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Abstract

The entorhinal cortex serves as a major gateway connecting the hippocampus and neo-
cortex, playing a pivotal role in episodic memory formation. Neurons in the entorhinal
cortex exhibit two notable features associated with temporal information processing: a
population-level ability to encode long temporal signals and a single-cell characteristic
known as graded-persistent activity, where some neurons maintain activity for extended
periods even without external inputs. However, the relationship between these single-
cell characteristics and population dynamics has remained unclear, largely due to the
absence of a framework to describe the dynamics of neural populations with highly het-
erogeneous time scales. To address this gap, we extend the dynamical mean field the-
ory, a powerful framework for analyzing large-scale population dynamics, to study the
dynamics of heterogeneous neural populations. By proposing an analytically tractable
model of graded-persistent activity, we demonstrate that the introduction of graded-
persistent neurons shifts the chaos-order phase transition point and expands the net-
work’s dynamical region, a preferable region for temporal information computation.
Furthermore, we validate our framework by applying it to a system with heterogeneous
adaptation, demonstrating that such heterogeneity can reduce the dynamical regime,
contrary to previous simplified approximations. These findings establish a theoretical
foundation for understanding the functional advantages of diversity in biological systems
and offer insights applicable to a wide range of heterogeneous networks beyond neural
populations.

Author summary

Neurons in the brain exhibit a high degree of diversity in their intrinsic properties,
including their characteristic time scales. However, little is known about how this diver-
sity influences population dynamics. This study explores how a specific type of neuron
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in the entorhinal cortex, which can maintain firing activity for several minutes, even
without external input, affects population dynamics. We develop a theory to describe
large-scale recurrent networks of heterogeneous neurons and reveal that the introduction
of these neurons shifts the network toward a more dynamic regime, which is preferable
for temporal information processing. Our theory was also applied to other heteroge-
neous populations, offering new perspectives on the significance of diversity in neural
population dynamics.

Introduction

The entorhinal cortex, as the major gateway for information entering the hippocampus from
various brain regions, plays an essential role in coding long temporal information, a crucial
component of episodic memories [1-3]. Episodic memory is the ability of animals to store
specific events they have experienced, along with their order and contextual details. The for-
mation of such memories requires the brain to represent temporal information across vari-
ous time scales. Recent experimental findings indicate that neurons in the lateral entorhinal
cortex, along with hippocampal time cells [4-8], offer a fundamental mechanism for repre-
senting long temporal information required for episodic memory formation [9]. Experiments
in rodents and humans have reported that neurons in the lateral entorhinal cortex exhibit
activity characterized by gradually rising or decaying activity across various time scales [7,9].
A recent experiment also identified ‘temporal context cells’ in the entorhinal cortex, which,
in contrast to time cells, respond rapidly following stimulus onset and then gradually return
to baseline activity over extended temporal timescales, exhibiting a broad range of decay
rates [10]. These activities may provide a suitable temporal code for the formation of episodic
memory, capturing the different scales of time over which an animal’s experiences occur
[9,10].

In addition to the above population activity, the entorhinal cortex is known for a distinc-
tive single-neuron activity, which is also associated with representing long-term information
[11]. This activity is termed graded-persistent activity (GPA). The firing rate of an isolated
neuron generally decays rapidly in the absence of external input. However, unlike the gen-
eral response, some isolated entorhinal cortex neurons can sustain their firing activity for
several minutes even after external inputs have ended [11]. Moreover, the sustained firing
rate can exhibit various graded values, reflecting the input history of the neuron. Because this
single-cell property suggests that a subset of neurons in the entorhinal cortex has much longer
characteristic time scales compared to other typical neurons, it has been suggested that these
neurons may be involved in functions requiring long temporal information, such as working
memory [12-18].

Considering the above, one might expect that the existence of neurons with GPA could
influence the population dynamics of the entorhinal cortex in encoding long-term temporal
information. However, it remains unclear how the partial introduction of the GPA neurons
modulates the dynamical properties of the neuronal population. The main cause of this dif-
ficulty is the lack of a theory to describe the dynamics of a highly heterogeneous population
of neurons [19,20]. The fact that only a subset of entorhinal neurons exhibits extremely long-
term graded-persistent activity implies that the intrinsic time scales of each neuron are largely
diverse across the population, beyond the range where the heterogeneity can be considered
negligible.

To address the problem and reveal how the partial introduction of GPA neurons modu-
lates the population dynamics of neurons, we first propose an analytically tractable model of
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neurons showing this characteristic activity. Then, we analyze their population dynamics by
extending the dynamical mean-field theory (DMFT). DMFT is a comprehensive and efficient
framework for analyzing the population dynamics of both biological and artificial recurrent
neural networks [19,21-33]. The theory allows us to reduce the generally high-dimensional
dynamics of large populations of neurons to an effective low-dimensional equation. This pro-
tocol is rigorously justified by a path integral approach. Specifically, the theory provides a
theoretical basis for neural computation of temporal information, including temporal infor-
mation processing in echo state networks and reservoir computing [34-36], by clarifying the
onset of chaotic states in these networks.

DMEFT enables us to marginalize the heterogeneous connection strengths between
neurons into the effective mean field. However, we will see that we cannot simply average out
the intrinsic properties of each neuron, including its characteristic time scale, by similarly
incorporating them into the mean field. This is because of the difference in their dependency
on the network size. To solve the problem, we extend the DMFT framework to networks
consisting of heterogeneous neurons. Unlike conventional DMFT, which provides a single
mean-field equation, we will obtain a set of mean-field equations reflecting the intrinsic het-
erogeneity of each neuron. Nevertheless, we will see that this set of equations can provide a
single analytical expression to determine the critical coupling strength of the network. Results
of the analysis show that the partial introduction of GPA neurons shifts the transition point to
extend the dynamical region of the network. We confirm the validity of the theoretical pre-
diction by comparing this with the results of numerical simulations with various network
conditions.

To demonstrate the applicability of the approach, we will test the theory using networks
with another type of heterogeneity, specifically the heterogeneity of adaptation in each neuron
in the network, as discussed in a previous study [27]. The analysis in the previous work, based
on the conventional treatment of heterogeneity, predicts that this heterogeneity would move
the transition point in a way that expands the dynamical regime of the network. Contrary to
this prediction, we will see that this heterogeneity can shift the network to stabilize the steady
state, thus shrinking the dynamical region. This tendency is precisely described by the novel
approach proposed here.

The organization of the paper is as follows. In the first subsection of the Results, an ana-
lytically tractable model of the GPA neuron is provided. Unlike previous models that have
revealed underlying possible biological mechanisms of this characteristic activity [14,37-39],
the model consists of only two variables. This model can describe the activity of a neuron with
and without GPA by modulating a model parameter. Typical dynamics of networks of these
neurons are also given in this subsection. DMFT of the heterogeneous network is developed
in the next subsection. By deriving the equation determining the transition point, we discuss
how adding GPA neurons to the network modulates its dynamics. Finally, we apply the pro-
posed method to a network of neurons with heterogeneous adaptation. Possible extensions
and remaining future subjects are examined in the Discussion. Details of the theory are given
in the Methods section.

Result
A two-dimensional model for a neuron with and without graded-persistent
activity

Single-neuron model. A subset of neurons in the entorhinal cortex shows graded-

persistent activity (GAP) characterized by prolonged sustained spike firings even after
the input current to these neurons is terminated [11]. The sustained firing rate can be
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continuously increased by repeated additions of depolarizing input current to the neuron and,
conversely, can be gradually decreased by inductions of hyperpolarizing input. This unique
feature is attributed to the single-cell property rather than network effects, as it remains even
with the blockage of synaptic connections [11]. Previous studies have suggested the con-
tribution of intracellular calcium density and membrane channels, such as the activation

of calcium-dependent nonspecific cation channels, to the single-cell property, and several
detailed computational models for this have been proposed [14,37-39].

We use a simple, analytically tractable two-dimensional model to study networks consist-
ing of neurons with and without graded-persistent activity. The model consists of the vari-
able x representing the neural activity and an auxiliary variable a whose time scale can be very
slow. The firing rate of the neuron is given by an activation function ¢(x) that is an increas-
ing function of x. The auxiliary variable a may correspond to some slow dynamics of the cell,
such as intracellular calcium concentration. Depending on the value of a model parameter,
the model can qualitatively describe both neurons with and without the GPA.

The single-cell model is given by

x(t) = -x(t) + a(t) + I(¢t)

. 1)
a(t) = -ya(t) + Bx(1),

where the dot indicates the temporal derivative and I(t) is the external input to the neu-

ron. Coefficient y represents the decay rate of the auxiliary variable a, and 3 is the feedback
strength from the auxiliary variable a to neural activity x. When the value of § is positive, the
auxiliary variable a works as positive feedback to the neural activity x. (Note that these values
should satisfy y > 8 because x will diverge otherwise.)

When the decay rate y is large, i.e., the characteristic time scale of a is small, the single-
cell dynamics is effectively described only by the variable x because the external input does
not largely increase the value of a. It immediately vanishes with the termination of the input.
Thus, the model behaves as a normal neuron without graded persistency, whose activity
promptly decays without the external input (Fig 1, left panels). On the contrary, if the decay
rate is small (Fig 1, right panels), the value of a is almost kept constant even without external
inputs. Due to the finite support of the auxiliary variable, the neural activity can be sustained,
avoiding decay to zero, even without external input, which quantitatively reproduces the
graded-persistent activity. The sustained activity gradually increases or decreases, reflecting
the input history of the neuron, which agrees with experimental findings [11].

Heterogeneous network with a subset of the GPA neurons. Using the single neuron
model, define the heterogeneous network whose subset neurons have the graded persistency

N

x%i(t) = —x;(t) + a;(t) + Z],-jqﬁ(xj(t)) +1,(¢)
j=1

a;(t) = =yiai(t) + Bixi(t).

)

Here, i = 1,..., N denotes the index of neurons, N is the number of neurons in the net-
work, and ] = (Jj;) is the connection weight matrix where J;; represents the synaptic connec-
tion strength from the jth to the ith neuron. To avoid self-connection, we set the diagonal
components of ] as J;; = 0 for all i. The values of the off-diagonal components Jj; are indepen-
dently chosen from a Gaussian distribution with variance g*/N, i.e., J;j ~ N'(0,¢*/N). Here,
the parameter g controls coupling strength. In all numerical simulations in this paper, we use
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Fig 1. Typical dynamics of the model neuron, Eq (1), with and without the graded-persistent activity (GPA) when successive pulse external stimulus
(top panels) are given. For a normal neuron (left panels, 3 = 0.5,y = 10), the cell activity (left middle panel) decays rapidly when the pulse input is terminated
as its auxiliary variable (left bottom panel) is kept small. By contrast, for a GPA neuron (right panels, 8 = 0.5, = 0.51), the cell activity (right middle panel) is
kept almost constant, even during intervals between pulse external inputs. The sustained cell activity gradually increases in response to repeated depolarizing

pulse inputs and decreases in response to subsequent hyperpolarizing pulse inputs. These sustained activities are supported by the slow decay of the auxiliary
variable (right bottom panel).

https://doi.org/10.1371/journal.pcbi.1013484.9001

#(x) = tanh(x), while the results of the theoretical analysis are not restricted to this particular
choice of the activation function.

To make the neurons in the network heterogeneous, we randomly and independently
chose the decay rates y; from a two-point distribution:

Yiow probability p

. (3)
4 Yhigh  probability 1 - p,

where Y10, < Vhigh- Because a normal neuron is modeled by a high value of the decay rate, the
parameter p, determining the ratio of the neurons with the low value of y, controls the ratio
of GPA neurons in the network. For the feedback strength parameter (3;, we use a uniform
value 8; = 0.5 unless stated otherwise. (Note that, while we use a two-valued distribution for
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simplicity, the theory developed here is not limited to discrete parameter distributions. For
details, please see the Methods section, S1 Appendix, S1 and S2 Figs.)

Fig 2 shows typical temporal dynamics of the network for values of model parameters. The
increase in coupling strength ¢ moves the network from a quiescent state (from the left to the
right panels in Fig 2), where the activities promptly decay to zero, to a seemingly chaotic state
where irregular neural activities are sustained. This result agrees with previous studies that
reported the existence of the chaos-order transition at g = g;, where g, is the transition point
[21,28].

When the ratio p of graded-persistent neurons in the network is increased (from the top to
the bottom panels in Fig 2), the transition from the quiescent state to the chaotic state occurs
at smaller values of g. This result suggests that the transition point itself is shifted toward
expanding the chaotic regime by introducing GPA neurons to the network. The observation
is of particular interest because the results of numerical simulations show that graded persis-
tent neurons and other normal neurons behave almost similarly in the network (Fig 3). In the
next section, we will see that this is actually the case and derive an equation determining g, as
a function of the model parameters, including the ratio p.
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Fig 2. Typical dynamics of neurons in the random network, Eq (2), for values of the coupling strength g and the ratio of the GPA neurons p. Panels are
arranged such that the coupling strength g increases from left to right (g = 0.4,0.57,0.73, 1), and the ratio of the GPA neurons increases from top to bottom
(p=0.1,0.5,0.9). For the larger value of the ratio of GPA, p, the transition from the silent to the chaotic state occurs at the smaller value of g. Other parameters
are N = 3000, ¥ nigh = 10, Yjon = 1, and § = 0.5.

https://doi.org/10.1371/journal.pcbi.1013484.9002
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Fig 3. Behavior of graded persistent neurons and other normal neurons in a network, Eq (2), operating in the chaotic regime. (a) Temporal
profiles of the activity of neurons in each population. (b) Autocorrelation functions of the time series for individual neurons. (c) Autocorrelation
functions averaged over neurons in each population. (d) Density distributions of the correlation times of neurons in each population, obtained
directly from the autocorrelation functions in (b). Parameters N = 5000 p = 0.5 and g = 2.0 are used. All results indicate that graded persistent
neurons and other normal neurons behave similarly in the network under chaotic dynamics.

https://doi.org/10.1371/journal.pcbi.1013484.9g003
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Dynamical Mean Field Theory for the network with highly heterogeneous
neurons

To analyze the shift of the transition point induced by the intrinsic heterogeneity of neurons,
culty of studying the population dynamics of high—dlmensmnal nonhnear systems by allow-
ing us to replace the interaction term in each neuron’s dynamics, i.e., the third term of Eq (2),
with an effective dynamical mean field. The properties of this mean-field are determined by
the neural dynamics evolving under the mean field, leading to a self-consistent equation for
the order parameters that characterize the macroscopic network dynamics.

In the conventional procedure of DMFT, one can obtain a single equation of motion
driven by the mean-field to describe the dynamics of all neurons in the network due to their
homogeneity. Unlike these conventional approaches, the heterogeneity of neurons cannot be
averaged out from the network (See Method for and following paragraphs details). Instead,
applying the DMFT framework leads to a set of N differential equations governing neural
dynamics, with the heterogeneity preserved. The difference between the two arises from the
system size dependence of the terms in the generating functional of mean-field theory: con-
nection heterogeneity appears as a sum of N terms, while neuron heterogeneity appears as
a sum of N terms; thus, one cannot treat them the same way. However, we will see that these
equations can be averaged in Fourier space, resulting in a single equation that characterizes
the chaos-order transition of the heterogeneous network.

Following previous works [21,27,28], let us assume that the external input I; to each neu-
ron is an independent realization of a Gaussian process with zero mean. Then, by adapting the
path integral method to the dynamical equations, Eq (2), one can replace the interaction term
in each neuron’s dynamics with another Gaussian process 7¢(t) (See Method for details):

xi(t) = —x;(t) + ai(t) + ne(t) + I(1)

. , (4)
a;(t) = -yiai(t) + Bixi(t)

where the mean of 74 (¢) is zero, and its autocorrelation should be determined self-
consistently by the constraint:

(e (0ms(0)) =&, U095 ) ®

=z \

If the network consisted of homogeneous neurons, the above equations would be the same
for all neurons, and we could remove the subscript i representing the neural index. However,
we must keep the index because the decay rates y; differ across neurons. Note that a previ-
ous study proposed eliminating similar intrinsic heterogeneity by averaging the above equa-
tions over all neurons [27]. However, we will demonstrate in the next section that such a naive
averaging fails to deliver accurate results.

Whereas we cannot reduce the set of equations Eq (4) to a single one, it is still possible
to obtain a single equation determining the transition point of the network from the set of
equations (See Method for details). The Fourier transform of the above equations gives
iwXj(w) =-Xi(w)+Af(w)+Hg(w) ©)
wAl (@) = 7il() + fXH(@)
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where X}, Af, and Hy are the normalized Fourier transforms of x;, a;, and g, respectively,
that is, X} (w) = FL[xi(t) (), A (w) = FEai(t)](w), and Hé(a)) = F 1 (1)](w), where
Frx(t)(w) = % jfLL//ZZ x(t) exp(-iwt)dt. Eliminating A; from the above and multiplying the
resulting equation by its complex conjugate, we have

Su,(@) =8 G(w; 71 B)Sg (@) @)

G(w,%ﬁ)‘w4+(y2+2/3+1)a)2+(7/—,3)2’ (8)

where Sy, (w) = F [(xj(t + ‘L')xj(t))] is the power spectral density of the activity of the ith neu-
ron x;, S¢ (@) = Zf\il F [{p(xi(1))P(xi(t')))] is the average power spectral density of the
activity via activation function ¢(x). One can safely average Eq (7) over all neurons because,
unlike Egs (2) and (4), it does not have higher-order terms of heterogeneity, such as y;a;,
which would result in additional unknown terms. The average gives

Se(w) = XIZSX"(CO) )
=g23¢(w)%ZG(w;Vi,ﬁ) (10)
— &84 ()(G (@57, 8) )y, =& 3¢ ()G (w), (11)

where in the third line, we have taken the limit of N - co and used the law of large numbers,

defining G (@) := (G (@; 7, 8) )y -
Now, let us assume that the activation function ¢(x) satisfies the condition

0ol < |+, (12)

which is certainly satisfied by most of the generally used activation functions, including
tanh(x) we used. This condition leads to an inequality between the power spectral densities:

OS/OOSMw)defOOSX(w)dw, (13)

which, when combining with equation Eq (11), gives the required equation determining the
transition point g, of the heterogeneous network:

mﬁx@(w)gf =1. (14)

Introduction of GPA neurons expands the dynamical regime of the
network

When the decay rate y; of each neuron is independently chosen from the two-point distri-
bution, Eq (3), one can obtain an analytical expression of G(w) and the transition point g,
explicitly:

1

2 2\ "2

Yiow Vhigh
c\P> Vlow> [/ high> = v _R - Vhigh - B ' l
8c(P> Yiows Vhighs B) (p(ylow—ﬁ) + p)(Vhigh“B)) "
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If the network consists of homogeneous neurons (i.e., p = 0), this expression simplifies to
8¢ = 1= B/Ynigh» which reproduces the conventional result g = 1 in the limit as infinite decay
rate (Vhigh — 00) or no feedback (8 — 0), where the single neuron model reduces to a conven-
tional one-dimensional dynamical system without the auxiliary slow variable.

If one increases the heterogeneity of the network, the transition point g. generally
decreases from one, as g, is a monotonically decreasing function of p since ¥iow/ (Viow - 8) >
Vhigh! ()/high -B ) Therefore, introducing GPA neurons with slow dynamics to the network
consistently shifts the network toward a more dynamic regime, i.e., a state preferable for tem-
poral information encoding.

To validate the theoretical prediction and to examine how the shift of the transition point
is affected by model parameters, we performed numerical simulations of the network dynam-
ics in Eq (2) and compared them with the theoretical prediction Eq (15) for various values of
the model parameters. To numerically identify the transition point, we calculated the max-
imum value of the power spectrum max,, S;(w) = max,, 1/N Zil Sy;(w) from the numeri-
cally obtained time series. Since the power spectrum is nonnegative by definition, a positive
maximum indicates that the network is in a dynamic regime. In contrast, the zero maximum
implies the network has converged to a steady state.

Fig 4 shows the results. We can see that the theoretical predictions (red lines) agree well
with the results of numerical simulations in all cases, and the dynamical regime consistently
expands as the heterogeneity p increases from 0. This expansion of the dynamical regime is
particularly pronounced when the decay rate of GPA neurons ;o is small (the far left panel
of Fig 4a) and the feedback strength 8 is large (the far right panel of Fig 4c), where GPA neu-
rons exhibit slower auxiliary dynamics (small y},,,) and have a greater influence on the neural
activity x (large 8). This is because the slow auxiliary variable of GPA neurons facilitates the
nonzero firing activity of other neurons in the network and helps to prevent the population
dynamics from converging to a quiescent state.

Analysis of the transition induced by the introduction
of GPA neurons

To more precisely examine the transition of the network from the quiescent state to the
dynamical state, we numerically calculated the eigenspectrum (Fig 5) and the maximum
Lyapunov exponent (Fig 6) of the network for values of the ratio of GPA neurons p and the
coupling strength g.

The eigenspectrum (Fig 5) of a fixed point in the network characterizes the system’s lin-
ear stability around that point. For recurrent neural networks with random connections, the
instability of the trivial fixed point often corresponds to the chaos-order transition point, as
the loss of this stability may lead to chaotic behavior due to the network’s intrinsic random-
ness [21]. We linearized the model system, Eq (2), around its trivial fixed point, or the origin,
and numerically computed the eigenspectrum of the Jacobian matrix. The panels in Fig 5 are
arranged such that the coupling strength, g, increases from top to bottom, and the ratio of the
GPA neuron, p, increases from left to right. The trivial fixed point is stable if the real parts of
all eigenvalues are negative and unstable if at least one has a positive real part. The eigenvalue
distributions exhibit complex, nontrivial shapes on the complex plane. However, it is evident
that instability, indicated by the appearance of a positive eigenvalue, occurs at smaller values
of g for larger values of p, as predicted by the theoretical results.

The maximum Lyapunov exponent is used to characterize the complexity of nonlinear
systems, particularly their chaotic behavior, as a positive exponent indicates the network’s
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Fig 4. Maximum power spectrum of the network dynamics for values of the ratio of the GPA neuron p (horizontal axis of each panel) and coupling
strength g (vertical axis of each panel). Red curves are the theoretical prediction of the transition point, g, given by Eq (15). a: ¥pign, = 5 and § = 0.5 are fixed
and ¥}y, increases from left to right (¥je, = 1, 1.5, 2.0). b: ¥}, = 1 and 3 = 0.5 are fixed and Y high increases from left to right (Vpigh = 2,3,4). ¢: Y10y = 0.5 and
Yhigh = 5 are fixed and 8 increases from left to right (8 = 0.2,0.3,0.4). Numerical simulations are performed with N = 3000 for all panels.

https://doi.org/10.1371/journal.pcbi.1013484.9004

chaotic state. To compute the maximum Lyapunov exponent, we employed the method pro-
posed by Benettin et al. [40]. This involves numerically solving the model equations, Eq (2),
to obtain the trajectory and estimation of the exponent from the growth rate of the tangent
vector along the trajectory. Fig 6a shows that the maximum Lyapunov exponent changes sign
from negative to positive at points close to the theoretical predictions. While small discrepan-
cies exist between the numerical simulations and theoretical results, we confirmed that these
mismatches arise from finite-size effects. As the number of neurons in the network increases,
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Fig 5. Eigen spectrum in the complex plane for the Jacobian at the trivial fixed point of the network dynamics. Dots in each panel indicate the eigen-
value of the linear stability matrix on the complex plane. Blue and red dots indicate eigenvalues with negative and positive real parts, respectively. Panels are
arranged such that the GPA neuron ratio, p, increases from left to right, and coupling strength, g, increases from top to bottom. The thick vertical line in each
panel is the imaginary axis. Panels shaded by red background mean the coupling strength of the network is above the transition point predicted theoretically,

i.e., g> gc. Other model parameters are N = 1000, ¥jo, = 1, ¥pigh = 5 and 8 = 0.5.

https://doi.org/10.1371/journal.pchi.1013484.9g005
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Fig 6. The maximum Lyapunov exponent of the network dynamics. a: The numerically estimated maximum Lyapunov
exponent, averaged over ten realizations of random initial conditions, for the model network as a function of the coupling
strength g. Line colors indicate the value of p (from the far-right purple curve for p = 0.0 to the far-left yellow curve for

p = 1.0). Dashed vertical lines indicate g.. The number of neurons in the network is fixed at N = 3000. b: The same Lyapunov
exponent for different values of N with p = 0.8. Blue, orange, green, and red lines correspond to networks of N = 100, 500,
1000, and 3000, respectively. Error bars show standard deviation.

https://doi.org/10.1371/journal.pcbi.1013484.9006

the discrepancies decrease (Fig 6b), which is consistent with the fact that DMFT assumes an
infinite number of neurons.

Gaussian heterogeneity of adaptation of neurons in random networks

To demonstrate the applicability of the developed theory, we apply it to a different type of
neural heterogeneity: Gaussian-distributed adaptation of each neuron in the network. In

a pioneering theoretical work studying how intrinsic properties of single neurons mod-

ulate population dynamics in random neural networks, Muscinelli et al. proposed a two-
dimensional neuron model with strong adaptation [27]. Remarkably, this adaptation neuron
model is equivalent to the GPA neuron model introduced here but with the opposite sign of a
in the equation for neural activity. Specifically, the sign of the second term in Egs (1) and (2)
is negative, rather than positive, in the adaptation neuron model. Due to the equivalence, it

is straightforward to apply our method to a heterogeneous network of the adaptation neuron
model.

In the previous study, the authors introduced heterogeneity in adaptation for each neuron
by randomly choosing the feedback strength parameter 3; from a Gaussian distribution with
mean g < 0 and small variance aé, ie, Bi~N(ug, Gé ), using the variance to characterize the
heterogeneity. (The variance was kept small to ensure that the sampled values of §; remained
negative.) Unlike the theory developed here, the authors treated the heterogeneity similarly to
the coupling strengths between neurons. They naively assumed that the heterogeneity could
be effectively expressed by an additional Gaussian mean field in the DMFT. Based on this
assumption and following the conventional DMFT procedure, they derived a single mean-
field equation driven by two Gaussian processes, which gives the equation determining the
transition point g, of the heterogeneous network:
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max Gg(w)g =1 (16)
Gola) = — 24Tt <0) (17)

1- W%G(w;y,/xﬁ <0)

where the function G is given by Eq (8). To emphasize the difference between this
transition point and the one obtained in the next section, we denoted the transition point
obtained here with hat as g,.

However, the assumption of the previous study that the intrinsic properties of neurons can
be expressed by an additional Gaussian process was not entirely correct. (Technically speak-
ing, averaging the generating functional of the model equation is still possible even with this
type of heterogeneity. However, the equation cannot be reduced to a single expression. This is
because the system-size dependence of the term arising from heterogeneity scales differently
from that of the connection heterogeneity (see Method for details)). Instead, we need to deal
with a set of N differential equations, which must be averaged in Fourier space to determine
the transition point of the network, as described in the previous section. Following the same
procedure as in the previous section, we have the equation for the transition point:

max (G(@;,£))g & = 1 (18)

where the function G(w; ¥, 8) is given by Eq (8) and (G(w; 7, 8))4 represents the average of
the function over sampled values of 8; in the network.

Interestingly, the equations for the transition point derived in the previous study and ours
can predict opposite tendencies regarding how this heterogeneity shifts the chaos-order tran-
sition point in certain cases. The equation of the previous study predicts that the transition
point decreases with increasing o g. Oppositely, the equation derived here predicts that the
transition point will increase, meaning the dynamical regime will shrink due to this type of
heterogeneity. To test these predictions, we numerically simulated the population dynamics
for various model parameters. Fig 7 shows that, as predicted by the current theory, the transi-
tion point increases as o g increases, whereas g. shows the opposite trend. Further exploration
of the model parameters causing this discrepancy between the two theories is an important
future subject.

Discussion

In this study, considering the properties of the entorhinal cortex, we develop a theory to
describe the population dynamics of random neural networks consisting of highly hetero-
geneous neurons. We propose a simple two-dimensional neuron model representing both
normal neurons and neurons exhibiting graded persistent activity (GPA). We extend the
well-established theoretical tool, DMFT, which provides an effective mean-field equation

for network dynamics, to cases where the neurons in the network are highly heteroge-

neous. Unlike conventional DMFT, the derived mean-field model consists of N-dimensional
stochastic equations rather than a single equation. However, we showed that averaging these
equations is still possible in Fourier space. This allows us to theoretically determine the transi-
tion point of the network by focusing on the average power spectrum of the network dynam-
ics. Since recent experiments have revealed that cortical neurons are highly heterogeneous

in their intrinsic properties, the theory developed here will be an important tool, alongside
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Fig 7. Maximum power spectrum of the network dynamics with Gaussian heterogeneous adaptation for values of
model parameters. The horizontal and vertical axes are 0 g and g, respectively. The red curves show theoretical predic-
tion g. obtained using the method developed in this study The white dashed lines indicate g. that are derived from a naive
approximation of the heterogeneity.
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conventional DMFT, for clarifying the properties of recurrent networks of realistic neuron
models.

The results of the theory suggest that the stable region of the network shrinks, and the
network becomes more dynamic as the ratio of GPA neurons increases, regardless of other
model parameters. Since network activity triggered by external inputs does not decay near
the boundary between the stable and dynamical regimes, lowering the coupling strengths
required to reach this boundary may facilitate the encoding of long-timescale information in
the entorhinal cortex. This boundary is widely known as the “edge of chaos” in the context of
reservoir computing and is associated with optimal computational capabilities.

To validate this concept within our framework, we numerically calculated the memory
capacity, a common metric in reservoir computing [34] (See S1 Appendix for details). As
demonstrated S4 Fig, the memory capacity is indeed maximized at the onset of the chaotic
regime, just below the critical transition point predicted by our theory. This finding not only
supports the computational advantages of operating at the edge of chaos but also implies a
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novel tuning mechanism: when the available range of synaptic coupling strengths is limited, a
network may still be able to achieve its maximal memory capacity by modulating its intrinsic
heterogeneity (See S1 Appendix for details).

Of particular interest is the relationship between our study and the computational model
of temporal representation proposed by Shankar and Howard [41], which employs a set of
leaky integrators with a spectrum of decay timescales to encode stimulus history. Our work
and theirs address distinct, though related, questions. While our study investigates how the
existence of neurons with diverse timescales impacts the collective dynamics of a network,
Shankar and Howard aimed to answer the more specific computational question of how these
diverse timescales can be utilized to construct a scale-invariant representation of past events.
This divergence in research goals is reflected in their respective methodologies. In contrast to
our use of an extended DMFT to analyze a random network’s statistical properties, Shankar
and Howard proposed a specifically structured, layered network architecture designed to
approximate an inverse Laplace transform of the stimulus history. Consequently, the func-
tional role of heterogeneity is also interpreted differently. In our framework, the diversity
of neural timescales acts as a modulator that alters the network’s global dynamical regime,
whereas in their model, this same diversity is the essential substrate for building the temporal
representation itself. Despite these differences, the two frameworks are not contradictory but
are better viewed as complementary. The population of leaky integrators posited by Shankar
and Howard could, for instance, be biologically realized by the heterogeneous neural popu-
lation that includes GPA neurons, as modeled in our study. An integration of these two per-
spectives could therefore provide a more comprehensive understanding that bridges the gap
from the role of diversity in single elements and population dynamics to the emergence of
higher-order cognitive functions like temporal representation.

The networks considered here belong to a class of systems that maintain memory of past
inputs through transient trajectories, rather than storing information in stable attractors like
traditional Hopfield networks. The capacity for such temporal coding is thought to depend
critically on non-normal dynamics, which can transiently amplify specific inputs [42,43].
Our model, based on random recurrent interactions, naturally gives rise to this non-normal
property. This raises the intriguing possibility that by tuning the nature of the heterogene-
ity, for instance, by altering the specific variables or the shape of their statistical distribu-
tions, our framework could account for specific, dynamic coding phenomena. A compelling
target for such investigation would be the transient amplification of odor representations
observed experimentally in the insect antennal lobe, a phenomenon that has also been linked
to non-normal network dynamics [44,45].

Experimental findings suggest that characteristic neural dynamics encoding time arises
tfrom the interaction between the network’s internal dynamics and external signals to the net-
work. In general, when external signals are applied to a nonlinear system, they tend to entrain
the system and increase its stability [22,46-54]. Therefore, if the internally generated intrin-
sic dynamics of the network are in a stable and quiescent state, the system struggles to inte-
grate external signals. This is because the signals further stabilize the network, causing input
information to decay too quickly to be retained.

In contrast, if the network operates in a dynamic regime near the transition point, exter-
nal signals can entrain the network and drive its dynamics closer to or just below the transi-
tion point. This is the ideal state for integrating external inputs and maintaining their infor-
mation over a long time. Thus, an important direction for future research will be to extend
the theory to networks influenced by external signals. Additionally, it is also an important
future task to investigate the relationship between the networK’s intrinsic dynamics and the
characteristic population activity of the entorhinal cortex, such as the activity of time cells
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and the ramping activity. In this regard, we have demonstrated that neurons in our heteroge-
neous recurrent network can reproduce response patterns similar to those of *temporal con-
text cells’ recently observed in the entorhinal cortex, when intrinsic time scales, in particular
the feedback strengths f;, follow continuous distributions (see S1 Appendix and S3 Fig for
details).

We also applied the theory to a different type of heterogeneity studied in previous work:
neuronal adaptation. The theory developed here accurately describes the numerical results,
demonstrating that heterogeneity in adaptation can reduce the dynamical regime of the net-

work. However, we show that the predictions of the previous study do not always capture the
direction of the shift in the transition point. This result highlights that intrinsic heterogene-
ity should be treated carefully and differently from the heterogeneity of coupling strengths.
Another important message from this result comes from the comparison between Figs 4 and
7. Although both results show that introducing heterogeneity to the intrinsic properties of
neurons modulates population dynamics and shifts the transition point, the directions of the
shifts are entirely opposite, indicating that one cannot generally conclude whether hetero-
geneity expands or shrinks the dynamical regime of the network without knowing the specific
details of the heterogeneity.

The chaos-order transition studied here has been recognized as playing an important role
in temporal information processing, especially within the framework known as reservoir
computing, where input sequences are stored in randomly connected recurrent networks.
For instance, several studies have shown that the memory capacity of a neural population
for input sequences is maximized near the transition point [55]. Therefore, an interesting
future direction would be to evaluate the memory capacity of heterogeneous networks of GPA
neurons by extending the theory developed here.

This study is closely related to recent important work by Stern et al. [19]. In their study,
Stern et al. demonstrated that the heterogeneous distribution of cell assembly sizes can
explain the experimentally observed heterogeneous time scales in neuronal circuits. By
extending the DMFT, they showed that the heterogeneity of time scales gives rise to a novel
chaotic regime characterized by bistable activity. To reveal this chaotic regime, their anal-
ysis employed random matrix theory, which can provide the eigenspectrum distribution
of large random matrices [56]. In contrast, our approach demonstrates that the transition
point of a heterogeneous network can be explicitly determined by a single equation, Eq (14),
derived by directly averaging the heterogeneity in Fourier space. Given the difficulty in deriv-
ing the eigenspectrum distribution for most matrix ensembles, our results complement their
work by offering an alternative framework to elucidate the significant role of intrinsic hetero-
geneity in large-scale systems. Further studies of the transition mechanism could deepen the
connections between their theoretical advancements and ours.

Related to the above, another promising theoretical direction is the study of the eigen-
spectrum distribution of the model. As shown in Fig 5, the eigenvalues of the model net-
work exhibit a highly intricate yet well-organized nontrivial structure. Several bulks or clus-
ters of eigenvalues are observed, which gradually merge as the model parameters vary. Since
the connection matrix of the network is randomly generated, such eigenspectrum distribu-
tions may be analyzed within the framework of random matrix theory [31,56-61] . Given
the critical role of heterogeneity in a wide range of applications, understanding the mecha-
nisms underlying the modulation of the eigenspectrum could provide deeper insights into the
dynamical behavior of large, generally heterogeneous systems.
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Methods

Dynamical mean field theory for the neural networks with heterogeneous
parameters
In this section, within the framework of dynamical mean-field theory (DMFT) [19,21,22,24-

33], we derive effective dynamics (Eq (4) in the main text) of each neuron from the original
dynamics, i.e., Eq (2) in the main text:

5c,»(t)=—x,~(t) +a,~(t) +§;],]¢(x](t))+l,(t) (19)

a;(t) = -yiai(t) + fixi(t).
By formally adding white Gaussian noise &}, ;, &, ; to each term in the above equations and

defining the right-hand sides as C(¢) := —x;(t) + a; (t) + Z i (xi(t)) + I(t) and C{ (1) :=
-y,a;(t) + Bix;(t), we obtain a set of stochastic equations:

(1) = G (6) + & (1)

(20)
ai(t) = G/ (1) + & (1).

Considering this as the Ito stochastic equation and discretizing it in time with interval At
yields

Xmyi = Xm-1,i = CX ‘At = gx i

(21)
Qi — Am-1,i — Cop_ AL =&,

m, i

where x,,; = xi(mAt), a; = a;(mAt), Cy,; = Cf(mAt), and Cj,; = C{ (mAt). Since Eq (21) give
two-point relationships of variables, we can obtain the high-dimensional joint probability
density function of {x,,, @i } m; marginalized over {&}, ;, &7, ;} from this as

mz’

N M
P({xm,i’am,i}m,i):f H HHP@ )p({xmt>amz}m1|{§mz> ,i}m,i)dgz,i (22)
ae{xa} i=1 m=1
N M
=TT TIII [ Peesoscs, - €5des,
ae{xa} i=1 m=1
N M o
- T TLIT S P [ explos b, - ks ) Somtaes,
ae{xa} i=1 m=1
N M ico dk& .
- 11 HH[ exp(kf: By +In Zg (-k§s ;) =, (23)
ae{xa} =1 m=1 —ico 27i

where we have shortened the expression on the left-hand side of Eq (21) by defining B}, ; =
Xmi—Xm-1,i— Cy_;Atand By, ; = ap i — a1, - Cy,_; ;At. In the second line, we used the
Fourier representation of the Dlrac delta function, and in the third line, we introduced the
moment generating function Z¢ (-k;, ;) of the stochastic variable £ ;, defined by Z¢ (-7 ;) =

f P(Eg,i)eXP(—k%,i %,i)dé“ﬁ,i
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Let us consider the behavior of the stochastic distribution, Eq (23), in the limit of At — 0,
or M — oo. The first and the second terms of the exponential function converge as

= a pa &, a [ Ami— Am-1,i o
H eXp(km,iBm,i) =exp Z km,i At - Cm 1,i
m=1 =

(24)
At—»O M- o0 exp(/ k“ t) O(,(t) C“(t))dt)
and
M M 5
exp (InZg (k%)) = ex ) g2At
H P( 3 m,z)) p Z ( m,z) [
m=l m=1 , (25)

S exp ([ (1)) o)

where we used the moment generating function of Gaussian distribution and we denoted the
variance of the noise 5 ; as 203 At. By putting them together, we have

P({%Xm,i> Am,i } i) MP({xl(t) ai(t)}:)

erxp([ K1) (@ (0) - CE0)de+ [ (K1)’ zdt) dka(f).

ae{xa} i=1
(26)
Eliminating the formally introduced Gaussian noise by putting o, = o, = 0, we obtain
P({xi(¥),a:(¥) };) = / DxDa exp(f(T (x-(—x+a+Jp(x)+1)) @)

+al(a-(-Ta+ Bx))),

where, %;(t) = k¥(£), a:(t) = k¢ (1), = (Jy)> Ty TT%, J 52 — [ D%, and [T, TT1,

dz“;[”’ — [ Da. Here, T and B are the diagonal matrices whose ith diagonal component is
given by y; and §3;, respectively. Bold lowercase letters mean vectors whose inner product shall
be simultaneously in the spatial and temporal directions, i.e., X'x =Y, [ %(t)x;(t)dt.

The moment generating functional of the stochastic process given by the probability distri-

bution Eq (27) is defined as

23030050 = [ DaDxP({xi(0),ai()}) exp (ifx-+ ) exp (13 + 712) . @8)

where j,(t) and j,(t) are the auxiliary variables corresponding to x(¢) and a(t), respectively.
Other auxiliary variables j,(t) and j,(t) are introduced to represent arbitrariness of their ini-
tial values [28]. We also introduced vector notations for integrals, [ lele Hil AxXpi =
[ Dxand f_Z H?ﬁ:l Hf\il day,; = [ Da.

Then, by putting Eq (27) to Eq (28), we have

Zljxjviarial (J,T) = f DaDaDxDxexp [Sm [x,%a,a](T) -x" (Jo(x) + [)]

X exp []Ix + j;Tf( +jla+ j;Tﬁ]

29)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013484 September 16, 2025 19/ 30


https://doi.org/10.1371/journal.pcbi.1013484

PLOS COMPUTATIONAL BIOLOGY Dynamical mean-field theory for a highly heterogeneous neural population

Sw[% % 2,3](T) =% (x- (a-x)) +a’(a- (Bx-Ta))
= > &k - (ai-x)) + @i - (Bixi - yixi))- (30)
Since we want to know the network’s behavior independent of each realization of the cou-
pling matrix J, let us average the moment generating functional over the distribution of the
coupling matrix (quenched average). The coupling strengths independently follow the same

normal distribution with mean 0 and variance gz/N, and J appears in Eq (29) in the form of
exp [iT]qb (x)] So, we can average this as:

1‘][ [ 1N .21y exp (RT3
«[Tew (jjv (xfgs(xj))z) (31)
- exp (ijfv( [/ z(r)sci(t’)qs(xj(t)>¢<x,-<t’>>dtdt'))
p(; I/ (;xi(t>xi(t’>)(i;sb(xj(t))qs(xj(t')))dtdt’
;5;( [/ xk<t>xk<t’>¢<xk<t>>¢<xk<t')>dtdt'))
zp(; [/ (Zﬁ(%(r’))(g;;wx,-(r))qb(xj(t')))dtdt'), (32)

where we used the identity [ dx\/(u, 0% x) exp(ax)  exp(ua + 3a*c?) in the second line.
In the last line, we omitted the diagonal term, i.e., the second term of the exponential func-
tion, because this term scales in the order of N, which is sufficiently small compared to the
off-diagonal first term, which scales with N? in the limit of N — co. (Note that this differ-
ence in system size dependence will be important when discussing each neuron’s intrinsic
heterogeneity.) Using Eq (32), we obtain

Z[jx>jx’ja’]7a](r) = [ Hd]ijN(O’gZ/N3]ij)Z[jx>jx’jm]7a](Lr)
ij

z[DaDﬁDxDiexp [Sm[x,i,a,ﬁ](l") +J'Ix+j:cTi+jaTa+j;T5] (33)
xexpl;/[(Z%i(t)ii(tl))(g;ZQb(xj(t))qb(xj(t,)))dtdt/}
i J

where, for simplicity, we assumed that there is no external input, i.e., I = 0. Note that each
second-order term of %; in the exponential of the above equation, i.e., the term of %;(£)%:(¢'),
shares the common factor &:, > ;$(x;(£))$(x;(t')), which is independent of the subscript i.

As we will see below, this independence from the neuron’s index is key to deriving a single
effective equation.
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To proceed, let us define the auxiliary field Q;:
= &S ()b (F
Qi) = 2 $((0)e(x (1)) (34)
J

and represent this relationship by using the delta functional with an additional auxiliary field

Qu:
N , ,
g l—ngl(t,t ) + Z¢(xj(t))¢(xj(t ))]
j

/DQzexpl//( QL)1) + qu(xj(t))Qz(tt)¢(x](t)))dtdt]

(35)
Putting this delta functional into Eq (33) allows us to treat Q; as an independent variable
in the integral. Then, by using the Fourier representation of the delta functional, we have

f DQ,6

= [ DQ,DQ,DaDaDxDx exp [Sm [x,%,a,a](T) +j x+ j;Ti +jla+ j;Ti

—?deﬁ+2¢uﬁnﬂawnlﬂhkhﬁkm
J

(36)
X exp

‘[[( &a@ummm+2ﬂam@awwmw>
——le(t, Q. (t, t’)) dtdt’].
4

We can see that interactions among neurons are replaced by the effective interaction
between each neuron and the auxiliary field. This result allows us to decouple neural dynam-
ics, except for the effective interaction via the auxiliary field.

To have the explicit expression of the decoupled neural dynamics, formally rewrite the
above expression by removing vector response terms jy, jx, jo» and j, and introducing two
scalar variables jq, and jq, to incorporate terms for the auxiliary field jgl Q +]~'(€2 Q, into the
generating functional [28]:

Zjoujas) = [ DQDQuexp (S[QuQu] +j6, Qi +75,Q2). (37)

where

N
S[Q Q] =501+ 2, n2[Q1. Q1]
Zi[Q1,Q;] [ Da;Da;Dx;Dx; eXP(Xz (%i - (ai - x;)) + a; (a; - (Bx; - viai)) (38)
+ %%?Qlfi + ¢(X1)TQ2¢(X1‘))

Here, we introduced notations Q[ Q, = [ [ Q(t,¢)Qu(¢t,t')dtdt’ and
X Q= [ [ %(0)TQi(t¢)% (¢ )dedr .
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The exponent of the exponential function of Eq (37) increases with the order of N as we
increase the number of neurons in the network. Using this property, one can evaluate the
above integral by using the saddle point approximation that allows us to replace the integral
of the exponential function with the exponential function itself of the maximum values for its
variables Qj and Q;. The maximum condition, i.e., the saddle-point equation, is given by

5S[Ql’ Q2:|

=0 39
6Qq1.2) (39)

where 50 Q denotes the derivative of a functional in Q; and Q,. Because these saddle-point

equatlons are explicitly written as

5S[Q1)Q2:|_ ﬁ f
st 2@ 27M00] Ql,Qz 7/ PrgH () =0
5Q,(t,t") - gZQl(t’t) 2 Q1> /D i (xi(£))p(x:(1)) =0,

we can solve them as
Qi (1) =¢Cy
Q6= <scf<t>fc,-(t')>@ -0 )
Co(t,t) = Z(¢(xz(t))¢(x1(t Mo+

where (-) .. means the average with respect to the probability distribution given by the solu-
tion of the saddle-point equation. Then, using the solution, we have the final expression of the
averaged moment generating functional:

7* / DaDaDxDx exp (Sm[x, %,2,a](T) + ), 32ij C¢5ci) : (41)
i

The final expression is same to the moment generating functional with noise o, = gCg
and no coupling J = 0 in Eq (26). Therefore it represents that each variable x; is commonly
driven by the Gaussian process with mean 0 and the autocorrelation g*Cg. Thus, pulling back
the expression to differential equations, we have the effective dynamics of the population of
neurons driven by the Gaussian mean field:

%i(t) = —x;(t) + a;(t) + ne(t) + I;(1)

(42)
ai(t) = —)/,a,-(t) + ,Bixl-(t),

which is equal to Eq (4) of the main text.

What happens if we naively average out intrinsic heterogeneity of neurons

In the previous section, we derived Eq (33) by averaging the heterogeneity in the coupling
strengths J = ( ]Z]). However, we left the intrinsic heterogeneity, namely the variability in
each neuron’s parameter y;, untouched. In this subsection, we will illustrate how the analysis
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becomes problematic if we average the intrinsic heterogeneity in the same way as the coupling
strengths.

Let us revisit Egs (29) and (30), which provide the moment generating functional of the
stochastic process before the averaging. Assuming that each neuron’s parameter y; indepen-
dently follows a Gaussian distribution N (1, O'}%), we have the functional averaged over the
intrinsic parameter as:

Z= f H d)/i/\[(#y, G;;Yi)z[anix’ja:ja] (43)

where Z[jx, jx» jas Ja] is the functional given by Eq (28). Since y; is in only S,, of the functional,
as described in Eq (30), performing the integral requires evaluation of

VAT IS f de, (1y»0y37:) exp (-yid] ai + py @ a;), (44)

where Z' is equivalent to Z except Sy, in it is replaced by Sy, := Y, %7 (%; - (a; - x;))
+a] (ai - (Bxi - Hya:)). We can perform the integral and obtain

f L1 drN (uy.0p:7:) exp (~viaj ai + pyai ;)

ocexp( (fo (t)a(t)a(t)a(t)dtds))

where we used the identity [ dxA/(u, 0% x) exp(ax) o exp(ua + ;a*c?) in the second line
and the notation a”b = [ a(t)b(t)dt.

The equation above corresponds to Eq (31) in the previous subsection. In that subsec-
tion, one could omit the order N term because the leading order of the exponent in the expo-
nential function was N2. However, the order N term cannot be neglected here because no
higher-order terms are present. Consequently, instead of ), j £P(x;())$(x;(t'))/N, the fac-
tor aya;(t)a;(t')/2 determines the variance of the effective Gaussian noise in the decoupled
equation of neural dynamics. Unlike ), j ¢(xi(t))¢(x;(t'))/N, however, this factor depends
on the neuron index i, making the resulting one-body equation heterogeneous. As a result, a
single effective equation cannot be derived, and the effective equation must be given as a set
of equations, still with the heterogeneity of each neuron. (Note that a single equation could be
obtained if we were to forcibly replace a;(t)a;(t") with a(t)a(t'), ignoring the i-dependence.
However, as shown in Sect 3, this approach fails to produce accurate predictions.

(45)

Derivation of the relationship between power spectrums

In this subsection, we explain details of the derivation of the Eq (11) of the main text.
Let us define the Fourier transform J[-] and the normalized Fourier transform F[-] by

Y(w) = Fly()](@) = ] : y(t) exp(~icwt) dt (46)
Yi(w) = FHy(t)](w) = % [LL//jy(t) exp(—icot)dt. (47)
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Then, the effective network dynamics, Eq (4) of the main text, without external input

%i(t) = -x;(t) + ai(t) + ne (1)

. (48)
a;(t) = -yiai(t) + Bixi(t)
are transformed to
iwXE(w) = -XH(w) + AF(w) + Hé(co)
L L L (49)
iwA; (w) = -7iA; (@) + iX; (@).
From the above expression, we have
Al = Bi xt= (i + Viz)ﬁiXiL, (50)
iw+y; w2 +Y;

where we have omitted w from the expression for simplicity. Substituting this to the first line

of Eq (49) gives

W +y; @ +y;

(iw(l+ Bi )+1 vifi )X,.L:Hg,. (51)
Then, by multiplying complex conjugates of themselves to both sides of this expression, we

g\ B Y
W (1+ =P ) o (1= LR ) A xERE = HLHY
W +Y; W +¥;

o+ (¥ + 1)w? +y? + B+ Biw® - 2By
@ + 7}

have

X;X; = HyHj
1

G(@s 74, 8i)

S, (@) = G(w; 71, Bi)Su(@), (52)

L yL L 7L
XiXi :H¢H¢

where, in the last line, we used S, (@) =lim; o <XILX,L) and Sy(w) = limy (HéHé) that
directly followed from the definition of the power-spectrum density.

For the right-hand side of the above equation, we have Sy (w) = F[(n(#)n(t-7))] from the
Wiener-Khinchin theorem, and, using them, we can show

Su(@) = F(n(On(t-1))]

- FIE S (B (0)é (e -1)))]

N4

_ &;zﬂw(xi(t)w(xi(t—r)m

£
N

Z Sg: (@)
=¢'54(w), (53)

with defining Sg, (@) := F[(¢(x;(t))¢(xi(t-7)))] and Sg(w) := & Zf\il Sp,(@).
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Substituting Eq (53) to Eq (52) and averaging both hand sides of the equation over the
index i gives the desired relationship between power-spectrums:

- 1<
Se(@) = stxf(w)

:g23¢(w)(;]ZG(co;y,»,,8i)) (54)
- &8¢ (w)G(w). (55)

In the last line, we replace the arithmetic average of G with its mean, that is, % Zil
G(ws;7iBi) = (G(ws;7,B))y g = G(@).

Derivation of the equation for the transition point of the heterogeneous
network

In this subsection, we will derive the equation, Eq (14), that determines the transition point g,
of the network from the power-spectrum equation derived in the above subsection, Eq (55),
or Eq (11) of the main text.

Assume that the activation function ¢(x) satisfies the condition |¢(x)| < |x|, which is the
condition that is satisfied by most of the standard activation functions, including tanh and
ReLU. Then, it directly follows that

[ 1gtaenPas [ o 6
W ICCIONES ) O )

Because Parseval’s theorem of the power spectrum gives

[ Pde= —— [ @)

27

] - (58)
[ 1#GaPar=— [ o) Pde
Substituting them into Eq (57) and taking the mean for both hand sides of the equation
gives
I s oo(|<I>‘(cu)|2)dco<lZN:ifmﬂX»(co)P)dco (59)
N -1 27T J-o ' N -1 27 J- '
1 [ 18 [
= Sg,()dew < = / S, (w)dw (60)
N2 L N L
f: 5 () dew < /: 5 () daw 61)
Then, by substituting Eq (61) to Eq (55), we arrive
/ S¢(w)dw < g / S¢ (@) G(w)dw. (62)
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Note that Eq (62) is an absolute inequality that must be satisfied by any values of G, g, and
x, as far as the activation function satisfies the above-introduced condition |¢(x)| < |x|. Now,
let assume that the coupling strength g satisfies an inequality max, ¢g°G(w) < 1. Then, one
can immediately see that Sy (w) must satisfies Vo, S¢ (@) = 0 to fulfill the absolute inequal-
ity Eq (62). Because the power spectrum Sg () = 0 for all @ means the neural activity is
¢(x(t)) =0, we can conclude the network must be in the silent state when max,, gG(w) < 1.
On the other hand, if the coupling strength satisfies max,, gG(w) > 1, we can say that the net-
work is allowed to be in an active state, while we cannot say that the network must be in an
active state. Thus, we can conclude that the condition

mchng(co) =1 (63)

gives the critical coupling strength. Note that we can rewrite this condition as max,, g&2G
(w=0) =1 because G(w;7, ) takes its maximum value at w = 0 under the usual condition of
y > B where the activity of the GPA neurons does not diverse.

Analytical expression of the critical coupling strength for the two-point
distribution of y;

In this subsection, we will give the analytical expression of the critical coupling strength g,
when the decay rate y; follows the two-point distribution:

ow probablit
yi= {71 p yp (64)

Yhigh  probablity 1 -p

Let us assume that the model parameters fulfill the condition ypgy > 10w > 8 > 0 to each
single neural activity does not diverge. by differentiating Eq (8) of the main text, we have

20° - 4y’ - 20 (y* + 278+ B(2y - B))

G'(w)= - >
(@' + (2 +26 + Dw? + (y - B)?)

(65)

Under the condition of y4igh > ¥1ow > B > 0, G’ (@) = 0 has a unique real solution at e = 0.
Therefore, since G'(w =0) =0 and G’ (w = +0) < 0, it follows that w = 0 provides the maxi-
mum value of G given by G(0) = ﬁ

Then, as G(w) is just an average of G(w) over the given distribution of ¥ and w = 0 gives
the maximum of G regardless of values of ¥, we can conclude that G(w) also takes its maxi-
mum value at w = 0. Therefore, combining this result with Eq (14) of the main text, we have
the explicit expression of the transition point g, as follows:

mjng(_?(w):gf<(y T;y) =1 (66)
4

2 Yzi .
gc=(p(”’w +(1—p)hgh) (67)

D=

Yiow _ﬁ)Z (yhigh _6)2
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Supporting information

S1 Appendix. Impact of continuous heterogeneity in intrinsic parameters on network
dynamics and computational capacity.
(PDF)

S1 Fig. Network dynamics and temporal properties of neuron subgroups in a network
with different decay rates. (a) Temporal profiles of the activity of neurons with small (left)
and large (right) decay rate parameters, corresponding to slower and faster time scales,
respectively. (b) Autocorrelation functions of the same neuron groups are shown in (a). (c)
Average autocorrelation functions within subgroups of neurons with ranges of decay rate
parameters. (d) Distributions of relaxation times computed from the autocorrelation func-
tions of individual neurons prior to averaging. Decay rates y; follow a uniform distribution
U[1,10] across the network. Parameters N = 5000 and g = 2.0 are used.

(TIF)

$2 Fig. Maximum power spectrum of network dynamics with continuous heterogene-
ity. The left panel shows the result for a network in which the decay rates y; follow a uni-
form distribution which center is 5. The right panel shows the result for a network in which
the feedback strengths §; follow a truncated normal distribution with mean 0 and range
[-2,2]. Red lines indicate the theoretical predictions.

(TIF)

$3 Fig. Amplitudes of neuronal responses to a transient impulse input in a heterogeneous
network. The upper heatmap shows the response amplitudes of individual neurons to the
same pulse input applied to the network. Neurons are sorted from top to bottom in ascending
order of their feedback strength 8;. The lower panel shows the external input, which is shared
by all neurons. The network operates in a stable regime where g=0.15 < g. = 0.183, and the
feedback strengths §3; follow a uniform distribution U[0,2.9]. Other parameters are N = 3000
and y =3.0.

(TIF)

S4 Fig. Memory capacity (MC) of heterogeneous networks for various levels of hetero-
geneity. Vertical dashed lines indicate the critical coupling strengths for each network. The
input signal u(t) is modeled as Gaussian white noise, and the time evolution of the network is
computed using the Euler—-Maruyama method for stochastic differential equations. The other
parameters are N = 3000, ¥ = 3, u(t) ~ N'(0,0:,\/2dt), 0i = 0.1, and dt = 0.02.

(TIF)
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