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Abstract
Transcranial direct current stimulation (tDCS) has shown promise in treating neurological
disorders, particularly through dorsolateral prefrontal cortex (DLPFC) targeting. However,
the effects of DLPFC-tDCS on brain functional networks and the underlying propagation
mechanisms remain poorly understood. We present a novel tDCS hybrid brain model
(tDCS-HBM) that incorporates tDCS-induced gray matter electric fields into a large-scale
brain network model, considering their relationship with membrane potential to effec-
tively predict spatiotemporal dynamics. Using this model, we simulated brain activity in
response to tDCS over the left (F3-Fp2) and right DLPFC (F4-Fp1). Our results demon-
strate that tDCS enhances brain complexity and flexibility, leading to increased functional
connectivity (FC) across the whole brain and an improvement in global network effi-
ciency. Dynamic analysis reveals an initial FC decline, followed by widespread enhance-
ment originating from inferior and orbital frontal regions. Importantly, right DLPFC-tDCS
induces strong FC associated with the ventral attention network. These changes in
topological metrics and spatiotemporal patterns are consistent with prior modeling
and empirical findings, validating the utility of our tDCS-HBM in understanding prop-
agation mechanisms. Our hybrid model holds the potential to predict the stimulation
effects of modulation protocols, providing precise guidance for clinical neuromodulation
interventions.

Author summary
Non-invasive brain stimulation techniques are increasingly being explored as addi-
tional treatments for neurological and psychiatric disorders. However, due to individual
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anatomical differences and the incomplete understanding of the underlying mechanisms
of brain stimulation, there is still no general agreement on the optimal stimulation pro-
tocols. Transcranial Direct Current Stimulation (tDCS), a non-invasive brain stimulation
technique, modulates brain activity by applying low-intensity electrical currents through
electrodes placed on the scalp. In this study, we proposed a computational model of
tDCS-HBM (tDCS-Hybrid Brain Model) to predict brain responses to tDCS and provide
theoretical support for the optimization of stimulation targets. Using this model, we
systematically evaluated the effects of different tDCS stimulation protocols. The results
indicated that tDCS enhanced global brain efficiency and functional connectivity, par-
ticularly with stimulation of the right dorsolateral prefrontal cortex (DLPFC), which
strengthened the functional connectivity of the ventral attention network with other sub-
networks, potentially improving alertness. Furthermore, we found that brain responses
to tDCS were largely modulated by structural connectivity, providing new insights into
the optimization of tDCS treatment protocols. Our approach offers theoretical guid-
ance for the personalized implementation of clinical non-invasive brain stimulation
treatments, contributing to the advancement of precision medicine.

matrices, and trained parameters for mean-field
models (https://github.com/dyqdyqonetwo/
tDCS-HBM). The tDCS finite element modeling
is implemented based on the SimNIBS platform
(https://simnibs.github.io/simnibs/build/html/
index.html). The tDCS-HBM core code is
available here
(https://github.com/dyqdyqonetwo/
tDCS-HBM). The Brain Connectivity Toolbox
code used for graph-theoretical analyses is
freely available online
(http://www.brain-connectivity-toolbox.net/).
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Introduction
Transcranial direct current stimulation (tDCS) shows great potential as a safe and non-
invasive way to modulate brain activity and behavior in basic research and clinical applica-
tions [1]. tDCS operates by placing electrodes on the scalp, where a constant weak current
is delivered to specific brain regions, inducing a depolarization or hyperpolarization of the
resting state membrane potential [2]. Depolarizing the resting membrane potential, which
enhances cortical excitability, has been demonstrated to facilitate improvements in cogni-
tive functions [3,4]. Currently, the dorsolateral prefrontal cortex (DLPFC) is commonly used
as a target for tDCS modulation to ameliorate neurological disorders such as Alzheimer’s
disease [5], Parkinson’s disease [6], and psychiatric disorders like schizophrenia [7], and
depression [8] as it is involved in a number of cognitive functions such as attention [9],
decision-making [10], working memory [11] and emotion regulation [12].

To date, post-stimulation functional magnetic resonance imaging (fMRI) data from
patients were adopted to assess the effects of DLPFC-tDCS [13–15] based on brain network
metrics and complexity measures. However, ethical constraints on frequent stimulation and
the delayed collection of post-stimulation fMRI data hinder the understanding of the imme-
diate effects of tDCS and its propagation mechanisms [16–18]. Fortunately, computational
modeling, as an ethically unconstrained research approach, provides a powerful tool for pre-
dicting brain stimulation response activity. Several computational modeling studies have
advanced the estimation of cortical electric field (E-field) distributions induced by tDCS pro-
tocols. By leveraging tissue-specific electrical properties [19–21], finite element modeling
(FEM) precisely quantifies the spatial patterns of E-field penetration into cortical regions.
Crucially, these studies demonstrate that FEM-derived cortical E-field distributions can pre-
dict tDCS-induced changes observed in fMRI data [19,22,23]. However, static cortical E-field
distributions are insufficient to predict the brain’s complex dynamic responses.

To more accurately predict the brain’s complex dynamic activity, several studies have
incorporated cortical electric field (E-field) into large-scale brain network models to simulate
the intricate spatiotemporal changes in neural activity induced by transcranial current stim-
ulation [24–27]. For example, Merlet’s team combined finite element modeling and neural
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mass models to construct a simple thalamocortical interaction global model, which repro-
duces the immediate effects of transcranial alternating current stimulation (tACS) [25]. In
contrast to tDCS, tACS delivers alternating currents at specific frequencies to drive and mod-
ulate neural oscillations, thereby influencing brain function. However, the lack of structural
connectivity (SC) between cortical regions limits the investigation of cortical stimulation
effects. Kunze et al. further extended this approach by incorporating SC coupling between
cortical regions to construct a large-scale brain network model [26]. They added perturba-
tion voltages, based on the cortical current density distribution calculated by FEM, directly
to the average membrane potential of each brain region to simulate the polarization effect
induced by tDCS on the resting membrane potential. However, when integrating E-fields into
large-scale brain network models, prior studies have not adequately incorporated the experi-
mentally observed linear relationship between electric field strength and physiological mem-
brane potential polarization [28]. This oversight affects the prediction and simulation of the
complex dynamic brain activity induced by tDCS.

To investigate the effects of DLPFC-tDCS on brain functional networks and understand
its propagation mechanisms, we proposed a tDCS hybrid brain model (tDCS-HBM). First,
we employed the FEM for tDCS to precisely compute the spatial distribution of electric field
intensity in gray matter regions under F3a-Fp2c and F4a-Fp1c electrode configurations. Sub-
sequently, cortical electric fields were mapped to equivalent membrane potential polarization
using the linear relationship between electric field intensity and membrane potential polar-
ization. Finally, by assuming a linear proportionality between membrane potential polariza-
tion and baseline activity of synaptic gating variables, we integrated this regulatory term into
synaptic gating variable equations within a large-scale brain network model. Through this
“electric field-membrane potential-synaptic gating” cascade mapping, tDCS-HBM establishes
a complete modeling pathway from physical stimulation parameters to whole-brain dynamic
responses, enabling direct simulation of spatiotemporal evolution processes in brain activ-
ity induced by specific stimulation protocols. We utilized the Human Connectome Project
(HCP) Retest dataset to analyze the effects of left DLPFC-tDCS (F3a-Fp2c) and right DLPFC-
tDCS (F4a-Fp1c) protocols on the brain functional network at different levels (global, subnet-
work, and nodal). Furthermore, the propagation mechanisms of DLPFC-tDCS were explored
by dynamic functional connectivity (dFC) approach [29]. Unlike static functional connec-
tivity, dFC captures temporal variations in connectivity patterns, providing deeper insights
into the dynamic reorganization of brain networks following tDCS. Our results showed that
the tDCS-HBM provides a valuable tool for understanding the network effects of DLPFC-
tDCS and offers scientific insight for evaluating and optimizing the effectiveness of clinical
neuromodulation protocols.

Results
Simulation results by tDCS hybrid brain model
We proposed the tDCS-HBM to study the brain’s response to tDCS (Fig 1). First, we imple-
mented a large-scale brain network model using SC-coupled dynamic mean-field models
(MFMs) to characterize the spatiotemporal dynamic of the brain. Then, we used tDCS-FEM
to calculate E-field distributions in the cortex and to identify the crucial brain regions affected
by tDCS. Finally, we incorporated the cortical E-fields of the identified crucial brain regions
into the large-scale brain network model to investigate the brain response upon stimulation at
the network level. To comprehensively analyze the effects of DLPFC-tDCS on brain functional
networks, we used the global topological properties, FC within and between resting-state
networks (RSNs) and whole-brain FC. To further investigate the effect of stimulation on the
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Fig 1. Methodological overview. (A) Building large-scale brain network model. Each parcellated cortical region was modeled using the dynamic mean-field
models (MFMs) that express the neural activity of coupled excitatory (E) and inhibitory (I) populations. Interactions between 68 brain regions were coupled
by structural connectivity (SC) obtained by diffusion magnetic resonance imaging (dMRI) and tractography. (B) tDCS E-fields. The E-fields were generated
using tDCS-FEM and rendered with the SimNIBS software package [30]. The normal component of the E-field is mapped to the gray matter mesh surface.
(C) Simulation of tDCS effects. The cortical normal electric field derived from finite element modeling (FEM) calculations was converted into equivalent
membrane potential changes via the electric field-membrane potential polarization linear relationship. Subsequently, based on the linear proportionality
between membrane potential polarization and synaptic gating variables, the tDCS regulatory factor 𝜃 was coupled into the synaptic gating variables Si within
the large-scale brain network model. (D) DLPFC-tDCS effects on brain network. The effects of DLPFC-tDCS on brain functional networks were investigated
from the perspective of static functional connectivity (FC) metrics (global topological, intra-/inter-resting-state network FC,whole-brain FC) and brain com-
plexity (brain network complexity and flexibility, BOLD-structural connectivity relationship). In addition, the propagation mechanism of tDCS was further
investigated using dynamic functional connectivity (dFC).

https://doi.org/10.1371/journal.pcbi.1013486.g001

brain’s capacity of information processing, we analyzed the complexity and flexibility of brain
activity across three periods (Without-tDCS, During-stimulation, and Post-stimulation). We
also examined the spatiotemporal dynamics induced by tDCS to investigate how stimulation
effects propagate in the brain.
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To understand how the brain responds to stimulation, we conducted a comprehensive
analysis focusing on alterations in blood oxygenation level-dependent (BOLD) signal, and
firing rates. We found that the BOLD signal in anodically stimulated region (left rostral mid-
dle frontal, L.rMFG) increased significantly during stimulation compared to Without-tDCS
(Fig 2B). By contrast, an opposite pattern was observed in the cathodically stimulated region
(right lateral orbitofrontal, R.LOF), where the BOLD signal were significantly decreased
(Fig 2B) compared to Without-tDCS. The change vanished after stimulation stopped, and the
BOLD signal recovered to their Without-tDCS levels. The neuronal firing rates (Fig 2C) under
the left DLPFC-tDCS (F3a-Fp2c) were higher than Without-tDCS condition.

The stimulation results for two DLPFC-tDCS protocols
To investigate the induced effects of the left and the right DLPFC-tDCS stimulation on the
functional network, we conducted a comprehensive study encompassing global, subnetwork,
and nodal analyses. We found that FC exhibited significant increase in most brain regions
following stimulation for two DLPFC-tDCS protocols (Fig 3A). There was no significant dif-
ference in the average shortest path length for different DLPFC-tDCS protocols compared to
the case Without-tDCS (Fig 3B). However, the clustering coefficients decreased after DLPFC-
tDCS (Fig 3B) and the global efficiency increased (Fig 3B). The two DLPFC-tDCS protocols
(F3a-Fp2c and F4a-Fp1c) showed more consistent results at the global level.

We further investigated the effects of the DLPFC-tDCS at subnetwork levels (Fig 3C). It
is evident that the strength of FC within and between limbic network (LIM) have decreased
in both two DLPFC-tDCS protocols (Fig 3C). Results obtained with the Destrieux148 atlas
showed a similar pattern (see S1 and S2 Figs). The dorsal attention network (DAN) and visual
network (VIS) exhibit stronger connectivity with other networks in two DLPFC-tDCS proto-
cols (see Fig 3C). In particular, the right DLPFC-tDCS protocol (F4a-Fp1c) lead to a notable
increase in FC between the ventral attention network (VAN) and other networks.

The effect of DLPFC-tDCS was finally evaluated at the node level (Fig 3D). We found
that brain regions with strong structural connectivity (SC) to anodically stimulated region
showed increased FC after stimulation. In the left DLPFC-tDCS protocol (F3a-Fp2c), the left
frontal brain regions, including L.rMFG, left pars triangularis (L.pTRI), and L.LOF, exhibited
enhanced FC. In the right DLPFC-tDCS protocol (F4a-Fp1c), there was a greater in FC in the
right hemisphere, specifically right caudal middle frontal (R.cMFG), right pars opercularis
(R.pOPER), right Insula (R.INS), R.LOF, right pars orbitalis (R.pORB), and R.pTRI.

Difference in BOLD signal, flexibility, and complexity among
three periods
To explore how SC affects the propagation of the observed stimulation effects, we examined
the relationship between responses in BOLD signal in each brain region (across different peri-
ods) and its SC to anodically stimulated regions (Fig 4A). The results showed a positive corre-
lation between the enhancement of BOLD signal in whole-brain during stimulation (During
vs. Without, During vs. Post) and their SC to the anodically stimulated region. However, the
t-value of the BOLD change in whole-brain in the Without vs. Post scenario did not correlate
with their SC to the anodically stimulated region. This implies that stimulation is delivered
along the stronger SC during stimulation.

To further explore the effects of stimulation on the brain’s information processing capac-
ity, we evaluated the complexity and flexibility of the brain during stimulation from var-
ious perspectives, including BOLD complexity and entropy, metastability and synchrony
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Fig 2. The tDCS-HBM simulation results for the left dorsolateral prefrontal cortex (DLPFC) tDCS protocol (F3a-Fp2c). (A) Electric field (E-field) dis-
tribution simulated by tDCS finite element model (FEM) and rendered with the SimNIBS software package [30]. (B)The changes in the blood oxygenation
level-dependent (BOLD) signal in the anodically stimulated region (L.rMFG) and the cathodically stimulated region (R.LOF). (C)The average firing rates
of Without-tDCS and F3a-Fp2c; brain regions with significant differences are visualized on the right. These results were visualized with the BrainNet Viewer
toolbox [31]. ∗: p≤ 0.05, ∗∗: p≤ 0.01, ∗∗∗: p≤ 0.001.

https://doi.org/10.1371/journal.pcbi.1013486.g002

(Fig 4B). We discovered significant differences between During-stimulation and Without-
tDCS/Post-stimulation. The Hurst exponent, Lempel-Ziv complexity, PFEN, and metastabil-
ity values were significantly higher in During-stimulation compared to Without-tDCS and
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Fig 3. The stimulation effects of two DLPFC-tDCS protocols on brain functional network. (A) Changes in func-
tional connectivity (FC) following DLPFC-tDCS compared to Without-tDCS. These results were visualized using
the GRETNA toolbox [32]. (B) Global topology properties changes for Without-tDCS, left DLPFC-tDCS, and right
DLPFC-tDCS. Statistical comparisons were conducted between the two DLPFC-tDCS protocols and Without-tDCS
using a paired sample t-test. Data are expressed as Mean ± SD. ∗: p≤ 0.05, ∗∗: p≤ 0.01, ∗∗∗: p≤ 0.001. (C) Changes in
FC within and between resting-state networks (RSNs) of two DLPFC-tDCS protocols. Whole-brain FC and FC
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within and between RSNs were statistically compared between two DLPFC-tDCS protocols and a Without-tDCS
condition using a paired sample t-test (p≤ 0.05). Only nodes with significant differences (paired sample t-test)
are colored, while the remaining are white. The color bar indicates the statistical t-value. (D) Between whole-brain
and anodically stimulated region FC. Brain regions were categorized into “High-SC” (top 10 regions with the
stronger SC to anodically stimulated region) and “Low-SC” (remaining 57 regions). Data represent the t-value
for significant changes in FC between whole brain and anodically stimulated regions under two DLPFC-tDCS
protocols compared to the Without-tDCS condition. These results were visualized with the BrainNet Viewer
toolbox [31].

https://doi.org/10.1371/journal.pcbi.1013486.g003

Post-stimulation, with synchrony values being significantly lower. These results indicate that
the brain state during stimulation is characterized by high complexity and flexibility while
low synchrony. The right DLPFC-tDCS protocol (F4a-Fp1c, S3 Fig) also show high complex-
ity and flexibility during stimulation, consistent with the left DLPFC-tDCS protocol (F3a-
Fp2c). These results were further confirmed using the Destrieux atlas, which yielded highly
consistent findings with those from the analyses based on the Desikan-Killiany atlas (see
S4 Fig).

Propagation of DLPFC-tDCS effects
To elucidate the propagation mechanism of tDCS effects over time, we used the dFC approach
to investigate the dynamic FC changes after receiving tDCS (Fig 5). To gain a deeper under-
standing of the transition process of spatiotemporal dynamics of the brain from During-
stimulation to Post-stimulation period, we divided the sliding window into three phases.
Phase 1: the window slides throughout the During-stimulation period. Phase 2: the window
covers the transition from the During-stimulation to the Post-stimulation period. Phase 3:
the window slides throughout the Post-stimulation period. During Phase 1, we observed a
whole-brain FC decrease. During Phase 2, the decrease in FC disappeared, followed by an FC
enhancement initially in L.pORB and L.pTRI, and finally spread throughout the brain. Dur-
ing Phase 3, the trend of increased FC gradually disappeared and whole-brain FC recovered to
resting-state levels. The overall trend of FC decrease and then increase is consistent with the
synchrony measure (S5 Fig). The right DLPFC-tDCS protocol (F4a-Fp1c) exhibited a similar
pattern of FC change as the left DLPFC-tDCS protocol (F3a-Fp2c), with an initial decrease
followed by an increase (S6 Fig). Notably, the analyses based on the Destrieux atlas yielded
results highly consistent with those obtained using the Desikan-Killiany atlas (see S7 Fig).
Both parcellations exhibited a similar dynamic pattern of functional connectivity changes
characterized by an initial decrease followed by a subsequent increase, further supporting the
reproducibility of our findings.

Impact of structural connectivity on dynamic functional connectivity of
stimulated regions
To further elucidate the role of SC in the propagation of tDCS effects, we examined how the
strength of SC between the anodically stimulated region and other brain regions influences
the corresponding FC changes (Fig 6). During Phase 2, the FC of two frontal regions (L.pORB
and L.pTRI) with strong SC (the strength of their SC to the anodically stimulated region was
in the top 10% among all regions) to the anodically stimulated region first increased. Notably,
these two brain regions were also the first to exhibit enhanced FC in Fig 5. In addition, we
also observed a subsequent enhancement of FC between regions in the occipital lobe (cuneus
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Fig 4. Difference in BOLD signal, flexibility, and complexity among three periods in left DLPFC-tDCS protocol (F3a-Fp2c). (A)The correlation between
changes in BOLD signal in whole-brain (excluding the anodically and cathodically stimulated regions) across three periods and the strength of their SC to
the anodically stimulated region. Vertical axis: t-values from paired t-tests comparing BOLD signal differences between the stimulation period (During)
versus baseline (Without) and recovery (Post) periods (During > Without and During > Post contrasts). Horizontal axis: the strength of SC between whole-
brain and the anodically stimulated region. (B)The complexity and flexibility of the brain across three periods. Statistical comparisons of the Without-tDCS,
During-stimulation, and Post-stimulation conditions were performed using paired sample t-test. Data are expressed as Mean ± SD. ∗: p≤ 0.05, ∗∗: p≤ 0.01,
∗∗∗: p≤ 0.001.

https://doi.org/10.1371/journal.pcbi.1013486.g004

and pericalcarine) and the anodically stimulated region in both DLPFC-tDCS protocols
(Figs 6 and S8).

Discussion
In this study, we proposed a tDCS-HBM systematically integrates electric field bio-
physical effects with whole-brain network dynamics through computational modeling.
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Fig 5. Dynamic functional connectivity changes in left DLPFC-tDCS protocol (F3a-Fp2c).The sliding windows are divided into
three phases. Phase 1:The window slides throughout the During-stimulation period. Phase 2:The window covers the transition from
the During-stimulation to the Post-stimulation period. Phase 3:The window slides throughout the Post-stimulation period. In each
phase, five time-varying FC matrices (depicted as small rectangles in the figure) are shown, where each FC matrix represents the sta-
tistical comparison using paired sample t-tests between the left DLPFC-tDCS protocol and the Without-tDCS condition. Only the FC
in the left DLPFC-tDCS protocol that is significantly different fromWithout-tDCS (paired sample t-test) is colored, while the remain-
ing are white. Warmer colors indicate an increase in FC, while cooler colors indicate a decrease in FC. Color bars indicate statistical
t-values (p≤ 0.05).

https://doi.org/10.1371/journal.pcbi.1013486.g005
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Fig 6. Impact of structural connectivity on dynamic functional connectivity associated with the stimulated regions in left DLPFC-tDCS protocol
(F3a-Fp2c). (A) Impact of SC on dFC of anodically stimulated region (L.rMFG). (B) Impact of SC on dFC of cathodically stimulated region (L.LOF). The
horizontal coordinates represent the changes in FC between whole-brain and stimulated brain regions within each sliding window of left DLPFC-tDCS
compared to Without-stimulation. The vertical coordinates represent brain regions after sorting from weak to strong (bottom to top) SC strength between
whole-brain and anodically or cathodically stimulated regions. Only the FC in the left DLPFC-tDCS that is significantly different fromWithout-tDCS (paired
sample t-test) is colored, while the remaining nodes are white. Warmer colors correspond to an increase in FC, while cooler colors correspond to a decrease in
FC. The color bars indicate statistical t-values (p≤ 0.01).

https://doi.org/10.1371/journal.pcbi.1013486.g006
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First, cortical electric field distributions derived from FEM were translated into equivalent
membrane potential based on an electric field-membrane potential polarization relationship
established through in vitro experiments. Subsequently, by introducing a tDCS-specific reg-
ulatory term into the governing equations of synaptic gating variables, the model achieves
a complete pathway from physical stimulation parameters to dynamic responses across the
whole-brain network. We evaluated the effects of tDCS targeting the DLPFC on the brain’s
functional network and further investigated the propagation mechanisms of tDCS effects.
Both DLPFC-tDCS protocols significantly enhanced global efficiency and subnetwork FC,
with right DLPFC-tDCS particularly strengthening the FC between the VAN and other net-
works. Dynamic analyses further demonstrate an initial decrease in whole-brain FC followed
by a gradual increase mediated by SC, which elucidates the propagation mechanism of tDCS.
As a computational modeling approach, tDCS-HBM can predict the stimulation effects of
different tDCS protocols without ethical constraints, provide details of brain functional net-
works not captured in clinical experiments, and offer valuable references for predicting the
stimulation effects of clinical neuromodulation protocols.

The construction of our hybrid model integrates two key scientific foundations. First,
large-scale brain network models accurately capture whole-brain activity dynamics. Second,
biological experiments empirically establish a linear relationship between direct current fields
and neuronal membrane potential polarization. Specifically, the large-scale brain network
model we adopted in this work (68 brain regions coupled through SC, with each brain region
described by a dynamic mean-field model) could precisely model observed brain activity
(confirmed by our previous study [33]). This framework provides a robust basis for predict-
ing tDCS-induced brain state transitions. Meanwhile, the E-field induced linear polarization
of membrane potentials has been validated in an in vivo study, where direct current electric
fields were used to modulate neuronal excitability in rat hippocampal slices [28]. Building
upon this biophysical mechanism, cortical electric fields were mapped to population-level
equivalent membrane potential polarization states, modulating synaptic gating variables to
computationally predict tDCS-induced network-level effects. This biological mechanism
provides a crucial electrophysiological basis for constructing our model, enabling it to more
precisely capture the impact of current stimulation on brain region activity.

The tDCS-HBM replicated the BOLD signal response under different electrode polari-
ties and the increased neuronal firing rates after tDCS, which were consistent with physio-
logical experiments, thereby providing evidence for the validity of the model in simulating
physiological indicators under stimulation. Specifically, cathodal stimulation elicits a marked
reduction in BOLD-signal amplitude, in agreement with prior experimental observations that
cathodal DC stimulation attenuates BOLD-signal amplitude [34,35]. For the increase in neu-
ronal firing rates following stimulation, it was biologically validated in experiments involving
direct current stimulation of rat motor cortex slices [36].

The changes in brain network at different scales under both left and right DLPFC-tDCS
protocols in our model (Fig 3) were also consistent with a series of clinical trials and empiri-
cal studies, which upheld the validity of the model and highlighted the potential of DLPFC-
tDCS for cognitive enhancement. At the global level, both DLPFC-tDCS protocols signifi-
cantly enhanced brain global network efficiency (Fig 3B), which is consistent with the results
of clinical trials applying prefrontal tDCS to patients with alcohol use disorders, both indicat-
ing the positive impact of prefrontal stimulation on brain function optimization [37]. At the
subnetwork level, we observed significant enhancement of FC between the VIS network and
other networks (Fig 3C). Lafontaine et al. demonstrated in a tDCS-electroencephalography
(EEG) study targeting the DLPFC that prefrontal tDCS facilitates long-range coordination
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between prefrontal cortices and lower-order visual regions [38]. This facilitation of interre-
gional coordination may mechanistically explain the increased VIS-related functional con-
nectivity observed across networks. The enhanced FC of DAN with other networks in our
model was also observed in a study of the modulatory effects of repetitive tDCS on dorsal
attention and frontal parietal networks [39]. Finally, we found several regions of DMN and
FPN, including the inferior parietal lobule (IPL), precuneus (PCUN), superior frontal gyrus
(SF), pars orbitalis (pORB), and rostral/caudal middle frontal gyrus (rMFG/cMFG), all exhib-
ited significantly enhanced FC. This is consistent with previous empirical studies have empha-
sized the importance of the DMN and the FPN in cognitive function improvement [13,40–
44]. This connectivity increase has been proposed to reflect augmented resources and higher
readiness to facilitate cognition [45]. Furthermore, we also observed that brain regions with
high structural connectivity to the anodically stimulated region exhibited increased FC fol-
lowing stimulation in both left and right DLPFC-tDCS protocols (Fig 3D). The key role of
high structural connectivity in tDCS-induced changes in brain activity was confirmed by a
computational simulation study, which demonstrated that stimulating the IPL drives brain
network activity to a target state, due partially to its high structural connectivity [46]. How-
ever, Kurtin et al. pointed out that the brain state has a greater and more generalizable influ-
ence on tDCS-induced changes in brain network activity [47]. Vergallito et al. systematically
combined transcranial magnetic stimulation with electroencephalography (TMS-EEG), pro-
viding evidence of the state-dependent nature of c-tDCS in effectively modulating cortical
excitability [48]. These findings collectively suggest that structural connectivity is not the
sole determinant of tDCS effects. We speculate that certain brain regions with strong struc-
tural connectivity do not show an increase in FC following stimulation, possibly due to the
influence of other factors such as brain states or brain network reorganization.

The enhanced FC between the VAN and other networks observed in the right DLPFC-
tDCS protocol simulations (Fig 3C) aligns with clinical evidence, demonstrating the tDCS-
HBM’s capability to capture network-level neuromodulatory effects across stimulation proto-
cols. VAN is involved in the process of attention reorientation triggered by exogenous stimuli,
which is closely related to the individual’s alertness [49–51]. Clinical studies indicated that
right DLPFC-tDCS can significantly improve alertness and selective attention [52,53] and
the selective attention is associated with an increase in FC of the VAN [54]. These empirical
studies therefore provide indirect evidence for our finding that right DLPFC-tDCS stimu-
lation could predict alertness-related FC changes (i.e., FC between VAN network and other
networks). This finding also offers valuable insights into electrode placement in clinical tDCS
applications. For instance, tDCS targeting the right DLPFC may be a preferred option for
patients who require enhanced selective attention and alertness.

Furthermore, the dynamic changes of functional network across three phases revealed
by our model also align with previous modeling and empirical studies, demonstrating the
validity of tDCS-HBM in predicting tDCS effects and exploring propagation mechanisms.
First, in Phase 1 (During-stimulation period),we observed a significant decrease in whole-
brain FC, consistent with findings from a previous modeling study using an AD virtual brain
network model, which also reported a rapid reduction in functional connectivity at the ini-
tial stage of stimulation [27]. They suggested this initial decrease may be related to transient
functional connectivity disruption induced by exogenous stimulation [27]. In addition, we
found an increase in brain complexity and flexibility during stimulation (Fig 4B). This finding
exhibits cross-modal consistency with Wang et al.’s spectral entropy analysis of resting-state
EEG, which revealed a sustained increase in spectral entropy from the baseline period (T0)
to post-intervention (T3) following 14 consecutive days of HD-tDCS administration [55].
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This reflects a transient adjustment process of the brain network as it adapts to the stimula-
tion [27], potentially allowing the brain to flexibly reconfigure its functional networks [56].

In Phase 2 (cover the transition from During-stimulation period to Post-stimulation
period), brain regions with strong SC to the anodically stimulated region exhibited signifi-
cant enhancement in FC first, followed by enhanced whole-brain FC (Figs 4, 5, S6 and S8). We
suggest that the initial enhancement of FC in regions exhibiting strong SC with the anodically
stimulated region arises from the propagation of electrical stimulation along strong structural
pathways (Fig 4A), thereby synchronizing neural activity patterns in these strongly connected
regions with the stimulated region. Subsequently, the enhanced whole-brain FC reflects the
characteristic of the brain as a complex dynamic system, where inter-regional interactions
facilitate coordinated responses across multiple regions [57,58], thereby triggering widespread
FC enhancement.

Finally, in Phase 3 (Post-stimulation period), we find that the increased FC gradually dis-
appeared and whole-brain FC recovered to resting-state levels. The transient FC enhancement
compared to Without-tDCS condition, which suggest that the complex brain networks can
remain highly adaptable and coordination after stimulation ceases [26,59]. Our findings of FC
enhancement align with Kunze et al.’s perspective that synchronization is the primary mecha-
nism of tDCS effects [26]. Additionally, Gibson and colleagues indicated that synchronization
may profoundly impact GM andWM through changes in synaptic plasticity, axonal caliber
and myelination [60]. However, the transient appearance of FC enhancement after stimula-
tion cessation highlights the necessity for long-term tDCS applications to ensure sustained
induction and consolidation of neuroplastic changes.

One of the advantages of our study is the consideration of the experimentally observed
mechanism that E-fields linearly induce membrane potential polarization. Based on this
improvement our model predicts the modulation effect of tDCS over different spatial and
temporal scales, which is consistent with previous modeling and clinical studies and enhances
our understanding of the propagation mechanisms of tDCS effects. However, there are poten-
tial limitations to our current research. First, homogeneous parameter fitting was applied uni-
formly across all 68 cortical regions, and subcortical structures such as the thalamus and basal
ganglia were not taken into account. This approach does not adequately capture the intrinsic
dynamic heterogeneity and unique connectivity patterns of cortical and subcortical networks.
Therefore, future studies should incorporate spatially heterogeneous parameters and develop
coupled cortex–subcortex models to reproduce the complex dynamics of large-scale brain
networks. Second, although the modeling results received preliminary support from relevant
clinical literature, they should be interpreted with caution. Subsequent work should leverage
empirically acquired, concurrently recorded tDCS–fMRI data to optimize the tDCS-HBM
parameters, thereby significantly enhancing predictive accuracy and reliability. Finally, tDCS–
EEG data should be further integrated to construct a hybrid brain-network model informed
by EEG, facilitating a multimodal examination of how electrical stimulation modulates func-
tional brain networks across spatial and temporal scales and providing a stronger theoretical
foundation for the design of individualized stimulation protocols.

Conclusion
In conclusion, we proposed a tDCS-HBM framework that maps the electric field to equiv-
alent membrane potential via a linear relationship and modulates synaptic gating variables
based on the polarization level of membrane potential, thereby predicting brain activity in
response to tDCS. The observed similarities and differences in brain functional networks
under two DLPFC-tDCS protocols indicate that tDCS-HBM is promising for predicting the
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network effects of various tDCS protocols. The dFC results further reveal that the propagation
effects of tDCS are mediated by SC. The consistency of the tDCS effects and their propaga-
tion mechanism with existing modeling and empirical studies further validates the validity of
tDCS-HBM.

Materials and methods
The tDCS hybrid brain model

Large-scale brain network model. We utilized a large-scale brain network model of 68
neural masses to simulate brain dynamics activity. The MFM proposed by Deco et al. [61]
was used as a neural mass model to characterize the dynamics of local cortical regions. Cou-
pling between 68 cortical regions is determined by SC. The MFM was derived by applying
mean-field reductions to a spiking neural network model, which incorporates firing rates and
synaptic gating dynamics [62]. Each cortical region was represented by subnetworks of cou-
pled excitatory and inhibitory populations of spiking neurons, described by the following set
of nonlinear stochastic differential equations:

̇Si = –
Si
𝜏S
+ 𝛾 (1 – Si)H (xi) + 𝜎vi (t) , (1)

xi =wJSi +GJ∑
j
CijSj + I, (2)

H (xi) =
axi – b

1 – exp (–d (axi – b))
, (3)

Where Si, xi, and H(xi) denote the average synaptic gating variable, the total input cur-
rent, and the average firing rate of each population in the cortical region i, respectively. The
parameters are derived from values extracted from neurophysiological data to ensure the bio-
physical realism of the model [63]. In the large-scale brain network model developed in this
study, we employed a homogeneous parameter-fitting strategy, applying a single set of model
parameters to all 68 cortical regions. Detailed parameter definitions and the fitting proce-
dure [33] are provided in the Supporting Information. With the above dynamic MFM, we
show that an empirically calibrated, dynamic, and mutually coupled whole-brain model can
simulate system-level brain dynamics activity. The detailed fitting results of the simulated and
empirical data are provided in the Supporting information (S9 and S10 Figs).

tDCS E-fields model. In this study, we utilized the open-source SimNIBS (v4.0) soft-
ware [63] to simulate the electric fields (E-fields) induced by tDCS. We focused on studying
the effects of tDCS on the DLPFC using two tDCS protocols for active stimulation of the left
DLPFC (F3a-Fp2c, EEG10-10, Anodal F3, Cathodal Fp2, electrode size 5×7 cm2, 2 mA) and
the right DLPFC (F4a-Fp1c, EEG10-10, Anodal F4, Cathodal Fp1, electrode size 5×7 cm2, 2
mA). See the Supporting Information for details on the E-field modeling.

We aim to identify brain regions with the strongest electric fields (E-fields) (crucial brain
regions) under the two stimulation protocols, which we then used as stimulated brain regions
(anodically stimulated regions and cathodally stimulated regions) in a large-scale brain net-
work model. Considering that anodal excitation and cathodal inhibition under scalp elec-
trodes are outdated and simplistic [64], we utilized the E-field strength in the cortex to deter-
mine the brain regions most affected by stimulation. The normal and tangential components
of the E-fields (S11 Fig) on the cerebral cortex, calculated by SimNIBS [65], were mapped
onto a gray matter mesh. We define the 99th percentile as the peak electric field based on
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the E-fields. Assuming that the maximum |E⃗normal| (the normal components of the E-fields,
see Supporting Information) of a given brain region is larger than the peak electric field,
this brain region is then considered to be the crucial brain region affected by tDCS (crucial
regions, see Supporting Information S1 Table).

Incorporating E-fields into the large-scale brain network model. To account for the
effects of tDCS, we relied on the fact that E-fields affect neurons in a geometry-dependent
fashion [28]. The field effect is maximized when the direction of the externally applied E-field
is parallel to the main axis of the cell (corresponding to E⃗normal), whereas the field effect is
zero when the direction of the E-field is orthogonal to the direction of the cell (correspond-
ing to E⃗tangent) [24–26]. Furthermore, it has been shown that fields aligned with the direction
of the dendritic tuft to axon produce a positive (depolarizing or excitatory) perturbation of
the membrane potential at the soma [24–26] (corresponding to the surface inward E⃗normal).
Conversely, a field in the reverse direction produces a negative effect (hyperpolarization or
inhibition, corresponding to the surface outward E⃗normal) [24–26]. Previous studies described
this effect of transcranial current stimulation (tCS) on the neuronal population level as the
“𝜆Emodel” [24,26].

In the tDCS-HBM, the above considerations lead us to consider the tDCS effect as a linear
function of the external E-fields applied to the average membrane potential of the neuronal
population. That is,VtDCS = 𝜆E⃗normal, where 𝜆 is the linear coefficient of the externally applied
E-field induced membrane polarization, and E⃗normal is the normal E-field of the chosen crucial
brain region. It has been shown that during anodal and cathodal stimulation of tDCS, the net
polarizing effect of tDCS on the type P sub-population was limited to no more than |4mV|,
an amount of polarization that corresponds to an E-field polarization of 30 mV/mm in in-
vivo experiments [24,26,28]. Therefore, we set 𝜆 to be 0.13. This bias voltage term VtDCS may
have a depolarizing or hyperpolarizing effect on a given subpopulation. We introduce a mod-
ulation factor 𝜃(i) into the synaptic gating dynamics to quantitatively characterize the regula-
tory effects of tDCS-induced membrane potential polarization on the gating variable opening
fraction. When 𝜃(i) > 0, membrane potential depolarization enhances the NMDA receptor
channel opening proportion; when 𝜃(i) < 0, membrane potential hyperpolarization reduces
the NMDA receptor channel opening proportion.

VtDCS (i) = 𝜆E⃗normal (i) , (4)

𝜃(i) = kVtDCS (i) (5)

̇Si = –
Si
𝜏S
+ 𝛾(1 – Si)H(xi) + 𝜎vi (t) + 𝜃(i), (6)

Where i refers to a cortical brain region, E⃗normal denotes the region-wise averaged normal
component of the E-field (parallel to the neuron), obtained by mapping the SimNIBS simula-
tion results onto the Desikan-Killiany atlas (S2 Table). Based on the well-adjusted parameters
of large-scale brain network model, which can successfully simulate the system-level brain
dynamics. Here, we simplify the relationship between the deviation of membrane potential
from resting state and synaptic gating variables into a positive correlation. The value of k was
set to 1. During stimulation, the tDCS-modulated regulatory term 𝜃(i) incorporated into
synaptic gating variables is maintained as a constant input, which is directly set to zero upon
cessation of stimulation.
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BOLD fMRI signal simulation
We utilized structural T1-weighted MRI, dMRI, and resting-state fMRI (rs-fMRI) from 45
subjects in the HCP Retest data for this study. The dataset details and group-level templates
are described in the Supporting Information. Using the trained dynamic MFM parame-
ters, we simulated the BOLD signals under the left DLPFC-tDCS, right DLPFC-tDCS, and
Without-tDCS conditions, with 30 runs for each condition. The initial 60 seconds of the sim-
ulated BOLD signals were removed to eliminate the initial transient. Subsequently, a stimulus
lasting 60 seconds was applied. The BOLD time series was downsampled to 0.72 seconds to
match the temporal resolution of the empirical BOLD signals from the HCP (a total of 1200
time points). We have included results for different stimulation durations (e.g., 30s, 90s, or
120s, see S12, S13, S14 and S15 Figs) in the Supporting Information, which demonstrate con-
sistency across stimulation durations and indicate a tendency for enhancement to be more
pronounced with longer stimulation durations.

Cortical parcellation
We obtained 68 cortical regions by cortical segmentation based on the brain atlas defined by
Desikan et al. Then, the overlapping areas on the surface of the cerebral cortex were evaluated
and the 68 cortical regions were divided into 7 resting state networks (RSNs) based on the 7
RSNs defined by Yeo et al [66]. The seven networks were named as follows: frontoparietal con-
trol network (FPN), default mode network (DMN), limbic network (LIM), dorsal attention
network (DAN), ventral attention network (VAN), sensorimotor network (SMN), and visual
network (VIS). This mapping enables a more systematic and precise evaluation of the effects
and spatial distribution of stimulation or model simulation results across different functional
brain networks.

To validate the reproducibility of our findings, we further employed the Destrieux
atlas [67] to construct personalized dynamic models and perform virtual stimulation analy-
ses. The Destrieux atlas segments the cerebral cortex into 148 regions, which were assigned to
one of the seven resting-state networks (RSNs) defined by Yeo et al [66] based on the extent of
cortical surface overlap.

Structural connectivity
We constructed each subject’s structural connectivity (SC) matrix using probabilistic tractog-
raphy. Specifically, diffusion MRI data from 45 participants were first preprocessed according
to the HCP minimal preprocessing pipeline [68]; fiber tracking was then performed using the
MRtrix3 toolkit [69]. Each subject yielded a weighted 68×68 SC matrix, where the weight cor-
responded to the number of tracks between two regions normalized by the total cortical area.
For the group-averaged SC matrix, to mitigate false-positive connections arising from subject-
specific tractography noise, we retained only those connections present in at least 50% of par-
ticipants and averaged their weights across subjects [70]. Finally, to ensure parameter stability
and comparability, the resulting group SC matrix was scaled so that its maximum element is
0.2.

DLPFC-tDCS effects on brain network
To investigate the effects of the stimulation from two DLPFC-tDCS protocols on brain func-
tional networks, we conducted a comprehensive analysis of brain activity following tDCS
from a static perspective. We selected the BOLD signal of the first 130 TRs as the analyzed
data (S16 Fig) to avoid annihilation of the tDCS effect. First, we calculated differences in
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whole-brain FC (see Supporting Information) between the two DLPFC-tDCS protocols and
the Without-tDCS condition using a paired sample t-test. Then, we calculated three indica-
tors from a global perspective: global efficiency (as a measure of network integration), clus-
tering coefficient (as a measure of network segregation), and the average shortest path length
(overall efficiency of information integration in the brain). Next, we measured the effects of
tDCS at the subnetwork level by calculating the strength of FC within (cohesion of functional
networks) and between RSNs (inter-network integration capacity of functional networks).
Finally, we investigated how the strength of SC between the whole-brain and the anodically
stimulated region influenced their FC at the nodal level. The brain regions were categorized
into “High-SC” (top 10 regions with the stronger SC to anodically stimulated region) and
“Low-SC” (remaining 57 regions). We compared the t-values of FC changes between the
anodically stimulated region and brain regions with either High-SC or Low-SC following
two DLPFC-tDCS protocols. We only considered brain regions showing significant differ-
ences in FC.

To further explore how the strength of SC between whole-brain and anodically stimu-
lated regions affects changes in BOLD signal upon stimulation, we calculated the correlation
between the changes in BOLD (across three periods) and the strengths of SC between whole-
brain and the anodically stimulated region. Specifically, we first segmented the BOLD signals
into three periods: Without-tDCS, During-stimulation, and Post-stimulation (S16 Fig). Then,
we calculated the significant differences between the mean BOLD values of each brain region
(excluding the anodically and cathodically stimulated regions) across three periods (Dur-
ing vs. Without, During vs. Post, and Without vs. Post) using a paired sample t-test. Finally,
we used Spearman correlation analysis to explore the association between the t-value of the
change in BOLD signal in whole-brain (excluding the anodically and cathodically stimulated
regions) across three periods and their SC (the 20% threshold) to the anodically stimulated
region (p≤ 0.05). Results obtained with alternative sparsity thresholds (30%–50%) are pre-
sented in Supplementary S17 Fig and reveal similarly robust, positive SC–BOLD correlations,
demonstrating the consistency of our findings across thresholding schemes. The absence of
significant BOLD differences in Post > Without contrasts precluded further analysis of their
associations with SC. Moreover, to investigate the effect of stimulation on the brain’s capac-
ity for information processing, we calculated the Hurst exponent, Lempel-Ziv complexity,
permutation fuzzy entropy (PFEN), metastability, and synchrony indicators to observe the
complexity and flexibility of the brain network across three periods (Without-tDCS, During-
stimulation, and Post-stimulation).

To elucidate the propagation mechanism of the tDCS effects, we computed whole-brain
dFC based on simulated BOLD signal time series using a sliding-window technique (S16 Fig).
We used a time window of 40 TRs (time points) with a step of 1 TR to compute dFC. As a
result, a weighted 3D adjacency matrix (68 × 68 × 1161) was obtained, where 68 denotes the
number of cortical brain regions and 1161 denotes the number of sliding windows. The dFC
results at different values of the time window (e.g., 30TRs and 50TRs, S18 and S19 Figs) are
available in the Supporting Information. In order to better understand the transition process
of the brain’s spatiotemporal dynamics from the During-stimulation to the Post-stimulation
period, we divided the sliding window into three phases. Phase 1: the window slides through-
out the During-stimulation period. Phase 2: the window includes the transition from the
During-stimulation to the Post-stimulation period. Phase 3: the window slides throughout
the Post-stimulation period. Finally, to further elucidate the influence of SC on the propaga-
tion of the tDCS effects, we investigated how the strength of SC between whole-brain and the
anodically stimulated region affects the t-value of their FC change.
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Statistical analysis
All statistical analyses were performed in SPSS (IBM SPSS Statistics 25) in this study. Paired
samples t-tests were used to assess significant differences in global, subnetwork, nodal, and
dFC metrics between the Without-tDCS (30 runs) and the two DLPFC-tDCS (30 runs) pro-
tocols, followed by False Discovery Rate (FDR) correction for multiple comparisons. For indi-
cators of brain complexity and flexibility, paired samples t-tests were used to assess significant
differences across the Without-tDCS, During-stimulation, and Post-stimulation scenarios,
with FDR correction applied for multiple comparisons. The significance threshold was set at
p≤ 0.05.

Supporting information
S1 Fig Stimulation-induced changes in whole-Brain functional connectivity based on the
Destrieux Atlas.
(EPS)

S2 Fig Stimulation-induced changes in functional connectivity within and between brain
networks based on the Destrieux Atlas.
(EPS)

S3 Fig Brain complexity and flexibility in right DLPFC-tDCS protocol (F4a-Fp1). Data are
expressed asMean ± SD. Statistical comparisons were made between conditions (without-
tDCS, during-stimulation, and after stimulation) using a paired-samples t-test. ∗: p < 0.05, ∗∗:
p < 0.01, ∗∗∗: p < 0.001.
(EPS)

S4 Fig Changes in BOLD Signal, Flexibility, and Complexity across three periods of left
DLPFC-tDCS (F3a-Fp2c), based on the Destrieux Atlas.
(EPS)

S5 Fig Brain synchronization over time in left DLPFC-tDCS protocol (F3a-Fp2c).The hor-
izontal axis marks the time window, and the vertical axis represents the t-value obtained from
a paired samples t-test of synchrony at different periods vs. without-tDCS.
(EPS)

S6 Fig Dynamic network effects of right DLPFC-tDCS protocol (F4a-Fp1c).The sliding
windows are divided into three phases. Phase 1: The window slides throughout the During-
stimulation period. Phase 2: the window covers the transition from the During-stimulation
to the Post-stimulation period. Phase 3: the window slides throughout the Post-stimulation
period. In each phase, five time-varying FC matrices (depicted as small rectangles in the
figure) are shown, where each FC matrix represents the statistical comparison using a paired
sample t-tests between the left DLPFC-tDCS protocol and the Without-tDCS condition. Only
the FC in the left DLPFC-tDCS protocol that is significantly different fromWithout-tDCS
(paired sample t-test) is colored, while the remaining are white. Warmer colors indicate an
increase in FC, while cooler colors indicate a decrease in FC. Color bars indicate statistical
t-values (p < 0.05).
(EPS)
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S7 Fig Dynamic functional connectivity changes in the left DLPFC-tDCS protocol
(F3a-Fp2c) based on the Destrieux Atlas.
(EPS)

S8 Fig Impact of structural connectivity on dynamic functional connectivity in stimulated
regions in right DLPFC-tDCS protocol (F4a-Fp1c). A Impact of structural connectivity on
dynamic functional connectivity in anodically stimulated region. B Impact of structural con-
nectivity on dynamic functional connectivity in cathodically stimulated region. Horizontal
coordinates represent sliding windows over time, while vertical coordinates represent cortical
regions with weak-to-strong (bottom-to-top) structural connections to the anodal or catho-
dal stimulated cortical brain regions. Only the FC in the tDCS protocol that is significantly
different from without tDCS (paired samples t-test) is colored, while the remaining nodes
are white. Warmer colors correspond to an increase in functional connectivity, while cooler
colors correspond to a decrease in functional connectivity. The color bars indicate statistical
t-values (p < 0.05).
(EPS)

S9 FigThe fitting between simulated and empirical data in large-scale brain network
models.This study first conducted model inversion on both individual and group-level mod-
els across 45 participants. A demonstrates the correlation between simulated FC and empiri-
cal FC for individual models (r = 0.487± 0.076, p < 0.0001), where model-empirical FC con-
sistency significantly exceeded the empirical SC-FC correlation (r = 0.239± 0.049, p < 0.0001)
across all participants. B demonstrated that the goodness-of-fit between model simulations
and empirical data is significantly higher than that of randomly generated null model distri-
butions. C presents the group-level model performance, showing strong correlation between
simulated FC and empirical group-level FC (r = 0.72, p < 0.0001). D illustrates progressive
ICC improvement with repeated simulations: mean pairwise ICC reached 0.4257 for single
simulations, increasing to ICCave_5 = 0.7209, ICCave_10 = 0.8531, and ICCave_30 = 0.9381 with
5, 10, and 30 simulation averages, respectively.
(EPS)

S10 Fig Spatial patterns of functional connectivity in simulated and empirical data. It
illustrates the comparative organization patterns of intra-RSN and inter-RSN connectivity
strengths between simulated and empirical data. Both group-level and individual models
successfully captured the prototypical spatial configurations observed in empirical datasets,
demonstrating robust alignment with neurobiological ground-truth patterns.
(EPS)

S11 Fig Visualization of tDCS current modeling. A indicates the placement of the F4a-Fp1c
electrode montages, respectively, with red indicating the anode and blue the cathode. B repre-
sents the magnitude of the E-field in the cerebral cortex. C denotes the normal E-field in the
cerebral cortex. All panels were rendered using the SimNIBS software package [30].
(EPS)

S12 Fig Network effects of DLPFC-tDCS protocols with different stimulation duration.
The left corresponds to the F3a-Fp2c DLPFC-tDCS protocol, and the right corresponds to the
F4a-Fp1c DLPFC-tDCS protocol. Statistical comparisons were made between the tDCS pro-
tocol and without-tDCS using a paired-samples t-test (p < 0.05). Only nodes with significant
differences (paired-samples t-test) are colored, while the remaining nodes are white. Warmer
colors indicate an increase in FC strength after the stimulation, while cooler colors indicate
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a decrease in FC strength following the stimulation. The color bar indicates the statistical
t-value.
(EPS)

S13 Fig Dynamic network effects of left DLPFC-tDCS protocol (F3a-Fp2c) with the stimu-
lation duration of 30s (42 TRs).The sliding windows are divided into three phases. Phase 1:
The window slides throughout the During-stimulation period. Phase 2: the window covers the
transition from the During-stimulation to the Post-stimulation period. Phase 3: the window
slides throughout the Post-stimulation period. In each phase, five time-varying FC matrices
(depicted as small rectangles in the figure) are shown, where each FC matrix represents the
statistical comparison using a paired sample t-tests between the left DLPFC-tDCS protocol
and the Without-tDCS condition. Only the FC in the left DLPFC-tDCS protocol that is signif-
icantly different fromWithout-tDCS (paired sample t-test) is colored, while the remaining are
white. Warmer colors indicate an increase in FC, while cooler colors indicate a decrease in FC.
Color bars indicate statistical t-values (p < 0.05).
(EPS)

S14 Fig Dynamic network effects of left DLPFC-tDCS protocol (F3a-Fp2c) with the stimu-
lation duration of 90s (125 TRs).The sliding windows are divided into three phases. Phase 1:
The window slides throughout the During-stimulation period. Phase 2: the window covers the
transition from the During-stimulation to the Post-stimulation period. Phase 3: the window
slides throughout the Post-stimulation period. In each phase, five time-varying FC matrices
(depicted as small rectangles in the figure) are shown, where each FC matrix represents the
statistical comparison using a paired sample t-tests between the left DLPFC-tDCS protocol
and the Without-tDCS condition. Only the FC in the left DLPFC-tDCS protocol that is signif-
icantly different fromWithout-tDCS (paired sample t-test) is colored, while the remaining are
white. Warmer colors indicate an increase in FC, while cooler colors indicate a decrease in FC.
Color bars indicate statistical t-values (p < 0.05).
(EPS)

S15 Fig Dynamic network effects of left DLPFC-tDCS protocol (F3a-Fp2c) with the stimu-
lation duration of 120s (168 TRs).The sliding windows are divided into three phases. Phase
1: The window slides throughout the During-stimulation period. Phase 2: the window cov-
ers the transition from the During-stimulation to the Post-stimulation period. Phase 3: the
window slides throughout the Post-stimulation period. In each phase, five time-varying FC
matrices (depicted as small rectangles in the figure) are shown, where each FC matrix repre-
sents the statistical comparison using a paired sample t-tests between the left DLPFC-tDCS
protocol and the Without-tDCS condition. Only the FC in the left DLPFC-tDCS protocol
that is significantly different fromWithout-tDCS (paired sample t-test) is colored, while the
remaining are white. Warmer colors indicate an increase in FC, while cooler colors indicate a
decrease in FC. Color bars indicate statistical t-values (p < 0.05).
(EPS)

S16 Fig Measurement method schematic. A represents the BOLD data used to analyze the
tDCS effects on brain functional network. B represents the BOLD data used to analyze the
whole-brain BOLD activities and brain complexity. C represents the BOLD data used to
analyze the propagation of DLPFC-tDCS effects in dFC.
(EPS)
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S17 Fig Correlation between changes in BOLD signal and structural connectivity at
20%–-50% sparsity thresholds.
(EPS)

S18 Fig Dynamic network effects of left DLPFC-tDCS protocol (F3a-Fp2c) with a sliding
window length of 30 TRs. The sliding windows are divided into three phases. Phase 1: The
window slides throughout the During-stimulation period. Phase 2: the window covers the
transition from the During-stimulation to the Post-stimulation period. Phase 3: the window
slides throughout the Post-stimulation period. In each phase, five time-varying FC matrices
(depicted as small rectangles in the figure) are shown, where each FC matrix represents the
statistical comparison using a paired sample t-tests between the left DLPFC-tDCS protocol
and the Without-tDCS condition. Only the FC in the left DLPFC-tDCS protocol that is signif-
icantly different fromWithout-tDCS (paired sample t-test) is colored, while the remaining are
white. Warmer colors indicate an increase in FC, while cooler colors indicate a decrease in FC.
Color bars indicate statistical t-values (p < 0.05).
(EPS)

S19 Fig Dynamic network effects of left DLPFC-tDCS protocol (F3a-Fp2c) with a sliding
window length of 50 TRs. The sliding windows are divided into three phases. Phase 1: The
window slides throughout the During-stimulation period. Phase 2: the window covers the
transition from the During-stimulation to the Post-stimulation period. Phase 3: the window
slides throughout the Post-stimulation period. In each phase, five time-varying FC matrices
(depicted as small rectangles in the figure) are shown, where each FC matrix represents the
statistical comparison using a paired sample t-tests between the left DLPFC-tDCS protocol
and the Without-tDCS condition. Only the FC in the left DLPFC-tDCS protocol that is signif-
icantly different fromWithout-tDCS (paired sample t-test) is colored, while the remaining are
white. Warmer colors indicate an increase in FC, while cooler colors indicate a decrease in FC.
Color bars indicate statistical t-values (p < 0.05).
(EPS)

S1 Table. Crucial Regions.
(PDF)

S2 Table. Electric Field (F3a-Fp2c) Mapping Results in Desikan-Killiany Atlas Regions.
(PDF)

S1 File. Supporting Information.This document elucidates the methodological frameworks
encompassing: (1) Large-scale brain network model detail, (2) tDCS E-field detail, (3) Caleu-
lation of E⃗normal, (4) multimodal neuroimaging dataset detail, (5) Functional connectivity
(FC), and (6) Outcome measures detail-metastable.
(PDF)
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