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Abstract

Superspreading, where a small proportion of a population can cause a high proportion of
infection transmission, is well known to be important to the epidemiology of a wide range
of pathogens, including SARS-CoV-2. However, despite its ubiquity in important human
and animal pathogens, the impact of superspreading on the evolution of pathogen
virulence is not well understood. Using theory and both deterministic and stochastic
simulations we examine the evolution of pathogen virulence under a range of different
distributions of infection transmission for the host. Importantly, for many pathogens,
superpreader events may be associated with increased tolerance to infection or asymp-
tomatic infection and when we account for this superspreading selects for higher viru-
lence. In contrast, in animal populations where highly connected individuals, that are
linked to superspreader events, also have fithess benefits, superspreading may select for
milder pathogens. In isolation, the transmission distribution of the host does not impact
selection for pathogen virulence. However, superspreading reduces the rate of pathogen
evolution and generates considerable variation in pathogen virulence. Therefore, the
adaptation of an emerging infectious disease, that exhibits superspreading, is likely to

be slowed and characterised by the maintenance of maladaptive variants. Taken as a
whole, our results show that superspreading can have important impacts on the evolution
of pathogens.

Author summary

The impact of infectious disease can vary from individual to individual. Superspreader
events, where a few individuals cause a high proportion of infections, are critical to the
spread and outbreak size of a wide range of important infectious diseases of humans
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and animals. Superspreading events and pathogen evolution, were important features of
the Covid-19 pandemic, highlighted by the succession of dominant strains during the
pandemic. There is a clear need to understand how superspreader events will affect the
evolution of pathogens, in particular how the level of virulence (the additional mortality
due to the infection) will evolve. In this study we use mathematical models to show that
superspreading reduces the rate of pathogen evolution and generates considerable varia-
tion in pathogen virulence. Therefore, the adaptation of an emerging infectious disease,
that exhibits superspreading, is likely to be slowed and characterised by the maintenance
of maladaptive variants. Importantly, for many pathogens, superpreader events may be
associated with increased tolerance to infection or asymptomatic infection, and when
we account for this, superspreading selects for higher virulence. Our results show that
superspreading can have important impacts on the evolution of pathogens.

Introduction

Recent epidemics have emphasised the importance of infectious disease to human health,
agricultural and natural wildlife systems [1-4]. It is now recognised that the management

of epidemic and endemic infection requires well-developed theory, not only on the ecol-
ogy/epidemiology, but also on the evolution of pathogens [5,6]. The SARS-CoV-2 epidemic
has further emphasised a key feature of many important pathogens, that there is considerable
heterogeneity between individuals in infection transmission levels and disease severity [7-9].
In particular, superspreader events, where some individuals infect a considerably higher pro-
portion of the population than an average individual [3,7,10,11], are critical to the epidemic
outcome. As the proportion of the population that are superspreaders increases, both the
likelihood of disease extinction and size of infectious outbreaks also increase [10-14]. In the
context of evolution it has been shown that superspreading can suppress the invasion of new
strains and may slow disease adaptation [13,14]. However, the impact of superspreading on
the evolution of virulence (defined throughout as the increase in mortality due to infection) is
unclear and given both the ubiquity of superspreading and the central role of the evolution of
pathogens to their epidemiological impact this is an important knowledge gap [12].

Understanding the evolution of pathogen virulence and transmission is important for
understanding emergent disease outcomes, for the development of disease management
strategies, and to assess the burden of infectious disease in natural populations [15,16]. Much
of our current knowledge is based on the results of theoretical studies that make predictions
on how virulence may evolve under a wide range of conditions [15]. This well-developed
theory commonly assumes a saturating trade-off between transmission and virulence and
makes general predictions [17-19], including how an increase in host mortality (and there-
fore a reduction in host lifespan) selects for increased transmission and virulence [15,18], a
result that holds when the host mortality increase is due to predation [20], the host immune
response [21], or culling [22]. There is also theory on the impact of host population structure
on the evolution of virulence, showing that as spatial contact structure changes, from global to
highly local, virulence typically evolves to a lower level [23-26].

The effect of host heterogeneity on the evolution of pathogen virulence has been analysed
in systems that consider two distinct host types [27,28], when infection control can parti-
tion a single host based on infection risk [15,29], and through control with imperfect vac-
cines [30,31]. When a pathogen can infect two host types and pathogen virulence in each
host was linked via a trade-off, theory has shown that pathogen evolution in a heterogeneous
host population may evolve to specialise for one of the two host types at the cost of losing its

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1013517 October 9, 2025 2/20



https://doi.org/10.1371/journal.pcbi.1013517

PLOS COMPUTATIONAL BIOLOGY Superspreading and the evolution of virulence

specialisation for the other type [27]. With infection control, host heterogeneity can have an
impact on pathogen evolution when vaccination is targeted at a more vulnerable subpopu-
lation. Transmission then becomes concentrated on the unvaccinated subpopulation which
can change the evolved level of virulence compared to uniform vaccine coverage [15,29].
Similarly imperfect vaccines lead to heterogeneity between vaccinated and unvaccinated hosts
and can select for an increase or decrease in virulence depending on the pathogen mecha-
nisms that the vaccine targets [30,31]. There is also theory on the coevolution of sociality
and pathogen virulence that assumes variation across hosts in contacts and transmission
[32,33], but these studies do not assess pathogen evolution for different contact distribu-
tions. Importantly, the variation between individuals in terms of infection transmission is
often related to other disease characteristics [34,35], in particular, superpreader events may be
associated with increased tolerance to infection or asymptomatic infection, as observed in the
COVID-19 pandemic [7-9]. As such, while previous studies have highlighted that various
forms of host heterogeneity can play a role in determining virulence evolution, a clear focus
on how superspreading will affect the evolution of virulence is still required.

Previous work has shown that superspreading events can suppress the emergence of
new pathogen strains [13] and that superspreading, represented as a change in the num-
ber of host contacts, has no effect on virulence evolution in classical ST models [36]. How-
ever, the impact on virulence of a range of contact/transmission structures, that characterise
increasing levels of superspreading, has not been examined in detail. Moreover, transmis-
sion heterogeneity and in particular, superspreading, may be associated with individual level
variation in other host characteristics including host natural mortality, increased disease-
induced mortality (vulnerability), or decreased disease-induced mortality (tolerance) [34,35],
and the impact of these associations has not been explored. Using both deterministic and
stochastic model frameworks, we address these knowledge gaps by examining the impact of
a range of contact/transmission structures and how the association between superspreading
and other host and pathogen characteristics impact the evolution of virulence. In line with
previous theoretical studies that examine pathogen evolution (see [15]), we will develop a
general model framework for an endemic infectious disease system and use this to test and
explain how changing from a homogeneous to an increasingly heterogeneous transmission
distribution for the host will effect pathogen selection for virulence. Our results show how
superspreading impacts the rate of evolution, the diversity of evolved pathogen strains, the
persistence of maladaptive variants, and importantly the evolved level of pathogen virulence
and transmission.

Methods

In a seminal paper on the epidemiological impacts of superspreading, Lloyd-Smith et al.
(2005) [11] assumed variation in infection transmission between individuals and confronted
models with data for a wide range of important human infectious diseases. They showed how
superspreading can be captured by a gamma distribution that represented the individual level
variation in the number of secondary cases of infection. We follow this established approach
and represent heterogeneity by a gamma distribution that represents variation in infection
transmission across host individuals [11]. The shape parameter for the gamma distribution
governs the transmission distribution for the host (Fig 1), which ranges from homogeneous
(all host individuals have the same level of transmission), to superspreading (a few host indi-
viduals have a high level of transmission, and most individuals have a low level of transmis-
sion). Importantly, we assume that the different transmission distributions have the same
mean level of transmission.
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Fig 1. (a) The distribution of host transmission levels for different shape parameters of the gamma distribution, k, showing the probability of hosts
being born, p;, with a particular level of transmission, c;. As k increases the transmission distribution transitions from superspreading to homogeneous.
The red line shows the exact gamma distribution and the blue bars our discretised version used in simulations. The mean transmission level is the same

in all distributions. In (b) we highlight possible transmission events from an infected individual (red) that can infect individuals (yellow) from a pool of
susceptible individuals (green). We capture superspreading, where an individual may infect few individuals (top left) or many individuals (top right), and
a homogeneous transmission distribution where an infected individual always infects the same number of susceptible individuals (bottom left and right).
In (c) we show a schematic of our model (Eq 1) highlighting how infection from an infected of type I of a susceptible of type S; leads to an infected of
type I;. Fig 1 was produced by the authors, with Fig 1a obtained using MATLAB 2023b, and Fig 1b and 1c designed and produced by XO using Adobe
Mlustrator.

https://doi.org/10.1371/journal.pcbi.1013517.9001

To assess the impact of superspreading on pathogen evolution we extend a classical
susceptible-infected (SI) epidemiological model [37,38] where a susceptible, S, can become
infected, I, through direct contact. The susceptible and infected classes are partitioned into
n. host types based on their transmission level, with an individual of host type i having
transmission level ¢;. The model for the population density of individuals of host type i is as

follows:
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ds;

T N(b-gN)p;- Bc,-SiZj: ¢l; - d(ci)Si,

L5, S o1 - (d(c) + h(e)a) I (1)
R 1 o

Here, N= . S; + ».I; denotes the total population density, b denotes the maximum birth
rate, and d(¢;) denotes the natural, non-disease related, death rate for type i (with transmis-
sion level ¢;). Note, we initially assume d(c;) = d and so is independent of the transmission
level of the host. Later we relax this assumption. The parameter g represents the popula-
tion’s susceptibility to crowding and is set such that the population size is equal to its carrying
capacity, N = Nk, in the absence of infection. When d(¢;) = d this implies g = (b-d)/Ng. When
d(c;) = d; varies with ¢; then g = (b - 1/ Y, (pi/d;) ) /Nx.

We assume a proportion, p;, of all births occur into susceptible class, S;. This proportion
follows a truncated, discrete, gamma probability distribution function with shape param-
eter k and mean ¢, following the scale-shape definition of a gamma distribution, I'(k,9),
where 0 = ¢/k. Here ¢ is the average level of transmission for the host and this remains fixed
for all transmission distributions. We truncate the probability distribution between 0 and 100,
resulting in n, = 100 classes. We discretise the range [0,100] into unit intervals so that we can
have finite classes in the models. Each ¢; takes the expected value of the probability distribu-
tion within the respective unit interval. We consider a range of gamma distributions, with
the restriction that ), ¢;p; = k8 = ¢, and where the transmission distribution for the host can
range from homogeneous (large k), to heterogeneous (small k). This framework characterises
distributions with an increasing probability of superspreading as k decreases (Fig 1).

We assume density-dependent infection transmission with the transmission coefficient for
an infected individual of type j infecting a susceptible individual of type i given by Bc;c;. Here
B is the transmission component controlled by the pathogen, the transmission level ¢; equates
to the susceptibility of host type i, and ¢; to the infectivity of host type j. Our default assump-
tion is that a superspreader will have high susceptibility and high infectivity, and this emerges
naturally when heterogeneity in transmission occurs through host contacts. However, other
mechanisms that lead to heterogeneity in transmission in the host, particularly those that
have a biological basis, may impact either susceptibility or infectivity only and it is critical to
distinguish between superspreading as a consequence of social behaviour/contact rate
heterogeneity, and superspreading rooted in biological factors [34]. We account for this by
adjusting the transmission coefficient to B¢;c if there is heterogeneity in host susceptibil-
ity only, and to Scc; if it impacts infectivity only. This set-up allows us to consider different
underlying mechanisms that could lead to heterogeneity in ¢;, such as behavioural mecha-
nisms that lead to variation in host contacts or physiological mechanisms that may lead to
variation in host vulnerability or tolerance [34,35] and highlights the flexibility of the trans-
mission term to capture several different aspects of superspreading.

Infected individuals incur disease-induced mortality (virulence) at rate h(¢;)a. Here, a
is the contribution to virulence set by the pathogen. We initially assume the host compo-
nent of virulence is independent of host type h(c;) = 1. If we instead assume that host trans-
mission is related to host vulnerability, then hosts with high susceptibility to infection incur
additional disease induced mortality, represented by taking h(c;) to be an increasing function
of ¢;. If hosts with high infectivity are more tolerant of the infection, then h(c;) is a decreasing
function of ¢; [39-42]. Parameter descriptions are detailed in Table 1.

Note, our model framework could be easily adapted to encompass other epidemiologi-
cal systems. We currently consider a range for pathogen virulence which is high (a € [0, 10],
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Table 1. Demographic and epidemiological model parameter descriptions and baseline values.

Parameter

Description

Nk = 1000

Carrying capacity of the population.

b=10

Maximum birth rate of a susceptible.

d(ci)

Natural death rate for hosts of type i (d(¢) =d =1).

q(ci)

Susceptibility to crowding (g(¢) = 0.009).

h(ci)

Host contribution to virulence (h(c) = 1).

ne =100

Number of transmission classes for the host.

¢ € [0,100]

Infection transmission level for hosts of type i (¢ = 10).

pi

Proportion of births for hosts of type i.

ng =101

Number of pathogen virulence/transmission classes.

ﬁ S [ﬁmina ﬁmux]

Pathogen controlled transmission coefficient.

Bunin = 0.00002

Bunax = 0.001

ae [‘xmin) amax]

Pathogen controlled virulence level.

CAmin =0

COlmax = 10

a=-025

Curvature of the transmission/virulence trade-off function.

https://doi.org/10.1371/journal.pchi.1013517.t001

see Table 1), and use an SI framework. However, we confirm our findings when virulence is
low (& € [0,2]), and in other model frameworks, notably SIRS (which encompasses SIR and
SIS), and for frequency-dependent transmission (see Sects S1.1 and S4, in S1 Text). Due to the
general nature of our model framework, our findings are applicable to a wide range of real
systems, including wildlife systems where infection is fatal and virulence is high (African
Swine Fever, Chytridiomycosis, Devil Facial Tumour Disease, Marek’s disease, Myxomatosis,
Parvovirus, Squirrelpox), and for many wildlife and human infections from which the host
can recover and exhibit immunity [43-45].

Evolution of virulence

This model framework (Eq 1) can be used to simulate the epidemiological dynamics for
different transmission distributions (determined by k). In this study we will examine how
pathogen virulence will evolve under a range of different distributions for infection transmis-
sion of the host (that is, for each k we examine how a evolves). We utilise three different mod-
elling techniques to model the evolutionary process: adaptive dynamics [46,47], determinis-
tic simulations, and stochastic simulations. We use adaptive dynamics to provide analytical

expressions for the evolutionarily singular strategy (ESS) for virulence. We use this approach
specifically when d(c;) = d and h(c;) = 1, as here analytic expressions are tractable. We use
deterministic simulations to illustrate the analytical findings, and to determine ESS virulence
for scenarios where the adaptive dynamics analysis is intractable (when d(¢;) and h(c;) are
not constant). We use stochastic simulations to provide information on the rate of evolution
to the ESS and the variation in virulence.

All three modelling techniques include a mutation process that allows new strains of the
pathogen (with different values of ¢r) to emerge and potentially replace the current, resident,

pathogen strain. Throughout, and in line with previous studies [15,17,18], we assume that
there is a trade-off between § and « such that benefits to the pathogen in terms of increased
transmission are bought at a cost of increased virulence [17-19]. Mathematically this means

B =f(a) where f (a) >0and f'(«) < 0 [48]. This ensures virulence evolves to an evolution-
arily stable strategy (ESS). For the deterministic and stochastic simulations we require an
explicit expression for the trade-off between transmission and virulence [22,49]. This takes the
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following form:

(ﬁmax _ﬁmin) (1 - %)
— , ()

Amax—Xmin

B :f(C() = Bonin +

l+a

where min, Bmax denote the minimum and maximum values for 5, respectively, Xmin, Xmax
denote the minimum and maximum values for «, respectively, and a represents the curvature
of the trade-off function (see S2 Fig).

Adaptive dynamics. Adaptive dynamics assumes a separation of epidemiological and
evolutionary time scales such that the epidemiological dynamics have reached a dynamic
attractor before mutation of a new pathogen strain is considered [46,47]. When mutation
occurs, a mutant strain, with small phenotypic variation from the resident strain, emerges
(at low density) and in our study competes with the established resident strain that is at its
endemic steady state. The success of the mutant strain depends on its fitness (its long-term
growth rate). If the fitness of the mutant strain is negative it will die out. If the fitness of the
mutant strain is positive the mutant strain can invade and replace the resident strain, to
become the resident itself. Adaptive dynamics considers multiple steps of this mutation and
replacement process until the pathogen converges to an ESS.

Deterministic simulations. To simulate the adaptive dynamics process we split the
infected classes into 14 = 101 pathogen strains based on their virulence (and transmission),
with strains split uniformly across the interval [ @iy, @max |- A strain z, has virulence, o,
and pathogen transmission factor 3, = f(a;). This requires extending Eq (1) to include nq4
pathogen strains that include the density of hosts of type i that are infected with pathogen
strain z. The extended model is as follows:

ds;
I N(b-gN)p;- ﬁcisiz CjZIjz -d(ci)Si,
j z
dliz
a = ﬁZCiSiZCjZIjZ - (d(C,) + ]’l(C,‘)OCZ)Iiz. (3)
j z

We use the parameter values stated in Table 1 which are a general parameter set chosen
to ensure the system exhibits a stable, positive, endemic steady state for all pathogen strains.
We select an arbitrary initial pathogen strain, z = 31 (and so a, = 3 with corresponding (3, =
0.00038) and initial total densities of S = 151 and I = 584 (the endemic steady state densities
when o = 3), which are split for each host class i based on probabilities p;. We then numeri-
cally solve Eq (3) for a fixed time, f,. This allows the epidemiological dynamics to approach
the endemic steady state for that particular pathogen virulence/transmission level. A mutant
pathogen strain is then introduced, at low infected density, with a pathogen virulence level
close to the current resident strain (the mutant strain is selected as either the strain directly
above or below the resident strain, with equal probability). The population dynamics are
numerically solved for a further time, ¢,, to allow the epidemiological dynamics to approach
the steady state, where either the mutant strain dies out or the mutant replaces the resident
strain. This procedure is then repeated, and allows the pathogen to evolve to the ESS, a*.
These simulation methods have been successfully used to approximate the adaptive dynamics
process [46,48], but it should be noted that in this approximation the epidemiological dynam-
ics may not necessarily reach their steady state before a new mutation arises. In this way, the
ecological and evolutionary time scales are not strictly separated, as assumed in adaptive
dynamics theory.
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Stochastic simulations. We relax the assumptions of adaptive dynamics by considering
a stochastic, individual based model of Eq (3) where susceptible, S, and infected, I, popula-
tions levels take integer values. As in the deterministic simulations, we use a trade-off between
pathogen virulence and transmission (see Eq 2), the parameter values outlined in Table (1),
and our default assumption on heterogeneous transmission (that an individual with high sus-
ceptibility would also have high infectivity). The key differences between the stochastic simu-
lations and the deterministic simulations are that births are now individual events that occur
with probability p; to a specific host type (rather than proportionately to all host types), and
that mutations now occur with a small probability, € = 0.002, whenever an infection event
occurs (rather than once the population has approached its endemic steady state). The mutant
strain is selected as either the strain directly above or below the strain of the infecting individ-
ual, with equal probability. Simulations were undertaken using a Gillespie algorithm [50,51]
(continuous-time Markov chain), where a specific individual event occurs at random accord-
ing to the relative transition rates for each event (see Table 2). The population classes and
transition rates are updated after each event, and the time between events was taken from an
exponential distribution with rate equal to the sum of the transition rates. Notably, the prob-
abilistic and individual based nature of these simulations can result in the stochastic fade-out
of pathogen strains.

Results
Transmission level of the host is independent of other host characteristics

In our model set-up infection transmission of the host is independent of other host charac-
teristics when h(c;) = 1 and d(c;) = d. Using adaptive dynamics we assess how virulence will
evolve by determining the fitness of a mutant strain of a pathogen (with parameter a,;). We
determine conditions that allow the mutant pathogen strain to invade a population with a
resident, endemic, pathogen strain (with parameter cg). In line with Van Baalen (2002) [36]
it can be shown that the fitness of the mutant strain is positive if the following condition is
satisfied (see Sect S1 in S1 Text for further details):

flow) | Slew)
(OCM+d) (CCR+d).

(4)

Therefore, any mutant strain that satisfies Eq (4) will replace the resident strain and the
pathogen evolves a level of virulence, a*, that maximizes f(ct)/(a + d), which is the optimal
strategy [52]. This is independent of the transmission level of the host (independent of ¢;) and

Table 2. Transition events and their respective rates for the stochastic model framework. In addition, we assume
that infection can lead to mutation to a neighbouring pathogen strain with probability € = 0.002. To determine all
the possible transition events, it is necessary to calculate the transition rates for all host types i and for all possible
infection interactions for host type i.

Transition Transition rate Description

Si—>Si+1 N(b-qN)p; Birth of a susceptible of host type, i.

Si—>Si-1 d(ci)Si Natural death of a susceptible of host type, i.
Si—>Si-1LI;,—>I;+1 BzciSicilj; Transmission of infection from an infected individual

of host type, j, with strain z of the pathogen (I;;) to a
susceptible individual of host type, i.

I, —I,-1 (d(ci) + h(ci)o) i Death of an infected of host type, i, with strain z of the
pathogen.

https://doi.org/10.1371/journal.pchi.1013517.t002
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so when h(c¢;) =1 and d(c;) = d pathogen virulence will evolve to an ESS at a* for all trans-
mission distributions of the host. Note, we show the same analysis for an SIRS model struc-
ture with either density-dependent or frequency-dependent transmission in Sect S1 in S1
Text. Again we find that a* is independent of the transmission level of the host.

We use deterministic simulations to illustrate the adaptive dynamics results. The determin-
istic simulations indicate that the pathogen evolves to the same level of virulence a* for differ-
ent transmission distributions for the host (Fig 2a). This confirms the adaptive dynamics anal-
ysis and indicates that the deterministic simulations provide a robust method for determining
ESS virulence.

Rate of evolution and variability in virulence

Under the stochastic framework, we confirm previous results, that pathogen virulence evolves
to a* and that this is not affected by the transmission distribution of the host (Fig 2b).
However, the rate at which virulence evolves and the variability in virulence is different for
different transmission distributions (Fig 2b). In particular, for heterogeneous transmission
distributions that can represent superspreading, the rate of evolution to a* is slowed and

the variability in virulence is increased. Under superspreading, the proportion of hosts with
high transmission is small, the infected population has a higher proportion of hosts that had
high susceptibility and have high infectivity, than the susceptible population that has a higher
proportion of hosts with low susceptibility (see Fig 2c and 2d and the reported average level
of transmission of the host, u.). Since mutation occurs upon infection of a susceptible host,
the mutation is likely to reside in a host that had low susceptibility and therefore low infec-
tivity. This means the mutation either spreads slowly or fades-out due to stochastic effects,
and explains why the rate is reduced and variability is increased when progressing towards
the evolutionarily stable level of virulence, a*. Therefore, our first key result is that super-
spreading per se does not impact the long-term evolution of pathogen virulence, but it slows
adaptation and generates diversity.

We find that the increase in variation in virulence and reduction in the rate of adaptation
as heterogeneity increases holds when we consider an SIRS model framework (S1 Fig) and
different transmission terms that depend on susceptibility and infectivity, susceptibility only,
or infectivity only (S3 Fig). When heterogeneity applies to infectivity only (a transmission
term of Bcc;) then all individuals are equally susceptible, but only a few of the individuals that
become infected will have high infectivity and so most mutations occur in individuals with
low infectivity. This slows the rate of evolution to a* and increases variability in virulence
compared to the case with homogeneous transmission (S3b and S3d Fig). When heterogeneity
applies to susceptibility only (Sc¢;c) then individuals with higher susceptibility are more likely
to become infected and therefore the remaining susceptible population will have reduced (less
than average, ¢) susceptibility. This reduced susceptibility means that when a mutation occurs
upon infection the infected individual with the mutant strain will have a reduced chance of
causing onward infection, compared to when there is a homogeneous transmission distri-
bution. This, again, reduces the rate of evolution to a* and increases variability in virulence
(S3c and S3d Fig).

Transmission level of the host is correlated with other host characteristics

We also consider scenarios where infection transmission is associated with other host char-
acteristics, including host lifespan, tolerance to infection, and vulnerability to infection.
Whilst determining the fitness of the mutant strains is possible, the analytical expressions for
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Fig 2. The effect of superspreading on the evolution of virulence for the SI model when infection transmission for the host is inde-
pendent of other host characteristics. In (a) and (b) we show the evolution of pathogen virulence over time under different transmission
distributions. In (a) we show the deterministic simulations and (b) we show the stochastic simulations (and note the vertical axis is dif-
ferent for k = 0.2 compared to k = 1 and k = 10). In (c) we show the proportion of susceptible individuals in each transmission class, c;

and (d) the proportion of infected individuals in each transmission class. All proportions are shown at the evolutionary stable level of
pathogen virulence, &*, in the deterministic simulations. The mean level of transmission, i, is also shown for each distribution. The
variance in o over the last 1000 time points of the stochastic simulations is as follows: k = 0.2, variance = 1.6; k = 1, variance = 0.34; k = 10,
variance = 0.23. Parameters are taken from Table 1.

https://doi.org/10.1371/journal.pcbi.1013517.g002
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the fitness function and for ESS virulence are complex and do not provide tractable infor-
mation. Therefore, we find ESS virulence using deterministic simulations and stochastic
simulations.

High contact levels increase host lifespan. Individuals with many contacts may gain fit-
ness benefits, exemplified by the observation that an animals sociability can increase access
to survival-related information [53,54]. This increased access can then lead to a reduc-
tion in non-disease related mortality (in line with [32,33]). To represent this, we assume ¢;
represents the contact level for hosts of type i and that d(c;) is a decreasing function of ¢;,
with d(&) = d (Fig 3b). In this scenario, we find pathogen virulence decreases as the con-
tact distribution for the host changes from homogeneous to superspreading (Fig 3a). Under
superspreading hosts with high contact levels make the greatest contribution to transmission
(see S4 Fig), and these hosts have a longer lifespan. In line with previous theory, when overall
host lifespan increases, the parasite will reduce virulence [15,18].

Superspreading due to variation in tolerant individuals. Variation in the transmission
of infection often arises due to differences in tolerance to infection across the host popula-
tion [39,40,55], as highlighted by the classic example for typhoid [56]. Here, superspreaders
have high pathogen loads but are tolerant, showing few signs of disease, and therefore cause a
disproportionate number of transmission events [7,10,11]. This implies that h(c;) is a decreas-
ing function of ¢; (Fig 4b). Here, we find that pathogen virulence increases as the transmission
distribution for the host changes from homogeneous to superspreading (Fig 4a). Under super-
spreading, a greater proportion of infected hosts are tolerant since they have reduced mortal-
ity when infected (see S5 Fig). This reduces the cost of virulence for the pathogen and there-
fore drives an increase in virulence and transmission. Thus, a key result is that if tolerance
underlies superspreading it will select for higher virulence.

While it may be reasonable to assume that tolerant superspreaders are more infective, this
may not imply that they are also more susceptible to infection [8,34]. Therefore, we repeat our
analysis under the assumption that susceptibility is constant (at ¢) and therefore the trans-
mission distribution for the host captures the variation in infectivity of the host and the link
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Fig 3. The evolution of virulence for the SI model when contacts are linked to host survival. (a) The evolved level
of pathogen virulence, a*, for different transmission distributions for the host (characterised by changes in k), and
with rates of host natural death, d(c;), linked to host transmission level, ¢;. (b) The function d(c;) where the host
death rate decreases with increases in host transmission level (increased connectivity). Results are obtained from
deterministic simulations using parameters as in Fig 2 and the function d(¢;) =4 - 3.7561.2/ (25 + c,z)

https://doi.org/10.1371/journal.pcbi.1013517.g003
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Fig 4. The evolution of virulence for the SI model when transmission is linked to tolerance or vulnerability.

(a) The evolved level of pathogen virulence, a*, for different transmission distributions for the host (characterised
by changes in k), and with the function h(c;), linked to host transmission level, ¢;. (b) The function A (¢;) where
increases in ¢; lead to increased tolerance (a decrease in h(c;)). (c) The function h(c;) where increases in ¢; lead to
increased vulnerability (a increase in h(c;)). Results are obtained from deterministic simulations using parameters as
in Fig 2 and the functions (b) h(c¢;) =2 - 1.75cf/ (75 + clz) and (c) h(c;) =0.5 + 3.5ci2/ (600 + 612)

https://doi.org/10.1371/journal.pchi.1013517.9004

between highly infective hosts and tolerance. Under these assumptions we again find that
pathogen virulence increases under a superspreading distribution (S6 Fig).

Superspreading due to variation in vulnerable individuals. Conversely, if increases
in transmission levels for hosts arise due to increased host vulnerability that manifest as a
reduction in host tolerance to infection [39,40,55], then h(c;) is an increasing function of
¢ (Fig 4¢c). We assume vulnerable hosts will have high susceptibility, high infectivity, and
increased disease-induced mortality. We find that the evolved level of pathogen virulence
decreases as the transmission distribution of the host changes from a more homogeneous
to a heterogeneous distribution (Fig 4a and S7 Fig). Under heterogeneous transmission, the
hosts with high transmission (high ¢;) are more easily infected. These hosts have increased
disease-induced mortality (high k(c;)), which increases the cost of virulence to the pathogen.
To compensate, the pathogen evolves to reduce the component of virulence under its control
(a reduction in ™).

Discussion

In order to understand the implications of superspreading on the evolution of pathogens we
have developed a general mathematical framework that examines the evolution of pathogen
virulence under a range of different distributions of infection transmission for the host and
its relationship with other host and pathogen characteristics. Following established epidemi-
ological theory, we characterise infection transmission for the host by a gamma distribution
[11] and adjust the shape parameter to alter the transmission distribution from homogeneous
to superspreading. In line with previous studies that consider classical SI model frameworks,
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when infection transmission for the host is independent of other host characteristics, we
find that superspreading does not affect the evolutionarily stable level of virulence [32,36],
but it does have an important impact on the rate of evolution to the ESS [13,14]. We show
that this result extends to other model frameworks (SIS,SIR,SIRS) and holds when transmis-
sion is density-dependent or frequency-dependent. By considering stochastic simulations
for the long-term evolution of virulence, our work highlights that superspreading can also
lead to increased variation in virulence. If there is a link between the transmission level of
the host and host mortality, we show that superspreading can have a range of impacts on the
selection for virulence. In particular, superspreading may arise due to increased tolerance
to infection or asymptomatic infection, such that the disease-induced death rate is reduced.
In this case, selection for pathogen virulence increases as the transmission distribution for
the host changes from homogeneous to superspreading. In contrast if high levels of trans-
mission by the host are associated with a decrease in non-disease mortality or an increase in
disease mortality, the evolved level of pathogen virulence will decrease as the transmission
distribution for the host changes from homogeneous to heterogeneous. It is well known [11]
that the transmission of many infectious diseases can be characterised by superspreading,
and our work shows that this can have important implications for the evolution of pathogen
virulence.

The evolutionary implications of superspreading can be understood through its impacts
on the epidemiological dynamics. We found that a general consequence of superspreading
is that the rate of evolution is reduced and the variation in levels of virulence is increased.
These effects arise because as the transmission distribution for the host transitions from
homogeneous to superspreading, there is an increase in the proportion of infected individu-
als that have high transmission levels and/or susceptible individuals that have low transmis-
sion. Lloyd-Smith et al. (2005) [11] showed that both theory and data indicated that super-
spreading leads to less frequent but more pronounced outbreaks of infection. The reduction
in outbreak frequency emerges because the initial infection is likely to occur in a suscepti-
ble host with a low transmission level, and hence the infection may suffer stochastic extinc-
tion. The ability of new strains to invade an established, endemic strain has been shown to be
linked to pathogen emergence [12-14]. Moreover, it has been shown that superspreading can
reduce the chance of an emergence event and so would be expected to slow the rate of adap-
tation of a pathogen [13,14]. In this study we examine the long-term evolutionary dynamics
of the pathogen (we consider multiple emergence events). Under superspreading dynam-
ics, a mutant pathogen strain is likely to emerge, on average, in an individual that has a low
transmission level and is therefore more likely to suffer stochastic extinction. Thus, repeated
mutation events may be required before the mutant strain is selected for, and this leads to a
reduced rate of evolution towards the ESS under superspreading. One of our key results is that
superspreading leads to increased variation around the optimal strain. This suggests that the
adaptation to its new host of an emerging pathogen that shows high levels of superspreading,
may generate and maintain multiple maladapted variants (while evolving to and subsequently
around the optimal strategy), which could be more virulent than is optimal in the long-term.
Our findings and the interpretation of our findings for an SI model with high underlying
virulence extend to example systems with low underlying virulence (S8 and S9 Figs) and to
an SIRS model framework. As a whole, this agreement highlights the utility of using general
models to understand the biological processes that drive the evolutionary outcomes, since this
understanding can often be extended to a wider range of scenarios and systems. Our results
that consider different distributions for infection transmission for the host have parallels with
results from population genetics, where a reduced effective population size can increase the
chance of drift [57]. Read and Keeling (2003) [58] showed that evolutionary change is slower
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and more variable for a spatial network, than for a comparable mean-field framework, since
the network was influenced by the local epidemiology, that can lead to increased extinction
of strain lineages, but also because the network models have fewer connections than the mean
field framework [58]. The transmission distributions we consider all have the same mean level
of connections, and the reduced rate of evolution and increased variability emerge due to the
impact of superspreading on the epidemiological dynamics, where mutations arise in indi-
viduals with low transmission levels and so have a high chance of stochastic extinction (low
chance of emergence [13,14]).

A key result from our study is that the transmission distribution of the host can influence
the evolution of virulence when transmission is associated with tolerance to the disease that a
pathogen causes. It is likely that tolerant or asymptomatic individuals will, on average, cause
more transmission events due to their lack of symptoms and could therefore drive super-
spreader events [7,10,11,34]. Tolerance to pathogens is an important defence mechanism that
reduces the harm that infection causes the host potentially lowering the mortality effect of
infection [42,55,59]. Hosts that are more tolerant, live longer, leading to an increase in the
infectious period and pathogen prevalence in the population and tolerance has been shown
to select pathogens for higher replication rates, and therefore higher pathogen transmission
and virulence in non-tolerant hosts [39,40,55,60]. This explains our result that when hosts
with high infectivity are more tolerant the pathogen will evolve higher virulence under super-
spreading. Similar mechanisms lead to selection for higher intrinsic virulence in response to
imperfect vaccines that reduce the within host growth rate of the pathogen [30,31] and so our
work emphasises how these established theoretical results can be viewed in a new context of
superspreading. Our result provides further support for surveillance and testing during infec-
tious outbreaks, and for targeted treatment, since asymptomatic (tolerant) individuals may be
responsible for an increase in the incidence of infection [11,34,61,62]. Our study shows that
they may also select for more virulent pathogen strains.

Previous studies that have examined how host contact rates may affect the evolution of
virulence have generally assumed host contact to be independent of host survival [17,19,

63]. Although high host contact levels typically increase the risk of infection, evidence from
wildlife systems suggests that sociability has benefits [53,54]. For example, social informa-
tion can provide individuals with knowledge about resources or environmental conditions,
which can reduce host mortality. Ravens, for instance, share information about the location of
carcasses with conspecifics [64], and matriarchs of African elephant herds share information
about danger and resources with the group [65]. Bonds et al. (2005) [32] showed that when
an increase in contact rates can reduce non-disease mortality, the associated increase in host
lifespan can indirectly select for lower pathogen virulence [32,33]. This is in line with the gen-
eral result that indicates that an increase in host lifespan can lead to the evolution of reduced
virulence [18]. Our study builds on these insights by examining the evolution of virulence
under different host contact distributions (with the same mean contact level) where indi-
vidual hosts with high contact levels have a fitness benefit in terms of reduced natural mor-
tality. We demonstrate that altering transmission distributions toward superspreading alters
contact patterns within susceptible and infected populations, reshaping the epidemiological
dynamics and leading to selection for lower pathogen virulence. While there are few natural
examples directly illustrating how contact distribution affects virulence, studies in socially
structured wildlife populations suggest that transmission dynamics in these systems mirror
our models assumptions. For example, superspreader events in vampire bat colonies play a
crucial role in rabies transmission [66]. Superspreading bats are socially central and thus may
benefit from better health via social grooming and foraging behaviours, which thus may pro-
long the infectious period and favour the evolution of lower virulence. Similar dynamics exist
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in tuberculosis spread in both African buffalo [67] and meerkats [68], where social support in
highly connected (and thus superspreading) individuals may reduce stress and prolong infec-
tion. These cases suggest that in animal populations superspreading often occurs within social
structures, creating correlations between transmission and fitness that aligns with our models
predictions. Together, these examples and our findings illustrate that social structure in ani-
mal populations can influence the evolution of virulence, providing real-world context for the
implications of superspreading on pathogen evolution.

We present a general framework for assessing how superspreading influences the evolution
of pathogen virulence. Our work emphasizes the importance of including epidemiological
dynamics when determining the evolution of pathogen characteristics, since our evolutionary
results are direct consequences of changes in these dynamics. We acknowledge that there are
many other assumptions and models scenarios that could be tested and note that our methods
could be extended in future work to consider the impacts of superspreader events under new
contexts. This could include exploring the impact of heterogeneous contact rates on the evolu-
tion of virulence in explicitly spatial settings, to tailor the model framework to specific infec-
tious disease systems or to examine how the level of heterogeneity in pathogen transmission
may itself evolve. The risk of epidemics in human, agricultural and wildlife systems is intensi-
fying [3], and therefore our findings have important consequences for understanding the risks
from rapidly evolving, superspreading, pathogens.

Supporting information

S1 Text. The supplementary material contains the following sections: S1 Adaptive dynam-
ics analysis when transmission is independent of other host characteristics, S2 Trade-off
function, S3 Other deterministic and stochastic model simulations, and S4 Lower levels of
pathogen virulence.

(PDF)

S1 Fig: The evolution of pathogen virulence over time under an SIRS model framework
and under different transmission distributions. The mean level of transmission across all
simulations, ., is shown for each distribution (blue thicker line). The additional parameters
(y =10, v = 10) are chosen to be similar to the maximum virulence, «,,,,, and the trade-

off parameters are adjusted such that the pathogen persists, with an Ry € (3, 5) across all
simulations: iy = 0.00033, Bmax = 0.000767, a = -0.5. All other parameters are taken from
Fig 2.

(EPS)

S2 Fig: Graphical representation of the transmission-virulence trade-off function (Eq 3 in
the main text).

(EPS)

S$3 Fig: Stochastic simulations of the evolution of pathogen virulence over time when
infection transmission for the host is independent of other host characteristics. In (a)-(c)
hosts have a superspreader/heterogeneous distribution (k = 0.2) where in (a) transmission
depends on susceptibility and infectivity (Bc;c;), in (b) transmission depends on infectivity
(Btc;) and in (c) transmission depends on susceptibility (8¢;c). In (d) hosts have a more
homogeneous distribution (k = 10) and transmission depends on susceptibility and infectiv-
ity (Bcicj). Note, the vertical axis is different for (a) to (c) compared to (d). Parameters are the
same as in Fig 2.

(EPS)
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$4 Fig: The evolution of virulence when contacts are linked to host survival. In (a) and (b)
we show the evolution of pathogen virulence over time under different transmission distri-
butions. In (a) we show the deterministic simulations and (b) we show the stochastic simula-
tions. In (c) we show the proportion of susceptible individuals in each transmission class, c;
and (d) the proportion of infected individuals in each transmission class. All proportions are
shown at the evolutionary stable level of pathogen virulence, a*, in the deterministic simula-
tions. The mean level of transmission, y,, is also shown for each distribution. The simulations
are for a function (d(c;) = 4-3.75¢7/ (25 + cf)) that shows a decrease in natural mortality for
hosts that have high transmission, as in Fig 3. Other parameters are taken from Fig 2.

(EPS)

S5 Fig: The evolution of virulence when infection transmission for the host is linked to
tolerance. In (a) and (b) we show the evolution of pathogen virulence over time under differ-
ent transmission distributions. In (a) we show the deterministic simulations and (b) we show
the stochastic simulations. In (c) we show the proportion of susceptible individuals in each
transmission class, ¢; and (d) the proportion of infected individuals in each transmission class.
All proportions are shown at the evolutionary stable level of pathogen virulence, a*, in the
deterministic simulations. The mean level of transmission, k., is also shown for each distribu-
tion. The simulations are for a function (h(c;) =2 - 1.75¢?/ (75 + clz)) that shows an increase in
tolerance for hosts that have high transmission, as in Fig 4. Other parameters are taken from
Fig 2.

(EPS)

S6 Fig: The evolution of virulence when infectivity is linked to tolerance (increases in
infectivity lead to increased tolerance) and when susceptibility is constant (at ¢) for all
hosts. The evolved level of pathogen virulence, a*, is shown for different transmission distri-
butions (characterised by changes in k). Results are obtained from deterministic simulations
using parameters as in Fig 2 and the function (h(¢;) =2 - 1.75¢7/ (75 + c?)).

(EPS)

S7 Fig: The evolution of virulence when transmission is linked to vulnerability. In (a) and
(b) we show the evolution of pathogen virulence over time under different transmission dis-
tributions. In (a) we show the deterministic simulations and (b) we show the stochastic simu-
lations. In (c) we show the proportion of susceptible individuals in each transmission class, ¢;
and (d) the proportion of infected individuals in each transmission class. All proportions are
shown at the evolutionary stable level of pathogen virulence, a*, in the deterministic simula-
tions. The mean level of transmission, 4., is also shown for each distribution. The simulations
are for a function (h(c;) = 0.5 +3.5¢7/ (600 + c?)) that shows an increase in vulnerability for
hosts that have high transmission, as in Fig 4. Other parameters are taken from Fig 2.

(EPS)

S8 Fig: The evolution of pathogen virulence over time under different transmission distri-
butions, using the model framework detailed in the manuscript, with d(¢;) = 1,h(¢;) = 1.
The mean level of transmission across all simulations, i, is shown for each distribution (in
blue for k = 0.2, and orange for k = 1 and k = 10). The figure directly relates to that of Fig 2,
but with lower levels of pathogen virulence and transmission: i, = 0.00003, 8,4 = 0.000165,
a=-0.5, Apin = 0, Amax = 2. All other parameters are taken from Fig 2.

(EPS)

S9 Fig: The evolution of virulence for the ST model when contacts are linked to host sur-
vival. (a) The evolved level of pathogen virulence, a*, for different transmission distributions
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for the host (characterised by changes in k), and with rates of host natural death, d(c;), linked
to host transmission level, ¢;. (b) The function d(c;) where the host death rate decreases with
increases in host transmission level (increased connectivity). The figure directly relates to that
of Fig 3, but with lower levels of pathogen virulence and transmission: 8, = 0.00003, 3,,4x =
0.000165, a = 0.5, Ayin = 0, Apax = 2. All other parameters are taken from Fig 3.
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