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Abstract 

Mathematical and computational models play a crucial role in understanding the epi-

demiology of economically important plant disease outbreaks, and in evaluating the 

effectiveness of surveillance and disease management measures. A case in point is 

Xylella fastidiosa, one of the world’s most deadly plant pathogens. Since its Euro-

pean discovery in olives in Puglia, Italy in 2013, there remain key knowledge gaps 

that undermine landscape-scale containment efforts of the outbreak, most notably 

concerning the year of introduction, the rate of spread, dispersal mechanisms and 

control efficacy. To address this, we developed a spatially explicit simulation model 

for the outbreak spreading among olive groves coupled to a simulation of the real 

surveillance and containment measures. We used Approximate Bayesian Computa-

tion to fit the model to surveillance and remote-sensing infection data, comparing the 

fits for three alternative dispersal mechanisms (isotropic, wind and road). The model 

accurately explained the rate and spatiotemporal pattern of the outbreak and found 

weak support for the wind dispersal model over the isotropic model. It suggests that 

the bacterium may have been introduced as early as 2003 (95% CI [2000, 2009]), 

earlier than previous estimates and congruent with anecdotal evidence. The isotropic 

model estimates the pathogen is spreading at 5.7 km y-1 (95% CI [5.4-5.9]) under 

containment measures, down from 7.2 km y-1 (95% CI [6.9-7.5]) without containment 

measures. Our estimate of an approximately 10-year lag between introduction and 

detection highlights the need for stronger biosecurity and surveillance for earlier 

detection of emerging plant pathogens. The outputs from simulations without any 

disease management also suggest that while containment measures have caused 

some slowing of X. fastidiosa spread, stronger measures will be required to contain 

the outbreak fully.
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Author summary

Mathematical and computational models are crucial role for understanding plant 
disease outbreaks and evaluating the effectiveness of disease management. A 
case in point is Xylella fastidiosa, one of the world’s deadliest plant pathogens. 
Since its European discovery in olives in Puglia, Italy in 2013, there remain key 
knowledge gaps that undermine landscape-scale containment efforts of the 
outbreak, most notably concerning the year of introduction, the rate of spread 
and control efficacy. We developed a simulation model for the outbreak coupled 
to a simulation of surveillance and containment measures. We used Approximate 
Bayesian Computation to fit the model to surveillance and remote-sensing infec-
tion data. The model suggests that the bacterium may have been introduced ear-
lier than previous estimates and that containment measures may have had some 
impact on slowing down the spread of the pathogen. Our results highlight the 
need for stronger biosecurity and surveillance for earlier detection of emerging 
plant pathogens, and suggest that stronger measures will be required to contain 
the Xylella fastidiosa outbreak fully.

Introduction

Xylella fastidiosa is one of the world’s most deadly plant pathogens [1]. This  
bacterium has a wide host range of over 690 plant species [2], is vectored by xylem- 
feeding insects [1,3] and has a significant impact on global agriculture and horticul-
ture [4–7]. X. fastidiosa is a xylem-limited gram-negative bacterium and the  
recognised agent of a number of severe and economically important diseases, 
including Pierce’s disease of grapevines, citrus variegated chlorosis, almond leaf 
scorch, and other disorders of perennial crops and landscape plants [8]. If the bac-
terium inoculates susceptible host plants there is a long asymptomatic period [9–11]. 
Subsequently, symptoms are expressed such as leaf marginal necrosis, leaf abscis-
sion, dieback, and plant death through the obstruction of the xylem and a lack of 
sufficient water flow through the host [1]. To date, there is no cure for infected plants 
in open field conditions, and the only effective response is to fell diseased trees to 
prevent further transmission [12,13].

Once restricted to the Americas, a new invasive strain X. fastidiosa subsp. pauca 
ST 53 was discovered near Gallipoli, Puglia, Italy, in October 2013 [14] and identi-
fied as the causal agent of olive quick decline syndrome [15]. However, symptoms 
resembling those of X. fastidiosa were noticed by olive tree (Olea europaea) growers 
as early as 2008 [16], suggesting a substantial time lag between the bacterium being 
first introduced and formal identification [3]. A genome-wide analysis revealed that the 
genotype infecting olive groves in Puglia most likely originated from coffee plants in 
Costa Rica [17], and that the outbreak was due to a single introduction [18]. Genomic 
studies also suggested a possible introduction date of 2008 [18,19], but with wide 
confidence intervals (1952–2015 and 1930–2016, respectively). This introduction 
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date was also suggested by a modelling study [20]. However, given an asymptomatic period lasting approximately 1.2 
years [9,10] and the time needed for the pathogen to establish and start spreading, this date appears incongruous with 
olive growers’ observations of symptoms by 2008 [16] indicating an inconsistency to be resolved.

Since the initial introduction in Puglia, X. fastidiosa has spread rapidly. In the infected area a large proportion of the 
olive trees have been infected [6,16,20] causing millions of tree deaths and resulting in substantial harm to the culture 
and livelihoods in the region. Control efforts to limit spread have centred around restrictions on moving host plants, sur-
veillance, removal of infected and neighbouring plants and vector control (e.g., Decision [EU] 2015/789, Decision [EU] 
2017/2352 and Regulation (EU) 2020/1201) [13,21]. These have been distributed spatially in different demarcated areas 
comprising the infected zone bordered by containment and buffer zones [13]. Differing intensities of surveillance and con-
trol are implemented in each demarcated area, with the aim of containing the spread [22]. Despite these efforts however, 
spread of the pathogen continues. Modelling studies have shown that the effectiveness of containment strategy is highly 
sensitive to the width of the containment and buffer zones relative to pest dispersal [12,23–25]. Therefore, model-based 
assessments of dispersal and spread could improve the efficacy of control measures that involve spatial targeting within 
an expanding pest range [26,27].

In Puglia, X. fastidiosa is mainly transmitted by the polyphagous and widely distributed meadow spittlebug, Philaenus 
spumarius [3,28,29]. Its dispersal capabilities are relatively poorly understood, despite being a key determinant of X. 
fastidiosa spread [29]. Mark-release-recapture (MRR) revealed that 50% of the spittlebug population moved <200 m and 
98% < 400 m during the 2-month period of high vector abundance on olives in Puglia [30]. This limited short range vector 
movement capacity is hard to reconcile with the rapid regional spread of X. fastidiosa [20]. However, laboratory flight mill 
experiments revealed a potential for rarer longer distance P. spumarius dispersal, recording a maximum single flight of 5.5 
km [31]. In addition, spittlebugs may undergo wind-assisted long-distance dispersal [32] and (anecdotally) human- 
mediated dispersal by insects “hitchhiking” on vehicles [29,33]. How these dispersal mechanisms determine spatiotem-
poral patterns of plant disease spread at landscape scale remains an open question that is well suited to computational 
modelling [34,35].

Previous models of landscape-scale spread of X. fastidiosa have also featured very simple representations of dispersal 
and transmission dynamics [6,23] and also not captured the effect of ongoing surveillance and containment measures [13] 
on actual and observed disease spread [20]. As such, we argue for more refined model-based estimates of spread using 
approaches that consider the complex nature of plant disease spread, containment efforts and available surveillance data 
[36]. This would not only contribute evidence about key mechanisms and parameters for the outbreak but also allow esti-
mation of the efficacy of the control measures designed to contain the outbreak.

Towards this end, we developed a new spatiotemporal stochastic simulation model for the spread of X. fastidiosa at 
landscape scale in Puglia and its containment through surveillance and felling of infected trees [13]. The new model builds 
on our previous modelling of temporal transmission dynamics within olive groves [10] by incorporating both short- and 
long-distance dispersal and disease surveillance and felling of infected trees. Using Approximate Bayesian Computation 
(ABC) [37] we fitted the model to X. fastidiosa surveillance data from 2013-2020 and remote sensing estimates of tree 
loss. Our aims were: (1) to compare models with three different long-distance dispersal scenarios (isotropic dispersal, pre-
vailing wind dispersal and vehicular hitchhiking), hypothesising that accounting for specific vector dispersal mechanisms 
(wind or vehicles) would improve the fit of the isotropic dispersal model to the data; (2) to estimate the spread rate of the 
disease and its year of introduction; and (3) to investigate the efficacy of the current containment strategy, hypothesising 
that the spread rate would be increased in simulations without containment management.

Materials and methods

We developed a spatial epidemiology model in R [38] to simulate spread of X. fastidiosa among olive trees in the infected 
region of Puglia, southern Italy (see Fig 1). The model was based on previously estimated infection dynamics within 
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infected olive groves [10] linked to dispersal models that transmit the pathogen to new locations. In addition, we included 
a representation of the X. fastidiosa monitoring programme and felling of detected infected trees to represent the genera-
tion of positive infection reports over space and time, as well as the impact of the containment strategy on disease spread. 
We used ABC to calibrate model parameters to the monitoring programme as well as estimates of tree loss from remote 
sensing. This allowed us to evaluate different scenarios for long-distance dispersal and estimate key model parameters.

Representation of space and time

The model simulates X. fastidiosa outbreaks with discrete annual timesteps and over a 200 x 200 m discrete grid covering 
the infected region of Puglia, southern Italy (195,491 grid cells; Fig 2). This grid cell size approximates the median size of 
olive groves used in our previous modelling of local disease dynamics [10], while reducing the computational demands 
of a higher resolution grid. The number of olive trees in each grid cell (N) was estimated from its proportion cover of olive 

Fig 1.  Overview of the model for the Xylella fastidiosa outbreak among olive trees in southern Italy. Boxes show the compartments of the epide-
miological model (blue boxes), model for the regional disease surveillance and containment (bright orange), remote sensing of severe tree damage (dark 
orange) and summary statistics produced from the model for fitting to observed data with Approximate Bayesian Computation (ABC) (green). Influences 
of key parameters and variables are labelled (see main text and Table 1 for explanation).

https://doi.org/10.1371/journal.pcbi.1013539.g001

https://doi.org/10.1371/journal.pcbi.1013539.g001
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orchards (Ω, see Fig A in S1 Appendix), derived from the InnovaPuglia Spa 2011 land use map (Uso del Suolo – 2011; 
https://dati.puglia.it/ckan/dataset/uso-del-suolo-2011-uds), and the median olive tree density of 91 ha-1 in the olive orchard 
plots used in our previous study [10]. Based on this, the model assumed a grid cell with 100% olive cover would contain 
364 olive trees (i.e., N = 364Ω).

Model years used May 1st as their start date, corresponding to the approximate start of the adult vector flight period [3]. 
All simulations initiated the epidemic at the approximate ‘ground zero’ area where tree decline was first detected (Fig 2). 
However, the year of X. fastidiosa introduction (Y

0
) was varied as a parameter to estimate with the model.

Epidemiological model

Within infected grid cells, X. fastidiosa transmission and disease progression was simulated with a stochastic and spatial 
version of an existing discrete-time compartmental model [10]. The structure and parameters of the existing model were 
estimated to best explain 2–3 year snapshots of disease progression in 17 olive groves [10], justifying the current model 
compartments and informative priors for several key parameters.

Fig 2.  Maps showing the locations of Xylella fastidiosa inspections and laboratory-confirmed positive detections carried out in the modelled 
region and in each model year (May 1st to April 30th of the named years), which were used to determine the locations of inspections in the 
model simulations. Each inspection covered a 100 x 100 m area, meaning up to four inspections per year in each model grid cell (200 x 200 m). The 
presumed approximate location of introduction is also shown. The base map is reproduced from the GADM Global administrative areas dataset, under 
Creative Commons Attribution-ShareAlike 2.0 (https://gadm.org/license.html).

https://doi.org/10.1371/journal.pcbi.1013539.g002

https://dati.puglia.it/ckan/dataset/uso-del-suolo-2011-uds
https://gadm.org/license.html
https://doi.org/10.1371/journal.pcbi.1013539.g002
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Model compartments are the uninfected susceptible trees (S) and three classes of infected trees: asymptomatic (IA, 
assumed to be non-infective to vectors, so equivalent to the more standard ‘exposed’ or ‘pre-symptomatic’ compart-
ments), symptomatic (IS, assumed to be infectious, so equivalent to the standard ‘infected’ compartment) and desiccated 
(ID, most foliage is scorched but assumed to still be infectious at a lower level through basal regrowth of green leaves). 
All trees that become infected progress over time from IA to IS to ID (Fig 1). The transmission model was based on our 
previous modelling [10], which concluded that asymptomatic trees do not drive transmission but could not rule out the 
possibility of transmission from desiccated trees, which could occur from any remaining live foliage or basal resprouting 
(suckers).

During each annual time step of simulations, individual trees progress through these compartments via Bernoulli trials 
using transition probabilities according to the following equations. The probability of each individual uninfected tree in a 
grid cell i becoming infected in year t (PS→IA,i,t) depends on the current density of infective trees (i.e., symptomatic or des-
iccated) in the same grid cell and surrounding areas (Fig 1) formulated as:

	 PS→IA,i,t = 1 – e
–β

∑
j

[
K(i,j)

IS,j,t+bDID,j,t
Nj

]

.	

Parameter β is the contact rate for infected olive trees with symptoms and bD is the relative infectivity of desiccated trees. 
Since the original model analysis found similar support for a model in which desiccated trees were not infective (equiv-
alent to SEIR) and a model where they were fully infective (equivalent to SEI) [10], here we included parameter bD as a 
proportion, reducing the infectiveness of desiccated trees relative to symptomatic trees. To represent infection from mul-
tiple locations, j indexes the summation over all grid cells in the landscape (including i). The function K represents patho-
gen dispersal by scaling a reduction in transmission probability with increasing distance from cell j to cell i (see below for 
further details).

Based on our previous modelling [10], the infected asymptomatic trees are assumed to develop symptoms at a con-
stant rate, while desiccation of symptomatic trees is assumed to occur at a constant rate after an initial delay period of τ 
years, representing a minimum time for desiccation. Annual probabilities of individual trees changing from asymptomatic 
to symptomatic (PIA→IS,i,t) and symptomatic to desiccated (PIS→ID,i,t) are:

	

PIA→IS,i,t = 1 – e–
1
TA

PIS→ID,i,t =

{
0 if y < τ

1 – e–
1
TD if y ≥ τ .	

Parameter TA is the mean length of the asymptomatic period (years). Variable y is the number of years the tree has been 
symptomatic, τ is the desiccation delay parameter (minimum years for desiccation) and TD is the mean time to desiccation 
after this delay period. We set τ = 3 years in all simulations since in our previous modelling there was very low support for 
models with other values of τ [10].

The dispersal function K(i,j) represents a decline in X. fastidiosa transmission with increasing distance from source j to 
destination i (di,j) which is implicitly linked to vector dispersal [34,39]. We formulated K as a mixture of short- and long- 
distance functions [34], to represent local diffusive-like movements of vectors as well as rarer and less predictable jumps 
across large distances that can spread pathogens rapidly to new regions [40,41]. Short distance diffusive movement was 
modelled with a Gaussian function and long-distance dispersal (LDD) with an exponential function:

	 K(i, j) = (1 – L)e
–d2i,j

2m2short + Le
–di,j
mlong M(i, j).	
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Parameters mshort and mlong determine the spatial scales of distance decay at both scales. Parameter L is the proportion 
of LDD, which was fixed to a single low number (L = 10-6). L was fixed to avoid confounding the fitting of L with that of the 
scale parameters mshort and mlong. We chose this value by “trial and error” to give realistic patchy spread patterns over a 
wide range of other parameter values.

A further function M(i,j) was included to represent different LDD mechanisms in a computationally minimal way that did 
not add extra parameters to estimate. M(i,j) was formulated to yield a proportion that modifies the amount of LDD from cell 
j to cell i, approximating three alternative scenarios:

1.	A “basic” scenario with isotropic LDD in which M(i,j) = 1.

2.	A “wind” scenario with anisotropic LDD following prevailing winds in the region, to represent wind-assisted vector flights 
[32]. We analysed wind directions in the region to derive a function for M(i,j) giving a value of 1 when the direction from 
j to i was aligned to the prevailing wind (approximately southeast), and proportionately lower values when the direction 
from j to i was in a less frequent wind direction (Figs B and C in S1 Appendix).

3.	A “road” scenario in which dispersing vectors preferentially landed near to major roads as a result of hitchhiking on sta-
tionary vehicles in or near olive orchards and then being deposited along the roadside as the vehicle travels [33]. We 
modelled M(i,j) as declining from 1 towards 0 with increased distance of the destination grid cell from a major road (as 
motorways, state highways and provincial roads; see Fig D in S1 Appendix) [33]. We modelled M(i,j) as declining from 
1 towards 0 with increased distance of the destination grid cell from a major road scaled using the short-distance kernel 
(Fig D in S1 Appendix).

Containment strategy

Disease surveillance was modelled so that we could compare the spread observed in the database of the official monitor-
ing programme (http://www.emergenzaxylella.it/portal/portale_gestione_agricoltura) with spread patterns produced by the 
spatial epidemiological model. This was important since spatial variation in the surveillance locations (Fig 2) has a major 
influence on the observed spread, as opposed to unbiased random surveillance locations. Additionally, tree felling after 
positive inspections [13] may have slowed the spread of the pathogen, necessitating inclusion of these measures in the 
spread model.

The surveillance model was a simplified representation of the actual regional containment strategy [12,13]. Real sur-
veillance involves visual inspections by professional surveyors of the Regional Phytosanitary Service [13], followed by 
sampling of trees and laboratory testing for the disease. If any samples test positive for X. fastidiosa this triggers felling of 
all olive trees within a 100 m radius [12,13].

Inspection locations from 2013 to the end of April 2020 (the latest complete year at the time of the study) were derived 
from records of testing individual geolocated olive trees in the monitoring programme database (http://www.emergen-
zaxylella.it/portal/portale_gestione_agricoltura). A small number of outlying isolated records were removed from the data 
as we suspected they may be ‘incidental’ inspections following reported incidental sightings of disease symptoms rather 
than part of the systematic survey. To define inspections for the model, individual tree GPS coordinates in the database 
from the same model year were assigned to the 100 x 100 m grid of the surveillance program. As such up to four inspec-
tions could occur per year in each 200 x 200 m model grid cell (Fig 2).

In total, the data contained 495,626 inspections of which 2,329 were positive for X. fastidiosa (0.47%). The surveil-
lance intensity and spatial pattern changed year on year (Fig 2) as the outbreak progressed and demarcated areas were 
updated. Initial surveillance was an area-wide low intensity monitoring to delimit the extent of the outbreak (2013/14). 
Surveillance then focussed on the most northerly part of the infection front (2014/15) and then targeted northerly clusters 
of infection with the aim of eradicating them (2015/16). Latterly, surveillance focused on containment and buffer zones 
spanning and extending beyond the moving infection front (2016/17, onwards) with the aim of containing the spread [13].

http://www.emergenzaxylella.it/portal/portale_gestione_agricoltura
http://www.emergenzaxylella.it/portal/portale_gestione_agricoltura
http://www.emergenzaxylella.it/portal/portale_gestione_agricoltura
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During each simulated visual inspection by professional surveyors of the Regional Phytosanitary Service, we assumed 
the probability of detecting visible symptoms increased with the proportion of trees that were symptomatic. As such, the 
probability of visual detection in an inspection of cell i in year t was formulated as

	 Vi,t = 1 – e–
σi,t
v 	

where σi,t =
(IS,i,t+ID,i,t)

Ni
 is the proportion of trees with symptoms. v is a free parameter scaling the inefficiency in visual detec-

tion (i.e., small values of v increase the probability of detecting rare symptoms).
Following visual inspection, olive leaves are sampled for laboratory testing. The number of trees sampled per inspec-

tion depended on whether symptoms had been visually detected and was drawn randomly from the empirical distribution 
of numbers of trees tested per inspection in the monitoring database (mean of 3.2 trees when symptoms were seen and 
1.9 trees when no symptoms were seen). When symptoms were seen, we assumed only infected symptomatic trees were 
selected for testing. When symptoms were not found, we assumed only randomly-selected asymptomatic trees were 
testing so the proportion infected is IA,i,t

(IS,i,t+IA,i,t)
. We assumed that some sampled leaves from an infected tree might contain 

no (or undetectably low) levels of X. fastidiosa, so introduced a parameter u for the probability of sampling a leaf with 
detectable X. fastidiosa load from an infected tree. Finally, we assumed laboratory testing would have a probability of false 
negative results Z, which differs for symptomatic or asymptomatic trees, as testing procedures depend on symptom status 
and symptomatic trees will likely have higher bacterial load and therefore lower false negatives.

Therefore, the probability of each sample from cell i returning a positive result in year t (p+i,t) was formulated as:

	
p+i,t =

{
u (1 – Zsymp) if symptoms visually detected

IA,i,t
IS,i,t+IA,i,t

u (1 – Zasymp) if no symptoms visually detected
.
	

The false negative rates (Z) were estimated using Latent Class Analysis on the monitoring data as Zsymp = 0.0512 and  
Zasymp = 0.0614 for symptomatic and asymptomatic trees, respectively (Section S1.3 in S1 Appendix). False positives were 
not included in the model as this analysis found negligible rates of false positives.

Using these probabilities, Bernoulli trials were used to simulate whether each sampled tree was confirmed as X. 
fastidiosa positive. If any tree returned a laboratory-confirmed positive that inspection was deemed positive. Following a 
positive inspection, all trees in the 200 x 200 m grid cell were felled, approximating the 100 m felling radius used in the 
actual containment strategy [12,13].

Approximate Bayesian computation

Approximate Bayesian Computation (ABC) using rejection sampling [37,42] was used for model selection among the three 
long-distance dispersal scenarios and then for parameter estimation of the chosen dispersal scenario. ABC is based on 
matching summary statistics from data to those produced by the model rather than using likelihoods [43,44]. It was used 
since we considered it intractable to produce a likelihood function for the observed spread data derived from the monitor-
ing scheme. Furthermore, ABC is well suited for parameter estimation for complex stochastic models as large numbers of 
model runs can be run in parallel on high-performance computing clusters [42].

To produce reliable results from ABC, a range of different summary statistics relevant to the pattern of interest should be 
used [43]. From the monitoring database, we chose the following summary statistics to capture the pattern of spread for 
each year between 2013 and 2020: number of positive inspections; spread distance (99th percentile distance from introduc-
tion point for positive inspections); clustering of positive inspections (local Moran’s I on positive grid cells, weighted using a 
Gaussian moving window with 200 m standard deviation); and association of positive inspections with major roads (median 
distance of positive inspections to a major road, which could indicate an effect of roads on the spread [33]).
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In addition, we obtained independent estimates of the size of the new area with severe damage in each year from 2010 
to 2017 from a previous remote sensing study [45]. In that study, remote sensing was able to detect large olive orchards 
(>12.5 ha) with high levels of desiccation. X. fastidiosa progression in olives trees is monitored on a visual severity scale 
from 0 (unaffected) to 5 (canopy entirely desiccated) [46,47]. In the remote sensing it was estimated that a mean severity 
score above ~2.9 was detectable [45]. To estimate an equivalent area of severe damage from the model, we first identi-
fied the model grid cells corresponding to large olive orchards, and then estimated their mean disease severity score. The 
modelled severity score of individual trees increased in yearly increments for symptomatic trees, reaching a maximum of 5 
for desiccated or felled trees. This aligns with the definition of the severity scores and recorded within cell disease pro-
gression [10]. The new area of large orchards with mean severity >2.9 was then calculated for each year of the simulation.

ABC rejection sampling was performed using these summary statistics [43,44]. First, 105 simulations were performed 
for each long-distance dispersal scenario (basic, wind and road) with parameter values drawn randomly from the prior 
distributions in Table 1.

For each simulation, a standardised distance ρ between the observed summary statistics (mobs) and the summary sta-
tistics calculated from simulated outbreaks (msim) was calculated as

	

ρ =

√√√√∑
k

(
msim,k –mobs,k

σsim,k

)2

	

where k indexes over all the summary statistics and σsim,k is the standard deviation of summary statistic k among all the 
simulations. Those simulations with ρ less than a certain acceptance threshold (detailed below) are accepted as the best 
matches to the observed data and their parameter values form the posterior distribution estimates [43,44].

The relative support for the more complex dispersal scenarios (wind and road) was evaluated by calculating Bayes 
Factors compared to the simpler basic scenario (Section S1.4 in S1 Appendix). Having selected the single dispersal 

Table 1.  Model parameters estimated with ABC, with details of their prior distributions (N = normal with sd being the standard deviation, U = uniform, 
DU = discrete uniform). The prior for β, TA and TD was a multivariate normal distribution with covariance (not given here) fitted to posterior estimates  
from [10].

Parameter Meaning Prior distribution Explanation

β Effective contact rate for transmission N(mean = 19.60, 
sd = 2.91)

Informative prior based on [10]

TA Mean asymptomatic period (years) N(mean = 1.176, 
sd = 0.052)

Informative prior based on [10]

TD Mean time to desiccation after delay (years) N(mean = 1.331, 
sd = 0.134)

Informative prior based on [10]

bD Proportionate infectiveness of desiccated 
trees relative to symptomatic ones

U(min = 0, max = 1) Full range of possible values

mshort Scaling of short-range distance decay in 
transmission (km)

U(min = 0, max = 1) Mark-recapture suggests vector lifetime movement capacity <1 
km [30]

mlong Scaling of long-range distance decay in trans-
mission (km)

U(min = 0, max = 15) Wide range of possible values, with upper value above estimated 
X. fastidiosa spread rate [20]

Y0 Introduction year DU(min = 1998, 
max = 2010)

Wide range of possible values, given detection of large numbers 
of symptomatic trees in 2013.

v Visual inspection inefficiency U(min = 0, max = 0.2) Wide range of possible values scaling the relationship between 
number of symptomatic trees and detection probability

u Probability of collecting detectable X. fastid-
iosa in a leaf sample from an infected tree

U(min = 0.65, max = 1) 35% of sampled symptomatic trees go on to test negative in the 
monitoring data, suggesting a lower limit of 0.65.

https://doi.org/10.1371/journal.pcbi.1013539.t001

https://doi.org/10.1371/journal.pcbi.1013539.t001
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scenario with the greatest support from Bayes Factors, posterior parameters were estimated for the chosen dispersal 
model. To improve the estimation, a further 4x105 simulations were performed for this model, giving a total of 5x105 sim-
ulations on which rejection sampling was implemented. An acceptance threshold of 0.0002 was used giving a posterior 
sample of 100 simulations [42].

The accuracy of the parameter estimation was assessed using a leave-one-out cross validation (LOO CV) procedure 
[42,43]. For this, a randomly selected simulation was used as the data for parameter estimation (i.e., its simulated sum-
mary statistics were used as mobs), rejection sampling was performed with the remaining simulations and the estimated 
parameter values were compared to the true values used for the focal simulation. We ran LOO CV 10,000 times with ran-
domly chosen focal simulations, to calculate both the RMSE for the parameter estimates and the proportion of parameter 
estimates whose 95% credible interval contained the true values.

Containment modelling

Finally, the calibrated model was used to simulate spread under the current containment strategy, where trees are felled 
after positive detections, and for a “no containment” scenario with no felling performed. One simulation was run for each of 
the 100 posterior samples from the ABC, and the results were averaged to estimate pathogen spread for both scenarios 
in terms of the total number of infected trees, number of felled trees and spread distance (quantified as the 99th percentile 
distance of infected trees from the origin point).

Results

Comparison of dispersal scenarios

The Bayes Factor analysis (Section S.2.1 in S1 Appendix) found lower support for the highly simplified ‘road’ long- 
distance dispersal model than the ‘basic’ model with isotropic long-distance dispersal. The ‘wind’ long-distance dispersal 
model was slightly better supported than the ‘basic’ model, but not sufficiently so to select it over the conceptually-simpler 
basic model. Therefore, the basic model was used in the remainder of this study.

Parameter estimation for the basic dispersal model

Leave-one-out cross validation (LOO CV) of the rejection sampling on the basic model showed that ABC parameter 
estimation was reliable for the two dispersal parameters and introduction year, shown by a 1:1 relationship between the 
parameter value and its estimate (Fig 3, panels for mshort, mlong and Y0). The LOO CV showed ABC was not effective at 
estimating the three disease dynamics parameters with highly informative priors (β, TA, and TD), but this was not a concern 
as we already had good estimates of these from our previous study [10] and used informative priors. The infectivity of des-
iccated trees (bD) and two inspection parameters (v and u) were also estimated poorly, although for u the LOO CV yielded 
accurate estimates in about half of the cases (Fig 3). These parameters had uninformative priors capturing a wide range 
of plausible values, and so even though we could not estimate them, the posterior simulations captured a wide range of 
uncertainty in their values.

Posterior distributions of the three identifiable parameters are shown in Fig 4. The median estimates for the short- and 
long-distance dispersal ranges were 0.317 km (95% CI [0.146, 0.606]) and 6.376 km (95% CI [4.990, 10.881]), respec-
tively. The median estimate of the introduction year Y0 was 2003 (95% CI [2000, 2009]), although the posterior was some-
what bimodal.

Posterior simulations

Using these parameter estimates, posterior predictive checks indicated a good correspondence between observed and 
simulated summary statistics (Fig F in S1 Appendix). The main exception was that the model over-predicted the number 
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of positive inspections in 2017/18. The average modelled spread pattern produced from these parameters is shown in Fig 
5, noting that individual simulations produce a patchier and more stochastic spread pattern than the smoother average of 
many simulations shown in Fig 5 (see Fig G in S1 Appendix for an example). This was especially so at the invasion front, 
where new infection foci are seeded and grow.

Management scenario simulations

Simulations in which no felling occurred were compared to the default model of felling after positive inspections (Fig 6). 
Linear regression of the spread distance for infected trees against year gives an estimated spread rate of 5.7 km y-1 (95% 
CI [5.4, 5.9]) between 2013 and 2020 when felling was applied. This compares to 7.2 km y-1 (95% CI [6.9, 7.5]) without 

Fig 3.  Accuracy of parameter estimation estimated with 10,000 leave-one-out cross validations (LOO CV) of the Approximate Bayesian Com-
putation rejection sampling and acceptance threshold of 2x10-4. Background shading shows the number of cross-validations. Where the highest 
densities of values align to the grey 1:1 lines, this indicates that parameter estimation is reliable. See Table 1 for full parameter explanations: β = trans-
mission rate; TA = asymptomatic period (years); TD = desiccation period (years); bD = infectiveness of desiccated trees; mshort = short-range dispersal 
distance (km); mlong = long-distance dispersal distance (km); Y0 = Introduction year; v = visual inspection inefficiency; u = leaf sampling probability.

https://doi.org/10.1371/journal.pcbi.1013539.g003

https://doi.org/10.1371/journal.pcbi.1013539.g003
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felling. This reduction in modelled X. fastidiosa spread rate appears to have been driven by a large amount of felling in 
the model in the year 2017/18, when there were high numbers of positive inspections and felling (Figs 6 and Fig F in S1 
Appendix). Further, jointly considering the spread rate of both the infected and felled trees (7.6 km y-1, 95% CI [7.3, 7.9]) 
there was similar spread to the simulation with no felling. Therefore, modelled felling overall had only a small influence 
on simulated pathogen spread, in terms of distance from the origin, and reductions in trees lost to infection were largely 
countered by losses from felling (Fig 6).

Discussion

We developed a spatial epidemiological model for the spread, surveillance and containment of Xylella fastidiosa in olives 
in Puglia, southern Italy, and used a novel approach to estimate model parameters from the surveillance data using 
Approximate Bayesian Computation (ABC) [44]. This allowed us to compare the support for alternative long-distance 

Fig 4.  Posterior estimates for the three identifiable parameters in the basic model shown as kernel density plots with vertical lines showing 
the medians (solid lines) and 95% credible intervals (dashed lines). Grey background histograms show the uniform prior distributions.

https://doi.org/10.1371/journal.pcbi.1013539.g004

https://doi.org/10.1371/journal.pcbi.1013539.g004
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dispersal mechanisms for the vector, finding that wind and road dispersal were not clearly better explanations of the 
observed spread than basic isotropic dispersal. It also allowed us to estimate important epidemiological parameters such 
as the ranges of short- and long-distance dispersal and the year of introduction.

Modelling X. fastidiosa spread at landscape scale is difficult due to missing knowledge about key dynamic processes 
such as vector dispersal and transmission [36,48] and the spatially biased surveillance data from which spread is 
observed. Different sources of data are available and can provide different information about the epidemic [49]. By mod-
elling surveillance alongside pathogen spread and fitting the model to summary statistics from both the surveillance data 
and remote sensing of tree loss, we were able to evaluate mechanisms and parameters determining the rate of spread 
and the efficacy of measures applied to contain the outbreak.

Estimating the long-distance dispersal of X. fastidiosa is critical since this directly affects the efficacy of containment 
and eradication strategies [12,23]. If the buffer zones are too narrow compared to pathogen dispersal, then new infec-
tion foci will appear beyond the buffer zone, impeding management of the outbreak. Additionally, better understanding 
of dispersal mechanisms could be used to target surveillance and biosecurity measures. Therefore, we compared mod-
els based on simplified representations of three different modes of long-distance dispersal considered important for the 
outbreak. We found some support for anisotropic long-distance dispersal in the prevailing wind direction compared to the 

Fig 5.  Average model Xylella fastidiosa spread, shown as the mean number of infected trees (IA
 + IS + ID) per grid cell at the end of each mod-

elled year in single simulations with each of the 100 posterior parameter values. Simulations started at the estimated introduction year for each 
posterior parameter, but only 2008/9 onwards is shown as there was little earlier spread. For scale, the grey background grid represents 20x20 km 
divisions. The base map is reproduced from the GADM Global administrative areas dataset, under Creative Commons Attribution-ShareAlike 2.0 (https://
gadm.org/license.html).

https://doi.org/10.1371/journal.pcbi.1013539.g005

https://gadm.org/license.html
https://gadm.org/license.html
https://doi.org/10.1371/journal.pcbi.1013539.g005
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basic isotropic model, which is consistent with suggestions of wind-assisted long-distance flights of the X. fastidiosa vector 
P. spumarius [31,32] and studies of other vectors of plant diseases [32,50].

By contrast, our model of long-distance pathogen dispersal following the major road network was much less supported, 
despite vehicle hitchhiking being proposed as an important mode of X. fastidiosa spread [29,33]. In part, this may reflect 
the simplistic representation of hitchhiking in the model, including the restriction of dispersal to the major road network 
with no representation of the denser network of minor roads. These and other simplifications may have affected our ability 
to differentiate rare and idiosyncratic long-distance dispersal mechanisms [51,52]. Furthermore, long-distance vector 
dispersal may be driven by a combination of different mechanisms so future modelling might explore multiple dispersal 
mechanisms, ideally informed by additional data collection designed to quantify those mechanisms [53]. For example, 

Fig 6.  Modelled effect of containment measures on spread of Xylella fastidiosa in 100 simulations from the posterior model parameters. 
Panels show the mean (a) trees infected and felled and (b) 99th percentile spread distance. Also shown is a “none” scenario in which no felling is applied 
after positive infection detections. Ribbons are bootstrapped 95% confidence intervals for the means.

https://doi.org/10.1371/journal.pcbi.1013539.g006

https://doi.org/10.1371/journal.pcbi.1013539.g006
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targeted surveys of spread from isolated infection foci beyond the main infection front could identify downwind or along-
road spread [34].

Dispersal estimates from the basic model (isotropic dispersal) were broadly consistent with empirical information on 
P. spumarius movement. Bodino et al [30] found a median movement of 26 m per day in olive groves. Their extrapola-
tion of daily movement using a simple random walk model gave a median net displacement of approximately 200 m over 
the 2-month main vector transmission period [30]. This is very close to the median displacement that results from our 
posterior estimate of short range dispersal (for a half-normal distribution with standard deviation of mshort = 0.32 km the 
median net displacement is 0.674mshort = 0.22 km). Our posterior estimate of the mean long-distance dispersal distance 
(mlong = 6.38 km) is also consistent with the maximum recorded single flight distance of 5.5 km [31]. Therefore, we suggest 
that the model provides reasonable and useful estimates of infection spread rates. These could be used to update model-
ling of future economic impacts of X. fastidiosa [6] and refining the size of containment zones and felling radii employed as 
part of the containment strategy [12].

Another important parameter is the introduction year, estimated to be 2003 (95% CI [2000, 2009]). Previous studies 
have centred estimates on 2008 [18–20], coinciding with anecdotal reports of growers first noticing symptoms [16]. Our 
estimate suggests the possibility of an earlier presence of X. fastidiosa 5 years prior to symptom observation and 10 years 
prior to confirmation, which in the model is needed to explain the large size and spatial pattern of the epidemic when first 
recorded by monitoring. Substantial delays between introduction and detection impede control strategies of this and other 
invasive species [54]. If the bacterium had been detected sooner, then employing an eradication strategy may have been 
more feasible [12,55]. This highlights the need for effective and improved international plant biosecurity alongside rapid 
reporting and detection methods [49].

Simulations compared current containment measures [12,13] to a scenario with no felling. In the model, felling caused 
a reduction in the overall pathogen spread rate over the monitoring period from 7.2 km y-1 to 5.7 km y-1. However, this 
was mostly accounted for by a single year in which the model produced unrealistically high levels of positive inspections 
and felling. In that year it is likely that the simulated invasion front happened to align strongly to the high surveillance 
buffer zone used to try to contain the pathogen (Fig 2) [13]. These results should be caveated by their basis in modelling, 
rather than empirical measurement. However, they could explain why containment of X. fastidiosa has proved so difficult 
[12,16,20].

This suggests that the current containment strategy may be very sensitive to decisions about the position and width of 
the buffer zone (5–10 km) relative to the infection front and the long-range dispersal of the bacterium [23]. It also suggests 
that very high rates of surveillance and felling at the invasion front are needed to limit spread. Ideally containment would 
employ a large and intensively-surveyed buffer zone that encompasses the whole area where long-distance dispersal 
produces new disease foci, though the cost implications of this could be prohibitive. To investigate this further, the model 
could be used to explore alternative control policies [23,56,57], such as optimising the location and size of buffer zones, 
surveillance intensity and sampling procedures. Additionally economic costs of surveillance and production losses from 
the disease and felling could also be built in to the model, to investigate the cost-effectiveness of alternative strategies 
[6,57]. These would require additional modelling components beyond the current framework but are important future direc-
tions with potential to improve disease management.

Approximate Bayesian Computation has rarely been used to fit spatiotemporal models of plant diseases [58], though it 
is widely used in other fields [37,43]. An advantage of ABC is that it is likelihood free and well suited to stochastic sim-
ulation models [42]. It also allowed us to use data from both the official surveillance program for X. fastidiosa alongside 
remote sensing estimates of damage to olive orchards. A strength of this data fusion is that models draw evidence from 
datasets that are informative about different aspects of the process being modelled [59]. In our case, the surveillance data 
was spatially biased but gave valuable information about the spatial pattern of X. fastidiosa occurrence, while the remote 
sensing data provided information on tree decline occurring later in the disease progression.
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The model developed here predicts X. fastidiosa spread dynamics at regional scale. However, vector dynamics were 
implicitly represented in the current model, and so a more detailed representation of their densities, dynamics, behaviour 
and seasonality might give improved estimates of transmission and pathogen spread [60,61]. For example, spatial and 
temporal variation in vector densities and resulting transmission rates could be estimated with predictive models based on 
vegetation and weather conditions since P. spumarius is more abundant in cooler and moister habitats [62] and its year-to-
year population dynamics show lagged effects of weather [63]. Our transmission model could also be modified to account 
for vector feeding preferences [64] including any avoidance of heavily infected plants [48,60,61]. Additionally, the model 
does not explicitly represent the persistent infection of P. spumarius foreguts by X. fastidiosa throughout the adult life 
stage [3]. This may be an important limitation, since this persistent infection combined with a capacity for repeated bouts 
of P. spumarius movement and feeding among olive trees [30,31] may mean that a single dispersing vector could initiate 
a relatively large cluster of infected trees in a single year. However, we suggest that such model extensions should be 
developed based on specific empirical studies quantifying these effects rather than hypothesis or speculation, and tested 
to determine whether they increase model utility for informing control efforts.

Conclusions

Our novel approach to calibrating an epidemiological model for X. fastidiosa spread in southern Italy accurately predicts 
the rate and pattern of the outbreak and could provide a valuable tool for prioritising future surveillance to improve con-
tainment of the epidemic. The modelling provides useful estimates of dispersal mechanisms, distances and pathogen 
spread rates, and suggests that the bacterium may have been introduced to Italy as early as 2003, pushing back previous 
estimates and better aligning with anecdotal evidence. Further, the model suggests that containment measures may have 
had a limited effect on reducing the rate of spread to date, but could be made more effective by targeting surveillance to 
(and beyond) the edge of the infection wavefront and rigorously implemented felling after positive infection detections.

Supporting information

S1 Appendix.  Modelling plant disease spread and containment: Simulation and Approximate Bayesian Computa-
tion for Xylella fastidiosa in Puglia, Italy. 
(PDF)
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