PLOS

Check for
updates

E OPEN ACCESS

Citation: Zhang J, Li X, Guo X, You Z, Bottcher
L, Mogilner A, et al. (2025) Reconstructing
noisy gene regulation dynamics using
extrinsic-noise-driven neural stochastic
differential equations. PLoS Comput Biol 21(9):
€1013462. https://doi.org/10.1371/journal.

pchi.1013462
Editor: Michael A. Beer, Johns Hopkins

University School of Medicine, UNITED STATES
OF AMERICA

Received: April 2, 2025
Accepted: August 24, 2025
Published: September 17, 2025

Peer Review History: PLOS recognizes the
benefits of transparency in the peer review
process; therefore, we enable the publication of
all of the content of peer review and author
responses alongside final, published articles.
The editorial history of this article is available
here: https://doi.org/10.1371/journal.pcbi.
1013462

Copyright: © 2025 Zhang et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original author and source are credited.

Data availability statement: No data was
created in this research. All data used in this

RESEARCH ARTICLE

Reconstructing noisy gene regulation
dynamics using extrinsic-noise-driven
neural stochastic differential equations

Jiancheng Zhang'®, Xiangting Li?®, Xiaolu Guo(2)***, Zhaoyi You®, Lucas Bottcher®®,
Alex Mogilner’, Alexander Hoffmann®, Tom Chou?®*, Mingtao Xia(>)°*

1 Department of Electrical and Computer Engineering, University of California, Riverside, California,
United States of America, 2 Department of Computational Medicine, University of California, Los Angeles,
California, United States of America, 3 Department of Microbiology, Immunology, and Molecular Genetics
(MIMG) and Institute for Quantitative and Computational Biosciences, University of California, Los
Angeles, California, United States of America, 4 Ray and Stephanie Lane Computational Biology
Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United
States of America, 5 Department of Computational Science and Philosophy, Frankfurt School of Finance
and Management, Frankfurt am Main, Germany, 6 Laboratory for Systems Medicine, Department of
Medicine, University of Florida, Gainesville, Florida, United States of America, 7 Courant Institute of
Mathematical Sciences, New York University, New York, New York, United States of America,

8 Department of Mathematics, University of California, Los Angeles, California, United States of America,
9 Department of Mathematics, University of Houston, Houston, Texas, United States of America

® These authors contributed equally to this work.
* xiaoluguo@g.ucla.edu (XG); tomchou@ucla.edu (TC); mxia4 @uh.edu (MX)

Abstract

Proper regulation of cell signaling and gene expression is crucial for maintaining cellu-
lar function, development, and adaptation to environmental changes. Reaction dynamics
in cell populations is often noisy because of (i) inherent stochasticity of intracellular bio-
chemical reactions (“intrinsic noise”) and (ii) heterogeneity of cellular states across differ-
ent cells that are influenced by external factors (“extrinsic noise”). In this work, we intro-
duce an extrinsic-noise-driven neural stochastic differential equation (END-nSDE) frame-
work that utilizes the Wasserstein distance to accurately reconstruct SDEs from stochas-
tic trajectories measured across a heterogeneous population of cells (extrinsic noise). We
demonstrate the effectiveness of our approach using both simulated and experimental
data from three different systems in cell biology: (i) circadian rhythms, (i) RPA-DNA bind-
ing dynamics, and (iii) NFxB signaling processes. Our END-nSDE reconstruction method
can model how cellular heterogeneity (extrinsic noise) modulates reaction dynamics in
the presence of intrinsic noise. It also outperforms existing time-series analysis meth-
ods such as recurrent neural networks (RNNs) and long short-term memory networks
(LSTMs). By inferring cellular heterogeneities from data, our END-nSDE reconstruction
method can reproduce noisy dynamics observed in experiments. In summary, the recon-
struction method we propose offers a useful surrogate modeling approach for complex
biophysical processes, where high-fidelity mechanistic models may be impractical.
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Author summary

In this work, we propose extrinsic-noise-driven neural stochastic differential equations
(END-nSDE) to reconstruct noisy regulated gene expression dynamics. One of our main
contributions is that we generalize a recent Wasserstein-distance-based SDE reconstruc-
tion approach to incorporate extrinsic noise (parameters that vary across different cells).
Our approach can thus capture intrinsic fluctuations in gene regulatory dynamics driven
by extrinsic noise (heterogeneity among cells), offering an advantage over determinis-
tic models and outperforming other benchmarks. By inferring noise intensities from
batches of experimental data, our END-nSDE can partially capture experimental noisy
signaling dynamic data and provides a surrogate model for biomolecular processes that
are too complex to model directly.

1. Introduction

Reactions that control signaling and gene regulation are important for maintaining cellular
function, development, and adaptation to environmental changes, which impact all aspects
of biological systems, from embryonic development to an organism’s ability to sense and
respond to environmental signals. Variations in gene regulation, arising from noisy biochem-
ical processes [1,2], can result in phenotypic heterogeneity even in a population of genetically
identical cells [3].

Noise within cell populations can be categorized as (i) “intrinsic noise;,” which arises from
the inherent stochasticity of biochemical reactions and quantifies, e.g., biological variability
across cells in the same state [2,4,5], and (ii) “extrinsic noise,” which encompasses hetero-
geneities in environmental factors or differences in cell state across a population. A substan-
tial body of literature has focused on quantifying intrinsic and extrinsic noise from experi-
mental and statistical perspectives [1,2,6-13]. Experimental studies have specifically identi-
fied relevant sources of noise in various organisms, including E. coli (Escherichia coli), yeast,
and mammalian systems [2,14-17].

Extrinsic noise is associated with uncertainties in biological parameters that vary across
different cells. The distribution over physical and chemical parameters determine the
observed variations in cell states, concentrations, locations of regulatory proteins and poly-
merases [1,2,18], and transcription and translation rates [19]. For example, extrinsic noise
is the main contributor to the variability of concentrations of oscillating p53 protein levels
across cell populations [20]. On the other hand, intrinsic noise, i.e., inherent stochasticity
of cells in the same state, can limit the accuracy of expression and signal transmission [2,5].
Based on the law of mass action [21,22], ordinary differential equations (ODEs) apply only in
some deterministic or averaged limit and do not take into account intrinsic noise. Therefore,
stochastic models are necessary to accurately represent biological processes, such as thermo-
dynamic fluctuations inherent to molecular interactions within regulatory networks [1,5,18]
or random event times in birth-death processes.

Existing stochastic modeling methods that account for intrinsic noise include Markov
jump processes [23,24] and SDEs [25-27]. These approaches are applicable to different system
sizes: Markov jump processes provide exact descriptions for discrete molecular systems, while
SDE:s serve as continuous approximations to Markov processes when molecular abundances
are sufficiently high. SDE approaches may not be suitable for gene expression systems with
very low copy numbers, where discrete master equation descriptions are more accurate. How-
ever, SDE approaches become more appropriate when modeling protein dynamics or when
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gene regulatory interactions are modeled implicitly through Hill functions. Additionally, a
hierarchical Markov model was designed in [28] for parameter inference in dual-reporter
experiments to separate the contributions of extrinsic noise, intrinsic noise, and measurement
error when both extrinsic and intrinsic noise are present. The described methods have been
effective in the reconstruction of low-dimensional noisy biological systems. Discrete master-
equation methods to model the evolution of probabilities in systems characterizing, e.g., gene
regulatory dynamics [29-31], can be computationally expensive and usually require specific
forms of a stochastic model with unknown parameters that need to be inferred. It is unclear
whether such methods and their generalizations can be applied to more complex (e.g, higher-
dimensional) systems for which a mechanistic description of the underlying biophysical
dynamics is not available or impractical.

SDEs can capture both the mean dynamics (as ODEs do) and random fluctuations, offering
a practical and scalable alternative to master equations in complex systems. Thus, we intro-
duce an extrinsic-noise-driven neural stochastic differential equation (END-nSDE) recon-
struction method that builds upon a recently developed Wasserstein distance (W, distance)
nSDE reconstruction method [32]. Our method is used to identify macromolecular reaction
kinetics and cell signaling dynamics from noisy observational data in the presence of both
extrinsic and intrinsic noise. A key question we address in this paper is how extrinsic noise
that characterizes cellular heterogeneity influences the overall stochastic dynamics of the
population.

The major differences between the approach presented here and prior work [32] are: (i) the
inclusion of extrinsic noise into the framework allowing one to model cell-to-cell variability
through parameter heterogeneity, and (ii) the ability of our method to learn the dependency
of the SDE on those parameters, enabling reconstruction of a family of SDEs rather than a sin-
gle SDE model. In contrast, the method developed in reference [32] focuses on reconstructing
a single SDE without considering parameter variations or extrinsic noise sources. In Fig 1, we
provide an overview of the specific applications that we study in this work.

Our approach employs neural networks as SDE approximators in conjunction with the
torchsde package [33,34] for reconstructing noisy dynamics from data. Previous work
showed that for SDE reconstruction tasks, the W, distance nSDE reconstruction method out-
performs other benchmark methods such as generative adversarial networks [32,35]. Com-
pared to other probabilistic metrics such as the KL divergence, the Wasserstein distance better
incorporates the metric structure of the underlying space. This geometric property makes the
Wasserstein distance particularly suitable for trajectory and image data on high-dimensional
manifolds, where the supports of different distributions do not always overlap [36]. Addition-
ally, the W,-distance-based nSDE reconstruction method can directly extract the underlying
SDE from temporal trajectories without requiring specific mathematical forms of the terms
in the underlying SDE model. We apply our END-nSDE methodology to three biological pro-
cesses: (i) circadian clocks, (i) RPA-DNA binding dynamics, and (iii) NFxB signaling to illus-
trate the effectiveness of the END-nSDE method in predicting how extrinsic noise modulates
stochastic dynamics with intrinsic noise. Additionally, our method demonstrates superior
performance compared to several time-series modeling methods including recurrent neu-
ral networks (RNNs), long short-term memory networks (LSTMs), and Gaussian processes.
In summary, the reconstruction method we propose provides a useful surrogate modeling
approach for complex biophysical and biochemical processes, especially in scenarios where
high-fidelity mechanistic models are impractical.
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Fig 1. Workflow of our proposed END-nSDE prediction on parameters altering stochastic dynamics. A. Workflow for training
and testing of the extrinsic-noise-driven neural SDE (END-nSDE). Predicted trajectories are simulated (see B) using a range of
model parameters (see Sect 2.2) before splitting into training and testing sets (see Fig E in S1 Text for details on the splitting strategy).
Model parameters and state variables serve as inputs to a neural network that reconstructs drift and diffusion terms (see C). Network
weights are optimized by minimizing the Wasserstein distance (Eq 8) between the training set and predicted trajectories. B. Predicted
trajectories are generated by the reconstructed SDE dX = f(X; w)dt + &(X; w)dB;. C. The drift and diffusion functions, fand &, are
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approximated using parameterized neural networks. The parameterized neural-network-based drift function f(X; ) and diffusion
function & (X; w) take the system state X and biological parameters c as inputs. D. Table of three examples illustrating the nSDE
input, along with training and testing datasets. For the last, NFxB example, a more detailed workflow for validation on experimental
datasets is illustrated in Fig 8.

https://doi.org/10.1371/journal.pchi.1013462.g001

2. Methods and models

In this work, we extend the temporally decoupled squared W,-distance SDE reconstruction
method proposed in Refs. [32,37] to reconstruct noisy dynamics across a heterogeneous cell
population (“extrinsic noise”). Our goal is to not only reconstruct SDEs for approximating
noisy cellular signaling dynamics from time-series experimental data, but to also quantify
how heterogeneous biological parameters, such as enzyme- or kinase-mediated biochemical
reaction rates, affect such noisy cellular signaling dynamics.

2.1. SDE reconstruction with heterogeneities in biological parameters

The W,-distance-based neural SDE reconstruction method proposed in [32] aims to approxi-
mate the SDE

dX(t) =f(X(t),t)dt + o (X(t), t)dB(¢t), X(¢) € RY, (1)

using an approximated SDE
dX(1) = f(X(1), )dt + &(X(t), t)dB(1), X(t) e RY, )

where fand & are two parameterized neural networks that approximate the drift and dif-
fusion functions fand o in Eq (1), respectively. These two neural networks are trained by
minimizing a temporally decoupled squared W,-distance loss function

a2 ey [T o2
W= (t))[En[HX(t)—X(t)H Ja, 3)

where IT(u(t), f1(t)) denotes the set of all coupling distributions 7z of two distributions

u(t), f1(t) on the probability space R?, and X(t) and X(t) are the observed trajectories at time
t and trajectories generated by the approximate SDE model Eq (2) at time t, respectively. 1
and f are the probability distributions associated with the stochastic processes {X()},0 <

t < Tand {X(t)},0 < t < T, respectively, while (¢) and f1(t) are the probability distributions
of X(t) and X(t) at a specific time t. A coupling 77 € TT(u(t), {1(t)) between u(t) and 2(¢) is
defined by

7(A,R?) = u(A), n(R%B) = i(B), VA, B € B(R?), (4)

where B(R?) is the Borel o-algebra on R and [E,T[HX( t) - X(1) ||2] represents the expectation
when (X, X) ~ 7.

The W3 term in Eq (3) is denoted as the temporally decoupled squared W, distance loss
function. For simplicity, in this paper, we shall also denote Eq (3) as the squared W, loss. The
infimum is taken over all possible coupling distributions 7w € IT(u(¢), 2(t)) and | - | denotes
the €2 norm of a vector. That is,

d
x| = ol )
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Across different cells, extrinsic noise or cellular heterogeneities such as differences in
kinase or enzyme abundances resulting from cellular variabilities, can lead to variable, cell-
specific, gene regulatory dynamics. Such heterogeneous and stochastic gene expression (both
intrinsic and extrinsic noise) can be modeled using SDEs with distributions of parameter val-
ues reflecting cellular heterogeneity. To address heterogeneities in gene dynamics across dif-
ferent cells, we propose an END-nSDE method that is able to reconstruct a family of SDEs for
the same gene expression process under different parameters. Specifically, for a given set of
(biological) parameters w, we are interested in reconstructing

dX(tw) =f(X(tw);w)dt + o(X(tw);w)dB(¢), (6)
using the approximate SDE
dX(tw) = f(X(w);w)dt + 6(X(tw); w)dB(t), (7)

in the sense that the errors fiX(t;w); w) - fIX(tw);w) and o(X(tw);w) - &(X(tw); w) for
all different values of w will be minimized. In Eq (7), fand & are represented by two parame-
terized neural networks that take both the state variable X and the parameters w as inputs. To
train these two neural networks, we propose an extrinsic-noise-driven temporally decoupled
squared W, distance loss function

L(A)= 3 Wi(p(w), (@), (8)

weA

where ¢(w) and ft(w) are the distributions of the trajectories X(;w), 0 <t < T and
X(t;w), 0 <t < T,and W is the temporally decoupled squared W, loss function in Eq (3).
A denotes the set of parameters w. Eq (8) is different from the local squared W loss in Refs.
[38,39] since we do not require a continuous dependence of {X(t w) },e[o,r] on the parame-
ter w nor do we require that w is a continuous variable. The extrinsic-noise-driven temporally
decoupled squared W loss function Eq (8) takes into account both parameter heterogeneity
and intrinsic fluctuations as a result of the Wiener processes B(t) and B(¢) in Eqs (1) and (2).
Our END-nSDE method is outlined in Fig 1A-1C. With observed noisy single-cell
dynamic trajectories as the training data, we train two parameterized neural networks [40] by
minimizing Eq (8) to approximate the drift and diffusion terms in the SDE. The reconstructed
nSDE is a surrogate model of single-cell dynamics (see Fig 1B and 1C). The hyperparame-
ters and settings for training the neural SDE model are summarized in Table A in S1 Text.
Through the examples outlined in Fig 1D, we will show that our W;-distance-based method
can yield very small errors in the reconstructed drift and diffusion functions f- fand o - 6.

2.2. Biological models

We consider three biological examples where stochastic dynamics play a critical role and use
our END-nSDE method to reconstruct noisy single-cell gene expression dynamics under both
intrinsic and extrinsic noise (also summarized in Fig 1D). In these applications, we investigate
the extent to which the END-nSDE can efficiently capture and infer changes in the dynamics
driven by extrinsic noise.

2.2.1. Noisy oscillatory circadian clock model. Circadian clocks, often with a typical
period of approximately 24 hours, are ubiquitous in intrinsically noisy biological rhythms
generated at the single-cell molecular level [41].
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Algorithm 1 END-nSDE training and prediction framework.

Obtain training trajectories {X(tw)} (simulated or experimental
time-series data). Maximum training epochs =ipax.
Preprocess the relevant training trajectories by grouping them
according to different biophysical parameters w.
Phase 1: Training
for i<in.x do
Input the initial state Xo and w€A into the END-nSDE to generate
new predictions X(tw).
Calculate the loss function L(A) in Eg (8) and perform gradient
descent to train the END-nSDE model.
end for
return the trained END-nSDE model
Phase 2: Prediction
Input initial condition Xy and corresponding noise parameters w from
testing data into the trained END-nSDE model.
Generate predicted trajectories X(tw) from the learned model.

We consider a minimal SDE model of the periodic gene dynamics responsible for per
gene expression which is critical in the circadian cycle. Since per gene expression is subject to
intrinsic noise [42], we describe it using a linear damped-oscillator SDE

dx = —axdt - Bydt + £,1dB;; + €,2dBy,

)
dy = Bxdt - aydt + §,1dB, ; + §,,dB,,
where x and y are the dimensionless concentrations of the per mRNA transcript and the
corresponding per protein, respectively. dB; s, dB,; are two independent Wiener processes
and the parameters o > 0 and 5 > 0 denote the damping rate and angular frequency, respec-
tively. A stability analysis at the steady state (x, y) = (0,0) in the noise-free case (§, = §, = 0in

Eq (9)) reveals that the real parts of the eigenvalues of the Jacobian matrix ( 75‘ :g ) at (x,y) =
(0,0) are all negative, indicating that the origin is a stable steady state when the system is
noise-free. Noise prevents the state (x(¢),y(t)) from remaining at (0,0); thus, fluctuations in the
single-cell circadian rhythm are noise-induced [42].

To showcase the effectiveness of our proposed END-nSDE method, we take different
forms of the diffusion functions £, and &, in Eq (9), accompanied by different values of noise
strength and the correlation between the diffusion functions in the dynamics of x,y.

2.2.2. RPA-DNA binding model. Regulation of gene expression relies on complex inter-
actions between proteins and DNA, often described by the kinetics of binding and dissoci-
ation. Replication protein A (RPA) plays a pivotal role in various DNA metabolic pathways,
including DNA replication and repair, through its dynamic binding with single-stranded
DNA (ssDNA) [43-46]. By modulating the accessibility of ssDNA, RPA regulates multiple
biological mechanisms and functions, acting as a critical regulator within the cell [47]. Under-
standing the dynamics of RPA-ssDNA binding is therefore a research area of considerable
biological interest and significance.

Multiple binding modes and volume exclusion effects complicate the modeling of RPA-
ssDNA dynamics. The RPA first binds to ssDNA in 20 nucleotide (nt) mode, which occupies
20nt of the ssDNA. When the subsequent 10nt of ssDNA is free, 20nt-mode RPA can trans-
form to 30nt-mode, further stabilizing its binding to ssDNA, as illustrated in Fig 2. Occupied
ssDNA is not available for other proteins to bind. Consequently, the gap size between adjacent
ssDNA-bound RPAs determines the ssDNA accessibility to other proteins.

Mean-field mass-action type chemical kinetic ODE models cannot describe the process
very well because they do not capture the intrinsic stochasticity. A stochastic model that
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30nt mode

ssDNA );;l/ =0 -

Fig 2. A continuous-time discrete Markov chain model for multiple RPA molecules binding to long ssDNA. The
possible steps in the biomolecular kinetics of multiple RPA molecules binding to ssDNA. The RPA in the free solution
can bind to ssDNA with rate k; provided there are at least 20 nucleotides (nt) of consecutive unoccupied sites. This
bound “20nt mode” RPA unbinds with rate k_;. When space permits, the 20nt-mode RPA can extend and bind an
additional 10nt of DNA at a rate of k», converting it to a 30nt-mode bound protein. The 30nt-mode RPA transforms
back to 20nt-mode spontaneously with the rate k_,. However, when the gap is not large enough to accommodate the
RPA, the binding or conversion is prohibited (k] = 0 and k} = 0).

https://doi.org/10.1371/journal.pchi.1013462.9002

tracks the fraction of two different binding modes of RPA, 20nt-mode (x;) and 30nt-mode
(x2), has been developed to capture the dynamics of this process. A brute-force approach
using forward stochastic simulation algorithms (SSAs) [48] was then used to fit the model to
experimental data [47]. However, a key challenge in this approach is that the model is nondif-
ferentiable with respect to the kinetic parameters, making it difficult to estimate parameters.
Yet, simple spatially homogeneous stochastic chemical reaction systems can be well approx-
imated by a corresponding SDE of the form given in Eq (1) when the variables are properly
scaled in the large system size limit [49]. While interparticle interactions shown in Fig 2 make
it difficult to find a closed-form SDE approximation, results from [49] motivate the possibility
of an SDE approximation for the RPA-ssDNA binding model in terms of the variables x; and
X3.

Here, to address the non-differentiability issue associated with the underlying Markov pro-
cess, we use our END-nSDE model to construct a differentiable surrogate for SSAs, allowing it
to be readily trained from data. Further details on the models and data used in this study are
provided in Appendix B of S1 Text. Throughout our analysis of RPA-DNA binding dynam-
ics, we benchmark the SDE reconstructed by our extended W,-distance approach against
those found using other time series analysis and reconstruction methods such as the Gaussian
process, RNN, LSTM, and the neural ODE model. We show that our surrogate SDE model
is most suitable for approximating the RPA-DNA binding process because it can capture the
intrinsic stochasticity in the dynamics.

2.2.3. NF«B signaling model. Macrophages can sense environmental information and
respond accordingly with stimulus-response specificity encoded in signaling pathways and
decoded by downstream gene expression profiles [50]. The temporal dynamics of NFxB, a key
transcription factor in immune response and inflammation, encodes stimulus information
[51]. NF«xB targets and regulates vast immune-related genes [52-54]. While NFxB signaling
dynamics are stimulus-specific, they exhibit significant heterogeneity across individual cells
under identical conditions [51]. Understanding how specific cellular heterogeneity (extrinsic
noise) contributes to heterogeneity in NFxB signaling dynamics can provide insight into how
noise affects the fidelity of signal transduction in immune cells.

A previous modeling approach employs a 52-dimensional ODE system to quantify the
NFxB signaling network [51] and recapitulate the signaling dynamics of a representative cell.
This ODE model includes 52 molecular entities and 47 reactions across a TNF-receptor mod-
ule, an adaptor module, and a core module with and NFxB-IKK-IxBa (IxBa is an inhibitor
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of NFxB, while IKK is the IxB kinase complex that regulates the IxBa degradation) feedback
loop (see Fig 3) [55]. However, such an ODE model is deterministic and assumes no intrin-
sic fluctuations in the biomolecular processes. Yet, from experimental data, the NF«B sig-
naling dynamics fluctuate strongly; such fluctuations cannot be quantitatively described by
any deterministic ODE model. Due to the system’s high dimensionality and nonlinearity, it is
challenging to quantify how intrinsic noise influences temporal coding in NFxB dynamics.

To incorporate the intrinsic noise within the NFxB signaling network, we introduce noise
terms into the 52-dimensional ODE system to build an SDE that can account for the observed
temporally fluctuating nuclear NFxB trajectories. While NFxB signaling pathways involve
many variables, experimental constraints limit the number of measurable components.
Among these, nuclear NFxB concentration is the most direct and critical experimental read-
out. As a minimal stochastic model, we hypothesize that only the biophysical and biochem-
ical processes of NFxB translocation (which directly affects experimental measurements)
and IxBa transcription (a key regulator of NFxB translocation) are subject to Brownian-type
noise (red arrows in Fig 3), as these processes play crucial roles in the oscillatory dynamics of
NF«B [55].

The intensity of Brownian-type noise in the NFxB dynamics may depend on factors such
as cell volume (smaller volumes result in higher noise intensity), or copy number (lower copy
numbers lead to greater noise intensity), and is therefore considered a form of extrinsic noise.
Noise intensity parameters thus capture an aspect of cellular heterogeneity. There are other
sources of cellular heterogeneity, such as variations in kinase or enzyme abundances, which

v

i ®

O _ge

Fig 3. Simplified schematic of the NFxB Signaling Network. TNF binds its receptor, activating IKK, which
degrades IxBar and releases NFxB. The free NFxB translocates to the nucleus and promotes IxBa transcription.
Newly synthesized IxBa then binds NFxB and exports it back to the cytoplasm. Red arrows indicate noise that we
consider in the corresponding SDE system.

https://doi.org/10.1371/journal.pchi.1013462.g003
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are too complicated to model and are thus not included in the current model. For simplic-
ity, all kinetic parameters, except for the noise intensity (o), are assumed to be consistent
with those of a representative cell [55]. The 52-dimensional ODE model for describing NFxB
dynamics is given in Refs. [51,56]. We extend this model by adding noise to the dynamics of
the sixth, ninth, and tenth ODEs of the 52-dimensional ODE model. We retain 49 ODEs but
convert the equations for the sixth, ninth, and tenth components to SDEs:

k NNFxB

u
max
d”6 = (kbasal + U =

NNFxB NFxB
s + K\ren

- kdegus)dt +01dBy;
dug = (kimpu9 — Ka- kB NFxB U2 UY — kdeg-NFKBu9 + V_lkexpulo + k. 1xB-NFxBUs + kphosu7)df -0,dBy,
duy = ( = kexpt10 = ka1 NExBU3 U10 + VKimpUo + kdeKB—NFKBuS)dt +0,dBy.
(10)

In Egs 10, u, is the concentration of IxBa in the cytoplasm; us is the concentration of
IxBa in the nucleus; uy is the concentration of the IxBa-NFxB complex; us is the concentra-
tion of the IxBa-NFxB complex in the nucleus; us is the mRNA of IxBa; u; is the IKK-IxBa-
NFxB complex; uy is NFxB; u;o represents nuclear NFxB concentration; and us; is the nuclear
concentration of NFxB with RNA polymerase II that is ready to initiate mRNA transcription.
A description of the parameters and their typical values are given in Table C in S1 Text. The
quantities o1dB; ; and 0,dB,; are noise terms associated with IxBa transcription and NFxB
translocation, respectively. The remaining variables are latent variables and their dynamics
are regulated via the remaining 49-dimensional ODE in Refs. [51,56]. The activation of NFxB
is quantified by the total nuclear NFxB concentration (us + uy0), which is also measured in
experiments.

Within this example, we wish to determine if our proposed parameter-associated nSDE
can accurately reconstruct the dynamics underlying experimentally observed NFxB trajectory
data.

3. Results
3.1. Accurate reconstruction of circadian clock dynamics

As an illustrative example, we use the W,-distance nSDE reconstruction method to first
reconstruct the minimal model for damped oscillatory circadian dynamics (see Eq (9)) under
different forms of the diffusion function. We set the two parameters o = 0.19 and 8 = 0.21 in
Eq (9) and impose three different forms for the diffusion functions &1, §x2, &1, €21 a constant
diffusion function [57], a Langevin [58] diffusion function, and a linear diffusion function
[59]. These functions, often used to describe fluctuating biophysical processes, are

. §a bo _ I ¢
const: [§y1 gyz]—ao [c 1], (11)

Langevin: §a o =0, \/M C\/m] , (12)
_gyl §y2_ _C\/M \/|J’_|
and
linear: Sa Sa)_ ol * cly |] . (13)
_§y1 §y2_ _C|x| y

There are two additional parameters in Eqs (11), (12), and (13): o that determines the
intensity of the Brownian-type fluctuations and c that controls the correlation of fluctuations
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between the two dimensions. For each type of diffusion function, we trained a different nSDE
model, each of which takes the state variables (x,y) and the two parameters (¢, o) as inputs
and which outputs the values of the reconstructed drift and diffusion functions.

We take 25 combinations of (0o, ¢) € {(0.1 + 0.05,0.2 + 0.2),i € {0,...,4},j € {0, .., 4} };
for each combination of (£x1, &2, 1, €2 ), we generate 50 trajectories from the ground truth
SDE (9) as the training data with ¢ € [0, 1]. The initial condition is set as (x(0),¥(0)) = (0,1).
To test the accuracy of the reconstructed diffusion and drift functions, we measure the follow-
ing relative errors:

M T . . _A X.(t.- .
Error in fi= it Zj:o (Xi(t0); @) f(Xl(t]’w)’w)h’ (14)

¥ olf(Xi(tp @) 0)|;

T Tiollo(Xi(ts0)s @) (Xi(ts @), t50)| - 6 (Xi(ts ) @) (t0)|)
Y Tl lo(Xi(t ) 0)a T (Xi(t; ); )] '

Errorin o:=

(15)

Here, f:= (—ax— By, Bx—ay)” is the vector of ground truth drift functions and fis
the reconstructed drift function. o is the matrix of ground truth diffusion functions
(x> x5 )15 €52] given in Egs (11), (12), and (13). M is the number of training samples, | - |;
denotes the #' norm of a vector, and the matrix norm Al = Y%, 3, |A;| for a matrix A €
R™*" The errors are measured separately for different parameters w := (0y, c).

The errors in the reconstructed drift function fand diffusion function & as well as the tem-
porally decoupled squared W, loss Eq (3) associated with different forms of the diffusion
function and different values of (0o, ¢) are shown in Fig 4. When the diffusion function is a
constant Eq (11), the mean reconstruction error of the drift function is 0.15, the mean recon-
struction error of the diffusion function is 0.16, and the mean temporally decoupled squared
W, loss between the ground truth trajectories and the predicted trajectories is 0.074 (aver-
aged over all sets of parameters (09, ¢)). When a Langevin-type diffusion function Eq (12) is
used as the ground truth, the mean errors for the reconstructed drift and diffusion functions
are 0.069 and 0.29, respectively, and the mean temporally decoupled squared W, loss between
the ground truth and predicted trajectories is 0.020. For a linear-type diffusion function as
the ground truth, mean reconstruction errors of the drift and diffusion functions are 0.19 and
0.41, respectively, and the mean temporally decoupled squared W, distance is 0.013. For all
three forms of diffusion, our END-nSDE method can accurately reconstruct the drift function
(-ax-By, Bx-ay) (see Fig 4D-4F). When the diffusion function is a constant, our END-nSDE
model can also accurately reconstruct this constant (see Fig 4G). When the diffusion function
takes a more complicated form such as the Langevin-type diffusion function Eq (12) or the
linear-type diffusion function Eq (13), the reconstructed nSDE model can still approximate
the diffusion function well for most combinations of (g, ¢), especially when the correlation
¢>0.2 (see Fig 4H-41). Overall, our proposed END-nSDE model can accurately reconstruct
the minimal stochastic circadian dynamical model Eq (9) in the presence of extrinsic noise
(different values of (oy, ¢)); the accuracy of the reconstructed drift and diffusion functions is
maintained for most combinations of (g, ¢). While the drift function is reconstructed with
high accuracy, the reconstructed diffusion function exhibits larger relative errors, particularly
for models with more complex diffusion forms. How errors depend on the functional forms
of the diffusion should be investigated.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013462 September 17, 2025 11/ 26



https://doi.org/10.1371/journal.pcbi.1013462

PLOS COMPUTATIONAL BIOLOGY Learning noisy cellular molecular dynamics with neural stochastic differential equations

A W3 loss, constant W2 loss, Langevin W2 loss, linear
0.10
0.30
S 0.08
.*E} 0.25
g 0.06
£ 0.20
R 0.04
2 o015
g 0.02
0.10
0.00
D drift error, constant drift error, Langevin drift error, linear
1.0
0.30
g 0.8
.ﬁ> 0.25
2 0.6
é% 0.20
R 0.4
2 015
= 0.2
0.10
0.0
G diff. error, constant diff. error, Langevin dlﬂ error, linear
1.0
0.30
S 0.8
2 025
g 0.6
fa’ 0.20
= 0.4
g 015
= 0.2
0.10
0.20 0.40 0.60 0.80 1.00 020 0.40 0.60 0.80 1.00 020 0.40 0.60 0.80 1.00 0.0
correlation ¢ correlation ¢ correlation ¢

Fig 4. Reconstructing the circadian model using END-nSDE. Temporally decoupled squared W losses Eq (3) and errors in the recon-
structed drift and diffusion functions for different types of the diffusion function and different values of (o, ¢). A-C. The temporally
decoupled squared W, loss between the ground truth trajectories and the trajectories generated by the reconstructed nSDEs for the
constant-type diffusion function Eq (11), Langevin-type diffusion function Eq (12), and the linear-type diffusion function Eq (13). D-E.
Errors in the reconstructed drift function for the three different types of ground truth diffusion functions and the linear-type diffusion
function Eq (13). G-I. Errors in the reconstructed diffusion function for the three different types of ground truth diffusion functions.

https://doi.org/10.1371/journal.pchi.1013462.9004

To investigate how the strengths of the extrinsic and intrinsic noise and affect our recon-
struction of extrinsic-noise-driven SDEs, we conduct an additional test on the reconstruc-
tion of circadian clock dynamics. We generate training trajectories from a revised version of

Eq (9):
dx = —axdt - ﬁydt—f— (UO + O'lkl)\/)_CdBl)t

16
dy = Bxdt - aydt + (o¢ + 01k )/ydB,. (16)
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0.10

0.1

In Eq (16), for each set of (g, g1 ), we generate 25 groups of (k;, k,) € {0,%0.5,£1} X
{0, £0.5, =1} with each group containing 50 trajectories as training data. To train the neu-
ral SDE model, both the state variables (x,y) and (k;, k) are input into the neural SDE. g,
characterizes the average level of intrinsic noise while o, represents the strength of extrinsic
noise, and we use different values of (g, g1 ). As shown in Fig 5B and 5C, errors in the recon-
structed drift function and in the reconstructed diffusion function, averaged over all different
sets of (ki, ky), increases with both o and ;. Specifically, an increase in the intrinsic noise
level (op) reduces the reconstruction accuracy more than an increase in the extrinsic noise
(1) does. More analysis on how the variation in intrinsic noise and extrinsic noise could
affect the accuracy of the reconstructed drift and diffusion functions using our proposed
END-nSDE method is promising.

3.2. Accurate approximation of interacting DNA-protein systems
with different kinetic parameters

To construct a differentiable surrogate for stochastic simulation algorithms (SSAs), the neu-
ral SDE model should be able to take kinetic parameters as additional inputs. Thus, the orig-
inal W,-distance SDE reconstruction method in [32] can no longer be applied because the
trained neural SDE model cannot take into account extrinsic noise [60], i.e., different val-
ues of kinetic parameters. To be specific, we vary one parameter (the conversion rate k, from
20nt-mode RPA to 30nt-mode RPA) in the stochastic model and then apply our END-nSDE
method which takes the state variables and the kinetic parameter k;, as the input. We set k, €
{10749/19j = 0, ...,25} with other parameters taken from experiments [47] (k; =107 s7!, k_; =
10% s, k, =107 s7!, see Fig 2). For each k;, we generate 100 trajectories and use 50 for the
training set and the other 50 for the testing set. Each trajectory encodes the dynamics of the
fraction of 20nt-mode DNA-bound RPA x; () and the fraction of 30nt-mode DNA-bound
RPA x,(t).

When approximating the dynamics underlying the RPA-DNA binding process, we com-
pare our SDE reconstruction method with other benchmark time-series analysis or recon-
struction approaches, including the RNN, LSTM, Gaussian process, and the neural ODE
model [61,62]. These benchmarks are described in detail in Appendix C in S1 Text.

2 . o
W3 loss x10-2 B drift error C diffusion error

0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
) 0o )

Fig 5. Average temporally decoupled squared W, losses Eq (3) and errors in the reconstructed drift and diffusion functions for different
choices of intrinsic noise strength and extrinsic noise strength (09, 01) in Eq (16).

https://doi.org/10.1371/journal.pcbi.1013462.g005
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The extrinsic-noise-driven temporally decoupled squared W, distance loss Eq (8) between
the distribution of the ground truth trajectories and the distribution of the predicted trajecto-
ries generated by our END-nSDE reconstructed SDE model is the smallest among all methods
(shown in Table 1). The underlying reason is an SDE well approximates the genuine Markov
counting process underlying the continuum-limit RPA-DNA binding process [49]. The RNN
and LSTM models do not capture the intrinsic fluctuations in the counting process. The neu-
ral ODE model is a deterministic model and cannot capture the stochasticity in the RPA-DNA
binding dynamics. Additionally, the Gaussian process can only accurately approximate linear
SDEs, which is not an appropriate form for an SDE describing the RPA-DNA binding process.

In Fig 6A and 6B, we plot the predicted trajectories obtained by the trained neural SDE
model for two different values Igk, = -4 and Igk, = -1.5. Actually, for all different values of k,
trajectories generated by our END-nSDE method match well with the ground truth trajecto-
ries on the testing set, as the temporally decoupled squared W, loss is maintained small for all
k; (shown in Fig 6C). This demonstrates the ability of our method to capture the dependence
of the stochastic dynamics on biochemical kinetic parameters.

Table 1. The extrinsic-noise-driven time-decoupled squared W, distance Eq (8) between the ground truth and
predicted trajectories generated by different models on the testing set.

Model Loss
END-nSDE 0.0006
LSTM 0.062
RNN 0.087
nODE 0.0012
Gaussian Process 0.0010
https://doi.org/10.1371/journal.pcbi.1013462.t001
reconstruction (Igk, = —4) B reconstruction (lgk, = —1.5) Cc 1074W2 error vs. 1g ko
—— 1 ground truth —— 1 ground truth
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Fig 6. Reconstructed trajectories of the RPA-DNA binding model. A. Sample ground truth and reconstructed trajectories evaluated at
Ig k> = -4, where we use the convention that Ig = log, .. B. Sample ground truth and reconstructed parameters evaluated at Igk, = -1.5. C.
Temporally decoupled squared W distances (see Eq (8)) between the ground truth and reconstructed trajectories evaluated at different
Ig k; values. In A and B, blue and red trajectories represent the filling fractions of DNA by 20nt-mode and 30nt-mode RPA, respectively.
The dashed lines represent the predicted trajectories, and the solid lines represent the ground truth. Throughout the figure, the data are
generated by a single neural SDE model that accepts the conversion rate k; as a parameter and outputs the trajectories.

https://doi.org/10.1371/journal.pcbi.1013462.9006
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3.3. Reconstructing high-dimensional NFxB signaling dynamics from
simulated and experimental data

Finally, we evaluate the effectiveness of the END-nSDE framework in reconstructing high-
dimensional NFxB signaling dynamics under varying noise intensities and investigate the
performance of the neural SDE method in reconstructing experimentally measured noisy
NFxB dynamics. The procedure is divided into two parts. First, we trained and tested our
END-nSDE method on synthetic data generated by the NFxB SDE model Eq (10) under dif-
ferent noise intensities (07,0, ). Second, we test whether the trained END-nSDE can repro-
duce the experimental dynamic trajectories.

3.3.1. Reconstructing a 52-dimensional stochastic model for NFxB dynamics. For
training END-nSDE models, we first generated synthetic data from the 52-dimensional SDE
model of NF«xB signaling dynamics Eqs (10) and established models [51,56]. The synthetic
trajectories are generated under 121 combinations of noise intensity (o;,0,) in Egs (10) (see
Appendix D of S1 Text). The resulting NFxB trajectories vary depending on noise intensity,
with low-intensity noise producing more consistent dynamics across cells (see Fig 7A) and
higher-intensity noise yielding more heterogeneous dynamics (see Fig 7B). The simulated
ground truth trajectories are split into training and testing datasets (see Appendix E in S1
Text for details). Specifically, we excluded 25 combinations of noise intensities (o;,0,) from
the training set in order to test the generalizability of the trained neural SDE model on noisy
intensities.

Next, as detailed in Appendix E of S1 Text, we trained a 52-dimensional neural SDE model
using our END-nSDE method on synthetic trajectories. The loss function is based on the W,
distance between the distributions of the neural SDE predictions in Egs (10) and the sim-
ulated nuclear IxBa-NFxB complex and nuclear NFxB activities (us(t) and u1o(t), respec-
tively) and the corresponding END-nSDE predictions. The remaining 50 variables of the
NFxB system were treated as latent variables, as they are not directly included in the loss
function calculation.

Although the NFxB dynamics vary under different noise intensities (07,0, ), the trajecto-
ries generated by our trained neural SDE closely align with the ground truth synthetic NFxB
dynamics under different noise intensities (01,0,) (see Fig 7C and 7D). The neural SDE
model demonstrates greater accuracy in reconstructing NFxB dynamics when the noise in
IxBa transcription (o) is smaller, as evidenced by the reduced squared W, distance between
the predicted and ground-truth trajectories on both the training and validation sets (see
Fig 7E and 7F). The temporally decoupled squared W, loss Eq (8) on the validation set is close
to that on the training set for different values of noise intensities (o1, 0, ). The mean squared
W, distance across all combinations of noise intensities (o;,0,) is 0.0013 for the training set,
and the validation set shows a mean squared W, distance of 0.0017.

Since the loss function for this application involves only two variables out of 52, we also
tested whether the “full” 52-dimensional NFxB system can be effectively modeled by a two-
dimensional neural SDE. After training, we found that the reduced model was insufficient for
reconstructing the full 52-dimensional dynamics, as it disregarded the 50 latent variables not
included in the loss function (see Fig D in Appendix F of S1 Text). This result underscores
the importance of incorporating latent variables from the system, even when they are not
explicitly included in the loss function.

3.3.2. Reproducing NFxB data with a trained END-nSDE. We assessed whether our
proposed END-nSDE can accurately reconstruct the experimentally measured NFxB dynamic
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Fig 7. Reconstruction of NFxB signaling dynamics. A. Sample trajectories of nuclear NFxB concentration as a
function of time with 0'1 = 10’3'2, gy =10723, B. Sample trajectories of nuclear NFxB concentration as a function

of time with o1 = 10722, g, = 1071%. C. Reconstructed nuclear NFxB trajectories generated by the trained neural

SDE versus the ground truth nuclear NFxB trajectories under noise intensities 1 = 102, g, = 103 in Eq (10). D.
Reconstructed nuclear NFxB trajectories generated by the trained neural SDE versus the ground truth nuclear NFxB
trajectories under noise intensities o1 = 10722, 0, = 1071°. E. The squared W, distance between the distributions of
the predicted trajectories and ground truth trajectories on the training set under different noise strengths (1,02 ). For
training, we randomly selected 50% sample trajectories in 80 combinations of noise strengths (01, 02) as the training
dataset. Blank cells indicate that the corresponding parameter set is not included in the training set. F. Validation of the
trained model by evaluating the squared W, distance between the distributions of predicted trajectories and ground
truth trajectories on the validation set.

https://doi.org/10.1371/journal.pcbi.1013462.g007
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trajectories. For simplicity and feasibility, we tested the END-nSDE under the assump-

tion that: (1) all cells share the same drift function, and (2) cells with trajectories deviating
similarly from their ODE predictions have the same noise intensities. Based on these assump-
tions, we developed the following workflow (see Fig 8):

1. We used experimentally measured single-cell trajectories of NFxB concentration,

obtained through live-cell image tracking of macrophages from mVenus-tagged RelA
mouse with a frame frequency of five minutes [63], yielding a total of 31 consecutive
time points. These trajectories correspond to the sum of nuclear IxBa-NFxB and NFxB
concentration in the 52D SDE model (us(t) and u1() in Eq (10)).

. The experimental dataset was divided into subgroups. Cosine similarity was calculated
between the ODE-generated trajectory (representative-cell NFxB dynamics) and exper-
imental trajectories. The trajectories are then ranked and divided into different groups
based on their cosine similarity with the trajectory generated from the ODE model [64].
Experimental trajectories with higher similarity to the ODE trajectory are expected

to exhibit smaller intrinsic fluctuations, corresponding to lower noise intensities (see
Appendix G in S1 Text for details).

. Each group of experimental trajectories was input into the trained neural network

(see the next paragraph for more details) to infer the corresponding noise intensities
(01,02). For simplicity, we assume that trajectories within each group share the same

noise intensities.

Workflow for reconstructing experimental data
via nSDE

Experimentally measured single-cell NFkB
trajectoreis (Luecke et al. 2024)

l

Rank the trajectories by their correlation with
ODE simulations, then group them into batches

l

Use the trained feedforward NN to predict
noise intensity for each group.

l

Feed the inferred noise into the trained neural
SDE to simulate single-cell NFKB trajectories.

l

Compare reconstructed NFkB trajectories
with the corresponding experimental batches.

lllustration of
results at each step

Exp. traj.

noise intensity 1 --- noise intensity n

1

( 'r\
'\ M
‘// 4’M

nSDE sumulated traj.

traj.(exp) vs traj. (hNSDE)

Fig 8. Workflow of reconstructing experimental data via END-nSDE. Workflow for reconstructing experimental data using the trained
parameterized nSDE and the parameter-inference neural network (NN). The boxes on the left outline the steps of the experimental data

reconstruction process, while the boxes on the right illustrate the corresponding results at each step.

https://doi.org/10.1371/journal.pcbi.1013462.9008
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4. The inferred noise is then used as inputs for the trained END-nSDE to simulate NFxB
trajectories.

5. The simulated trajectories were compared with the corresponding experimental data to
evaluate the model’s performance.

To estimate noise intensities from different groups of experimentally measured single-
cell nuclear NFxB trajectories (step (3) in the proposed workflow), we trained another
neural network to predict the corresponding IxBa transcription and NFxB translocation
noise intensities from the groups of NFxB trajectories in the synthetic training data, sim-
ilar to the approach taken in [65]. The trained neural network can then be used for pre-
dicting noise intensities in the validation set (see Appendix H in S1 Text for technical
details).

Assessing the impact of group size (number of trajectories) on noise intensity predic-
tion performance, we found that taking a group size of at least two leads to a relative error of
around 0.1 (see Fig 9A). Given the high heterogeneity present in experimental data, we took a
group size of 32 as the input into the neural network. Under this group size, the relative errors
in the predicted noise intensities were 0.021 on the training set and 0.062 on the testing set
(see Fig 9B and 9C).

Using the trained neural network, we inferred noise intensities for the experimental data,
which were grouped based on their cosine similarities with the representative-cell trajectory
(deterministic ODE) with a group size of 32. The predicted noise intensities on the exper-
imental dataset are larger than the noise intensities on the training set, possibly because
unmodeled extrinsic noise complicates the inference of noise intensity. The transcription
noise of IxBa is predicted to be within the range of [107%#!,107%7!] (see Fig 9D). In addi-
tion, the inferred noise for NFxB translocation fell within [107°4°,1079%°] (see Fig 9D). These
inferred noise intensities were then used as inputs to the END-nSDE to simulate NFxB trajec-
tories.

We compare the reconstructed NFxB trajectories generated by the trained neural SDE
model with the experimentally measured NFxB trajectories (see Fig 9E-91). The trajectories
generated using our END-nSDE method successfully reproduce the experimental dynam-
ics for the majority of time points for the top 50% of cell subgroups most correlated with the
representative-cell ODE model (see Fig 9E-9G, Fig 91I).

For the top-ranked subgroups (#1 to #16), the heterogeneous nSDE-reconstructed dynam-
ics align well with the experimental data for the first 100 minutes. The predicted trajectories
deviate more from ground truth trajectories observed in experiments after 100 minutes pos-
sibly due to error accumulation and errors in the predicted noise intensity. For experimen-
tal subgroups that significantly deviate from the representative-cell ODE model, the END-
nSDE struggles to fully capture the heterogeneous trajectories. This limitation likely arises
from the assumption that all cells in a group share the same underlying dynamics, whereas
in reality, substantial cellular differences in underlying dynamics exist due to heterogeneity
in the drift term, an aspect not accounted for in END-nSDE due to the high computational
cost.

With sufficient data and computational resources, our proposed workflow is able to incor-
porate extrinsic noise in the drift terms, allowing for further discrimination of experimen-
tal trajectories. Our END-nSDE method can partially reconstruct experimental datasets and
has the potential to fully capture experimental dynamics. Furthermore, trajectories gen-
erated from the trained END-nSDE model can reproduce the intrinsic fluctuations in the
observed NFxB signaling dynamics which are inaccessible to the representative-cell ODE
model.
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Fig 9. Inferring intrinsic noise intensities and reconstructing experimental data via END-nSDE. A. Plots showing the mean (solid circles) and variance (error
bars) of the relative error in the reconstructed noise intensities (&1, 52 ) predicted by the parameter-inference NN for the testing dataset, as a function of the
group size of input trajectories. B. Heatmaps showing the relative error in the reconstructed noise intensities for the training dataset. Colored cells represent
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4. Discussion

In this work, we used the W,-distance to develop an END-nSDE reconstruction method that
takes into account extrinsic noise in gene expression dynamics as observed across various bio-
physical and biochemical processes such as circadian rhythms, RPA-DNA binding, and NFxB
translocation. We first demonstrated that our END-nSDE method can successfully recon-
struct a minimal noise-driven fluctuating SDE characterizing the circadian rhythm, showcas-
ing its effectiveness in reconstructing SDE models that contain both intrinsic and extrinsic
noise. Next, we used our END-nSDE method to learn a surrogate extrinsic-noise-driven neu-
ral SDE, which approximates the RPA-DNA binding process. Molecular binding processes
are usually modeled by a Markov counting process and simulated using Monte-Carlo-type
stochastic simulation algorithms (SSAs) [48]. Our END-nSDE reconstruction approach can
effectively reconstruct the stochastic dynamics of the RPA-ssDNA binding process while also
taking into account extrinsic noise (heterogeneity in biological parameters among different
cells). Our END-nSDE method outperforms several benchmark methods such as LSTMs,
RNNs, neural ODEs, and Gaussian processes.

Finally, we applied our methodology to analyze NFxB trajectories collected from over a
thousand cells. Not only did the neural SDE model trained on the synthetic dataset perform
well on the validation set, but it also partially recapitulated experimental trajectories of NFxB
abundances, particularly for subgroups with dynamics similar to those of the representative
cell. These results underscore the potential of neural SDEs in modeling and understanding the
role of intrinsic noise in complex cellular signaling systems [66-68].

When the experimental trajectories were divided into subgroups, we assumed that all cells
across different groups shared the same drift function (as in the representative ODE) and cells
within each group shared the same diffusion term. We found that subgroups with dynamics
more closely aligned with the deterministic ODE model resulted in better reconstructions. In
contrast, for experimental trajectories that deviated significantly from the representative ODE
model, their underlying dynamics may differ from those defined by the representative cell’s
ODE. Therefore, the assumption that a group shares the same drift function as the representa-
tive cell ODE holds only when the trajectories closely resemble the ODE. Incorporating noise
into the drift term for training the neural SDE could potentially address this issue. We did not
consider this approach due to the high computational cost required for training.

Applying our method to high-dimensional synthetic NFxB datasets, we showed the impor-
tance of incorporating latent variables. This necessity arises because the ground-truth dynam-
ics of the measured quantities (nuclear NFxB) are not self-closed and inherently depend on
additional variables. Consequently, the 52-dimensional SDE reconstruction requires more
variables than just the “observed” dynamics of nuclear NFxB. In this example, the remaining
50 variables in the nSDE were treated as latent variables, even though they were not explicitly
included in the loss function.

For high-dimensional systems (e.g., 52 dimensions as in our NFxB example), analyzing
stochastic dynamics remains challenging. Even though regulated processes do not follow gra-
dient dynamics in general, imposing a self-consistent energy landscape and adopting lower
dimensional projections can provide a valuable framework for studying stochastic dynamics
of high-dimensional biological systems [69-71]. Once an effective energy landscape is iden-
tified, prior knowledge about the system structure can be incorporated into the neural SDE
framework through the following formulation:

dX = (F(X) +f(X;w) )dt + 6(X;w)dBy, (17)
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where F(X) = VE(X) represents the prior knowledge of the energy landscape. The neural net-
works fand & then learn deviations from the prior knowledge and the unknown intrinsic
noise. Such prior information on the energy landscape could facilitate training and improve
accuracy of the learned model [37]. How imposition of a high-dimensional landscape as a
constraint affects our W,-distance-based inference and how this potential sold be interpreted
should be explored in more depth. If meaningful and informative, prior results on how land-
scapes can be used to characterize neural networks across various tasks can be leveraged [72,
73].

Finally, neural SDEs can serve as surrogate models for complex biomedical dynamics [74,
75]. Combining such surrogate models with neural control functions [72,76,77] can be use-
ful for tackling complex biomedical control problems. As shown in preceding work [32,37], a
larger number of training trajectories led to a more accurate reconstructed neural SDE. How-
ever, in biological experiments, obtaining more training trajectories could be more expensive.
Therefore, it is of biological significance to find out the number of training trajectories that
can be practically obtained in real experiments and that are necessary for an accurate recon-
struction of the intrinsic-noise-aware SDE using our END-nSDE approach. Finally, it is worth
further investigation to find out the biophysical molecular processes in which taking into
account intrinsic fluctuations is necessary. In such problems, using our END-nSDE frame-
work to reconstruct the noisy molecular dynamics could yield a more biologically reasonable,
noise-aware model than first-principle-based mass-action ODE models.

While our work focuses on gene regulation dynamics, it is important to emphasize that
the END-nSDE reconstruction method is general and can potentially be applied to biological
systems beyond gene regulation. The method’s ability to capture both intrinsic and extrin-
sic noise makes it suitable for modeling various stochastic biological processes, including,
but not limited to, signal transduction networks, metabolic pathways, population dynamics,
and developmental processes. The examples we chose-circadian rhythms, RPA-DNA bind-
ing dynamics, and NFxB signaling-were selected to demonstrate the method’s capabilities and
bring the neural SDE approach to the attention of the molecular and cell biology community.
Future applications could extend to other domains such as epidemiology, ecology, and sys-
tems biology, where stochastic dynamics that could be described by SDEs with heterogeneity
among different cells or individuals are prevalent.

Besides better understanding effective energy landscape constraints, there are several
promising directions for future research. First, techniques to extract an explicit form of the
learned neural network SDEs can be developed. For example, one could employ a polyno-
mial model as the reconstructed drift and diffusion functions in the SDE [78]. Such an explicit
functional form of the approximate SDE may facilitate biological interpretation of the under-
lying model. Recent research has also shed light on directly interpreting trained neural net-
works using simple functions such as polynomials [79]. Therefore, one can apply such meth-
ods to extract the approximate forms from the learned drift and diffusion functions in the
neural SDE and interpret their biophysical meaning.

Another promising avenue of investigation is to combine discrete and continuous mod-
eling approaches to account for both mRNA and protein dynamics. Such a hybrid approach
would use discrete Markov jump processes for low-abundance species (such as mRNA) while
employing SDEs for high-abundance species (such as proteins), thereby addressing the limita-
tions of pure SDE approaches when molecular counts approach zero.

Finally, the presence of unobserved variables in cellular systems poses a significant chal-
lenge for accurate SDE modeling. Many cellular processes involve hidden regulatory mecha-
nisms, unmeasured metabolites, or latent cellular states that influence the observed dynam-
ics but are not directly captured in experimental measurements. This limitation can lead to
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model misspecification, where the inferred drift and diffusion functions compensate for miss-
ing variables, potentially resulting in biased parameter estimates and poor predictive per-
formance. A more realistic scenario occurs when we already know what molecules can have
an effect on the dynamics, but experiments can only report a few molecular species. In such
cases, we can model the full system dynamics with the full dimension with a parameterized
model for sampling the initial values of those unobserved variables. The rest of the training
procedure would be the same as in the main text.
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