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Abstract
Plant cells control their volume by regulating the osmotic potential of their cytoplasm and
vacuole. Water is attracted into the cell as the result of a cascade of solute exchanges
between the cell subcompartments and the cell surroundings, which are governed by
chemical, electrostatic and mechanical forces. Due to this multi-physics aspect and to
couplings between volume changes and chemical effects, modeling these exchanges
remains a challenge that has only been partially addressed. As interest for multi-
compartment models grows in the plant cell community, this challenge calls for new mod-
eling strategies. In this paper, we introduce an energy-based approach to couple chemi-
cal, electrical and mechanical processes taking place between several subcompartments
of a plant cell. The contributions of all physical effects are gathered in an energy function,
which allows us to derive the equations satisfied by each variable in a systematic way.
We illustrate the properties of this modular, unified approach on the modeling of ion and
water transport in a guard cell during stoma opening. We represent the stoma opening
process as a quasi-static evolution driven by hydrogen pumps in the plasma and vacuo-
lar membranes, and we show that the new formalism explains why the system varies in
a particular direction in response to perturbations. Additional numerical simulations allow
us to investigate the role of each hydrogen pump in this process. Altogether, we show
that this energy-based approach highlights a hierarchy between the forces involved in
the system, and to dissect the role of each physical effect in the complex behavior of the
system.

Author summary
Osmosis is a physical effect by which water is attracted into compartments with a high
concentration of solute. Plant cells exploit osmosis to attract water into their subcellular
compartments and increase their sizes. They use complex mechanisms, involving the
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circulation of several ion species between compartments, governed by chemical and
physical phenomena of multiple natures. Due to the complexity of their interactions,
these mechanisms are difficult to study experimentally, and require the development
quantitative modeling approaches. In this paper, we propose a theoretical model whose
goal is to show how these ions exchanges result in water finally flowing into the cell.
Particular attention is paid to the competition between the various physical phenomena,
their priorities and the way each of them influences the system.
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1. Introduction
To achieve key living functions, plant cells change their size and shape by regulating the
amount of water entering their vacuole [1–4]. For this, they actively control the osmotic
potential of their cytoplasm and vacuole by importing or exporting ions or sugars across the
membranes delimiting these compartments (the plasma and vacuolar membranes, respec-
tively). Solutes are transported by a wide variety of specialized proteins located on each mem-
brane, including active pumps, channels, exchangers, etc. Due to their specific stoichiometry,
these transport mechanisms define constraints on possible transfers of species between sub-
cellular compartments. The forces that drive solute transfer are of multiple natures. They inte-
grate chemical, electrical, and mechanical components, whose combination determines the
dynamics of this multi-physics, multi-membrane system.

Modeling approaches have been widely used to help analyze the behavior of such com-
plex systems, as a complement to experimentation. A first category of approaches focuses on
electrochemical exchanges across membranes using ordinary differential equations. In these
models, the variation of ion concentrations in each cell compartment is defined by the ion
fluxes crossing membranes through a range of transport proteins. Vitali et al. [5], for example,
use simulation to identify the most significant parameters controlling the volume dynamics
of beetroot vacuoles. In a recent work, Li et al. [6] account for the multi-membrane structure
of the cell, and simulate the ion fluxes across both the plasma and vacuole membranes of a
guard cell in response to variations in external potassium and chloride concentrations. Note
that similar studies have also been carried out to model ion transport in animal or fungi cells
[7,8]. Many cell physiology models use a formalism inspired by chemical kinetics to repre-
sent the dynamics of each transport process. Gerber et al. [9] opt for a different formalism
inspired by thermodynamics, introduced in the 1950s [10–12], where the flux across a mem-
brane is proportional to the electrochemical potential gradient between the two connected
compartments. They use a parameter estimation procedure to fit their simulation results to
experimental measures. The variety of modeling approaches used to determine the flux of ions
between compartments illustrates the fact that the modeling of transport dynamics in cells
remains a challenging and discussed topic.

A second category of approaches aims at modeling the mechanical response of the cell wall
to an increasing turgor pressure inside the cell. In the case of cell growth, this response is irre-
versible, as volume increase triggers wall remodeling and cell division. Complex mechanical
models proposed in this context are reviewed in [13,14]. These models account for the influ-
ence of the composite structure of cell walls [15], membrane integrity [16] or enzyme activity
[17]. Mechanical response can also be reversible, as in the case of guard cells. Located on the
surface of plant leaves and stems, guard cells work in pairs to control the aperture of small
pores called stomata. These specialized cells are able to repeatedly get inflated and deflated
to open and close stomata, and regulate plant transpiration and carbon dioxide absorption
[18,19]. Many mechanical studies examine the elastic properties of walls in guard cells (see the
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review [20]). Meckel et al. [21] discuss whether guard cells widen or elongate as their volume
increases. By comparing finite element simulations and experimental measures, Woolfenden
et al. [22] estimate the stiffness parameter distribution of the cell wall. Similar approaches
are followed in [23,24]. Carter et al. [25] study the role of wall stiffening at the extremities of
guard cells in the stoma opening process, while Jaafar et al. [26] focus on the role of cell wall
anisotropy.

The models mentioned above either describe electrochemical or mechanical phenomena.
On the one hand, ion exchange models involve an osmotic pressure but rarely describe water
movements between compartments, whereas on the other hand, mechanical models pre-
dict cell deformation as a result of a turgor pressure whose origin is not specified. The inter-
play between these two categories of effects is often not taken into account, as it represents
an additional level of complexity. Also, the multi-compartment aspect of plant cells is rarely
considered. Recent studies [6,27] highlight the need to include it in modeling approaches, to
better understand how cells synchronize the regulation of their membranes. This new trend
in plant cell physiology calls for models and formalisms able to provide novel insight into
multi-compartment systems.

The challenge of building multi-membrane models that couple electrochemistry with
mechanics is addressed in the OnGuard model [28]. This well-established framework aims
to provide realistic simulations of solute exchanges in a guard cell. To connect the guard cell
physiology with the stoma aperture, the authors use a linear pressure-volume law, along with
a linear volume-aperture relation, whose coefficients are empirically set based on experimen-
tal results. OnGuard has been implemented as a software platform, that has proven useful to
reproduce experimental results [29], and to drive new experiments by predicting guard cell
behavior [30–32]. To run a simulation, the user chooses among an exhaustive list of mem-
brane transport proteins and sets the dynamic parameters of each reaction law. Results are
available through different plots showing the time evolution of the guard cell volume and
aperture, osmolyte concentrations and fluxes, among many other physical quantities.

In this paper, similarly to OnGuard, our main objective is to develop a multi-membrane,
multi-physics model for the regulation of plant cell volume control. However, we follow a dif-
ferent and complementary approach. While OnGuard focuses on exhaustiveness and resem-
blance to experimental results, we center our attention on simplicity and modularity. We seek
to integrate electrochemical and hydro-mechanical processes in an explicit and mechanistic
way, while relying on few parameters, whose relative effect on the simulations can be quali-
tatively and quantitatively assessed. To meet these ambitions, we unify the various physical
processes by gathering their contributions into a common global energy function. This energy
function naturally brings some modularity to the model, as its components can be added or
removed without impact on the other components of the system. In addition, it keeps generic
features (e.g. implementation of the main physical processes) well separated from specific
ones (e.g. choice of specific transport stoichiometry, etc.). We exploit this approach to con-
struct a minimal model representing a guard cell during stoma opening, and simulate ion
transfer between its subcellular compartments. To keep the model simple, we assume that the
underlying physical processes follow at every moment a moving equilibrium, which progres-
sively evolves in response to successive perturbations. This makes it possible to neglect the
dynamics of ion transport and to keep fewer parameters in the model. In such quasi-static
simulations, time-dependent ordinary differential equations are replaced with a series of non-
linear equations that are solved to compute the sequence of equilibrium states. Altogether,
the use of an energy landscape and quasi-static simulation allows one to obtain a simple geo-
metrical interpretation of the system evolution. We will show that the resulting formulation
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is flexible and easily provides physical insight into the role of the various physical processes
involved in the system regulation.

2. Methods and models
We now introduce the formalism used to construct a simple representation of a plant cell. We
reduce the cell to a set of nested compartments connected by transporters. For clarity reasons,
we use the term transporter to designate any process that transports solute or water across a
membrane. This definition includes pumps, channel, coupled ion transport, and even water
permeating across membranes. As mentioned in Sect 1, we seek to compute a sequence of
equilibrium states for the system, that is parametrized by the chemical extent of some con-
trolled transport reactions. In other words, a resulting equilibrium state for the whole system
is associated with a given state of the active transport processes. As active transporters work,
the system equilibrium state constantly adjusts in consequence.

From now on, we reduce an object as complex as a plant cell to amulti-membrane com-
plex, which is an arrangement of one, two, or possibly more nested compartments enclosed
by membranes. Each compartment contains a certain chemical amount (in mol) of chemical
species such as ions and water. In this article, water can circulate across membranes, while the
transport of ions between compartments is allowed by several active and passive transporters.
The multi-membrane complex is surrounded by an external environment with fixed ion con-
centrations, which acts as a reservoir. A plant cell is typically represented by a complex with
two compartments (the cytoplasm and the vacuole). For instance, the system shown in Fig 1,
involves two membranes, four chemical species (hydrogen, chloride, potassium, water) and
eight transporters.

Fig 1. Representation of a guard cell as a multi-membrane complex.Themodel involves two membranes and a
hand-picked selection of transporters. Only the outer membrane offers mechanical resistance to volume changes,
which results in an equal pressure in both compartments. Each compartment contains a certain amount of hydro-
gen, chloride, potassium and water. All these chemical amounts compose the system state, from which the energy
function is evaluated. (Gear image adapted from Issi at openclipart.org).

https://doi.org/10.1371/journal.pcbi.1013474.g001
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The state of the system at a given moment is entirely defined by the chemical amount
of each considered chemical species in each compartment. Of course, to perform simula-
tions involving a multi-membrane model, some fixed parameters need to be defined, such
as the initial content of all compartments or initial electric potentials across membranes, but
these parameters are not variables, and they remain fixed along the simulation. The chemical
amount of species A in compartment i is denoted by ni,A, and all chemical amounts are gath-
ered in the state vector n∈ℝN. Here, the size N of the state vector is the product of the num-
ber of chemical species with the number of compartments. For instance, the state vector for
the model from Fig 1, of size N = 8, reads

n = (n1,H+ n1,Cl– n1,K+ n1,H2O n2,H+ n2,Cl– n2,K+ n2,H2O)∈ℝ8. (1)

Note that the variables in the state vector are first ordered by compartment, and then by
chemical species, and that the components correspond to amounts of chemical species rather
than to concentrations.

An equilibrium state is defined as the state that minimizes an energy function among a
range of states attainable by the system. More formally, the equilibrium state is the solution to
a constrained optimization problem of the form

minimize G(n) subject to constraint n∈ Vx, (2)

where G is an energy function to minimize, n is the variable that describes the system state,
and Vx is the range of states attainable by the system, which depends on an input parameter x.
Below, we give details about the various components of this minimization problem, starting
with the energy function.

2.1. Energy function and potentials
To understand the dynamics of this physical system, we seek to describe how its protagonists
store, exchange or dissipate energy. In particular, the energy that is stored and does not cor-
respond to a current motion is called potential energy. It is the energy paid by the system just
to be in a certain state. The potential energy function of a system depends on the system state
only, and it describes the forces that influence the system. These forces make the physical sys-
tem spontaneously evolve to decrease its potential energy, generally transforming it into heat.
A state where the potential energy is at a local minimum is called an equilibrium state. When
a physical system has reached an equilibrium, it ceases to evolve, and when it is taken away
from this equilibrium, it tends to go back to this equilibrium (we will only meet stable equilib-
ria in this study). From now on, we simply use energy function to refer to the potential energy
function. The potential energy function should not be confused with potentials (chemical
potential, electric potential), that rather correspond to derivatives of the energy function. A
chemical potential is expressed in J/mol, an electric potential in J/C and a pressure in J/m3,
but the potential energy is expressed in J.

Defining an energy function for a physical system is a very convenient modeling practice,
as energy is a common currency between a wide range of physical processes. In general, the
system energy function is the sum of several terms, with each term corresponding to a specific
physical process. In this paper, the energy function, is split into three terms, as we consider
three types of physical effects. First, chemical effects tend to equilibrate the concentration of
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solutes between both side of each membrane. Second, electrostatic effects oppose to the build-
ing of large electric potential variations across membranes. Finally, mechanical effects act on
volume changes.

Though the energetic formalism is compatible with several choices of shape for the
cell, geometry plays a significant role when it comes to deriving an actual expression for
energy function terms. In this paper, we stick to a very simple geometry for each membrane,
namely a cylinder that elongates in one direction only, along its revolution axis, so that one-
dimensional considerations are sufficient to define the elastic deformation energy. When the
cell volume changes, only the cylinder lateral surface is subject to strain in the direction of
the elongation, and the cylinder volume and lateral surface area remain proportional to its
length. We denote by Vi(n) the volume enclosed in the i-th membrane, and by Ai(n) the area
of its lateral surface. For a cylinder with fixed radius r, the lateral surface area and the volume
satisfy Ai(n) = 2Vi(n)/r. Note that the i-th membrane encloses compartment i, but also all
compartments with index j > i.

We now give a little more details about each term of the energy function.
Chemical energy.The chemical energy term measures a discrepancy between the sys-

tem state and a chemical equilibrium. Chemical forces usually determine in which direction
a chemical reaction occurs [33, Chapter 8]. Whereas we do not consider any chemical trans-
formation in this model, chemical forces still play a role in determining which way ions cir-
culate through a transporter. Namely, the chemical energy takes larger values when the con-
centration of a species is very different between two compartments, and chemical forces tend
to promote, for each species, a uniform concentration in the compartments. Chemical forces
are responsible for the osmosis process, i.e. attracting water in compartments where the solute
concentration is high.

We use a standard expression for the chemical energy term, based on each chemical poten-
tial 𝜇i,A(n) associated with species A in compartment i. When chemical transformations
occur, the chemical potential determines how the chemical energy changes when species A is
produced or consumed in compartment i, and its classical expression reads

𝜇̂i,A(n) = 𝜇○A + RT ln(𝛾Ayi,A(n)), with yi,A(n) =
ni,A

∑R ni,R
, (3)

where yi,A(n) the mole fraction of species A in compartment i, and 𝜇○A and 𝛾A represent
the chemical potential of pure species and the activity coefficient of species A, respectively
[34, Section 6.3]. However, we only consider solute transport in this study, and an increase
of ni,A without variation of other quantities means that particles of A have been taken from
the external environment and transported into compartment i. The corresponding marginal
variation rate of chemical energy involves the chemical potential of A in the external environ-
ment. It reads

𝜇i,A(n) = 𝜇̂i,A(n) – 𝜇̂ext,A = RT ln(yi,A(n)
yext,A

) . (4)

Here, the external environment is considered as a reservoir, where each species A is present
with the constant mole fraction yext,A, so that the chemical potential 𝜇̂ext,A of A in the exter-
nal environment is constant. The expression for chemical energy is chosen so that 𝜕Gchem

𝜕ni,A (n) =
𝜇i,A(n), which yields

Gchem(n) =∑
i
(∑

A
ni,ART ln(yi,A(n)

yext,A
)) =∑

i
(∑

A
ni,A 𝜇i,A(n)) . (5)
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Note that 𝜇i,A only depends on chemical amounts in compartment i, so that (5) is actually
made of independent terms, with each term depending on mole fractions in one compart-
ment. From expressions (5) and (4), we can check that the chemical energy function is at a
minimum when all chemical potentials are zero, i.e. mole fractions in each compartment are
equal to external mole fractions.

Electrostatic energy.The electrostatic term of the energy function aims to penalize large
differences of electric potential across each membrane. When a charged particle crosses a
membrane from one compartment to another, the net transfer of electric charge results in a
charge imbalance across the membrane and a difference of electric potential between the two
compartments. This phenomenon, also known as membrane polarization, tends to oppose
to the passage of more similar charges in the same direction. From a modeling point of view,
a membrane can be considered as an electric capacitor, i.e. a thin insulating layer between
two charged compartments, allowing charges to accumulate along the membrane when a
difference of potentials occurs. As a consequence, the electrostatic energy value is the sum
of the energy of all capacitors. The electrical capacitance of a membrane is proportional to
its area. The capacitance per unit membrane area in biological cells is typically 1 μF/cm2

[35, Section 2.6].
The electric structure of a multi-membrane complex can be represented by an equivalent

circuit, shown in Fig 2 in the two-membrane case. Each compartment corresponds to a node
in the circuit, while the external environment is represented by the ground. Compartments
are connected by capacitors that represent the membranes, while the two current sources
symbolize the action of adding charges from the external environment into one of the com-
partments. To understand the relationship between the content of each compartment and the
state of capacitors, let us apply Kirchhoff ’s circuit laws: if we add a charge dq1 into compart-
ment 1 and dq2 into compartment 2, then the charge stored in capacitor C2 changes by dq2,
while the charge stored in capacitor C1 changes by dq1 + dq2 (here, charge displacements act
like current intensities). In other words, the charge Qi(n) stored in the capacitor Ci depends
on the cumulated electric charge in all compartments enclosed inside the i-th membrane. In
particular, transporting charged particles from compartment 1 to compartment 2 corresponds
to the situation dq1 = –dq2, which does not change the charge stored in capacitor C1.

Let us now derive an expression for the electrostatic energy stored in capacitor Ci. If we
denote by nk = (nk,A,nk,B,… ) the vector of all chemical amounts in compartment k, the charge
contained in compartment k is defined by

qk(n) = q0k + Fz
T (nk – n0

k) , (6)

where z = (zA, zB,… ) stores the charge of each species, and F is the Faraday constant. The
parameters q0k and n0 are fixed as part of the initial conditions. The expression for the charge
stored in capacitor Ci reads

Qi(n) =∑
k⩾i

qk(n) =Q0
i +∑

k⩾i
FzT (nk – n0

k) , (7)

where Q0
i denotes the stored charge in initial conditions. The energy stored in capacitor Ci is

defined using the classic formula

Gi,elec(n) =
1
2
Qi(n)2

Ci(n)
= 1
2Ci(n)

⎛
⎝
Q0

i +∑
k⩾i

FzT (nk – n0
k)
⎞
⎠

2

. (8)
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Fig 2. Electric representation of a two-membrane complex. Each capacitor represents a membrane and each com-
partment corresponds to a node in the circuit. Variations of ion amounts in each compartment result in adding or
removing charges in these compartments. The circuit representation suggests that adding charged particles into com-
partment 2 contributes to charging both capacitors C1 and C2. This circuit analogy is used to evaluate the electrostatic
energy term.

https://doi.org/10.1371/journal.pcbi.1013474.g002

Note that the initial membrane charge Q0
i can be deduced from experimental measures

of initial membrane potentials. The expression for the capacitance Ci(n) depends on the cell
geometry. As mentioned above, the cell is modeled as a cylinder, and for simplicity we only
consider its lateral surface to evaluate the membrane capacitance, which is defined by

Ci(n) = CmAi(n) = 2
Cm

r
Vi(n), (9)

where Cm is the capacitance per unit surface.
Finally, we evaluate the total electrostatic energy by adding up the energy stored in each

capacitor, i.e.

Gelec(n) =∑
i
Gi,elec(n). (10)

Mechanical energy and cell geometry.Themechanical energy term represents the elastic
energy stored in the cell wall as the cell volume increases. While cell growth is an irreversible
process involving cell wall elasticity and plasticity at the same time, guard cell deformation
during stoma opening is reversible, as the stoma opening/closing cycle happens several times,
at least once a day. As we focus in this paper on the quasi-static modeling of a guard cell, the
only mechanical effect we consider is elasticity.

The mechanical energy stored in a membrane is a function of the volume it encloses. When
subject to a volume change, the membrane adopts a resulting mechanical configuration,
which corresponds to a value for its mechanical energy. In this paper, the only contributor to
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compartment volume is water, so that the volume enclosed in the i-th membrane is defined by

Vi(n) = vH2O∑
k⩾i

nk,H2O, (11)

where vH2O is the molar volume of water. Keep in mind that Vi(n) is not the volume of com-
partment i, but the cumulated volume of all compartments enclosed in the i-th membrane.
Also, in the context of plant cells, we assume that the only membrane that offers mechani-
cal resistance to volume changes is the outer membrane (membrane 1), as in plant cells the
plasma membrane is coupled with the cell wall, while the vacuole membrane (membrane 2)
is only a lipid bilayer. The resulting elastic deformation energy only depends on the whole cell
volume V1(n), which is the sum of all compartment volumes. In other words, defining the
mechanical energy term boils down to defining a function of one variable, sometimes referred
to as a pressure/volume law. In terms of pressure, it means that no membrane except the first
one applies mechanical forces on the fluid it contains, and the mechanical pressure is the
same in every compartment. If we define the pressure P = 𝜕Gmech/𝜕V1, by looking at (11) we
obtain

𝜕Gmech

𝜕n1,H2O
(n) =⋯ = 𝜕Gmech

𝜕nNcomp ,H2O
(n) = vH2O P(n), (12)

which means that it has the same cost in mechanical energy to add some water into any com-
partment.

Without choosing a cell geometry, it is difficult to be more specific about the mechani-
cal energy term. We now exploit the cylindrical cell shape to come up with an expression.
When the cell expands, the strain in the lateral surface is given by the expression 𝜀(n) =
V1(n)/V1(n0)–1. We denote by Σ0 the initial cylinder lateral surface and by Ai(n0) its area.
Using a linear constitutive law, the energy integrated over the whole lateral surface reads

Gmech(n) =∫Σ0

1
2Es𝜀(n)

2 ds =A1(n0)× Es
2
( V1(n)
V1(n0)

– 1)
2

, (13)

where Es is a surface elastic modulus (in Pa ⋅m).
Though we used a simple one-dimensional model for the cell geometry, the energetic for-

malism is completely compatible with alternative descriptions of the cell expansion [21] or
more complex geometries [20,22].

Enforcing equilibrium in starting conditions. To ensure consistency between the model
and experimental conditions, we need to start a simulation from any user-specified initial
state n0, which can be a state measured at the beginning of an experiment. However, in a
quasi-static model, n0 must be an equilibrium state of the system, i.e. it should correspond to
a minimum of the energy function G. To make sure that n0 represents an equilibrium state,
we add a linear correction term –fT0n to the energy function G, where f0 is adjusted so that
∇G(n0) = 0, which means that n0 is a minimum of G. Namely,

f0 =∇Gchem(n0) +∇Gelec(n0) +∇Gmech(n0). (14)

The force f0 can be interpreted as the contribution of the environment to the energy func-
tion. A plant cell is the theater of many processes, associated with metabolism or other func-
tions that are not explicitly modeled. From the point of view of our model, we assume that
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all this activity can be summarized by the constant force f0. For a given n0, the total energy
function that is actually minimized during the simulation is defined by

G(n) =Gchem(n) +Gelec(n) +Gmech(n) – fT0n. (15)

Though this energy function depends on n0, we keep calling it G in the remaining of this
section, as n0 is a fixed parameter of the model.

2.2. Membranes, transporters, directions
The energy function described in Sect 2.1 defines the forces that influence the system. It is
completely agnostic of the disposition of transporters. If the system was free to reach any state
n∈ℝN, it would converge toward the global minimum of the energy function G. However,
some states cannot be reached by the system, as chemicals can only circulate between com-
partments through transporters, which exhibit a specific stoichiometry. The disposition of
transporters defines the set of states attainable by the system, denoted by Vx in (2).

In this subsection, we describe the connection between the disposition of transporters and
the set of attainable solutions. For the sake of simplicity, we use a simple one-membrane com-
plex to illustrate the chosen formalism. This toy system, shown in Fig 3, involves one com-
partment, three chemical species (hydrogen, chloride, water) and three transporters. The
same formalism will later be extended,mutatis mutandis, to a complex with several mem-
branes.

Points and directions in the state space. In the one-membrane complex, the system state
is defined by the chemical amount of each species A in the single compartment. We use the
slight abuse of notation nA = n1,A, so that the state vector now reads

n = (nH+ nCl– nH2O)∈ℝ3. (16)

The vector nmay be interpreted as a point in a three-dimensional state space, whose coor-
dinates are the amounts of considered chemical species. Also, a variation of chemical amounts
corresponds to a displacement along a certain direction in this space, represented by a vector
of size 3. For instance, in Fig 3, the first transporter is a hydrogen pump. It ejects hydrogen

Fig 3. A toy multi-membrane complex with one membrane and three transporters.The hydrogen pump is an
active transporter, while the hydrogen/chloride symporter is passive. Water transport across the membrane is also
considered passive. As there are three species and one compartment, the system state is a vector of size 3. We use this
toy problem to illustrate the proposed quasi-static setting.

https://doi.org/10.1371/journal.pcbi.1013474.g003
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from the compartment to the external environment, which results in the hydrogen amount
nH+ decreasing. As nH+ is the first coordinate of the state vector n, this is represented in the
state space by n evolving along the vector

a = (–1 0 0) , (17)

where we have used the same ordering as (16) for chemical species. Once the hydrogen pump
has ejected xmoles of hydrogen (and no other transport occurred), the new state now reads

n + ax = (nH+ – x nCl– nH2O) . (18)

The second transporter is called a symporter because it transports two species in the same
direction, at the rate of one hydrogen ion for two chloride ions, while the third transporter
symbolizes water permeating across the membrane. In a similar fashion as previously, each
one of these two transporters allows the state to evolve in a particular direction. These direc-
tions, denoted by v1 and v2, are defined after the stoichiometry of the two transporters (see
Fig 3), namely

1 H+ + 2 Cl– + 0 H2O ↔ v1 = (1 2 0) (19)

and 0 H+ + 0 Cl– + 1 H2O ↔ v2 = (0 0 1) . (20)

In a general multi-membrane complex, the state can only evolve in directions defined by
the stoichiometric coefficients of transporters, which restrict the range of attainable states. For
instance, in the toy model, if we block the hydrogen pump, then the amount of chloride can-
not change independently of hydrogen, as the only way out for chloride is through the hydro-
gen/chloride transporter. In particular, the value 2nH+ – nCl– must remain constant. Here, the
state n can only move along two directions v1 and v2, and therefore the set of attainable states
is a subspace of dimension two.

Constrained energy minimization.The hydrogen pump is a particular transporter:
whereas the other transporters just passively allow ions and water to cross the membrane
at the whim of electrochemical potentials, the pump consumes some energy from an exter-
nal source to eject hydrogen from the compartment, sometimes against chemical potentials.
We call the hydrogen pump an active transporter while other transporters are passive. This
distinction is critical for the remaining of this section, as the directions associated with pas-
sive and active transporters play different roles in the definition of Vx. The stoichiometry of
passive transporters defines the directions that span Vx, while active transporters define the
displacement of Vx in directions orthogonal to itself.

Let us assume for a moment that the active pump is not working, which means that hydro-
gen and chloride can only circulate together through the hydrogen/chloride transporter.
Starting from an initial state n0, the system evolves toward states of lower energy, but, as men-
tioned above, the state vector n can only move along the two linearly independent direc-
tions v1 and v2. In other words, n is restricted to an affine plane V0 ⊂ℝ3 containing n0. If we
denote by w1 = v1 × v2 = (2, –1, 0) a normal vector to V0, the subspace of attainable states is
characterized by the equation

n∈ V0 ⇔ wT
1 (n – n0) = 0 ⇔ 2nH+ – nCl– = 2n0H+ – n

0
Cl– , (21)
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where wT
1 is the transpose of w1. As a consequence, when the active transporter does not

work, the equilibrium attained by the system is the minimizer of the energy function G
among the subspace V0. Now, assume that the hydrogen pump ejects xmoles of hydrogen
before stopping, bringing the system to the state n0 + ax (see 2.18). To find an equilibrium, the
state n is now restricted to another subspace, denoted by Vx, whose equation reads

n∈ Vx ⇔ wT
1 (n – n0 – ax) = 0 ⇔ 2nH+ – nCl– = 2 (n0H+ – x) – n

0
Cl– . (22)

It is notable that, for x ≠ x′, the subspaces Vx and Vx′ are disjoint (2nH+–nCl– takes different
values), and as a consequence, the resulting system equilibria are distinct.

Fig 4 shows a slice view of the space of states in the (nH+ ,nCl–) plane, with representations
of the subspaces Vx corresponding to several values of x. The lines in the background repre-
sent the level curves of the energy function G. The point that minimizes G in a given subspace
Vx is the point where a level curve is tangent to Vx. As Vx moves, the equilibrium state n∗(x)
is pushed toward higher levels of energy, following the red curved trajectory.

Fig 4. Slice view of the space of states in the plane (nH+ , nCl– ) for the toy problem.The level curves in the back-
ground represent the energy function G. Once the hydrogen pump has brought the system from n0 to n0 + x a, the
passive evolution toward an equilibrium is only possible along the affine subspace Vx, which is directed by v1 and
v2 (v2 is out of the plane). The minimum of G in Vx corresponds to points where the level curves of G are tangent to
Vx. As x increases, the plane Vx continuously moves, dragging the equilibrium state n∗(x), which follows the thick
curved trajectory. Thus, the system state always minimizes the same function G, but in a subspace that moves as x
increases.

https://doi.org/10.1371/journal.pcbi.1013474.g004
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In the toy model from Fig 3, the extent of active transport x is the input variable, while the
output is the corresponding equilibrium state n∗(x). When the amount of hydrogen ejected
by the pump describes an interval [0,x], it progressively displaces the passively attainable sub-
space Vx, and the system equilibrium is continuously brought from n∗(0)∈ V0 to n∗(x)∈ Vx.
A more general multi-membrane complex might feature several active transporters, whose
chemical extents are stored in a vector x = (x1, x2,… ), and whose corresponding directions
are stored as the columns of a matrix A = (a1|a2|⋯). In that case, the system equilibrium is a
function of the current extent of all active transporters, defined by

n∗(x) = argmin
n

G(n) subject to constraint n∈ Vx. (23)

The space Vx can always be characterized by an equation of the form

n∈ Vx ⇔ WTn =WT (n0 +Ax) , (24)

where the matrixW has N rows and N–dim(Vx) columns, and the columns ofW form a basis
of V⟂x .

A quasi-static simulation scenario. In this paper, the objective of the simulation is
to evaluate the function x↦ n∗(x) when x describes a known range of input values. The
expected result is an evolution of the quasi-static equilibrium state as active transporters
work. In practice, when the input variable x is multidimensional, we make it follow a one-
dimensional trajectory, so that the quasi-static equilibrium follows a one-dimensional tra-
jectory in the space of states. Thus, simulation results look like an evolution as a function of
a scalar variable. For instance, the example from Fig 1 involves two active transporters. If we
run the simulation for x(s) = (s, s/2) with s describing the interval [0, smax], it means that the
second pump works twice as slow as the first one. However, keep in mind that s does not rep-
resent time here, as our model does not include dynamics. By changing the way x depends on
s, one can explore several possibilities of synchronization between active transporters.

Choosing a quasi-static scenario is a strong choice, as the individual dynamics of trans-
porters is not taken into account, and transient regimes are not modeled. It corresponds to a
limit case where the dynamics of passive transporters and mechanical deformations is very
fast compared with the time span of the considered process, so that the system immediately
goes back to an equilibrium when perturbed by active transport. Actually, assuming a quasi-
static evolution boils down to separating transport processes into two categories: either the
transport is slow, and it is not included in the model, or it is sufficiently fast, and it is consid-
ered instantaneous. However, our goal here is not to depict a time-dependent evolution. As
the dynamic properties of transporters is not always well known, a quasi-static approach is
a good way to highlight phenomena that do not depend on the transporter dynamics. Elas-
tic deformations of the cell wall are also considered instantaneous, similarly to the classic
Lockhart-Ortega model [36]. Finally, the main advantage of choosing a quasi-static model
is that it requires few parameters. While a dynamic simulation requires a function to deter-
mine the dynamics of each transporter, sometimes requiring to set many dynamics-related
coefficients, the quasi-static model only requires the transporters’ stoichiometry, and the
distinction between active and passive transporters.

2.3. Numerical implementation
Our simulation code, provided in S1 File, is written in Python, and we leverage the auto-
matic differentiation possibilities provided by the Jax library [37] to access the derivatives of
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G at least cost in terms of development. Using automatic differentiation is very convenient
when working with variational problems, as resolution algorithms often require evaluating the
higher-order derivatives of energy or cost functions. Here, we were able to run simulations
and perform sensitivity analysis with only a limited amount of calculations.

First, let us derive the nonlinear system that is actually solved in the numerical procedure.
For a fixed input variable x, the corresponding equilibrium is defined by

n∗(x) = argmin
n

G(n) subject to constraint WTn =WT (n0 +Ax) , (25)

with the notation from (23) and (24). It can be shown that the solution to (25) satisfies some
necessary first-order optimality conditions, also known as Karush-Kuhn-Tucker conditions
[38, Section 12.3]. These conditions read

⎧⎪⎪⎨⎪⎪⎩

∇G(n) +W𝝀 = 0
WT(n – n0) =WTAx,

(26)

where 𝝀 is a Lagrange multiplier of size N– dim(Vx). In (26), the first line describes the bal-
ance of forces that characterizes the equilibrium point. The multiplier 𝝀 is adjusted so that
the artificial forceW𝝀 enforces the constraint n∈ Vx. The second line corresponds to the
constraint itself in matrix form.

To obtain a simpler system, we seek to eliminate 𝝀. The matrixW, whose columns form a
basis of V⟂x , does not depend on x, as the Vx are parallel to each other. We define the matrix
V, with N rows and dim(Vx) columns, whose columns form a basis of Vx. In particular, the
columns of the block matrix (V,W) form a basis ofℝN, and VTW = 0. By applying VT to the
first line of (26), we obtain the equivalent system of size N

⎧⎪⎪⎨⎪⎪⎩

VT∇G(n) = 0
WT(n – n0) =WTAx.

(27)

This system illustrates well that the coordinates of n∗(x) along directions collinear to Vx
are defined by the balance of forces, while the coordinates along directions orthogonal to Vx
are explicitly determined from x.

Let us write (27) in the case of the toy problem from Fig 3, with V andW defined by

V =
⎛
⎜
⎝

1 0
2 0
0 1

⎞
⎟
⎠

and W =
⎛
⎜
⎝

2
–1
0

⎞
⎟
⎠
. (28)

As the derivatives of Gelec and Gmech do not raise numerical issues, we only specify the
expression for the chemical energy derivatives using (4) and (5), leading to the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[RT ln
yH+(n)
yext,H+

+ 𝜕(Gelec +Gmech)
𝜕nH+

(n)] + 2 [RT ln
yCl–(n)
yext,Cl–

+ 𝜕(Gelec +Gmech)
𝜕nCl–

(n)] = 0

RT ln(yH2O(n)
yext,H2O

) + 𝜕(Gelec +Gmech)
𝜕nH2O

(n) = 0

2 (nH+ – n0H+) – (nCl– – n
0
Cl–) = –2x.

(29)
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In practice, we aim to solve (29) using a Newton method [38, Algorithm 11.1]. Here the
presence of the logarithm function in the expression of chemical potentials represents a
numerical difficulty, as the logarithm function is only defined for positive parameters, and
takes large values for arguments close to zero. This may cause the Newton method to fail,
either because the algorithm tries to evaluate the residual somewhere where it is not defined,
or because the Jacobian matrix is poorly conditioned. To increase the numerical method
robustness, we use a relaxed version of (29), following a so-called Cartesian representation
technique, recently proposed in [39]. Without entering too much into details, let us men-
tion that, with this technique, the chemical potentials are represented as auxiliary variables
𝜇H+ ,𝜇Cl– ,𝜇H2O instead of functions of n. Then, N new lines are added to (29) to enforce a
relation of the form f(𝜇i,A/RT)– g(yi,A(n)/yext,A) = 0, where f and g are functions defined on
ℝ and chosen to exhibit good numerical properties, namely

f(u) = { exp(u) – 1 if u⩽ 0
u if u > 0 and g(v) = { v – 1 if v⩽ 1

ln(v) if v > 1, (30)

so that the enforced relation is either

𝜇i,A
RT
= ln(yi,A(n)

yext,A
) or

yi,A(n)
yext,A

= exp(𝜇i,A
RT
) , (31)

depending on the values of yi,A(n) and 𝜇i,A (note that yi,A(n)may take values out of [0,1] if n
has negative components). As a consequence, the relaxed system, which is actually solved in
the numerical procedure, reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[𝜇H+ +
𝜕(Gelec +Gmech)

𝜕nH+
(n)] + 2 [𝜇Cl– +

𝜕(Gelec +Gmech)
𝜕nCl–

(n)] = 0

𝜇H2O +
𝜕(Gelec +Gmech)

𝜕nH2O
(n) = 0

2 (nH+ – n0H+) – (nCl– – n
0
Cl–) = –2x

f(𝜇i,H+
RT
) – g(yi,H

+(n)
yext,H+

) = 0

f(𝜇i,Cl
–

RT
) – g(yi,Cl

–(n)
yext,Cl–

) = 0

f(𝜇i,H2O

RT
) – g(yi,H2O(n)

yext,H2O
) = 0.

(32)

By solving (32) successively for x describing an interval [0, xmax] we can compute the tra-
jectory of the moving equilibrium with a limited risk of numerical instabilities.

In the next section, we apply the quasi-static formalism to perform a simulation involving
the two-membrane complex from Fig 1 which symbolizes a guard cell.

3. Results
We now apply the energy-based formalism to a concrete system inspired from plant biology.
For this, we consider the ion homeostasis in a guard cell during the stoma opening process.
Located on plant leaves and stems, stomata are small pores that allow the plant to exchange
water and carbon dioxide with the atmosphere. Each stoma is surrounded by two guard cells,
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that control its aperture by changing their shape. When the stoma opens, the change of the
guard cell shape is only caused by its volume increase, due to water entering the guard cell. In
this section, we simulate the cascade of transport processes, driven by two hydrogen pumps
on the plasma and vacuole membranes, which leads to water flowing into the cell. In the
beginning of this section, we describe the parameters that we use to approximate the config-
uration of a guard cell, along with the choice of transporters (Sect 3.1). In Sects 3.2 and 3.3, we
run simulations to explore the possibilities offered by the model. In Sects 3.4 and 3.5, we focus
on a sensitivity analysis based on the second derivatives of the energy function. This analysis
leads to a physical interpretation of the simulation results (Sect 3.6).

3.1. Description of a minimal model representing a guard cell
The processes leading to stoma opening involve the accumulation in the guard cell of differ-
ent chemical species in a large amount, including ions and also sugars, to modify the osmotic
pressure of the guard cell. The accumulation of ions and sugars depends on a wide variety of
transporters localized in cellular membranes [40]. Here, we adapt the proposed strategy to
build a minimal model of ion transport in the guard cell, that features a limited number of
transporters. To be more specific, we limit the number of transporters and chemical species to
those directly involved in the modification of the osmotic load. Therefore, we do not include
calcium ions, since their function in guard cells is related to signaling and they do not con-
tribute significantly to the osmotic effects [6,40]. During stoma opening, water uptake is
mostly driven by the accumulation of potassium and anions like chloride and malate in the
guard cells [18]. Chloride and malate play similar roles, electrical charge compensation and
osmotic load, and therefore we only use chloride as a representative for the anions involved
in this process. Last but not least, we include hydrogen and water in the model, as the for-
mer is transported by hydrogen pumps that drive the whole process, and the latter is directly
responsible for cell volume changes. In summary, the simplified model involves four chemical
species: hydrogen (H+), chloride (Cl–), potassium (K+), water (H2O).

The guard cell is represented by the two-membrane complex summarized in Fig 1. It con-
tains two compartments, the cytoplasm (compartment 1) and the vacuole (compartment 2).
In this context, the state vector is composed of the eight variables

n = (n1,H+ n1,Cl– n1,K+ n1,H2O n2,H+ n2,Cl– n2,K+ n2,H2O)∈ℝ8, (33)

where the first four components are the chemical amounts in the cytoplasm and the other
four are the chemical amounts in the vacuole.

The model includes a selection of the main transporters involved in the stoma opening
process (see for instance [41, Fig. 6]), keeping in mind that chloride stands as a general anion
here. The system includes one hydrogen pump on each membrane (i.e. the plasma and vac-
uolar membrane) with the plasma membrane pump ejecting hydrogen from the cytoplasm
to the external environment [42] and the vacuolar membrane pump ejecting hydrogen from
the cytoplasm into the vacuole [43]. Further, each membrane includes a transporter coupling
hydrogen and chloride. In the vacuolar membrane, the hydrogen/chloride transporter is an
antiporter, as it transports the two species in opposite ways. The molecular identity of this
antiporter is known [44–46]. In the plasma membrane, we introduce a chloride/hydrogen
symporter (which transports both species in the same direction), that has not yet been molec-
ularly identified [40,47]. For this reason, its stoichiometry is not known. To obtain symmetric
behaviors between transporters at the plasma and vacuolar membrane, we chose the following
coefficients for this symporter: H+ + 2Cl–. Using different stoichiometric coefficients for the
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plasma membrane hydrogen/chloride symporter, such as H+ + Cl– or H+ + 3Cl–, changes the
amount of osmolytes imported in the cell per pump cycle, but it does not invalidate the anal-
ysis below. Finally, both membranes include a potassium channel, which is a passive trans-
porter allowing this ion species to circulate, and water can freely circulate between compart-
ments. For more details on ion transport in guard cells, see the review paper by Roelfsema
and Hedrich [18].

An advantage of using a quasi-static model is that it relies on few parameters, as all param-
eters associated with the transporter dynamics are not required. However, it is important
to choose realistic values for the remaining parameters. The parameter values are gathered
in Table 1. They mostly revolve around the geometrical properties of the cell model, as well
as initial values for the chemical amounts and potentials. First, cell dimensions define the
amount of water in each compartment. The guard cell is modeled as a cylinder that elongates
in the longitudinal direction, where the diameter and initial length are about 10 μm and 50
μm, respectively [21, Table 1]. Following Mirasole et al. [48, Figure 3], we assume that the vac-
uole accounts for 30 percent of the whole cell volume as the simulation begins. From these
geometric parameters, we can evaluate the initial amount of water in both compartments.

Another parameter attached to the cell geometry is the stiffness of the wall, which is mainly
a function of its Young modulus and its thickness. Several studies converge to agree on a value
of E≈ 100 MPa for the Young modulus in the longitudinal direction and 𝛿 ≈ 0.1 – 1 μm for
the wall thickness [22–24], which should result in a surface stiffness modulus Es = E × 𝛿 ≈ 10
– 100 Pa ⋅m. In the computational model, we set the surface stiffness modulus to 30 Pa ⋅m,
which is consistent with previous studies while giving suitable volume changes in the simula-
tion results.

We choose initial conditions in accordance with the literature. In their review, Jezek and
Blatt [40] gather values for ion concentrations and potentials for open or closed stomata. Fol-
lowing their numerical values, we set the initial pressure at 0.5 MPa (see also [49]), while the
initial electric potential across the plasma membrane and the tonoplast are set to –50 mV and
–40 mV, respectively, using the convention from [50]. Concerning the initial concentrations
for hydrogen, potassium and chloride, we set them to realistic values in the context of in vitro
experiments involving guard cells [41,48].

3.2. Numerical simulations involving the minimal guard cell model
We now show simulations results involving the guard cell model from Fig 1. The system input
is composed of the progress of each one of the two hydrogen pumps. These two input vari-
ables are stored in the vector x = (x1, x2)∈ℝ2, with x1 denoting the progress (in mol) of the
plasma membrane pump, and x2 denoting the progress of the vacuole membrane pump.

Table 1. Numerical values of chosen parameters and initial conditions for the simulation.
Parameter Value
Cell diameter 10 μm
Cell wall surface stiffness 30 Pa ⋅m
Initial pressure 0.5 MPa
Initial plasma membrane potential –50 mV
Initial vacuole membrane potential –40 mV
Parameter External Cytoplasm Vacuole
pH 5.7 7.1 5.8
KCl concentration 30 mmol/L 15 mmol/L 20 mmol/L
Compartment volume — 785 μm3 3142 μm3

https://doi.org/10.1371/journal.pcbi.1013474.t001
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As mentioned in Sect 2.2, x1 and x2 will both be functions of a scalar variable s, in order to
obtain an evolution along a one-dimensional trajectory.

The first simulation involves a fixed ratio 𝛼 > 0 between the two pump rates, i.e. x(s) =
(s,𝛼s). For each new value of s, the simulation computes a corresponding equilibrium state
n∗(x(s)). Fig 5 shows the evolution of chemical amounts as a function of s, along with other
physical quantities that can be computed from them. The figure includes pH values and the
charge imbalance Qi(n) across membranes, while the hydrostatic pressure and electric poten-
tials across membranes are defined by

P(n) = 1
vH2O

𝜕Gmech

𝜕n1,H2O
(n) and 𝜙i(n) =

Qi(n)
Ci(n)

, (34)

respectively (see (12) and (8) for notations). Electric potentials are plotted following the
sign convention from [50], i.e a negative potential value across a membrane means that the
cytoplasm is at a lower electric potential than the other compartment. The simulated sys-
tem generally follows the biologically expected behavior, as the activation of the pumps
results in chloride, potassium, and finally water entering the cell. The turgor pressure varies
between 0.5 and 4.2 MPa, while the cell volume increases from 3900 to 5100 μm3 (given a
molar volume of water of 1.8 ⋅ 10–5m3/mol), in agreement with experimental values reported
in [49, Figure 4]. Electric potentials evolve from –50 mV to –150 mV at the plasma mem-
brane and from –40 mV to –47 mV at the vacuole membrane, which is consistent with ranges
from [40, Table I]. Finally, concentrations in chloride and potassium in both compartments
increase from 15 – 20 mmol/L to ∼ 775 mmol/L. These values are in the same order of mag-
nitude as values from [40, Table II], keeping in mind that chloride represents a generic anion
species in our model. Given the model simplicity, variables changing with the right ampli-
tude and in the right direction is probably the best we can expect in terms of comparison with
experimental data. These ranges of variations will be at the center of our attention in the com-
ing sections. Other aspects of the model behavior do not necessarily reflect the behavior of
real guard cells. The behavior of hydrogen concentrations, in contrast, is less expected. While
the pH usually remains stable in the cytoplasm and slightly acidic in the vacuole, in our sim-
ulations both compartments become strongly basic as the cell gets emptied of its hydrogen.
This point is addressed in the next section. However, it should be noted that the hydrogen
depletion is very slow. At the end of the simulation, the amount of hydrogen in the cell has
decreased by 2 ⋅ 10–18mol, while the amount of hydrogen actively ejected by the pump is 2 ⋅
10–12mol.

In this configuration, numerical experiments suggest that the plasma membrane pump
drives ion and water transport across the plasma membrane, while the vacuole membrane
pump drives exchanges between the cytoplasm and the vacuole. For instance, in the results
from Fig 5, the ratio between pump rates is 𝛼 = 50%, which means that when the plasma
membrane pump ejects 100 protons from the cell, the vacuolar pump sends 50 protons into
the vacuole. As a result, 50% of the osmolytes entering the cell are sent to the vacuole, which
ends up representing 50% of the whole cell volume. To confirm this trend, we run the same
simulation with other values for 𝛼, namely 40%, 80% and 100%. We do not explore values
of 𝛼 greater than 100%, as they raise numerical instabilities due to chemical amounts in the
cytoplasm becoming close to zero. Results, gathered in Fig 6, show that, at the end of the
simulation, the fraction of solute and water in the vacuole asymptotically matches the ratio
between the pump rates. If the stoichiometric coefficients of the hydrogen/chloride symporter
in the plasma membrane were changed, then the final amount of osmolytes in the vacuole
would not be the same, but it would still be proportional to the vacuolar membrane pump
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Fig 5. Simulation results for the guard cell model.The simulation output consists of the evolution of the number of moles
of each chemical species as the progress of active transporters increases. Number of moles of water, chloride and potassium
are plotted in a cumulated way, with the upper part representing the number of moles in the cytoplasm and the lower part
representing the number of moles in the vacuole. While pH reflects the hydrogen concentration, pressure and electric
potentials are obtained from derivatives of the energy function.

https://doi.org/10.1371/journal.pcbi.1013474.g005
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Fig 6. Simulation results with constant ratios between pump rates.The rates of the vacuole pump are 𝛼 = 40% (left), 𝛼 = 80% (mid-
dle), and 𝛼 = 100% (right). The plotted values are the numbers of moles of chloride (top), potassium (middle) and water (bottom), with
the amount of water being proportional to the compartment volume. All plots on a same row share the same y-axis. The ratio between
osmolyte and water transport at the vacuole membrane and at the plasma membrane is asymptotically similar to the ratio between the
hydrogen pump rates, which corresponds to equal concentrations of osmolytes between compartments.

https://doi.org/10.1371/journal.pcbi.1013474.g006

rate. Note that pH, electric potential and pressure values do not change significantly between
cases from Figs 5–7.

Therefore, the fraction of the cell volume occupied by the vacuole can be controlled
through the ratio between the two pump rates. When inducing stoma opening in in vitro
guard cells, Mirasole et al. [48] observed that the cytoplasm volume remains approximately
constant along the process. To reproduce this phenomenon in the simulation, we set as pre-
viously the plasma membrane pump rate at 1 (i.e. x1(s) = s), and then we adjust the vacuole
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Fig 7. Simulation result involving a constant-volume constraint.The rate of the vacuole membrane pump is controlled
to keep the cytoplasm volume constant. The plot (b) shows the progress of both pumps along the simulation. This is an
example of tuning the model input parameters to qualitatively reproduce experimentally observed phenomena.

https://doi.org/10.1371/journal.pcbi.1013474.g007

pump progress x2(s) at each simulation step, so that the amount of water in the cytoplasm
remains constant. The results of the simulation with constant cytoplasm volume are shown in
Fig 7. The vacuole pump rate x′2(s) can be read as the slope of the vacuole pump progress in
Fig 7b. For each value of the progress s, it is equal to the current fraction of cell volume occu-
pied by the vacuole (Fig 7a). Initially at 30%, this fraction has increased to 50% by the end of
the simulation, while the slope of the vacuole pump progress graph is slightly larger at the end
of the simulation than at the beginning.

Because the transport that occurs at one membrane does not influence the transport at the
other membrane, it is possible to describe separately the events happening at each membrane,
using Fig 1. At the plasma membrane, hydrogen expelled from the cell by the pump is almost
completely compensated for by hydrogen entering back through the symporter, accompa-
nied by chloride. This explains why the amount of chloride in the cell is approximately twice
as large as the pump progress s (Fig 5c). However, this cycling is not perfect, and the amount
of hydrogen entering the cell through the symporter is slightly smaller than that ejected by the
pump. Consequently, there is a net loss of hydrogen by the cell. (Fig 5a). The massive intake
of chloride is accompanied by an approximately equal intake of potassium (Fig 5d), through
the potassium channel. As these two ions represent most of the charge transfer, the differ-
ence between chloride and potassium intake can be read in the charge imbalance plot (Fig
5h). Finally, water intake (Fig 5b) is synonymous with volume increase, and the reaction of
the elastic cell wall to this deformation can be seen in Fig 5f through the pressure increase. A
similar chain of events occurs at the vacuolar membrane, except that hydrogen is pumped into
the vacuole, and it goes back into the cytoplasm through the antiporter, in exchange for chlo-
ride entering the vacuole. Again, the cycling of protons is not ideal and there is a net loss of
hydrogen from the vacuole. This, together with the loss of hydrogen at the plasma membrane,
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results in an increase of the cell pH. An interpretation of the physical processes causing this
evolution is proposed in Sect 3.6.

3.3. Impact of hydrogen buffering mechanisms on simulation results
So far, we have considered a model involving solute and water transport only, without chem-
ical reaction. While simulation results show a plausible evolution for most physical quanti-
ties, a discrepancy remains between the simulation and experimentally observed guard cell
behavior. In the simulation, hydrogen tends to disappear from the cell, leading to a very basic
pH in both compartments. On the other hand, experimental observations suggest that the
cytoplasm pH remains close to 7, while the vacuole pH remains acidic or slightly increases,
depending on reports [6,51,52]. A key parameter in the cell, pH is actually well controlled
using a range of mechanisms, called hydrogen buffering. These mechanisms are able to cap-
ture, release or transport hydrogen, to maintain the pH in a desired range in each com-
partment [53]. To remedy this inconsistency in our simulation, we now include a hydrogen
buffering mechanism in the model, and we investigate its consequences on the simulation
output. Though both the cytoplasm and the vacuole of guard cells feature hydrogen buffer-
ing in a guard cell, the vacuole pH is less tightly controlled compared with the cytoplasm pH
[6,51,52]. For the sake of simplicity, we only consider hydrogen buffering in the cytoplasm.

In reality, hydrogen buffering results from several complex mechanisms, including chem-
ical components (e.g. organic acids, phosphates), metabolic activity, solute transport and
buffering capacity of the cell wall [53,54]. In the model, we summarize these mechanisms in
the form of a chemical reaction that compensates the variations of hydrogen concentration in
a compartment. We represent buffering as an acid-base reaction of type

AHm ⇄Am– +mH+, (35)

where A is a species able to bind with hydrogen. When the hydrogen concentration decreases,
the reaction provides some hydrogen by consuming AHm, while the reaction produces AHm

when hydrogen is present in excess. The stoichiometric coefficientm is introduced as a
numerical tool to adjust the strength of pH regulation. We choose a largem to create a strong
buffering capacity in the cytoplasm, without inducing perturbations of osmotic effects due
to the presence of large amounts of buffer molecules in the compartment. Here, we choose
m = 104 and we set the initial concentration of the buffering solution to 1 mmol/L in the cyto-
plasm. In the same fashion as passive transporters, this chemical reaction is represented by
one of the vector directions that span Vx, as it gives the system the freedom to evolve toward
production or consumption of AHm.

Fig 8 shows the simulation results for the buffered model, with the same pump rates as in
Fig 5, i.e. 1 for the external pump and 0.5 for the vacuole pump. The hydrogen amounts evolve
differently compared with previous simulations. Here, the cytoplasm pH remains stable and
close to 7, and the vacuole pH remains in acidic values, which is in agreement with experi-
mental observations. Note that the pH in the vacuole decreases more than what is suggested
by experimental measures. The amplitude of pH variations in the vacuole can be corrected
by adding a buffering mechanism in this compartment. Interestingly, the evolution of chlo-
ride and potassium amounts is also changed, and the connection between compartment vol-
umes and pump rates observed in Fig 6 is now more loose. While, without buffer, each pump
is responsible for making osmolytes cross the membrane it is located on, the introduction of
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Fig 8. Simulation result for the guard cell model with hydrogen buffer.The plotted physical quantities are the same as in
Fig 5. The cytoplasm pH values follow a more realistic behavior when hydrogen buffering is taken into account.

https://doi.org/10.1371/journal.pcbi.1013474.g008

the buffering mechanism makes the effect of both pumps more intricate. Our simulations sug-
gest that the vacuolar membrane pump triggers osmolyte transport all the way from the exter-
nal environment into the vacuole, and the amount of osmolytes crossing each membrane is
not proportional to the pump rates anymore. Though studying the buffered system in details
is out of the scope of this article, results from Fig 8 show that our model can be extended to
produce more realistic simulations.
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3.4. Sensitivity analysis and second derivatives of the energy function
The next sections are dedicated to a sensitivity analysis of the guard cell model, based on
second-order information about the energy function. Our aim here is to explain the ranges of
variation predicted by the model for all variables, and also to highlight the couplings between
variables created by the different terms of the energy function.

In this section, we emphasize through a short calculation the role of the energy second
derivatives in determining the system response to a perturbation, and then we say a word
about the physical meaning of the energy second derivatives. As G is a regular function of sev-
eral variables (n1,n2,… ), its second derivatives at n are stored in a symmetric matrix called
the Hessian matrix, denoted by ∇2G(n), and the Hessian coefficient at index (i,j) is denoted
by 𝜕2G

𝜕nj𝜕ni (n).
First, let us clearly identify where the energy second derivatives appear in the calculations.

Remember that, for a fixed x, the equilibrium state n∗(x) is solution to the nonlinear system
(27). Now, assume that x is subject to a perturbation dx. The equilibrium perturbation dn∗ is
the solution to a tangent linear system involving the Hessian matrix of the energy function.
This linear system, obtained by differentiating (27), reads

⎧⎪⎪⎨⎪⎪⎩

VT∇2G(n)dn = 0
WT dn =WTAdx.

(36)

Like previously, the first line of (36) concerns the coordinates of dn in the direction of
Vx, which adjust to re-establish a physical equilibrium, while the remaining coordinates are
explicitly determined from dx by the second equation. The Hessian matrix plays a role in the
evolution of n in the directions of passive transporters, as a reaction to an imposed change in
the directions orthogonal to Vx. While forces are defined by the first derivatives of the energy,
this analysis explains why second derivatives must be considered in a sensitivity analysis as
they reflect force responses to perturbations. This idea can be illustrated through a simple
physical analogy. Consider a spring of stiffness k, clamped at one extremity and subject to a
force F at the other extremity, causing it to extend by a length x in a one-dimensional way.
The spring elastic energy function reads

E(x) = 1
2kx

2. (37)

Also, E′ and E′′ denote the first and second derivatives of the single-variable function
E. Here the second derivative of E is the stiffness k, which defines the spring resistance to
changes of lengths. If the force applied by the external user at the spring extremity varies from
F to F + ΔF, the spring length changes by Δx =ΔF/k. In other words, the spring stiffness gives
an indication about how much the system resists to perturbations. In the same fashion, if we
consider a nonlinear spring with an energy function E, the force applied at its extremities sat-
isfies F = E′(x), and as a consequence, a force perturbation ΔF causes the length to change at
first order by Δx =ΔF/E′′(x), where E′′(x) plays the role of an immediate stiffness.

The second derivatives of G are like the stiffness of a spring. However, as opposed to the
spring energy function, G is a function of several variables, and its second derivatives are
gathered in the Hessian matrix ∇2G(n). In this matrix, nondiagonal terms denote cou-
plings between variables, where moving one variable results in a force causing the variation
of another variable. An example of such coupling appears when a transfer of charged particles
affects charged particles from another species. In the next section, this difficulty is mitigated
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by computing the eigenvectors of ∇2G(n), which makes it possible to identify decoupled
physical balances in the system.

Pushing the spring analogy a little further, we now consider n springs in series. The spring
chain is clamped at both ends, so that its total length is imposed. At equilibrium, the indi-
vidual deflection of the i-th spring is denoted by xi, and due to the imposed total length, the
spring deflections all add up to an imposed value y. The xi values are determined by solving
the minimization problem

min
x1 ,…,xn

1
2k1x

2
1 +⋯ + 1

2knx
2
n subject to constraint x1 +⋯ + xn = y, (38)

where ki is the stiffness of the i-th spring. Now, if the imposed cumulated deflection y changes
by a perturbation Δy, the system will find a new equilibrium state, where each deflection xi
has changed by a small displacement

Δxi =
1/ki

1/k1 +⋯ + 1/kn
Δy. (39)

The sensitivity of each spring to the perturbation is inversely proportional to its stiffness. If
the first spring has the largest stiffness, then its deviation from its initial state is smaller than
the deviation of other springs, but it is also even smaller as there are many springs in the chain
to absorb the perturbation. In other words, we could say that the initial state of springs with
a larger stiffness is preserved at the expense of that for springs with a lower stiffness. Simi-
larly, if each spring is nonlinear and characterized by its energy function Ei(xi), then, solving
a minimization problem similar to (38) yields the first-order responses to a perturbation Δy,

Δxi =
1/E′′i (xi)

1/E′′1 (x1) +⋯ + 1/E′′n (xn)
Δy. (40)

The balances that exist in our system, such as the balances of concentrations, of charges, or
the mechanical equilibrium of the system, can be compared with the springs in series, with
the constraint that the springs have their extremities attached together corresponding to the
transport constraints imposed by the stoichiometry of transporters. Each part of the energy
function promotes one balance, taking higher values when the balance is not respected. But,
somehow, all these balances are in competition with each other, and, when a perturbation
occurs, the term with the largest second-order derivative wins, i.e. the corresponding bal-
ance is more preserved, at the expense of other balances. In the remaining of this section, we
exploit this analogy to interpret the simulation results from Sect 3.2.

3.5. Comparison between Hessian matrices and simulation results
In this section, we compare the numerical properties of the energy Hessian matrix the range
of variation of chemical amounts in the simulation results. While this analysis is straightfor-
ward for systems involving a few variables, the exercise becomes increasingly difficult when
more variables are added, because Hessian matrices become larger. To illustrate the role of
Hessian coefficients, we focus on the guard cell model without hydrogen buffering, as it fea-
tures fewer variables and is easier to interpret than the model with hydrogen buffering.

Fig 9 shows the Hessian matrix for each term of the energy function, along with the
Hessian matrix for the total energy function. These matrices are evaluated at the final state
n∗(xmax), but their structures remain similar all along the simulation (see Hessian matrices
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Fig 9. Hessian matrices for each term of the energy function, evaluated at the final state of the simulation.Hessian coef-
ficients (in J/mol2) are represented in logarithmic scale, i.e. 27.2 means 1027.2 and a blank case means that the coefficient is
zero. The Hessian matrices define the sensitivity of chemical, electrostatic and mechanical forces to perturbations.

https://doi.org/10.1371/journal.pcbi.1013474.g009

evaluated at the initial state in . Concerning the axis labels, each row and column of a Hes-
sian matrix is associated with one coordinate of n. Chemical amounts are organized in the
same order as in (33), i.e. amounts in the cytoplasm first and amounts in the vacuole next.
For instance, the coefficient at row 2 and column 7 corresponds to the coupling between n1,Cl–
and n2,K+ . The values written in Fig 9 are in logarithmic scale, i.e. 27.2 on the matrix heatmap
means that the corresponding coefficient is equal to 1027.2 J/mol2 in absolute value, while a
blank box denotes a null coefficient. Therefore, a number visible in the total Hessian heatmap
(Fig 9d) is not the sum of the corresponding numbers in the other heatmaps. Instead, it often
represents the largest order of magnitude among the corresponding coefficients from the
other matrices.

To investigate the important balances in the system, we plotted in Fig 10a the eigenvec-
tors u0(smax),⋯,u8(smax), and eigenvalues 𝜆1(smax) <⋯ < 𝜆8(smax) of the total energy Hessian
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Fig 10. Spectral information about the total energy Hessian matrix. (a) Eigenvectors u1,… ,u8 of the total energy
Hessian at the final state, with corresponding eigenvalues 𝜆1,… ,𝜆8. (b) Evolution of the Hessian eigenvalues along the
simulation steps. Eigenvalues change but keep the same ordering during the process, and the corresponding eigenvectors
evolve continuously during the simulation. (c) Angle between each eigenvector ui(s) at a given step and its final position. A
small angle means that eigenvectors are close to each other. After a short transient regime, eigenvectors remain less than one
degree apart from their final position.

https://doi.org/10.1371/journal.pcbi.1013474.g010

matrix, evaluated at the final state. Fig 10b shows the evolution of eigenvalues during the sim-
ulation. Except for 𝜆3(s)≈ 𝜆4(s), the eigenvalues remain well separated and keep the same
ordering. In Fig 10c, we plot the angle between each eigenvector ui(s) and its final direction
ui(smax). Since eigenvectors are unit vectors, a small angle between two of them means that
they are almost equal to each other. Here, for most of the simulation, eigenvectors stay less
than one degree away from their final direction. We thus consider that the Hessian matrix
eigenvectors remain approximately constant and equal to the final eigenvectors, with only
eigenvalues changing along simulation steps, and we will base our sensitivity analysis on the
final eigenvectors.
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Working with eigenvectors allows one to break the space of states into a set of orthogo-
nal directions ui, each one representing a physical process. The system resists to displace-
ments in each direction ui independently of the others, to an extent given by the eigenvalue
𝜆i. It is striking that most eigenvectors only contains one or two nonzero coordinates, result-
ing in independent processes involving one or two species. By looking at the position of their
nonzero coordinates, eigenvectors can be connected with the physical balances enforced
by the energy function. Also, many eigenvalues appear as coefficients in the chemical, elec-
trostatic or elastic energy Hessian matrix. Based on this observation, we can connect each
eigenvector to the energy term that is responsible for enforcing the corresponding balance.

First, the two largest eigenvalues 𝜆7 and 𝜆8 appear in the chemical energy Hessian matrix
as diagonal parameters, as well as 𝜆3 and 𝜆4. The eigenvectors u7 and u8, correspond to vari-
ations of hydrogen amounts in the vacuole and cytoplasm, respectively, while u3 and u4 are
connected with equal variations of chloride and potassium amounts in the vacuole and cyto-
plasm, respectively. In the chemical Hessian matrix, the diagonal coefficients associated with
the amounts of ion species are much larger in magnitude than nondiagonal parameters. The
coefficient associated with hydrogen is approximately 1014 times larger than nondiagonal
parameters, while the coefficients associated with chloride and potassium are ∼ 102 times
larger. This suggests that chemical forces mainly act on the individual evolution of each one
of these amounts of substance, without creating a significant coupling between ion species.
The chemical energy term influences the variations of chloride and potassium independently,
but in the total energy function it only has a visible impact on equal variations of these two
species. In contrast, opposed variations of chloride and potassium amounts have an impact on
the balance of charges, which is mostly influenced by electrostatic forces.

Eigenvectors u5 and u6 correspond to physical processes where chloride and potassium
amounts evolve in opposite directions, resulting in charge transfers across membranes. Mov-
ing in the direction u5 results in transferring charges from the cytoplasm to the vacuole and
external environment, while in u6, charges are moved from both compartments to the exter-
nal environment. Also, 𝜆5 appears in the electrostatic Hessian matrix, and 𝜆6 is close to cer-
tain coefficients in the same matrix (see framed zones in Fig 9b). The nondiagonal struc-
ture of the electrostatic Hessian matrix comes from the two terms of the electrostatic energy
expression (8). One term, associated with the plasma membrane, depends on amounts in both
compartments, while the other term, associated with the vacuole membrane, only depends on
amounts in the vacuole. In the matrix, the three identical 4 × 4 blocks are due to the first term,
while the bottom right block, different from the others, includes in addition second deriva-
tive information from the second term. Though the framed zones in the matrix indicate that
electrostatic forces affect all ion species, forces influencing hydrogen amounts are dominated
by chemical effects (see u7,u8 in Fig 10a), which explains why the two eigenvectors related to
electrostatic effects only involve chloride and potassium.

The two remaining eigenvectors are connected with movements of water between com-
partments, with different eigenvalues depending on whether volume change is involved or
not. The direction u2 represents same-sign variations of water amounts in both compart-
ments, resulting in variations of the cell volume. The corresponding eigenvalue 𝜆2 is close
to coefficients appearing in the elastic Hessian matrix. Even though the chemical Hessian
matrix exhibits diagonal coefficients for water that are in the same order of magnitude, these
coefficients are smaller in the initial Hessian matrix (S2 Fig a). The fact that 𝜆2(s) remains
constant like the elastic Hessian matrix suggests that the term offering the most resistance
to variation of cell volume is the elastic energy term. In this case, the volume of water enter-
ing the cell as a result of osmotic pressure can be entirely adjusted in our simulation, just by
tuning the cell wall stiffness parameter, with a negligible impact on other variables. The last
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eigenvector u1 represents the exchange of water between the cytoplasm and the vacuole. This
exchange of water is not influenced by mechanical effects since it does not involve cell volume
changes. Involved physical effects may include chemical forces, but also electrostatic forces, as
variations of the vacuole volume have an impact on its surface area, and thus on its electrical
capacitance. Actually, no energy term significantly restrains exchanges of water between com-
partments, since the corresponding eigenvalue 𝜆1 is twelve orders of magnitude smaller than
𝜆2, explaining why the ratio between compartment volumes strictly follows that of osmolyte
concentrations in our simulations. Though, a positive 𝜆1 has the merit to ensure the energy
function convexity, and, therefore, the stability of the computed equilibria.

Just as the total energy Hessian in Fig 9d gathers the salient visual features from the three
matrices that compose it, its eigenvectors and eigenvalues reflect the main physical balances
influenced by each term of the energy function. It is noteworthy that the range of eigenvalues
spreads over 27 orders of magnitude, resulting in a clear hierarchy between the physical bal-
ances, from the tight balance of hydrogen concentrations to the water balances, more loosely
enforced. These differences between eigenvalues have their counterpart in the amplitude of
variations of certain physical quantities in Fig 5. In Fig 5 (a, c, d), the annotations indicate the
variation range of each chemical amount (in mol) in the cytoplasm (A) and in the vacuole (B).
In particular, the variations of hydrogen amounts (A≈ 10–19 mol,B≈ 10–18 mol) are several
orders of magnitude smaller than variations of chloride and potassium (A≈ B≈ 10–12 mol),
which can be explained by the hydrogen variations being highly restricted by a stronger feed-
back force (𝜆8,𝜆7 ≫𝜆4,𝜆3). Comparing the variations of the same physical quantity between
the two compartments is less straightforward. The variation range of hydrogen amounts in
both compartments is mostly a consequence of initial conditions, without significant impact
of the pump rates. On the other hand, we saw in Fig 6 that the ratio between chloride and
potassium quantities in both compartments can be fully explained by the ratio between the
pump rates.

To study the electrostatic balances (u5,u6) in the system, we plotted in Fig 5h the charge
imbalance across each membrane, defined by Qi(n)/F (see 2.8). It denotes the amount of
charges (in mol) stored in each membrane/capacitor (see the circuit analogy in Fig 2). Like
previously, the annotations show the charge imbalance variations at the plasma membrane
(A≈ 10–17 mol) and at the vacuole membrane (B≈ 10–18 mol). Because charge imbalance
shares units with chemical amounts, its variations (Fig 5h) can be compared with the amount
variations of all species (Fig 5a, c, d). Variations of the charge imbalance at the plasma mem-
brane are slightly larger in amplitude than variations of the amount of hydrogen in the
cell, and much smaller than variations of the amount of chloride and potassium in the cell
(10–18 mol < 10–17 mol≪ 10–12 mol). This is consistent with eigenvalues associated with elec-
trostatic effects being smaller than eigenvalues associated with hydrogen, and larger than
eigenvalues associated with chloride and potassium (1026.5 ≫ 1020.7 ≫ 1015.1). Concerning
charge imbalance at the vacuolar membrane (B), simulations show that it is strongly impacted
by a combination of initial conditions and pump rates, and it cannot be explained using Hes-
sian eigenvalues only.

The connection between the Hessian matrix eigenvalues and the amplitude of variation
of the system variables illustrates well the role played by the second derivatives of the energy
function. Like springs with a large stiffness, balances associated with large eigenvalues (hydro-
gen, charges) tend to resist to a perturbation, while balances associated with small eigenval-
ues (chloride, potassium, water) absorb most of it. However, even springs with a very large
stiffness deflect a little when subject to a perturbation, and so does the amount of hydrogen,
resulting in the hydrogen loss observed in Fig 5a.
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Though the system evolution is also influenced by other parameters such as pump rates
and transport stoichiometry, studying the Hessian matrix of the energy function allows us
to explain trends in the range of variation of physical quantities. These trends only depend
on the energy function and the current system state, and they do not depend on the nature
of transporters. As a consequence, this analysis remains valid for similar systems involving
embedded compartments and osmolyte transport through membranes, including systems
where the disposition of transporters is not known with certainty.

3.6. An interpretation for turgor pressure building in plant cells
Comparing the sensitivities of all the balances that govern the system allows to qualitatively
understand the hierarchy between the physical phenomena at play, and explain why a prop-
erty is enforced at the expense of another one. In particular, we can interpret the guard cell
scenario through the prism of this hierarchy between the terms of the energy function, going
from the activation of hydrogen pumps all the way to water entering the cell. Our simulation
results in Sect 3.2 suggest that transport processes on both membranes function indepen-
dently of each other, each pump driving all transport across the membrane it belongs to. For
this reason, we show in Fig 11 an interpretation for solute transport at the plasma membrane,
while a similar summary can be made for the vacuole membrane transport. In this cascade
of transport reactions, each step restores one balance by perturbing another one that is lower
in the hierarchy. For instance, in Fig 11, expelling hydrogen from the cell results in hydrogen
entering back through the symporter, accompanied by chloride, as deflecting from the chlo-
ride chemical balance is much cheaper than deflecting from the hydrogen chemical balance.
In the same fashion, the amount of potassium is forced to stick to that of chloride to restore
the balance of charges, as this balance is much more sensitive than that of potassium. Mem-
brane polarization, characterized by an electric potential building across a membrane, reflects
the deflection of the system from electric neutrality. Finally, the resulting imbalance in chlo-
ride and potassium is compensated for by water entering the cell. The final volume change
is a compromise between chemical forces and mechanical forces, and it mostly depends on
the mechanical parameters of the cell wall. Note that, if potassium could not enter the cell to
ensure an electrically neutral flow of osmolytes, a small amount of chloride would still enter
the cell at the expense of the charge balance, as the balance of hydrogen is more sensitive than
the balance of charges.

The difference of sensitivities illustrates well how, by acting on hydrogen, which is present
in very small amount, the cell manages to transfer into its vacuole an amount of water that
is several orders of magnitude larger than that of hydrogen. Generating a perturbation on a
strictly enforced balance creates a leverage effect. As it is diverted toward other balances, the
perturbation gets amplified and involves larger-scale transport, which remains cheaper than
maintaining a hydrogen imbalance. Even though transporters play a key role in determining
the possible directions of evolution for the system state, the hierarchy between all forces, as
well as involved orders of magnitude, are mostly a matter of energy function.

4. Discussion
Summary. In an attempt to simplify the modeling of multi-physics couplings in multi-
compartment plant cell physiology, we proposed in this paper a model based on an energy
function integrating electrochemical and hydro-mechanical effects. We applied this energetic
approach to model solute and water exchanges in a guard cell during stoma opening. By using
a quasi-static scenario, we investigated the system properties without relying on transporter
dynamics, thus reducing the number of parameters and the model complexity. We performed
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Fig 11. Summary of the transport cascade at the plasma membrane in the guard cell model without buffering, showing
the hierachy of forces at work upon a charge imbalance. Priorities in equilibria is decreasing from 1 to 4. The vacuole
is not represented in the figure. In steps 2 and 3, one balance is restored at the expense of another less strictly enforced
balance.

https://doi.org/10.1371/journal.pcbi.1013474.g011

numerical simulations on the guard cell model with and without hydrogen buffering mecha-
nisms, and we showed that the numerical values returned by the model are in agreement with
the literature. Thanks to an analysis of the system response to perturbations, we were able to
reveal the role and influence of each physical force in the system behavior, which is the central
contribution of our work.

Energy-based formulation. In plant cell homeostasis as in many multi-physics systems,
using an energy function is a good way to combine the effects of various physical phenomena.
Once the complexity of the system physics is embedded in the energy function expression,
the resulting system has a clear structure, and the role of each physical effect or transporter is
identified. This clear structure is also reflected when it comes to implementing this variational
formulation on a computer. In particular, using modern automatic differentiation software,
all derivatives of the energy function are automatically evaluated under the hood.

The energy approach makes a distinction between model-specific and generic features,
which both contribute to the system evolution. Transport rules, defined by the configura-
tion of transporters, are specific to the proposed plant cell model, but the energy function is
more generic. As the sensitivity analysis is based on the energy function only, a similar hier-
archy between forces can be expected in other plant cell models. In contrast, formulations
using directly ordinary differential equations [6,9,28] do not explicitly separate these two
contributions.

Interpretability of the model. One of the main aims of our modeling strategy was to pro-
mote the mechanistic interpretability of the model, in order to obtain insight into the func-
tioning of living systems. We chose to build a system that acts as a mathematical function,
which takes the progress of active transporters as input variables, and returns an output equi-
librium state. Thus, we were able to control the rate of the hydrogen pumps present in each
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membrane and investigate the effect of each active transporter on the model evolution. Inter-
estingly, in the model the relative activities of the plasma membrane and vacuolar membrane
hydrogen pumps were the main parameters defining the relative volumes of the vacuolar and
cytosolic compartments in the cell. Further, it was possible to define a coordination strategy
between the pumps in both membranes to keep the cytoplasmic volume constant while the
turgor pressure increases in the cell, as experimentally observed in guard cells during stoma
opening [48]. In summary, the model indicates that the activities of the plasma membrane
and vacuolar membrane pumps need coordination to achieve biological processes involving
changes of volume of the subcellular compartments.

Following our strategy, we performed a sensitivity analysis of the various forces (elec-
trical, chemical and mechanical) acting in our model, and we ranked these forces based on
their influence on the system behavior. This gave relevant insight on the functioning of cells
with nested membranes and strong turgor pressure, like plant cells. The ranking shows that
hydrogen-related forces overcome, by orders of magnitude, the other chemical, electrical
and hydraulic forces. Notably, in the model hydraulic forces are subordinate to all the other
forces. The importance of hydrogen-related forces depends on the orders-of-magnitude lower
hydrogen amounts in both compartments compared to the other chemical species. Under
these conditions, small changes in the hydrogen amounts (as those generated by the hydrogen
pumps) have amplified consequences on the amounts of the other species transported in the
systems. This analysis explains why a transport network based on hydrogen pumps is an effi-
cient strategy to create a large osmotic and turgor pressure in plant cells. The active transport
of hydrogens by the pumps creates a leverage effect on the transport of other ions, enabling
the building of a strong osmotic pressure. Interestingly, land plants, which are among the
organisms with the largest osmotic pressure difference with the extracellular media, evolved
a transport network based on hydrogen pumps and hydrogen-coupled exchangers and sym-
porters. In contrast, animal cells maintain a low osmotic pressure difference with the extra-
cellular media and do not exploit hydrogen-coupled transport networks in the plasma mem-
brane, but potassium- and sodium-coupled networks. It is therefore tempting to speculate
that this leverage effect is a reason why land plants evolved a transport network based on
hydrogen, which is present in low amounts in the cellular and extracellular media.

Possible extensions of the model. Several extensions can be brought to the proposed
model without modifying its principles, as it was the case when adding the buffering mech-
anism. In this paper, we explored the connections between hydrogen pump activity and the
building of a turgor pressure. We considered a cascade of events starting with hydrogen active
transport and ending with cell deformation in one dimension. However, this cascade can be
extended at both ends. On the upstream side, mechanisms causing the transport of hydrogen
may be included in the model. In that case, hydrogen pumps are not controlled by the user,
and adenosine triphosphate (ATP), the fuel of active hydrogen transport, is introduced as a
new species. On the downstream side, more realistic geometric deformation models could be
used (see for instance [22]), leading to more complex terms for the mechanical energy.

Quasi-static limit and possible generalization to dynamical model.We chose a quasi-
static approach to model the system evolution in a simple way, at the expense of a fine cap-
ture of the transport dynamics. This approach is convenient for models with few transporters,
but other choices should be considered to describe more complex transporter configurations.
Strong mathematical hypotheses should indeed be satisfied so that the output equilibrium
state does not remain constant whatever the value of input variables. In the particular case
of Fig 4, a necessary condition for n∗(x) to change as a function of x is that the subspaces Vx
and Vx′ be distinct for two values x ≠ x′, i.e. the passive transporters do not allow the system
to come back to its initial state n0. In contrast, if the direction v1 is collinear to a in the figure,
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then n0 is an element of Vx for every x in [0, xmax]. Therefore, the energy minimizer in Vx
always remains n∗(x) = n0, and the active transporters have no effect on the system. In gen-
eral, we noticed that a sufficient condition for active transporters to induce an evolution of the
equilibrium state is the following: at least one active direction a is not a linear combination of
the passive directions (v1, v2,⋯).

Issues may typically appear when the system involves more transporter than species, with
passive transporters allowing to reverse the effect of active transporters. If active transporters
fail to change the system equilibrium, i.e. the system behavior is entirely due to transporter
dynamics, then a time-dependent model should be considered. A simple way to achieve
a dynamic model using the energetic approach is given in [9]. With our notation, the flux
J across a passive transporter associated with the direction v is proportional to the energy
derivative along v, i.e. J = –𝛼∇G(n)Tv, where 𝛼 is a conductance parameter specific to the
considered transporter. Compared with a quasi-static model, a dynamic model may be
slightly more difficult to interpret, as its output combines influences from the energy function
and transporter conductance. However, it can be used to create more complex behaviors, for
instance by considering transporters whose dynamics is affected by voltage or pH.

Supporting information
S1 File. Code used to run simulations and generate figures.The archive contains the
Python code to reproduce simulations presented in this paper. Instructions to run the simu-
lations are given in the file Readme.md.
(ZIP)

S2 Fig. Hessian matrices at the initial state of the simulation.This figure is similar to Fig 9,
but the Hessian matrices are evaluated at the initial state of the simulation n0. In particular,
the analysis of Hessian matrices from Fig 9 still apply to these matrices, as similar differences
between coefficient orders of magnitude are present here.
(EPS)
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