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Abstract

The accurate cell-level characterization of cytokine activity is important for understand-
ing the signaling processes underpinning a wide range of immune-mediated conditions
such as auto-immune disease, cancer and response to infection. We previously pro-
posed the SCAPE (Single cell transcriptomics-level Cytokine Activity Prediction and Esti-
mation) method to address the challenges associated with cytokine activity estimation in
human single cell RNA-sequencing (scRNA-seq) and spatial transcriptomics (ST) data.
Here, we propose a new method MouSSE (Mouse-Specific Single cell transcriptomics
level cytokine activity prediction and Estimation) for performing cytokine activity estima-
tion in murine scRNA-seq and ST data. MouSSE estimates the cell-level activity of 86
distinct cytokines using a gene set scoring approach. The cytokine-specific gene sets
used by MouSSE are constructed using experimental cytokine stimulation data from

the Immune Dictionary and cell-level scores are computed using a modification of the
Variance-adjusted Mahalanobis (VAM) technique that supports both positive and nega-
tive gene weights. MouSSE is validated using data from both the Immune Dictionary via
stratified cross-validation and external scRNA-seq and ST datasets against 10 cytokine
activity estimation methods. These results demonstrate that MouSSE outperforms com-
parable methods for cell-level cytokine activity estimation in mouse scRNA-seq and ST
data. An example vignette and installation instructions for the MouSSE R package are
provided at https://github.com/azkajavaid/MousseR-package.

Author summary

Herein, we present an overview of our recently developed cytokine activity estimation
method, MouSSE (Mouse-Specific Single cell transcriptomics level cytokine activity
prediction and Estimation). MouSSE estimates cell-level activity for 86 cytokines using
gene sets constructed with cytokine stimulation data from the Immune Dictionary
and scored with a modification of the Variance-adjusted Mahalanobis (VAM) method
to support both positive and negative gene weights. We validate MouSSE against 10
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different cytokine activity estimation techniques using stratified 5-fold cross-validation
on Immune Dictionary-based mouse lymph node data and against publicly available
COVID19-specific scRNA-seq and mouse lymph node-specific ST data. We quantify
the performance of MouSSE using 11 metrics, including the Area Under the Receiver
Operating Characteristic Curve (AUC-ROC), and the Precision-Recall Area Under the
Curve (PR-AUC), amongst others, and perform sensitivity analysis for gene set size to
extensively validate the gene set construction step in MouSSE. Overall, we conclude
that MouSSE results in more accurate and biologically interpretable cytokine activity
estimates as compared to alternative methods.

1. Introduction

Cytokines are secreted proteins that are produced by a range of immune and non-immune
cells to regulate immune responses [1]. Pro-inflammatory cytokines, including interleukins
such IL18 and IL6, are important for initiating immune response to infections by promoting
immune cell recruitment and activation, which is critical for fighting off infections. In com-
parison, anti-inflammatory cytokines, such as IL10, are essential in limiting inflammation
and mitigating extensive tissue damage. These types of cytokines are known to promote tissue
repair by promoting activation of regulatory immune cells [2]. Dysregulation of either pro-
inflammatory or anti-inflammatory cytokines can result in impaired immune responses. For
example, dysregulation of pro-inflammatory cytokines can trigger a cytokine storm, which
is an excessive inflammatory response characterized by further production of cytokines with
accompanying clinical symptoms including sepsis, hypotension and respiratory insufficiency
[3]. Similarly excessive anti-inflammatory response can lead to immune suppression.

Given the potential of dysregulated cytokine activity to cause extensive damage, it is crit-
ical to effectively regulate cytokine levels. Effective regulation of cytokine activity can lead
to the development of more targeted therapeutic interventions to control the often upregu-
lated pro-inflammatory cytokine signatures, especially characteristic of conditions like can-
cer and autoimmune disorders like rheumatoid arthritis [4,5]. To effectively regulate cytokine
activity, we need to develop methods to precisely quantify cytokine signaling activity levels.
Since its introduction in 2009 [6], single cell RNA-sequencing (scRNA-seq) has enabled the
transcriptomic profiling of tens to hundreds-of-thousands of cells from a single tissue sam-
ple [7]. Given its resolution, scRNA-seq technology can be leveraged to accurately quantify
cytokine signaling at a single cell resolution. One challenge with estimating cytokine activity
at the single cell-level is extreme sparsity (i.e., a large fraction of observed zero counts) and
technical noise of scRNA-seq data [8,9]. Sparsity is especially problematic since it can result
in reduced statistical power and can introduce artifacts in downstream analyses, including
clustering and trajectory inference [10]. Despite the large number of scRNA-seq imputation
methods [11], we found that the class of reduced rank reconstruction (RRR) methods, which
assume that the intrinsic dimensionality of scRNA-seq data is much lower than the empiri-
cal rank, provide superior performance relative to other methods for scRNA-seq imputation
and consequential reduction of sparsity. In light of this finding, we previously introduced
methods SPECK (Surface Protein abundance Estimation using CKmeans-based clustered
thresholding) [12] and STREAK (gene Set Testing-based Receptor abundance Estimation
using Adjusted distances and cKmeans thresholding) [13] leveraging singular value decom-
position (SVD)-based RRR for performing unsupervised and supervised receptor abundance
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approximation, respectively, to generate non-sparse estimates of receptor transcripts. In addi-
tion to the application of RRR-based dimensionality reduction approaches to achieve a non-
sparse and low-rank representation of gene expression data, gene set testing or pathway anal-
ysis approaches, that enable scRNA-seq downstream processing tasks to be performed on a
pathway-level rather than on a gene-level, can be leveraged to mitigate sparsity and techni-
cal noise associated with scRNA-seq data analysis, thereby improving replication and inter-
pretability [14,15]. For example, we developed the Variance-adjusted Mahalanobis (VAM)
[16] method, a modification of the standard Mahalanobis distance that facilitates genera-
tion of cell-specific pathway scores, thereby accounting for the inflated noise and sparsity of
scRNA-seq data. A related challenge is the often functionally redundant and pleiotropic sig-
nature of cytokines (i.e., overlapping activity of cytokines) [17]. For example, IL4 and IL13
share a common surface receptor to signal, thereby eliciting highly overlapping responses
[18]. Given this functional redundancy, distinct estimation of cytokine activity is important
for accurate signaling characterization.

In addition to developing methods to quantify cytokine signaling activity at a single cell
resolution, we need to develop cell signaling methods that can accurately infer interaction
activity (i.e., the receptor is present and bound by the cognate ligand) as compared to interac-
tion potential (i.e., the receptor is present on the cell surface). The importance of developing
methods that can distinctly infer interaction activity relates to a broader weakness of existing
cell signaling characterization methods that make the assumption that gene expression alone
reflects protein abundance, which reflects the strength of protein-protein interactions. Inter-
action activity, in comparison, is influenced by expression of downstream transcription and
binding factors and therefore requires a more nuanced understanding of all interacting agents
[19]. Even methods that account for downstream gene expression in estimating cell signal-
ing, such as NicheNet [20], are limited since they depend on a prior definition of receiver and
sender subpopulation, a characterization that is often challenged by the ambiguity of the loca-
tion of the originating ligand given that the ligand may simultaneously originate from dif-
ferent groups of cells. Current cell signaling estimation methods such as CellChat [21], Cell-
PhoneDB [22], SingleCellSignalR [23] and NicheNet are also limited in that they generate
cell-cell communication or cell signaling over population clusters/cell-types. These methods
do not generate cell signaling estimates at a single cell-level, thereby ignoring considerable
within cluster heterogeneity. While methods that infer cell signaling at a single cell resolution
by using deep learning to project the gene expression of single cells into a latent space, like
SPRUCE [24] and DeepCOLOR [25], do exist [26], they are limited by transparency of their
underlying computational approaches. In addition, many deep learning-based algorithms
are not considerably biologically interpretable enough to be manually fine-tuned by medical
practitioners [27].

Single cell signaling activity methods that leverage perturbation-based gene signatures are
limited to a few pathways. PROGENy [28], for example, only supports 14 signaling pathways.
We previously introduced our SCAPE (Single cell transcriptomics-level Cytokine Activity
Prediction and Estimation) [29] method for cell-level cytokine activity estimation of human
scRNA-seq data with support for 41 cytokines. While SCAPE works well in practice, it has a
few practical limitations: 1) the gene sets used by SCAPE are based on bulk gene expression
data from the CytoSig database [30] so may not match the equivalent signatures from scRNA-
seq data and cannot provide cell type specificity, 2) SCAPE only supports a limited group of
41 cytokines, and 3) SCAPE only directly supports the analysis of human data.

To address these limitations and support cytokine activity estimation for murine scRNA-
seq and ST data, we developed the MouSSE (Mouse-Specific Single cell transcriptomics level
cytokine activity prediction and Estimation) method. MouSSE supports activity estimation
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for 86 cytokines using gene sets constructed with scRNA-seq cytokine simulation data from
the Immune Dictionary [31], which was recently developed to capture the in vivo transcrip-
tomic impact of 86 different cytokines on individual immune cells extracted from mouse
lymph nodes and profiled using scRNA-seq. Similar to the SCAPE technique, the MouSSE
method computes cytokine-specific gene set signatures using differential expression analysis.
In comparison to the SCAPE method, MouSSE specifically performs gene set scoring using a
modification of the VAM technique that supports both positive and negative gene weights and
is further adjusted for the number of genes falling into the positive and negative categories.
Importantly, the MouSSE method’s differential expression analysis uses scRNA-seq data from
the Immune Dictionary. In proposing our MouSSE method, we aim to leverage the Immune
Dictionary to generate perturbation-based signatures for each of the 86 cytokines and score
these gene sets to generate single cell resolution measurements of cytokine activity.

2. Methods
2.1. Ethics statement

This study leveraged publicly available, de-identified COVID19 patient data originally pub-
lished in Liao et al. [32] as part of the validation analyses. The original study obtained ethical
approval from the relevant Institutional Review Boards and secured informed consent from
all participants, as described in their publication. As this analysis used only publicly available,
de-identified data, no additional Institutional Review Board approval or informed consent
was required.

2.2. MouSSE method overview

MousSSE uses a gene set scoring approach to compute cell/location-level estimates of cytokine
activity for murine scRNA-seq or ST data. Fig 1 provides a high-level visualization of the
MousSSE technique. The gene sets corresponding to each of the 86 supported cytokines are
generated through a differential expression analysis of the cytokine stimulation data from

the Immune Dictionary, as detailed in Sect 2.4. Scoring of these cytokine-specific gene sets
for target scRNA-seq/ST data is performed using a modification of the VAM method that
supports both positive and negative gene weights and adjusts for the number of genes falling
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Fig 1. MouSSE (Mouse-Specific Single cell transcriptomics level cytokine activity prediction and Estimation) supports both positive and negative gene
set scoring with the modified VAM method constructed using each of the 86 cytokine-specific gene sets.

https://doi.org/10.1371/journal.pchi.1013475.9001
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into the positive and negative categories. This gene set scoring procedure is detailed in Sect
2.5.

2.3. Immune dictionary single cell data

To generate large-scale perturbation scRNA-seq data for 86 murine cytokines, the Immune
Dictionary team injected a solution containing either a target cytokine or phosphate buffered
saline (PBS) under the skin of C57BL/6 mice. Four hours after injection, skin-draining lymph
nodes were collected. Following collection, cells were profiled using the 10x Chromimum
system to generate scRNA-seq data for 386,703 cells. Demultiplexing and alignment of the
sequencing data was processed using CellRanger v.3.0. Additionally, cell hashing was used to
combine multiple scRNA-seq samples in the same channel [31].

We analyzed the processed scRNA-seq data generated by the Immune Dictionary project
by matching gene expression and hashtag using the HTODemux function from the Seurat R
package with the default positive.quantile probability of 0.99. We matched the quality con-
trol process from Cui et al. [31] by removing multiplets from our analysis and retaining cells
with non-zero abundance values for more than 500 genes, more than 1,000 unique molecular
identifiers and less than 10% mitochondrial gene content. Following this quality control, we
preserved 385,174 cells for analysis.

2.4. Gene set construction

To create cytokine-specific gene sets, we performed differential expression analysis on the
Immune Dictionary scRNA-seq data using a Wilcoxon rank sum test, as implemented by
the FindMarkers function in the Seurat R package v5.0.0 [33]. Specifically, we compared the
expression of each gene in cells extracted from mice that had been stimulated with a given
cytokine against the expression of that gene in cells from mice stimulated with all other
cytokines. For each cytokine, this analysis identified genes whose expression is either up

or down-regulated in lymphatic tissue in response to in vivo cytokine stimulation. Impor-
tantly, comparing the stimulation results for each cytokine against all other cytokines and
the control condition allowed us to capture differentially expressed markers that were spe-
cific to each cytokine relative to other potentially similar cytokines. This is in contrast to the
differential expression test that is currently implemented in the Immune Dictionary-based
Immune Response Enrichment Analysis (IREA), a companion software that compares each
cytokine stimulation condition against only the PBS control to generate cytokine signatures in
transcriptomes.

For each cytokine, we then selected the top 60 genes ranked by the absolute log2 fold-
change in mean expression that were also statistically significant at an alpha level of 0.05.
These genes were then separated according to the sign of the log2 fold-change into a positive
set of size 710, (contains genes with log2 fold-change values above 0) and a negative set of size
Myeq (contains genes with log2 fold-change values below 0) with gene weights for both sets
defined as the absolute value of the log2 fold-change. The final result of this procedure was a
collection of 172 weighted gene sets comprising the positive and negative sets for each of the
86 supported cytokines.

2.5. Gene set scoring

To compute cytokine activity estimates for a target scRNA-seq or ST data set, MouSSE per-
forms cell-level gene set scoring. For this task, we first compute cell/location-level scores for
both the positive and negative gene sets for each cytokine with a modified version of the VAM
method.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013475 September 19, 2025 5/29



https://doi.org/10.1371/journal.pcbi.1013475

PLOS COMPUTATIONAL BIOLOGY MouSSE

Implementation of the modified VAM method requires two input matrices:

1. Xj:a mXnscRNA-seq matrix containing the normalized counts for n genes in m cells.
2. A:anxh matrix that captures the weighted annotations of n genes to / cytokine-
specific gene sets.

VAM outputs matrix S, that holds the cell-level scores for m cells and h gene sets. Below
we detail the computation of S and of the matrix M, which holds the cell-specific squared
modified Mahalanobis distances for m cells and h gene sets.

1. Technical variance estimation: We first leverage Seurat’s variance decomposition for
log-normalized data to calculate the length n vector o7, ;, holding the technical variance
of each gene in Xj.

2. Modified Mahalanobis distances computation: We next compute the cell-level
squared distances for a column k of M, a m X h matrix of squared values of a modified
Mahalanobis distance, as M[, k] = diag(Xk(Igaétech)'lX,f). Here, g corresponds to the
gene set (k) size, X is a matrix of size m X g which maps g columns of X} to the gene set
size k, Iy is a g X g identity matrix, and 07 ., maps elements of o7, ;, associated to the g
genes in set k.

3. Gamma distribution fit: We next fit a gamma distribution to the non-zero elements in
each column of M;, using the method of maximum likelihood.

4. Cell-specific scores computation: Lastly, we define the cell-level gene set scores, which
are held in matrix S, to be the gamma cumulative distribution function (CDF) value for
each element of M.

The modified VAM method is executed separately for the positive and negative weighted
gene sets. The overall cell/location-level activity score of each cytokine, s, is then set to the
weighted average of the VAM score for the positive set (VAM,,) and 1 minus the VAM score
for the negative set (VAM,,,) as defined by Eq 1.

n n
s= —2%  VAMpps + ——2— (1 - VAM,54¢) (1)
Npos + Npeg Npos + Mpeg

We note that the modified Mahalanobis distance implementation in VAM has two impor-
tant differences from the standard Mahalanobis distance implementation. First, while the
standard Mahalanobis distance leverages the full sample covariance matrix for estimation, the
modified Mahalanobis distance only accounts for the technical variance of each gene, thereby
ignoring covariances. Practically, this implies that VAM only discounts deviations in direc-
tions of large estimated technical variance while preserving deviations in directions of large
biological variance (i.e., covariance). Second, while the standard Mahalanobis distance cal-
culates distances from the multivariate mean, the modified Mahalanobis distance calculates
distances from the origin, thereby resulting in a more biologically plausible distance measure
for scRNA-seq data.

3. Evaluation
3.1. Benchmark setup and datasets

We performed stratified 5-fold cross-validation on the demultiplexed and pooled scRNA-
seq data for each cytokine stimulation condition from the Immune Dictionary. Since this
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scRNA-seq data contained 385,174 cells, our training data for each fold consisted of 308,141
cells and the test data consisted of 77,033 cells.

We evaluated MouSSE and comparative methods on scRNA-seq data generated from the
Immune Dictionary using stratified 5-fold cross-validation. We further evaluated all meth-
ods on an additional scRNA-seq and an ST dataset. These datasets included: 1) Liao et al. [32]
scRNA-seq dataset characterizing bronchoalveolar lavage fluid (BALF) immune cells from
healthy individuals and patients with moderate and severe COVID19 and 2) Lopez et al. [34]
ST dataset characterizing mouse lymph nodes treated with mycobacterium or PBS.

3.2. Comparative methods

We evaluated MouSSE against 10 different ligand-receptor interaction scoring strategies for
scRNA-seq data as detailed below. The comparison methods included both cell-level sig-
naling characterization methods and gene set-based techniques. We also assessed the effi-
cacy of MouSSE by comparing it to MouSSE scored separately using the positive and neg-
ative weighted gene sets (i.e., comparison against all cytokines) and against gene sets con-
structed using the IREA method (i.e., comparison against PBS) but scored using the MouSSE
method (i.e., weighting both positive and negative genes). We detail the implementation of
each method below.

o MousSSE positive-weighted (mousse.pos): MouSSE was scored using positive weighted
gene sets (i.e., VAM,,). Comparison of cytokine activity estimates generated using gene
sets containing both positive and negative weights and those containing only positive
weights enabled us to evaluate the effectiveness of the negative weighting mechanism as
implemented in the MouSSE method.

o MouSSE negative-weighted (mousse.neg): MouSSE was scored using negative
weighted gene sets (i.e., 1 - VAM,,).

« Normalized Ligand Score (naive): Normalized expression of the ligand gene transcript
corresponding to each cytokine was set as a proxy for cytokine activity. For this pur-
pose, we matched the genes corresponding to normalized gene expression data to each
of the unique 86 cytokine treatment labels in order to extract the gene expression equiv-
alent to each cytokine label. We obtained matching gene expression transcripts for 42
cytokines. We note that while this approach may not be practical in implementation, we
used it for illustrative purposes.

« Normalized Receptor Score (receptor): Normalized expression of the receptor(s)
transcript corresponding to each cytokine was set as a proxy for cytokine activity.

For this task, we referenced a mouse-specific ligand to receptor mapping database
[35] that contains data for approximately 2,356 interactions. Approximately 40 out
of the 86 cytokines contained matching receptors in this database. For 33 of the 40
cytokines, more than one receptor transcript matched the corresponding ligand. For
these cytokines, we averaged the expression of the normalized receptor transcripts.

« Ligand-Receptor Product Score (product): Product of the average ligand and receptor
expression scores was set as a proxy for cytokine activity. The product score method was
inspired by cell-cell communication methods that use the ligand-receptor expression
product to quantify cell signaling at the cell level [36]. For this purpose, we multiplied
the normalized expression of the cytokine with the normalized expression of the corre-
sponding receptor(s) using the ligand-to-receptor mapping detailed in Cain et al. [35].
For cytokines with more than one receptor, we averaged expression across receptor
transcripts.
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o NICHES (niches): NICHES [37] method was used to generate cell-level signaling char-
acterization for cytokine activity. Since NICHES requires cell type information, we per-
formed clustering using the Leiden algorithm of target scRNA-seq data with Seurat’s
default processing pipeline. NICHES also requires a ligand-to-receptor mapping. For
this task, we leveraged the mouse-specific ligand-to-receptor mapping database from
Cain et al. [35]. We then scored these 40 interactions using the RunNICHES function
from the NICHES package v1.1.0 with the CellToSystem argument set to true to analyze
cell-cell interactions without consideration of spatial coordinates on the normalized
scRNA-seq data.

o Seurat Perturbation Scores (seurat): Cell signaling estimates generated using the
pathway-specific gene sets constructed by researchers from the Seurat lab for IFNg,
IFNy, TGEB and TNFa pathways [38] were set as estimates for cytokine activity. For
this task, we leveraged the up-regulated genes for each of the four pathways correspond-
ing to the first program. We then averaged the expression for all genes in each of the
four gene sets to compute cell-level signaling estimates.

o PROGENY (progeny): Cell-level signaling estimates generated using the PROGENy
method [39] were set as estimates for cytokine activity. While PROGENYy can be used
to infer activities for 14 signaling pathways, only five of the pathways overlapped with
the 86 cytokines supported by MouSSE. These overlapping cytokines included EGFR,
VEGE, TGFB, TNFa and Trail. We leveraged the progeny function from the progeny
package v1.20.0 to infer pathway activities for these five cytokines.

« IREA Positive-Weighted Scores (irea.pos): Cell signaling profiles generated using the
IREA constructed gene sets representing the up and down-regulated gene signatures for
each of the 86 cytokines against the PBS control were set as estimates for cytokine activ-
ity. Since the authors’ implementation of the IREA software is not publicly accessible as
an executable tool, we performed a comparative analysis using the gene sets provided
in the Supplementary Table 3 of the original manuscript [31]. We first merged data
from all gene sets and then selected the top 30 genes ranked by positive average log-fold
change for each cytokine. We then averaged expression over all 30 genes to obtain an
estimation of cytokine activity.

« IREA Positive and Negative-Weighted Scores (irea.mousse): Cell signaling profiles
generated using both the positive and negative weighted IREA constructed gene sets
scored with the weighting strategy implemented in the MouSSE method were set as esti-
mates for cytokine activity. This implementation of IREA using the weighting strategy
proposed in the MouSSE method allowed us to determine the efficacy of both our pos-
itive and negative gene weighting methodology and our gene set construction strategy,
which computes up and downregulated differentially expressed genes for each of the 86
cytokines compared to all other cytokines (i.e., against the PBS condition), as currently
implemented in the IREA software.

3.3. Performance metrics

We evaluated MouSSE and comparative methods using 11 metrics, including the Area Under
the Receiver Operating Characteristic Curve (AUC-ROC), Precision-Recall Area Under the
Curve (PR-AUCQ), sensitivity, specificity, Negative Predicted Value (NPV), precision, F1 score,
prevalence, detection rate, detection prevalence and balanced accuracy to quantify the cor-
respondence between each method and the ability to correctly predict the cytokine label
corresponding to each sample. We quantified the one-vs-rest AUC-ROC on the continu-

ous cytokine activity estimates using the auc function from the pROC R package v1.18.5. To
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compute the PR-AUC, we used the pr.curve function from the PRROC R package v1.4. To
compute the remaining metrics, we constructed a Receiver Operating Characteristic (ROC)
curve with the roc function and then determined the optimal threshold for each cytokine with
the coords function from the pROC package. More precisely, we set the optimal threshold as
the point closest to the top left part of the ROC plot with perfect sensitivity or specificity, as
indicated by the optimality criterion-specific Eq 2 below. Lastly, we binarized our continuous
cytokine activity prediction estimates using this threshold, assigning a value of 1 to predic-
tions greater than the threshold (i.e., prediction >threshold = 1), and 0 otherwise. We then
created a confusion matrix with the confusionMatrix function from the caret R package v7.0.1
and extracted the sensitivity, specificity, NPV, precision, F1 score, prevalence, detection rate,
detection prevalence, and balanced accuracy metrics accordingly as defined by [40].

optimality criterion = min((1 - sensitivities)* + (1 - specificities)*) (2)

4. Results
4.1. MouSSE generates accurate cytokine activity estimates

4.1.1. Assessment using the Area Under the Receiver Operating Characteristic Curve
(AUC-ROC). We first evaluated MouSSE against the comparative methods listed in Sect 3.2
on the Immune Dictionary-based mouse lymph node scRNA-seq data. For this evaluation, we
quantified the proportion of cytokines with the highest AUC-ROC across every method. For
our initial comparison, we compared MouSSE against other signaling estimation methods,
including normalized ligand (naive), normalized receptor (receptor), ligand-receptor product
(product), NICHES (niches) and PROGENYy (progeny). As Fig 2A shows, 99% of cytokines
have the highest AUC-ROC when estimated using the MouSSE method as compared to other
signaling characterization methods. Next, we compared MouSSE against other gene set con-
struction strategies, including IREA-based gene sets (irea.pos) and gene sets built using Seu-
rat’s perturbation scores (seurat). Fig 2B shows that approximately 91% of cytokines have the
highest AUC-ROC when estimated using the MouSSE method as compared to the irea.pos
and seurat methods.

To further assess the effectiveness of MouSSE’s positive and negative gene set weighted
scoring strategy, we compared the cell signaling estimates generated using MouSSE against
estimates generated using each of the positive or negatively differentially expressed gene sets
(i.e., mousse.neg and mousse.pos, respectively) and against gene sets constructed using IREA
but scored for both positive and negative genes using the gene set scoring strategy proposed
in the MouSSE method (irea.mousse). We note that comparing MouSSE against cytokine
activity estimates generated using solely positive or negatively differentially expressed genes,
as well as with gene sets constructed using the IREA method but scored using MouSSE’s
weighting approach, enabled us to assess the effectiveness of MouSSE’s gene set construc-
tion and weighting algorithm. As shown in Fig 2C, approximately 75% of cytokines have the
highest AUC-ROC score when estimated using the MouSSE method. In comparison, 18%
of cytokines have the highest AUC-ROC score when estimated using irea.mousse and 5% of
cytokines have the highest AUC-ROC score when estimated using the mousse.neg method.

Fig 2D visualizes the results from comparing MouSSE against all 10 cytokine activity esti-
mation strategies. In this scenario, approximately 73% of cytokines have the highest AUC-
ROC when estimated using MouSSE. By contrast, this proportion is only 13% for irea.mousse,
and 5% for each of the irea.pos and mousse.neg methods, and 3% for mousse.pos.

In addition to reporting the proportion of cytokines that have the highest AUC-ROC
when estimated using MouSSE and comparative methods, Fig 3 visualizes the individual
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Fig 2. Proportion of cytokines with the highest Area Under the Receiver Operating Characteristic Curve (AUC-
ROC) score calculated from cross-validated mouse lymph node target scRNA-seq data, encompassing 77,033 cells.
(Fig 2A) Comparison of MouSSE scores (mousse) with other signaling estimation methods, including normalized
ligand (naive) and receptor scores (receptor), ligand-receptor product (product), NICHES application (niches), and
PROGENYy application (progeny). (Fig 2B) Evaluation of MouSSE scores relative to alternative gene set construction
approaches, such as IREA-based gene sets scored using only positively weighted genes (irea.pos) and Seurat-based
perturbation scores (seurat). (Fig 2C) Sensitivity analysis of MouSSE’s gene set construction and scoring methodology,
comparing it with IREA-based gene sets incorporating both positive and negative weights and scored using MouSSE’s
weighting strategy (irea.mousse) and modified MouSSE approach using only positively weighted genes (mousse.pos)
and using only negatively weighted genes (mousse.neg). (Fig 2D) Overall comparison of MouSSE scores across all ten
methods.

https://doi.org/10.1371/journal.pchi.1013475.9002
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scRNA-seq data. Cytokine markers with an asterisk have the highest AUC-ROC score when estimated using the

MouSSE method.

hitps:/doi.org/10.1371/journal.pcbi.1013475.9003
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AUC-ROC scores for every cytokine for activity estimates generated using all comparative
techniques. This heatmap indicates that while estimates for cytokines like IL18 have a much
better correspondence with sample labels when estimated by MouSSE (AUC-ROC = 0.85),
other cytokines like IL2 show better correspondence for estimates generated using alterna-
tive methods (i.e., AUC-ROC for irea.mousse = 0.81 versus AUC-ROC for MouSSE = 0.7).
This heatmap can be referenced to identify the optimal activity estimation strategy for each
profiled cytokine. Similar heatmaps documenting the individual PR-AUC, specificity, sensi-
tivity, precision, NPV, prevalence, F1 score, detection rate, detection prevalence and balanced
accuracy are available in S1-S10 Figs, respectively.

4.1.2. Assessment using classification performance metrics. We next evaluated MouSSE
against comparative methods on the Immune Dictionary-based mouse lymph node scRNA-
seq data using sensitivity, specificity, NPV, precision, F1 score, prevalence, detection rate,
detection prevalence and balanced accuracy. Similar to the analysis above, we quantified the
proportion of cytokines with the highest metric-specific score across every method. We report
our findings in Fig 4.

Overall, we found that our MouSSE method has the largest percentage of cytokines with
the highest balanced accuracy (59%), F1 score (48%), NPV (44%) and precision (41%). Given
that our dataset contained a comparatively smaller number of positive cytokine labels, the F1
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Fig 4. Proportion of cytokines with the highest AUC-ROC, PR-AUC, balanced accuracy, detection rate, sensitivity, detection prevalence, F1 score, NPV, precision,
specificity and prevalence across each of the 10 methods as computed from cross-validated mouse lymph node target scRNA-seq data, encompassing 77,033 cells.

https://doi.org/10.1371/journal.pcbi.1013475.9004
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score, which is the harmonic mean of the precision and recall, allowed us to correctly eval-
uate the trade-off between false positives and false negatives. We report that approximately
48% of cytokines have the highest F1 score for cytokine activity estimates generated using the
MouSSE method as compared to 18% of cytokines that have highest F1 score for activity esti-
mates generated using the mousse.neg method and 13% of cytokines that have the highest F1
score for estimates generated using each of the irea.mousse and mousse.pos methods. While
the F1 score allowed us to prioritize the correct detection of the positive class (i.e., active
cytokine signature labels), we also computed the balanced accuracy to assess the performance
of all methods with respect to both sensitivity and specificity, thereby giving equal weight to
both false positives and false negatives. We report that approximately 59% of cytokines have
the highest balanced accuracy for cytokine activity estimates generated using the MouSSE
method as compared to 15% of cytokines that have the highest balanced accuracy for activity
estimates generated using the irea.mousse method.

4.1.3. Assessment using the Precision-Recall Area Under the Curve (PR-AUC). To
further account for the imbalanced nature of the cytokine classification task and the rarity
of positive cytokine instances in our dataset, we computed the PR-AUC, which allowed us
to examine the trade-off between precision and recall across different thresholds. As shown
by Fig 4, we found that approximately 63% of cytokines have the highest PR-AUC score for
cytokine activity estimates generated using the MouSSE method as compared to 23% for
irea.pos and 6% for mousse.pos. While MouSSE has comparatively higher PR-AUC values
than other methods, the individual PR-AUC scores are considerably small. We hypothe-
size that the small PR-AUC values likely result from the inability of MouSSE and compar-
ative methods to generate a clearly distinct signature for each cytokine relative to all other
cytokines. The challenge in distinguishing between different cytokines stems from both the
fact that there are groups of cytokines with similar activity profiles and the nature of cytokine
stimulation experiments used to generate the Immune Dictionary data. Specifically, the
Immune Dictionary scRNA-seq data was generated on lymph nodes extracted four hours
after distal injection of a specific cytokine. This delayed tissue collection means that the mea-
sured expression profile is the result of not just the injected cytokine but downstream sig-
naling as well as signaling that would normally take place within the lymph node. To further
analyze this result, we generated differential expression-based gene sets for each cytokine rel-
ative to every other cytokine. We then computed pairwise PR-AUC scores on the test data to
assess MouSSE’s ability to distinguish each cytokine’s signature from every other cytokine. We
report our findings in S11 Fig. We observe that the interferon-specific cytokines have high
PR-AUC scores against almost all cytokines. Similarly, cytokines like IL18 and IL7 have rela-
tively higher PR-AUC scores against most other cytokines. In addition to the heatmap report-
ing the individual PR-AUC scores for every pairwise cytokine comparison, we provide the
heatmap reporting the individual AUC-ROC, specificity, sensitivity, precision, NPV, preva-
lence, F1 score, detection rate, detection prevalence and balanced accuracy for every pair-
wise cytokine comparison in S12-S21 Figs, respectively. These heatmaps can be referenced
to identify pairs of cytokines that are readily distinguished based on the magnitude of each
score.

4.1.4. Sensitivity analysis of MouSSE to gene set size. To examine the influence of gene
set size on cytokine activity estimation, we compared the cytokine activity estimates gen-
erated by MouSSE using gene sets that include the top 20, 60, 100 or 200 genes by absolute
avg_log2FC threshold. As shown in S22-525 Figs for set sizes of 20, 60, 100 and 200 genes,
respectively, the proportion of cytokine activity estimates that have each of the highest AUC-
ROC, PR-AUC, balanced accuracy, F1 score, NPV and precision when scored using the
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MouSSE method as compared to the rest of the methods generally increases with increasing
gene set size with a considerable increase reported from gene set size consisting of 20 genes
to 60 genes. We conclude that a gene set size greater than the default of 60 can potentially
improve model performance. We provide support for customizing the set size parameter in
our mousse function with the numGenes parameter in the mousseR R package v1.0.0.

To further analyze differences in gene set size against the avg_log2FC threshold, we visu-
alized the minimum absolute avg_log2FC threshold for each of the 86 cytokines for gene
set sizes of 20, 60, 100 and 200 genes as averaged over the five folds of cross-validation.

This analysis allowed us to examine how variations in the selection of the minimum abso-
lute avg_log2FC value used to obtain the trained gene sets might be linked to cytokine-
specific performance differences in test data. We visualize these thresholds and the sum of
the thresholds over all gene set sizes for every cytokine in Fig 5. We found that cytokines of
the interleukin-1 (IL-1) family (i.e., IL1, IL13, IL36c, IL33 and IL18) have a comparatively
high minimum absolute avg_log2FC threshold over all gene set sizes compared to cytokines
of other families. In addition, we observed that interferons, especially IFNa1 and IFNg, have
the highest minimum absolute avg log2FC threshold over all gene set sizes (sum of mini-
mum absolute avg_log2FC over gene set size = 11.2 and 10.4 for IFNa1 and IFNg, respec-
tively). These higher average log-based fold-change values for cytokines specific to the IL1 and
interferon families relative to the remaining cytokines indicate that cytokines of these fami-
lies exhibit more distinctive expression signatures that are more readily distinguishable from
other cytokines.

Lastly, we quantified the computational complexity of MouSSE and comparative meth-
ods like NICHES and PROGENy. We found that MouSSE is relatively more computation-
ally expensive as it takes about 8.2 minutes to run, as averaged over the five folds of cross-
validation. In comparison, NICHES takes about 7.0 minutes and PROGENYy takes about 6.8
minutes. We chose not to calculate the computational complexity of the remaining methods
as they are largely averaging expression over gene sets. Therefore, their computational com-
plexity is fairly negligible in comparison to methods like MouSSE, NICHES and PROGENYy.
We observe that while MouSSE is computationally more expensive, its performance out-
weighs the performance of comparative activity estimation strategies.

4.2. Application of MouSSE to COVID19 scRNA-seq data

We next applied MouSSE and comparative methods to the Liao et al. [32] COVIDI19 dataset,
which contains transcriptomic measurements for three control, three mild and six severe
COVIDI109 patients. For this analysis, we aimed to examine whether existing cytokine and cell
signaling characterization methods recapitulate the ground truth regarding known cytokines
that may be up or downregulated by COVID19 severity. To perform quality control, we fol-
lowed the original criteria outlined by the authors (i.e., gene number between 200 and 6,000,
UMI count >1,000 and mitochondrial gene percentage <0.1). We next merged data across
replicates and integrated across disease severity using Seurat’s Canonical Correlation Analy-
sis (CCA). Our merged dataset consisted of 63,734 samples and 2,000 features. We then per-
formed cytokine activity estimation using MouSSE and comparative methods on this aggre-
gated data. Following estimation, we scaled the generated cell signaling estimates and used
the FindAllMarkers function from the Seurat package to identify the top 15 cytokine mark-
ers by avg_log2FC that are differentially expressed based on COVID19 severity condition (i.e.,
control, mild and severe). We did not generate cytokine activity estimates for the COVID19
dataset for the NICHES method since the RunPCA function, a requirement for NICHES, did
not return any features with any variance.
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https://doi.org/10.1371/journal.pcbi.1013475.9005
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We first visualize the MouSSE-specific cytokine signaling estimates that are differentially
expressed based on COVID19 severity. As Fig 6 shows, markers specific to interferon sig-
naling (i.e., IFNa1, IFNf, IFNy) are elevated and differentially expressed in patients with
severe COVID19 compared to patients with control and mild COVID19 for signaling esti-
mates generated using the MouSSE method. While earlier studies reported impaired and lim-
ited response of type I interferons (IFN-I) (i.e., IFNa1, IFNf) in response to COVID19, there
is now increased evidence for robust IFN-I responses in patients with severe COVID19. One
study reports that 15% of patients with critical COVID19 have auto-antibodies to interferon
cytokines [41]. More precisely, an immune landscape study performed scRNA-seq analysis
in peripheral blood mononuclear cells (PBMCs) in patients with mild or severe COVID19
and reported that IFN-I responses co-occurred with inflammatory responses driven by TFN-
and IL1-driven cytokines in patients with severe COVID19 compared to patients with mild
COVIDI19 [42]. This study supports our findings as we report the upregulation of IFN-I
cytokines and upregulation of TNFa, IL1 and IL18 in severe COVID19 compared to con-
trol and mild COVID19. In addition to these results, we report the upregulation of IL6 in
severe COVID19 as compared to control and mild COVID19. The upregulation of IL6 is sup-
ported by medical literature as increased IL6 levels are a critical mediator of hyperinflamma-
tion, which is observed to be considerably higher in severe COVID19 as compared to mild
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Fig 6. Differentially expressed cytokine markers on scRNA-seq data consisting of 63,734 samples by COVID19 severity condition (i.e., control, mild and severe)
for the MouSSE method.

https://doi.org/10.1371/journal.pcbi.1013475.g006
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COVID19 patients [43]. We also show that the identified differentially expressed cytokines
are mostly consistent between mild COVID19 and control patients. More specifically, we
report that IFNe is more distinctly elevated in the mild COVID19 condition compared to

the control and severe COVID19 conditions. From literature, IFNe is known to have weaker
antiviral and natural killer cell cytotoxicity activities compared to the IFN-I cytokines [44,45].
IFNe’s upregulation in the mild COVID19 condition is therefore justified given its weaker
inflammatory properties compared to IFN-I cytokines.

Our results also show some stratification of differentially expressed markers by different
patient-specific samples within the severe COVID19 condition. For example, differentially
expressed markers specific to the severe-c149 and severe-c152 patients show some overlap
with differentially expressed markers identified for the mild COVID19 and control patients.
On further inspection, we find that while patients c149 and c152 both had severe COVID19,
they were relatively younger than their other severe counterparts. Patient c149 was 57 years
old, for example, while patient c152 was 46 years old. In comparison, most other severe
COVID19 patients were in their 60s (i.e., severe-c143, severe-c145, severe-c146 and severe-
c148 patients were 62, 66, 63 and 65 years old, respectively). We find support for our assertion
by Liao et al. [32] as they report that while patient c152 was previously in critical condition,
they later improved.

We report that while the results generated by MouSSE support the expected upregulation
of canonical markers of COVID19 by disease severity and the expected stratification within
COVID19 severity categories, the results generated by comparative methods do not support a
similar pattern of findings. For example, we find that while interferon-specific cytokines like
IFNa1 and IFNy are upregulated in patients with severe COVID19 for activity estimates gen-
erated using the mousse.pos (see 526 Fig) and mousse.neg (see S27 Fig) methods, there is not
necessarily a strict, clustered separation between differentially expressed markers by disease
severity. Similarly, there is not a strict upregulation of markers specific to severe COVID19
(i.e., IFNal, IFNg, IFNy and IL6) relative to control and mild COVIDI109 for differentially
expressed markers generated using the cytokine-specific estimates produced by the irea.pos
method (see S28 Fig). We do find however that the implementation of our gene set scor-
ing strategy with the IREA-specific gene sets (i.e., irea.mousse) considerably improves the
performance of the IREA method (see S29 Fig). More specifically, we find that interferon-
specific cytokines like IFNa1 and IFNg are correctly upregulated in severe COVID19 as com-
pared to control and mild COVID19. Additionally, these markers are not strictly upregulated
in severe-c149 and severe-c152 patients, which is a result that is supported by our MouSSE
method. We also find that IL6 is not necessarily upregulated in severe COVID19 as compared
to control and mild COVID19 for cytokine activity estimates generated using the irea.mousse
method. In this regards, MouSSE is relatively better and more specific than the cyokine activ-
ity estimates generated using the irea.mousse and comparative methods since MouSSE gen-
erates cytokine activity estimates that result in identification of IL6 as a distinct marker for
severe COVID19. We also report that activity estimates generated using the naive (S30 Fig),
receptor (S31 Fig), product (S32 Fig), Seurat (S33 Fig) and PROGENy methods (S34 Fig) are
relatively noisy and less informative than other gene set-specific methods, thus failing to fully
account for signaling variations by disease severity.

4.2.1. Correlation of MouSSE-based cytokine activity estimates and MSigDB Hall-
mark gene sets. To further validate the MouSSE method, we computed a correlation matrix
between the cytokine activity estimates generated using MouSSE and the scored MSigDB
Hallmark gene sets [46]. Since the hallmark signatures contain inflammation specific gene
sets, we hypothesized a strong correlation between the IFN-I-specific cytokine activity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013475 September 19, 2025 17/ 29



https://doi.org/10.1371/journal.pcbi.1013475

PLOS COMPUTATIONAL BIOLOGY MouSSE

estimates generated using MouSSE and the inflammatory-specific hallmark gene sets. For
this task, we retrieved all gene sets specific to the Hallmark collection using the msigdbr func-
tion from the msigdbr R package v10.0.1. We then scored each Hallmark gene set by aver-
aging the expression of all genes in that set. We visualized the correlation matrix between

the cytokine markers differentially expressed by COVID19 severity as generated using the
MouSSE method and the scored Hallmark gene sets using a heatmap. As Fig 7 shows, the
IFN-I-specific cytokines (i.e., IFNa1 and IFN) are highly correlated with the interferon
alpha and interferon gamma gene sets. In addition, cytokines with differential expression
patterns specific to severe COVID19 (i.e., TNFa, IL1a, IL1f and IFN-I) are all highly corre-
lated with the inflammatory response gene set. In comparison, IFNe, which is more specific
to mild COVIDI19 as indicated by Fig 6, has a relatively lower correlation with the inflamma-
tory response-specific sets. These results indicate that the cytokine activity estimates gener-
ated using the MouSSE method, especially the IFN-I and pro-inflammatory-specific cytokine
estimates, are correlated with the expected Hallmark pathways.
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Fig 7. Heatmap of Pearson correlation between cytokines differentially expressed by COVID19 severity as estimated using the MouSSE method (see Fig 6) and the
Hallmark-specific pathway scores as computed on the COVID19 scRNA-seq data consisting of 63,734 samples.

https://doi.org/10.1371/journal.pchi.1013475.9007
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4.3. Application of mousse to mouse lymph node spatial
transcriptomics data

We next applied MouSSE to the Lopez at el. mouse lymph node Visium spatial transcrip-
tomics (ST) dataset, which examines lymph nodes following 48-hour stimulation with
Mpycobacterium smegmatis (MS). Since MS induces a response characterized by IFNy [47], we
expected to see upregulation of the interferon-specific response in the cytokines differentially
expressed between the infected and control lymph nodes. For this task, we used the SpatialD-
DLSdata R package v0.1.0 [48], which contains the prepackaged dataset consisting of 1092
spots. We log-normalized this ST data and applied the MouSSE method to generate cell sig-
naling estimates. We then scaled these estimates and used the FindAllMarkers function from
the Seurat package, with the minimum detection rate (min.pct) set to 0.25 using the ROC test,
to find cytokines differentially expressed by infection status (i.e., MS-1/MS-2 infected and
PBS control).

We first visualize the MouSSE-specific cytokine signaling estimates that are differen-
tially expressed based on infection status. Fig 8A shows that the cytokines upregulated in
the infected category relative to PBS include IFNx, IFNe¢ and Neuropoietin. In comparison,
LIF (Leukemia inhibitory factor) is upregulated in the PBS condition relative to the infected
category. Both IFNx and IFNe are interferon-specific signaling agents while LIF is known
to have anti-inflammatory and analgesic properties [49]. The upregulation of interferon-
specific signaling agents in the infected categories (i.e., MS-1/MS-2) and the upregulation of
anti-inflammatory-specific signaling agent in the control category (i.e., PBS) shows an accu-
rate recapitulation of variations in signaling patterns based on the treatment condition as
estimated using the MouSSE method.

Fig 8B demonstrates that the estimates generated using the mousse.pos method per-
form comparably to those generated by the MouSSE method. Both approaches identify sim-
ilar interferon-specific cytokines (i.e., IFNe, IFNx, and Neuropoietin) as upregulated in the
infected categories relative to PBS, while the LIF cytokine is upregulated in the PBS condi-
tion compared to the infected categories, consistent with results from the original MouSSE
method.
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Fig 8. Differentially expressed cytokine markers on mouse lymph node ST data consisting of 1092 spots by infection status (i.e., MS-1, MS-2 and PBS). (Fig 8A)
Heatmap of differentially expressed cytokines for the MouSSE method (mousse). (Fig 8B) Heatmap of differentially expressed cytokines for the modified MouSSE
method scored on just the positive weighted genes (mousse.pos).

https://doi.org/10.1371/journal.pcbi.1013475.9008

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013475 September 19, 2025 19/ 29



https://doi.org/10.1371/journal.pcbi.1013475.g008
https://doi.org/10.1371/journal.pcbi.1013475

PLOS COMPUTATIONAL BIOLOGY MouSSE

Fig 9A shows the differentially expressed cytokines by infection status for the irea.pos
method. As shown, all the indicated differentially expressed cytokines (i.e., IL30, LIGHT and
IL17D) are upregulated in the PBS condition relative to the infected categories. While the
relation of these cytokines to the PBS control condition can be further investigated, we do
not observe upregulation of any interferon-specific cytokines in the infected (MS-1/MS-2)
categories like we did for the estimates generated using the MouSSE method.

Similar to the COVID19 analysis, we can investigate whether the application of the
MousSSE signaling estimation strategy (i.e., weighting both positive and negative genes) can
further improve the performance of gene sets constructed using the IREA method. Fig 9B
shows the application of the irea.mousse method. As compared to Fig 9A, we observe upreg-
ulation of cytokines specific to the infected categories (i.e., IFNA2). The increased interferon-
specific signaling in cytokines differentially expressed in the infected categories compared to
the PBS control highlights the potential benefit of MouSSE’s gene set construction and scor-
ing strategy. By prioritizing expression from both positively and negatively weighted gene
sets, this approach may enhance the performance of existing pathway or cytokine activity
estimation techniques.

The results from the remaining comparative methods (i.e., naive, receptor, product, niches,
progeny and seurat) on the mouse lymph node ST data are included in the supplement
(see S35-540 Figs). Importantly, these analyses did not identify any significant associations
between cytokine activity and infection status.

5. Discussion

We propose a novel method, MouSSE, for cytokine activity estimation using murine scRNA-
seq or ST data. MouSSE leverages the Immune Dictionary cytokine stimulation data to con-
struct weighted gene set signatures for 86 cytokines and, for a target dataset, uses these gene
sets to estimate cell-level cytokine activity. Our MouSSE method can be leveraged in clin-

ical settings to generate single-cell level cytokine activity estimates from patient transcrip-
tomics data. These estimates can inform therapeutic strategies by identifying dominant
cytokine-driven pathways in a patient’s immune response. For example, in the context of
severe COVIDI109, if MouSSE identifies elevated IFN-I activity in specific immune cell subsets,
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Fig 9. Differentially expressed cytokine markers on mouse lymph node ST data consisting of 1092 spots by infection status (i.e., MS-1, MS-2 and PBS). (Fig 9A)
Heatmap of differentially expressed cytokines for the IREA-based gene sets scored using just positive weighted genes (irea.pos). (Fig 9B) Heatmap of differentially
expressed cytokines for the IREA-based positive and negative weighted gene sets scored using MouSSE’s weighting strategy (irea.mousse).

https://doi.org/10.1371/journal.pchi.1013475.9009
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clinicians might consider targeting IFN-I signaling with JAK inhibitors [50] or other pathway-
specific modulators. More broadly, this patient-level cytokine profiling could be used to
stratify individuals by inflammatory risk or cytokine response profiles, enabling personal-
ized immunomodulatory treatment plans. We provide the implementation of the MouSSE
method, including the installation instructions and the associated vignette, via the MouSSE R
package at https://github.com/azkajavaid/MousseR-package.

5.1. Limitations

A key strength of MouSSE compared to deep learning and optimal transport-based cell-cell
communication methods is that the weighted gene sets used for scoring are interpretable and
easy to customize. Furthermore, the gene set scoring strategy used by MouSSE, which prior-
itizes both positive and negative weighted genes, works well in practice and further improves
cytokine activity estimation relative to methods that leverage expression from just positive
weighted genes.

We note that correctly predicting the cytokine label corresponding to each sample via 5-
fold cross-validation does not necessarily exactly correspond to the correct evaluation of the
cytokine activity scores generated by MouSSE and comparative methods. One challenge with
exactly evaluating the cytokine activity scores is that extensively documented ground truth
data that provides the individual, mutually exclusive continuous activity scores for different
cytokines does not currently exist. An exact comparison of cytokine activity estimates gener-
ated by MouSSE and comparative methods would entail conducting perturbation experiments
where each cytokine is individually injected and tracked (i.e., labelled with a fluorescent anti-
body) to ensure to record its continuous cytokine activity before it potentially transforms into
a different downstream cytokine. We are not currently aware of a database of experiment-
based cytokine activity scores that would allow us to completely distinguish the activity of one
cytokine against every other cytokine. We note this as a potential limitation of our manuscript
and an inherent challenge in validating cytokine activity estimates in the absence of definitive
ground truth data, although we believe the currently detailed evaluations still provide valuable
insight into the relative performance of MouSSE.

For transparency, we included all available data in the heatmaps, even when the number of
valid AUC-ROC scores for some methods was limited. We note that comparing AUC-ROC
scores may be less meaningful when a method only produces valid AUC-ROC values for a
small fraction of cytokines. However, our intent is to provide a comprehensive comparison
across all cytokines for which AUC-ROC values can be computed.

5.2. Future directions

To further improve the performance of MouSSE, we can leverage reduced rank reconstruc-
tion. We have previously developed the SPECK method for unsupervised cell surface receptor
abundance estimation using SVD-based reduced rank reconstruction. We plan to leverage
our SPECK technique coupled with the gene set construction and gene set weighting strat-
egy implemented in the MouSSE method to improve MouSSE’s performance on very sparse
scRNA-seq or ST datasets.

Our current implementation of MouSSE is cell-type agnostic. However, since cytokine
signaling can be strongly cell-type-dependent, we plan to extend MouSSE in future work to
perform cell-type-specific cytokine activity estimation. In addition, we note that an analysis
of alternative five-fold splits (i.e., stimulation replicate condition) for cross-validation may
further improve generalizability of MouSSE.
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We note that, in this manuscript, we focus exclusively on mouse data and do not perform
an application of the MouSSE method on non-mouse species, as this is beyond the scope
of our current work. However, we acknowledge that extending the method to other species
would require careful handling of differences in gene and cytokine nomenclature. In future
work, we plan to incorporate support for cross-species applications, including robust gene
ortholog mapping strategies.

Supporting information

S1 Fig. PR-AUC score for all 86 cytokines quantified using the MouSSE and comparative
methods as computed on the 77,033 cell mouse lymph node scRNA-seq data. Cytokine
markers with an asterisk have the highest PR-AUC score when estimated using the MouSSE
method (mousse).

(TIFF)

S2 Fig. Specificity for all 86 cytokines quantified using the MouSSE and comparative
methods as computed on the 77,033 cell mouse lymph node scRNA-seq data. Cytokine
markers with an asterisk have the highest specificity when estimated using the MouSSE
method (mousse).

(TIFF)

$3 Fig. Sensitivity for all 86 cytokines quantified using the MouSSE and comparative
methods as computed on the 77,033 cell mouse lymph node scRNA-seq data. Cytokine
markers with an asterisk have the highest sensitivity when estimated using the MouSSE
method (mousse).

(TIFF)

S4 Fig. Precision for all 86 cytokines quantified using the MouSSE and comparative meth-
ods as computed on the 77,033 cell mouse lymph node scRNA-seq data. Cytokine mark-
ers with an asterisk have the highest precision when estimated using the MouSSE method
(mousse).

(TIFF)

S5 Fig. NPV for all 86 cytokines quantified using the MouSSE and comparative methods
as computed on the 77,033 cell mouse lymph node scRNA-seq data. Cytokine markers with
an asterisk have the highest NPV when estimated using the MouSSE method (mousse).
(TIFF)

S6 Fig. Prevalence for all 86 cytokines quantified using the MouSSE and comparative
methods as computed on the 77,033 cell mouse lymph node scRNA-seq data. Cytokine
markers with an asterisk have the highest prevalence when estimated using the MouSSE
method (mousse).

(TIFF)

S7 Fig. F1 score for all 86 cytokines quantified using the MouSSE and comparative meth-
ods as computed on the 77,033 cell mouse lymph node scRNA-seq data. Cytokine mark-
ers with an asterisk have the highest F1 score when estimated using the MouSSE method
(mousse).

(TIFF)

S8 Fig. Detection rate for all 86 cytokines quantified using the MouSSE and comparative
methods as computed on the 77,033 cell mouse lymph node scRNA-seq data. Cytokine
markers with an asterisk have the highest detection rate when estimated using the MouSSE
method (mousse).

(TIFF)
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S9 Fig. Detection prevalence for all 86 cytokines quantified using the MouSSE and com-
parative methods as computed on the 77,033 cell mouse lymph node scRNA-seq data.
Cytokine markers with an asterisk have the highest detection prevalence when estimated
using the MouSSE method (mousse).

(TIFF)

$10 Fig. Balanced accuracy for all 86 cytokines quantified using the MouSSE and com-
parative methods as computed on the 77,033 cell mouse lymph node scRNA-seq data.
Cytokine markers with an asterisk have the highest balanced accuracy when estimated using
the MouSSE method (mousse).

(TIFF)

S11 Fig. PR-AUC comparison between every pair of cytokine for differential expression
analysis trained to achieve distinguished signatures between pairs of cytokines as com-
puted from cross-validated mouse lymph node target scRNA-seq data. Rows represent
cytokines to defined markers for (i.e., cytokines that are differentiated for).

(TIFF)

$12 Fig. AUC comparison between every pair of cytokine for differential expression anal-
ysis trained to achieve distinguished signatures between pairs of cytokines as computed
from cross-validated mouse lymph node target scRNA-seq data. Rows represent cytokines
to defined markers for (i.e., cytokines that are differentiated for).

(TIFF)

$13 Fig. Specificity comparison between every pair of cytokine for differential expression
analysis trained to achieve distinguished signatures between pairs of cytokines as com-
puted from cross-validated mouse lymph node target scRNA-seq data. Rows represent
cytokines to defined markers for (i.e., cytokines that are differentiated for).

(TIFF)

$14 Fig. Sensitivity comparison between every pair of cytokine for differential expression
analysis trained to achieve distinguished signatures between pairs of cytokines as com-
puted from cross-validated mouse lymph node target scRNA-seq data. Rows represent
cytokines to defined markers for (i.e., cytokines that are differentiated for).

(TIFF)

S$15 Fig. Precision comparison between every pair of cytokine for differential expression
analysis trained to achieve distinguished signatures between pairs of cytokines as com-
puted from cross-validated mouse lymph node target scRNA-seq data. Rows represent
cytokines to defined markers for (i.e., cytokines that are differentiated for).

(TIFF)

$16 Fig. NPV comparison between every pair of cytokine for differential expression anal-
ysis trained to achieve distinguished signatures between pairs of cytokines as computed
from cross-validated mouse lymph node target scRNA-seq data. Rows represent cytokines
to defined markers for (i.e., cytokines that are differentiated for).

(TIFF)

$17 Fig. Prevalence comparison between every pair of cytokine for differential expres-
sion analysis trained to achieve distinguished signatures between pairs of cytokines as
computed from cross-validated mouse lymph node target scRNA-seq data. Rows represent
cytokines to defined markers for (i.e., cytokines that are differentiated for).

(TIFF)
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S$18 Fig. F1 score comparison between every pair of cytokine for differential expression
analysis trained to achieve distinguished signatures between pairs of cytokines as com-
puted from cross-validated mouse lymph node target scRNA-seq data. Rows represent
cytokines to defined markers for (i.e., cytokines that are differentiated for).

(TIFF)

S19 Fig. Detection rate comparison between every pair of cytokine for differential expres-
sion analysis trained to achieve distinguished signatures between pairs of cytokines as
computed from cross-validated mouse lymph node target scRNA-seq data. Rows represent
cytokines to defined markers for (i.e., cytokines that are differentiated for).

(TIFF)

$20 Fig. Detection prevalence comparison between every pair of cytokine for differential
expression analysis trained to achieve distinguished signatures between pairs of cytokines
as computed from cross-validated mouse lymph node target scRNA-seq data. Rows repre-
sent cytokines to defined markers for (i.e., cytokines that are differentiated for).

(TIFF)

$21 Fig. Balanced accuracy comparison between every pair of cytokine for differential
expression analysis trained to achieve distinguished signatures between pairs of cytokines
as computed from cross-validated mouse lymph node target scRNA-seq data. Rows repre-
sent cytokines to defined markers for (i.e., cytokines that are differentiated for).

(TIFF)

$22 Fig. Proportion of cytokines with the highest AUC, PR.AUC, balanced accuracy, sen-
sitivity, detection rate, F1 score, detection prevalence, negative predicted value, preci-
sion, specificity and prevalence across each of the ten methods for activity estimates gen-
erated using MouSSE scored with top 20 genes by absolute avg_log2FC as computed on
cross-validated mouse lymph node target scRNA-seq data.

(TIFF)

$23 Fig. Proportion of cytokines with the highest AUC, PR.AUC, balanced accuracy, sen-
sitivity, detection rate, F1 score, detection prevalence, negative predicted value, preci-
sion, specificity and prevalence across each of the ten methods for activity estimates gen-
erated using MouSSE scored with top 60 genes by absolute avg_log2FC as computed on
cross-validated mouse lymph node target scRNA-seq data.

(TIFF)

$24 Fig. Proportion of cytokines with the highest AUC, PR.AUC, balanced accuracy, sen-
sitivity, detection rate, F1 score, detection prevalence, negative predicted value, preci-
sion, specificity and prevalence across each of the ten methods for activity estimates gen-
erated using MouSSE scored with top 100 genes by absolute avg log2FC as computed on
cross-validated mouse lymph node target scRNA-seq data.

(TIFF)

$25 Fig. Proportion of cytokines with the highest AUC, PR.AUC, balanced accuracy, sen-
sitivity, detection rate, F1 score, detection prevalence, negative predicted value, preci-
sion, specificity and prevalence across each of the ten methods for activity estimates gen-
erated using MouSSE scored with top 200 genes by absolute avg_log2FC as computed on
cross-validated mouse lymph node target scRNA-seq data.

(TIFF)
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$26 Fig. Heatmap of differentially expressed cytokines for mousse.pos method as con-
structed on COVID19 data.
(TIFF)

$27 Fig. Heatmap of differentially expressed cytokines for mousse.neg method as con-
structed on COVID19 data.
(TIFF)

$28 Fig. Heatmap of differentially expressed cytokines for irea.pos method as constructed
on COVID19 data.
(TIFF)

$29 Fig. Heatmap of differentially expressed cytokines for irea.mousse method as con-
structed on COVID19 data.
(TIFF)

$30 Fig. Heatmap of differentially expressed cytokines for naive method as constructed on
COVID19 data.
(TIFF)

S31 Fig. Heatmap of differentially expressed cytokines for receptor method as constructed
on COVID19 data.
(TIFF)

$32 Fig. Heatmap of differentially expressed cytokines for product method as constructed
on COVID19 data.
(TIFF)

$33 Fig. Heatmap of differentially expressed cytokines for Seurat method as constructed
on COVID19 data.
(TIFF)

$34 Fig. Heatmap of differentially expressed cytokines for PROGENy method as con-
structed on COVID19 data.
(TIFF)

S35 Fig. Heatmap of differentially expressed cytokines for normalized ligand score (naive)
as constructed on mouse lymph node ST data consisting of 1092 spots by infection status
(i.e., MS-1, MS-2 and PBS).

(TIFF)

$36 Fig. Heatmap of differentially expressed cytokines for normalized receptor score
(receptor) as constructed on mouse lymph node ST data consisting of 1092 spots by infec-
tion status (i.e., MS-1, MS-2 and PBS).

(TIFF)

$37 Fig. Heatmap of differentially expressed cytokines for ligand-receptor product score
(product) as constructed on mouse lymph node ST data consisting of 1092 spots by infec-
tion status (i.e., MS-1, MS-2 and PBS).

(TIFF)

$38 Fig. Heatmap of differentially expressed cytokines for NICHES method (niches) as
constructed on mouse lymph node ST data consisting of 1092 spots by infection status
(i.e., MS-1, MS-2 and PBS).

(TIFF)
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$39 Fig. Heatmap of differentially expressed cytokines for PROGENy method (progeny)
as constructed on mouse lymph node ST data consisting of 1092 spots by infection status
(i.e., MS-1, MS-2 and PBS).

(TIFF)

$40 Fig. Heatmap of differentially expressed cytokines for Seurat Perturbation Scores
(seurat) as constructed on mouse lymph node ST data consisting of 1092 spots by infec-
tion status (i.e., MS-1, MS-2 and PBS).

(TIFF)
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