈

{
2, 3, 5, 10

}
. We applied 

a detection threshold dF/σ of 2, a minimal R² for decay of 0.7 (except for wavelet scale of 2 where we used 0.85 to reduce 
the number of movies where analyse could not be completed), and a minimal R² for radius of 0.6. Results table associates 
each event to dF/σ and two R², therefore higher thresholds could be tested a posteriori contrarily to wavelet scale that 
had to be set a priori (see S1C Fig). We emphasize on the fact that a substantial part of the movies could not be analyzed 
(S1B Fig); the event identification step never completed despite overnight computation. We tried different computers, 
different versions of ImageJ and to cut the movies without success. Most of the movies, which could not be analyzed, con-
tained a vesicle detection step that was severely wrong, showing a high number of FPs that were even detected at high 
wavelet scales.

Exocytosis detection with ADAE GUI.  Urbina et al. proposed an exocytosis detection method based on the 
h-dome transform, tracking with Kalman filtering and fitting of fluorescence intensity by an exponential decay [26]. 
Authors adapted the method in a new and open-source version of the MATLAB code called ADAE GUI [27] and we 
used it in our experimental study. The method detects exocytosis events using Difference of Gaussians (DoF). This 
algorithm, often applied for spot detection, consists in subtracting the result of the image filtered with a Gaussian 
filter of parameter σ

1
 from the result of the image filtered with a Gaussian filter of parameter σ

2
 > σ

1
. The resulting 

image presents sharp maxima at the spot locations. The first step of the algorithm consists in creating the mask of 
the cell. We skipped this step and put a unique cell mask for the whole movie as input, generated by thresholding 
the intensity (ImageJ plugin) of the first frame, because cell movements are minor in our 5–7min movies. This mask 
typically avoided false detection on the cell borders due to small movements of the cell. Next, a background subtraction 
(constant value defined as the average intensity outside the cell) was applied on the whole movie. Each frame was 
then analyzed separately, and two pre-processings were applied: an adjustment of the intensity histogram to match 
the histogram of the first frame (to correct potential bleaching) and a subtraction of the median projection of the five 
previous frames (to highlight exocytosis events and remove stationary objects and noise). DoG at several scales (9 
scales in our case) was computed, with an initial σ of 1 pixel (σ is multiplied each time by 1.25). The selected image 
was the median projection of the 9 images. Applying this workflow to all frames, we obtained a movie with highlighted 
nonstationary spots. The maximum value in each frame was computed and the median of this set of values was defined 
as the threshold. If a spot had at least one pixel above this median value, it would be considered as an exocytosis 
event. Finally, a tracking algorithm (based on Kalman filter) was applied to avoid counting several times the same 
exocytosis event, if present in several successive frames. The exocytosis events were given as a CSV file containing 
the positions (x,y,t) of particles in the movie.

Computation of performance scores.  The performances of the 3 methods (ExoDeepFinder, ADAE GUI and ExoJ) 
were evaluated in the same way through the comparison of 3D coordinates from predicted events with the ground truth. 
For each movie, a cell mask was generated (ImageJ intensity-based thresholding on the first frame of the movie) and 
events outside the masks were removed before evaluation. Moreover, for the comparison of the 3 methods (Fig 1) (but not 
for robustness comparison) (Fig 2), events in the 25 first and last frames were removed to avoid any bias due to border 
effects. User can easily apply the same exclusions in real data. A predicted event was classified as a TP if the spatial 
distance ∆x  to the nearest ground truth event is ∆x ≤ 4.5 pixels and the temporal distance ∆t  is –2 ≤ ∆t ≤ 5 frames 
(positive sign indicates predicted event after ground truth peak). These distances ∆x  and ∆t  for TP events are reported 
in S2D–S2E Fig. In the rare cases when several ground truth events matched the predicted event, the nearest spatial 
neighbor was chosen. All predicted events, which were not classified as TP, were classified as FP and the number of FN 
was computed as #FN = N – #TP with N  the number of events in the ground truth list. The F1-score, Precision and Recall 
were computed as follows:
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F1 – score =

2× #TP
2× #TP+ #FP+ #FN 	

	
Precision =

#TP
#TP+ #FP	

	
Recall =

#TP
#TP+ #FN 	

If #TP = 0, #FP = 0 and #FN = 0 (once case in the Bafilomycin A1 dataset), these scores could not be computed.
Lifetime and F/F0 quantification.  Average fluorescence intensities were measured in a window of 7x7 pixels 

(1.12x1.12µm) centered on the exocytosis event during 16 frames (~5s) starting from peak intensity. The fluorescence 
intensity was normalized by the peak intensity. The intensity profile of all events in a cell was averaged. This averaged 
intensity decay was fitted with a single exponential function:

	 I(t) = Ae–t/t1/2 + B	

With t
1/2

 the half-life (reported in S3 Table). The fitting was performed with R using the minpack.lm function nlsLM().
The SBR ratio F/F

0
 (reported in S2 Table) was computed as the ratio between the mean intensity in a 7x7 pixels 

(1.12x1.12µm) window centered on exocytosis spot at the peak of fluorescence and 5 frames before. Contrarily to lifetime, 
a F/F

0
 SBR was computed for each event and not averaged per cell.

Venn diagram.  The construction of Venn diagrams (Fig 2D) started with the classifications of all events as TP, FP and 
FN for ExoDeepFinder, ExoJ and ADAE GUI. To be in intersection area, events associated to different detection methods 
were separated with ∆x ≤ 4.5 and |∆t| ≤ 7 frames.

ExoDeepFinder

Supervised deep learning for object detection in biological microscopy.  DeepFinder is an object detection 
method for 3D volumes that has originally been developed for detecting macromolecules in cryo-ET [32]. It is based 
on image segmentation using a 3D convolutional neural network, and is trained in a supervised manner. The network 
architecture is a U-Net [2] and is described in [32]. After segmenting the objects of interest, the coordinates of the object 
centroid (i.e., center of mass) are retrieved by applying spatial clustering (mean-shift) to the segmentation map. Special 
features of ExoDeepFinder include an efficient implementation for handling large 3D datasets and strategies for dealing 
with rare classes. Furthermore, for training purposes, the user only needs to provide annotations in the form of a position 
list (i.e., coordinates of the objects centroid). ExoDeepFinder includes methods for converting the position list into an 
approximate segmentation map (to be used as training targets). The software is implemented in Python, is based on the 
tensorflow package, and is available at: https://github.com/deep-finder/tirfm-deepfinder.

Custom optimization hyper-parameters.  To adapt DeepFinder (designed for cryo-ET) to TIRF microscopy, the 
distinctive characteristics of these image modalities needed to be considered. Cryo-ET data is a volume with 3 spatial 
dimensions, whereas TIRF data is a volume with 2 spatial dimensions and a temporal dimension (i.e., an image 
sequence). Therefore, we limited data augmentations to the (x,y) plane, like random rotations and mirroring. Furthermore, 
from the model architecture perspective, we only applied maxpooling in the (x,y) dimensions. Since an exocytosis event 
typically lasts only 2–3 frames, it was essential to maintain a good temporal resolution. Finally, in terms of normalization, 
instead of using z-standardization (0-mean, 1-std) as used for cryo-ET, here we chose quantile normalization (so that the 

https://github.com/deep-finder/tirfm-deepfinder
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1st percentile is aligned to value 0, and the 99th to value 1), because we noticed performance improvement for some 
image sequences.

Generating segmentation maps from position lists.  To train ExoDeepFinder, only the objects position (centroid 
coordinate) needed to be annotated. Segmentation maps for training were then generated by placing an (x,y,t) shape 
model at annotated positions. The luminescence of an exocytosis is isotropic in the (x,y) plane (i.e., a disc) and has an 
exponential decay in t. Therefore our (x,y,t) shape model was a tube of 3 frames with an exponential decaying radius 
(starting at R = 4 pixels, then R = 2 and ending at R = 1 pixel).

Handling rare events.  The class imbalance is severe in our target case study: most image sequences have 
less than 0.1% of pixels that belong to the exocytosis class. To deal with this problem, ExoDeepFinder samples 3D 
patches centered on annotated positions. The proportion of exocytosis event pixels in the patch is then more favorable 
for achieving a successful training. In this respect, when choosing the patch size, there is a trade-off between class 
imbalance and detection performance. On the one hand, a small patch size results in a higher proportion of the rare class, 
because the patch is wrapped tighter around the object of interest. The downside is that less context is included in the 
model decision making. As a result, the model has a high false positive rate, as the missing context of the object is an 
important cue. On the other hand, a large patch size mitigates this problem, as with more context the model disposes of 
more information, hence a lower false positive rate. Yet, the proportion of the rare class within the patch is too low, which 
causes the training to fail (the cost function does not decrease and the model always predicts the over-represented class, 
i.e., the negative class). We solve this trade-off by modulating the patch size during training, from small (83 pixels) to large 
(483 pixels). Starting with a small patch size ensures a good proportion of exocytosis event pixels (12.3% for 83 patches), 
allowing to obtain initial model weight values that will ensure the success of the subsequent training. We then increase 
the patch size by a factor 2 every 10k training iterations (see parameters in S5 Table), so that the model gradually 
incorporates more image context to its decision making, which effectively decreases the false positive rate (that is initially 
high for small patch sizes).

Enhance detection performance by providing counter-examples.  Furthermore, we noticed that ExoDeepFinder 
tends to confuse exocytosis events (i.e., blinking spots) with docked vesicles (i.e., spots with no exponential decay, 
whose luminescence remains constant through frames). We therefore decided to include counter-examples to the training 
procedure. We chose to generate these counter-examples by using the unsupervised spot detector ATLAS [24], which 
is avalaible at: https://gitlab.inria.fr/serpico/atlas. ATLAS software enables to detect spots in 2D fluorescence images. 
The spot size is automatically selected and the detection threshold adapts to the local image dynamics. ATLAS relies 
on the Laplacian of Gaussian (LoG) filter, which both reduces noise and enhances spots. A multiscale representation of 
the image is built to automatically select the optimal LoG variance. Local statistics of the LoG image are estimated in a 
Gaussian window, and the detection threshold is pointwise inferred from a probability of false alarm (PFA). The user only 
has to specify i) standard deviation of the Gaussian window and ii) PFA value. The Gaussian window must be about the 
size of the background structures; increasing the PFA increases the number of detections. In all our experiments, we 
set PFA to 0.001 and the standard deviation of the Gaussian window to 21 pixels. All connected components lower than 
3 pixels are discarded. Then, we merge the ATLAS detections with the exocytosis event annotations into a multi-class 
segmentation map (label 0 is background, label 1 is exocytosis event, label 2 is docked vesicle). As the ATLAS detections 
were not supervised by an expert, they contain some FPs and FNs. The quality of these detections was nevertheless 
sufficient for our purpose (i.e., to provide counter examples). In practice, it enhanced the detection performance for 
exocytosis events, and it also helped to mitigate the imbalanced class problem, as shown in [32].

Additional implementation details and computing times.  ExoDeepFinder has been computationally trained 
with the Tversky loss [42] and ADAM algorithm, chosen for its good convergence rate, by setting the learning rate to 
0.0001, the exponential decay rate to 0.9 for the first moment estimate and to 0.999 for the second moment estimate. No 
regularization (e.g., L2 regularizer or ‘drop out’) was used for processing the datasets.

https://gitlab.inria.fr/serpico/atlas
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The inference stage of ExoDeeFinder is fast as it takes only 33.79 seconds using a Nvidia A100 GPU to process a 
movie of 1001 images of 261 x 149 pixels. The training from hybrid annotations required 17 hours and 30 minutes on a 
Nvidia A100 GPU.

Datasets

The training/inference dataset is composed of 120 movies of single RPE-1 VAMP7-pHluorin transfected cells acquired in 
TIRFM. Part of this dataset is already published in Lachuer et al. [34,41]. All these cells are in control conditions (no drug 
treatment). However, this training dataset includes variation in the seeding conditions. While most of the cells are seeded 
on fibronectin-coated glass-bottom dish (62 movies), some of them are seeded on PLL (23 movies) or micropatterns (ring 
or rectangles shaped) (17 and 18 movies respectively). Moreover, some of the conditions are co-transfected, either with 
Paxillin-mCh (19 movies) or mCh-Rab6A (5 movies). We include this diversity in the dataset to increase the robustness 
of ExoDeepFinder. The histamine and Bafilomycin A1 datasets come also from Lachuer et al. [34]. The HeLa and CD63 
datasets were not published elsewhere. While HeLa cells were seeded on fibronectin coated glass, CD63-pHluorin trans-
fected RPE-1 cells were seeded on ring-shaped micropattern.

Supporting information

S1 Movie.  Representative movie of a VAMP7-pHluorin transfected RPE-1 cell in TIRFM. White squares highlight 
some of the exocytosis events characterized by a sudden apparition of a bright spot and then the 2D diffusion of the sig-
nal. Time code is in minute:second format.
(MP4)

S2 Movie.  Representative movie of a VAMP7-pHluorin transfected RPE-1 cell in TIRFM showing the detection of 
the exocytosis events for the 3 described methods, compared with the ground truth. Each event appears 3 frames 
before and remains 3 frames after. Performances were compared from frame 20 (00:19) to frame 981 (16:20).
(MP4)

S3 Movie.  Representative movie of a VAMP7-pHluorin transfected RPE-1 cell in TIRFM before and after Bafilomy-
cin A1 treatment (100nM, 60min). Time code is in minute:second format.
(MP4)

S4 Movie.  Representative movie of a VAMP7-pHluorin transfected RPE-1 cell in TIRFM before and after histamine 
treatment (100µM, immediately imaged after the treatment). Time code is in minute:second format.
(MP4)

S5 Movie.  Representative movie of a VAMP7-pHluorin transfected HeLa cell in TIRFM. Time code is in minute:sec-
ond format.
(MP4)

S6 Movie.  Representative movie of a CD63-pHluorin transfected RPE-1 cell seeded ring-shaped micropattern 
(37µm diameter), in TIRFM. Time code is in minute:second format.
(MP4)

S1 Fig.  Analysis of ExoDeepFinder and ExoJ performances. A. Correlation between the two types of SBR (cell sig-
nal/background and F/F

0
) in the training dataset (60 movies). Significance of the correlation has been evaluated through 

a t-test and the R² is indicated. B. Comparison of ExoDeepFinder performances with or without ATLAS multiclass annota-
tions. Comparison over the 60 movies of the inference dataset. ExoDeepFinder was trained on the total 60 movies of the 

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013556.s001
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http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013556.s007


PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013556  October 14, 2025 18 / 21

training dataset (model all) with or without ATLAS annotations. Significance has been evaluated with paired Wilcoxon’s 
test, *p < 0.05 and ***p < 0.001. C. Fraction of inference dataset for which ExoJ analysis is possible as a function of the 
different wavelet scales used. D. ExoJ performances on the training dataset as a function of its different parameters.
(PDF)

S2 Fig.  Analysis of ExoDeepFinder, ADAE GUI, and ExoJ performances. A. Correlation of ExoDeepFinder perfor-
mances with frame rate and SBR (cell signal/background and F/F

0
). Spearman correlation coefficients are indicated for 

each plot. B. Correlation of ADAE GUI performances with frame rate and SBR (signal/background and F/F
0
). Spearman 

correlation coefficients are indicated for each plot. C. Correlation of ExoJ performances with frame rate and SBR (cell 
signal/background and F/F

0
). Spearman correlation coefficients are indicated for each plot. D. Cumulative distribution of 

spatial localization error for TP events detected by ExoJ, ADAE GUI and ExoDeepFinder. Note that the different smooth-
ness of the curves is due to the different strategies of sub-pixel localization. E. Cumulative distribution of temporal local-
ization error for all true positive events detected by ExoJ, ADAE GUI and ExoDeepFinder. In D and E, number of events 
for each curve are n

ExoJ
 = 1664, n

ADAE GUI
 = 2681 and n

ExoDeepFinder
 = 3458. In B-C, ExoJ has less number of movies analyzed 

(hence less total number of events), because the analysis could not be performed for 30–40% of the data (see method). 
F. Comparison of the exocytosis rate measured by manual detection (ground truth) and compared (respectively) to ExoJ, 
ADAE GUI and ExoDeepFinder predictions. In F, 60 cells analyzed from 21 independent experiments (only 37 cells in 15 
independent experiments could be analyzed with ExoJ). Systematic biais significance has been evaluated with paired Wil-
coxon test and associated effect sizes are measured with the Cohen’s d for paired samples. Correlation has been mea-
sured with Pearson correlation coefficient r and significance evaluated with a t-test for correlation. ns p > 0.05, *p < 0.05 
and ***p < 0.001. In A-F, ExoDeepFinder was trained on the total 60 movies of the training dataset (model all).
(PDF)

S3 Fig.  Analysis of exocytosis detection robustness to drug conditions. A. ExoJ performances before and after 
Bafilomycin A1 (100nM, 60 min) treatment. B. Exocytosis rate before and after Bafilomycin A1 (100nM, 60 min) treatment 
measured by manual detection (ground truth) and compared to ExoJ detection. Note that in A-B, unpaired points are due 
to movies for which ExoJ analysis was not possible. In A-B, n = 16 cells from three independent experiments for ground 
truth but only 2 cells for which analysis was possible before and after treatment. C. ADAE GUI performances before and 
after Bafilomycin A1 (100nM, 60 min) treatment. D. Exocytosis rate before and after Bafilomycin A1 (100 nM, 60 min) treat-
ment measured by manual detection (ground truth) and compared to ADAE GUI detection. In C-D, n = 16 cells from three 
independent experiments. E. ExoJ performances before and after histamine (100µM, cells immediately imaged) treatment. 
F. Exocytosis rate before and after histamine (100µM, cells immediately imaged) treatment measured by manual detec-
tion (ground truth) and compared to ExoJ detection. Note that in E-F, unpaired points are due to movies for which ExoJ 
analysis was not possible. In E-F, n = 17 cells from three independent experiments for ground truth but only 6 cells for 
which analysis was possible before and after treatment. G. ADAE GUI performances before and after histamine (100µM, 
cells immediately imaged) treatment. H. Exocytosis rate before and after histamine (100µM, cells immediately imaged) 
treatment measured by manual detection (ground truth) and compared to ADAE GUI detection. In G-H, n = 17 cells from 
three independent experiments. In B, D, F and H, significance has been evaluated with paired Wilcoxon test, ns p > 0.05, 
*p < 0.05, **p < 0.01 and ***p < 0.001. In B, D, F and H, effect sizes are measured with the Cohen’s d for paired samples.
(PDF)

S4 Fig.  Analysis of exocytosis detection robustness to cell type and fluorescent cargo. A. ExoJ performances in 
VAMP7-pHluorin transfected HeLa cells. B. Comparison of the exocytosis rate measured by manual detection (ground 
truth) and compared to ExoJ detection. In A and B, 14 cells analyzed from a single experiment (all movies could be ana-
lyzed with ExoJ). C. ADAE GUI performances in VAMP7-pHluorin transfected HeLa cells. D. Comparison of the exocytosis 
rate measured by manual detection (ground truth) and compared to ADAE detection. In C and D, 14 cells analyzed from a 

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013556.s008
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single experiment. E. ExoJ performances in CD63-pHluorin transfected RPE1 cells. F. Comparison of the exocytosis rate 
measured by manual detection (ground truth) and compared to ExoJ detection. In E-F, n = 10 cells from a single experi-
ment for ground truth but only 6 cells for which ExoJ analysis was possible. G. ADAE GUI performances in CD63-pHluorin 
transfected RPE1 cells. H. Comparison of the exocytosis rate measured by manual detection (ground truth) and compared 
to ADAE GUI detection. In G and H, 10 cells analyzed from a single experiment. In B, D, F and H, significance has been 
evaluated with paired Wilcoxon test, ns p > 0.05, *p < 0.05, **p < 0.01 and ***p < 0.001.
(PDF)

S1 Table.  Description of the different ExoDeepFinder training datasets in terms of absolute number of exocytosis 
events and number of movies. For each training dataset, the numbers of exocytosis events and movies coming from the 
3 originally defined training datasets (low, medium and high SBR) are indicated. Fraction of the total numbers are indi-
cated in brackets.
(PDF)

S2 Table.  SBR (F/F0) for each class of event (TP, FP and FN) for the different detection methods. Values are means 
(over all events) ± SD.
(PDF)

S3 Table.  Lifetime of exponential decay of exocytosis event for each class of event (TP, FP and FN) for the differ-
ent detection methods. Values are means (over all cells) ± SD. Note that contrarily to SBR in S2 Table, a single lifetime 
for each category (TP, FP, FN) is computed per movie. Several events need to be merged to obtain a robust estimation of 
the decay contrarily to SBR that can be easily evaluated for each single event.
(PDF)

S4 Table.  SBR of the different datasets. Values are means (over all cells) ± SD. Significance has been evaluated with 
unpaired Wilcoxon test for comparison with the reference dataset and with paired Wilcoxon test for before vs. after com-
parisons, ns p > 0.05 and ***p < 0.001. The sample size N is the number of cells. Bafilomycin A1 dataset originally contains 
one additional cell but because these cells have no exocytosis event after the drug, SBR cannot be estimated, and the 
cell has been removed from the analysis.
(PDF)

S5 Table.  Training schedule. For each round, the parameters have been changed. The patch size determines the size 
of the local context. A random shift is applied to the patch sampling as a data augmentation technique. Hence, objects 
of interest are not always located at the center of the patch. The batch size is chosen according to the available GPU 
capacity.
(PDF)
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