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Abstract
Understanding cerebral circulation is crucial for early diagnosis and patient-oriented ther-
apies for brain conditions. However, blood flow simulations at the organ scale have been
limited. This work introduces a framework for modeling extensive vascular networks
in the human cerebral cortex and conducting pulsatile blood flow simulations. Using a
patient-specific cerebral geometry, we applied a parallelized adaptive constrained con-
structive optimization algorithm to create a comprehensive pial vascular network in the
left hemisphere, starting from the main cerebral arteries. The resulting network included
over 75 000, 103 000, and 55 000 vessels for the anterior, middle, and posterior terri-
tories, respectively. Pial vessel diameters featured a median [interquartile range, IQR]
value of 62.8 [49.3, 89.3]µm. We integrated the pial vascular network model with the
Anatomically-Detailed Arterial Network (ADAN) model to conduct one-dimensional (1D)
blood flow simulations under normotensive and hypertensive conditions. Viscoelastic
dissipation proved to be a key ingredient in the characterization of the hemodynamic
environments in the pial circulation. In the normotensive scenario, mean blood pres-
sure in the pial vessels resulted in a median [IQR] value of 56.7 [49.8, 63.5]mmHg. The
flow pulsatility index and its corresponding damping factor were effective descriptors
of the hypertensive state. The median [IQR] pulsatility index in the normotensive state
was 0.39 [0.38, 0.40], and in hypertension it increased up to 0.84 [0.83, 0.85], while its cor-
responding damping factor in the normotensive state was 2.07 [1.78, 2.48], and in the
hypertensive state it was reduced to 1.20 [1.16, 1.39]. We observed large regional pres-
sure gradients in terminal vessels, with pressure levels ranging from 50mmHg in nor-
motension to 70mmHg in hypertension. Additionally, the pulsatility index at terminal ves-
sels increased with distance from the Circle of Willis in the hypertensive case, contrast-
ing with the decreasing pattern seen in normotension. This approach provides a unique
characterization of hemodynamics in the pial vascular network of the human cerebral
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cortex, paving the way for research into microcirculatory environments, the link between
hemodynamics and neural function, and their roles in conditions like stroke and
dementia.

Author summary
Understanding cerebral circulation is key to creating strategies for early diagnosis of
brain conditions and patient-oriented therapeutic strategies. While cerebral circulation
spans several spatial scales, there has been limited progress in conducting blood flow
simulations at the scale of the entire organ. To fill this gap, we first synthesized the entire
pial vascular network of the human cerebral cortex, maintaining consistency with the
complex geometry of the brain. Second, we performed blood flow simulations to analyze
the hemodynamic environments encountered across the different regions over the cere-
bral cortex. Results reported in this work help us to understand circulatory conditions
in normal and hypertensive scenarios, something essential to investigate the relation
between hemodynamics and neurovascular and neurodegenerative diseases such as
stroke and dementia.

Introduction
While cardiovascular diseases continue to lead the causes of death worldwide, cerebrovas-
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cular diseases have increased their incidence by over 70% from 1990 to 2019, becoming the
second leading cause of death in the elderly population [1]. In turn, Alzheimer’s disease and
other related dementias have also increased by over 140% between 1990 and 2019 [2]. More-
over, as the population continues to get older and life expectancy increases, the prevalence
of these diseases is expected to rise even more. Currently, proper assessment of cerebrovas-
cular conditions can be achieved by different medical imaging techniques, such as computed
tomography and magnetic resonance [3]. In contrast, alternative approaches seek specific
biomarkers related to brain injury, such as proteins, enzymes, and hormones [4], targeting
the early diagnosis of pathologies. In this regard, increasing our understanding of the mech-
anisms underlying brain injury, caused either by ischemia or by neurodegenerative diseases,
is of the utmost importance to achieving early diagnoses, as well as defining patient-specific
therapeutic strategies.

Brain function is a consequence of the reciprocal interaction among the different hier-
archical layers of brain organization, from gene expression to molecular scales, from cel-
lular metabolism to neural activity, and from there to hemodynamic and vascular adapta-
tions, in both physiological and pathological conditions [5]. Functional brain units are used
to describe the brain’s inner workings within graph theory at an observable spatial scale [6].
These units are interconnected, and the strength in functional connectivity has a significant
spatial correlation with metabolic markers and, therefore, with regional cerebral blood flow
[7]. A similar organization has been acknowledged at the smallest scales, where the concept
of the neurovascular unit brought new ways of interpreting the two-way coupling between
neural activity and hemodynamics, which remains to be fully elucidated [8]. In turn, the neu-
rovasculome concept emerged as a paradigm to understand brain function, providing a holis-
tic framework to interpret, at the whole-organ scale, the pathological disruption of fundamen-
tal mechanisms, and its connection to neurovascular and neurodegenerative diseases [9]. The
assessment of these multi-scale and multi-system interactions remains out of the scope of any
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current technology, and given these technological limitations, computational models have
emerged as powerful instruments in this field of research as complementary tools to speed up
research.

Blood flow modeling and numerical simulations have produced a significant advancement
in the field of biomedical engineering, and translational research continues to have an impact
on medical practice. The fusion of medical imaging and computational fluid dynamics has
made possible the simulation of coronary blood flow phenomena in patient-specific geome-
tries [10–12], the study of hemodynamics after Fontan procedures [13], the assessment of
organ-specific blood pressure and flow conditions under physiological and pathophysiolog-
ical assumptions, such as the liver [14], the kidney [15], and the brain [16,17], and the plan-
ning of surgical procedures and implantation of medical devices [18–20]. In the context of the
present work, computer simulations are valuable tools for testing hypotheses regarding the
complex interactions between neural activity and hemodynamics, their connections to brain
metabolism, and cerebral blood flow regulation. Computational models can shed light on
the fundamental principles of brain physiology and pathophysiology at different spatial and
temporal scales, from the fast neuronal signaling, the relation to intra-parenchymal arterioles
adaptations, the consequences on the vascular autoregulation mechanisms, and ultimately
into the systemic blood flow dynamics at the organ scale. Also, computer simulations can be
employed to investigate and develop patient-specific therapeutic strategies for brain disorders,
targeting, for example, blood pressure control as a surrogate of brain health.

Various approaches have focused on modeling cerebral blood flow with different degrees
of detail. At the smallest scales, Reichold et al. [21] employed tomographic microscopy data
to reconstruct the vasculature within a prototypical region of the rat cerebral cortex and ana-
lyzed hemodynamics by simulating blood flow and oxygen concentration under steady-state
conditions. Similarly, Gould et al. [22] employed large vascular networks within a represen-
tative vascular unit of cortical tissue to study the pressure drop across the entire spectrum
of vessel sizes within the vascular network, also considering the steady-state assumption. In
Lininger et al. [23], the authors synthesized the vascular network of the entire mouse brain,
while in studies by Hartung et al. [24], closure criteria were employed to connect, through
capillary beds, both arterial and venous networks in these mouse brain models. Using a multi-
scale approach, Padmos et al. [25] coupled pulsatile 1D models of the large cerebral vessels
with the brain tissue modeled as a porous medium in a steady state condition, and compared
healthy and ischemic conditions caused by a vessel obstruction. Another multi-scale approach
employing 1D and porous media models was reported by Koppl et al. [26]. In that work, the
authors explored the gas exchange between a vascular network [21] and its surrounding tis-
sue. In turn, whole-brain perfusion was modeled using a porous media model by Jósza et al.
[27], where the impact of occlusions was assessed. A more realistic model was proposed by
Otani et al. [28], where patient-specific imaging was used to build a model of the main vascu-
lar branches and of the pial surface, from which synthetic vascular networks for the mid-sized
pial vessels were constructed and coupled to a structured representation of the remaining pial
vascular network. Steady-state simulations were conducted to assess the effect of collateral
vessels in defining the ischemic regions affected by arterial occlusions. In Linninger et al. [29]
the authors proposed a methodology to extend arterial and venous vascular networks from
patient-specific medical images, providing a full-organ characterization of the cortical vascu-
lar network in the human brain. Steady-state compartmental model simulations, and time-
dependent tracer concentration simulations were reported, simulating magnetic resonance
metrics.

Moreover, modeling instruments can be important to provide mechanistic support to
medical hypotheses and observations. For example, the location of the maximal damage
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due to hypertension (basal ganglia, thalamus and brain stem) was explained on the bases of
the evolution of the brain’s blood supply [30]. More recently the concept was extended to
explain deep white matter vasculature in terms of differential regional blood pressures [31],
where a new paradigm was proposed based on the coexistence of low-pressure and high-
pressure brain sub-systems. This new interpretation of the brain circulation has been termed
the ambibaric brain theory and would help to pave the way towards understanding not only
pathophysiological conditions, such as the hypotensive conditions encountered in hyper-
tensive patients, and 𝛽-amyloid deposition, but also to establish novel diagnostic and treat-
ment strategies. In line with the ambibaric brain theory, Blanco et al. [32] investigated pres-
sure gradients in the brain and found significant differences in blood pressure between cen-
trencephalic areas and cortical regions. However, the model proposed in the aforementioned
study did not take into account the specificities of the pial surface where supplied vascular
territories are defined. As a way to increase the predictive and descriptive capabilities of the
model developed in that work, in the present study we propose an approach to construct an
anatomically consistent pial vascular network spanning the entire cerebral cortex over the
left hemisphere of the human brain. This is achieved by expanding the cerebral vasculature
defined by pre-existing cerebral vessels down to the spatial scale defined by those vessels
located immediately before the the penetrating arterioles over the pial surface. The pial sur-
face geometry is obtained from magnetic resonance imaging, and the cerebral vessels used
as an initial vascular network are those already available in the ADANmodel [33], although
patient-specific vessel centerlines could be employed if high resolution angiographic MRI data
were available. The ADAN vascular network is first registered on top of the patient’s pial sur-
face and is then expanded to cover the entire left hemisphere using a Constrained Construc-
tive Optimization (CCO)-based algorithm [34–37]. Scaling up the vascular generation for
the whole left hemisphere pial surface has been possible through the use of a parallel adaptive
version of the CCO method, called PDCCO [38,39]. The resulting pial network spans over
230 ⋅ 103 segments of pial vessels, targeting quantities comparable with the vascular density
reported in vivo in the literature, of around 1.2 penetrating arterioles per square millimeter
[40]. In addition, pulsatile blood flow simulations employing the 1D blood flow theory [41]
are used to investigate the hemodynamics with a high level of detail around the different cor-
tical regions. Blood pressure gradients and blood flow distribution are evaluated in normoten-
sive and hypertensive conditions. Flow- and pressure-based damping factors which are related
to the transfer of energy to distal locations are also reported and discussed.

Thus, the present work introduces two main novel aspects: (i) the creation of a comprehen-
sive model of the pial arterial blood vessels featuring anatomical consistency with a patient-
specific cerebrum geometry, and (ii) the use of the 1D blood flow theory to conduct pul-
satile simulations in these massive vascular networks. Such simulations can serve not only to
improve our understanding of essential aspects of cerebral blood flow dynamics but also as
reference solutions in the future to develop and validate simplified blood flow models.

Materials and methods
This section details first the procedure to build the vascular networks for the three vascular
territories in the human cerebral cortex, from the medical image processing to the multi-stage
automatic vascular generation. Then, the 1D blood flow model is described, together with the
scenarios of interest.
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Patient-specific cerebrum
A young-adult male participant was scanned using a 3T MRI scanner (SIGNA Premier;
General Electric Healthcare, MI, USA) using an AIR 48-channel head coil, and provided
written informed consent. Concerning MR scan data and associated data, in line with the
approved ethics documentation from this study, endorsed by the New Zealand Health and
Disability Ethics Committees (NZ HDEC), and in accordance with the Indigenous and com-
munity engagement policies, non-identifiable data are available upon request and subse-
quent approval by the Mātai Ngā Māngai Māori Board (review board to be contacted at
nmm@matai.org.nz). This protocol ensures adherence to ethical standards, respects commu-
nity involvement, and upholds data sovereignty principles.

A T1-weighted sequence was acquired to obtain a description of the cerebral anatomy
from which the pial surface was extracted. This was accomplished by using a standard image
segmentation procedure that rendered the cortical surface [42], composed of:

• the inner cortical surface: that is the interface between the gray matter and white matter,
which is denoted by ΓGW;

• the outer cortical surface, also known as the pial surface: that is the interface between
the gray matter and the cerebrospinal fluid space, more specifically the pia mater, which
is denoted by Γpial.

Although the proposed methodology can be applied to the entire brain, the present proof-of-
concept study focuses on the vascularization and blood flow simulation in the pial circulation
of the left hemisphere.

Fig 1 shows the image segmentation results, providing the definition of the outer cortical
surface Γpial, that is the pial surface, and of the inner cortical surface ΓGW.

Initial cerebral network
We exploited the ADANmodel (see Section ADANmodel, and Fig 2, left panel) as an initial
geometry from which the vascularization of the pial surface is to be extended. First, we iso-
lated the three vascular sub-networks corresponding to the anterior cerebral artery (ACA),
the middle cerebral artery (MCA), and the posterior cerebral artery (PCA), as shown in Fig 2,
right top panel. To avoid closed-loop connections, the corpus callosum connection between
ACA and PCA territories was disconnected. These initial sub-networks were registered on
top of the pial surface generated in Section Patient-specific cerebrum through the following
procedure (for more details, refer to [43]):

1. apply a translation to the ADANmodel based on the displacement from the centroid
of its Circle of Willis to the centroid of the Circle of Willis defined by the image-based
geometry of the patient’s vessel centerlines;

2. apply a rotation consisting of the Rodrigues’ rotation formula to align the normals of
the planes that better fit the patient CoW centerlines and the ADANmodel CoW;

3. apply a scaling factor in each independent orthogonal direction. This factor is defined
on the ratio between the standard deviation of the coordinates of the major points in
the patient centerlines and the ADANmodel centerlines;

4. apply a non-linear deformation mapping to accommodate the vessels over the pial sur-
face. The coordinates of the model were projected onto the median surface between the
inner and outer surfaces that define the pial surface (individual vertices were snapped to
the face nearest point using Blender 3.4).
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Fig 1. Segmentation of the magnetic resonance image dataset featuring the inner (yellow) and outer (red) corti-
cal surfaces for three orthogonal planes. Sulci and gyri can be appreciated in the zoomed-in area performed over the
fronto-lateral view.

https://doi.org/10.1371/journal.pcbi.1013459.g001

The result of the compounded co-registration procedure is shown in Fig 2, right bottom
panel. These initial sub-networks are denoted by T A

0 , T M
0 and T P

0 , for the ACA, MCA and
PCA territories, respectively.

Automatic vascularization
Pial space and vascular territories. The pial space is defined as the space where the pial

vascular network is to be generated. This pial space was constructed by extruding the pial sur-
face Γpial in the direction defined by the local unit normal vector. The thickness of the pial
space is 2 mm, and the extrusion was set 75% in the outward direction, and 25% in the inward
direction, as shown in Fig 3, top panel. Thus, the pial spaceΩpial is defined as

Ωpial = {x∈ℝ3; x = xpial + 𝜉npial, xpial ∈ Γpial, 𝜉 ∈ [–0.5, 1.5]}, (1)

where npial(xpial) is the the unit normal vector to Γpial. The boundary 𝜕Ωpial of the pial space
was remeshed to remove geometric inconsistencies such as overlapping faces, and incorrectly
oriented normals resulting of the extrusion of sharp edges.

The next step consisted in defining the major vascular territories corresponding to the
ACA, MCA and PCA sub-networks. Following [44], we defined the territorial solidsΩA

T ,ΩM
T ,

andΩP
T, from where, we obtained three major pial territories through Boolean operations, by
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Fig 2. Preparation of the initial vascular network. Left: ADANmodel. Right top: Selection of the initial vascular sub-
networks T A

0 , T M
0 and T P

0 corresponding to the ACA, MCA and PCA territories, respectively. Right bottom: Non-linear
co-registration of initial sub-networks on top of the pial surface.

https://doi.org/10.1371/journal.pcbi.1013459.g002

doingΩX
pial =ΩX

T ∩ Ωpial, X∈ {A,M,P}, as shown in Fig 3, bottom panel. Similarly, we defined
the corresponding ACA, MCA and PCA pial surfaces as ΓXpial =ΩX

T ∩ Γpial, X∈ {A,M,P}. We
allowed a small overlap between adjacent territories in order to guarantee vascular redun-
dancy in the furthest regions of the brain with respect to the corresponding inlet locations.
Out of the total volume, 15% corresponds to overlapping domains. The total pial surface area
resulted ∣Γpial∣ = 850 cm2, and the total pial space volume was ∣Ωpial∣ = 170.2 cm3, without con-
sidering the territorial overlapping. After the territorial definition, and taking into account
the small overlap allowed, the surface areas and the corresponding enclosed volumes for the
different territories were:

• ∣ΓApial∣ = 315 cm2, ∣ΩA
pial∣ = 63.6 cm3;

• ∣ΓMpial∣ = 430 cm2, ∣ΩM
pial∣ = 86.2 cm3;

• ∣ΓPpial∣ = 230 cm2, ∣ΩP
pial∣ = 46.8 cm3.

Note that due to the overlap, we have ∣ΓApial∣ + ∣ΓMpial∣ + ∣ΓPpial∣ = 975 cm2, and ∣ΩA
pial∣ + ∣ΩM

pial∣ +
∣ΩP

pial∣ = 196.6 cm3.
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Fig 3. Pial space and vascular territories. Top: Generation of the pial spaceΩpial (in blue, with transparency) by extrusion
of the pial surface Γpial (in gray), and details of the pial space in different locations. Bottom: Definition of the ACA (red),
MCA (green), and PCA (blue) vascular territories, by Boolean operations with the reference territorial solidsΩA

T ,ΩM
T and

ΩP
T. These vascular spaces are denoted byΩA

pial,ΩM
pial andΩP

pial, respectively. The corresponding pial surfaces are denoted
by ΓA

pial, ΓM
pial, and ΓP

pial.

https://doi.org/10.1371/journal.pcbi.1013459.g003

Space-filling vascular generation. The Constrained Constructive Optimization algo-
rithm has been extensively used to create anatomically consistent vascular networks in a vari-
ety of situations [36,37,45]. The CCO algorithm is based on a compartmental representation
of a vascular network where mass and momentum balance laws are guaranteed, and where
each vessel features a resistance based on the Poiseuille equation. The method relies on the
optimization of a cost function to drive the sequential generation of vascular connections
from randomly sorted locations in 3D space inside the geometrical boundary of the perfusion
domain, so that each newly created connection satisfies a series of anatomical rules, such as a
power-law relating vessel radii at junctions [46], bifurcation symmetry rules, and branching
angle constraints.
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We used the DCCOmethod proposed previously [39], which combines multiple stages
with specific pre-defined vessel functions and additional constraints acting upon groups of
vessels seeking to add versatility and enhance the overall modeling capabilities of the origi-
nal CCO approach. However, due to the sequential nature of the CCO approach, its utiliza-
tion for the construction of massive vascular networks is severely limited (computational
cost scales with N3

V, NV: number of vessels). In this regard, [38] proposed a parallel and dis-
tributed version of the DCCO, called PDCCO, by enabling the vascularization process to
be executed within a distributed computing paradigm. The PDCCO approach requires two
inputs: (i) a baseline network, sequentially generated through the DCCO, which spans over
the entire domain to be vascularized, and (ii) a decomposition of such a domain into disjoint
sub-domains. The generation is concurrently executed in the different sub-domains, initi-
ating from the baseline network, and allowing vessels to be added only within each specific
sub-domain. After the concurrent generation is finished, all the networks are merged into
the definitive full network ensuring that the anatomical constraints and balance laws are all
verified in the full network. For more details, the reader is referred to [38].

In this work, we employed the PDCCO algorithm, applying it to each one of the three sub-
networks corresponding to the ACA, MCA and PCA territories. Thus, in a nutshell, we took
each one of these three territories, first generated a baseline sub-network, created a decompo-
sition of each vascular territory into sub-domains and performed the vascularization/merging
as described in [38] (see PDCCO parameter setting in the next section). Fig 4 illustrates the
partitioning into sub-domains for the ACA, MCA and PCA territories.

The PDCCOmethod relies on a 0D purely resistive model for the blood flow in pipes, in
which mass conservation is ensured at each vessel junction, and in each vessel Poiseuille flow
is assumed to hold. Noting that we aim to generate massive vascular networks wherein vessel
diameters will reach values in the order of tens of microns, it is important to account for the
rheology of blood. Hence, we used the viscosity model proposed by Pries et al. [47] in all the
vascularization stages.

Vascularization stages. To describe the vascularization strategy, we employ the nomen-
clature and symbols defined by Talou et al. [39]. For a detailed account of the parameters and
overall procedure, see that bibliographic reference. Here we do not reproduce the equations
and overall methodology, but we provide a brief description of the stage architecture and all
the parameters involved in the setting of the vascularization algorithm. First, we considered
the following multi-staged procedure:

S1: (first stage) grows out of the initial sub-networks by covering the pial space using a
sprouting cost functional;

S2: (second stage) extends the networks created in the first stage by using a volumetric cost
functional;

S3: (third stage) performs a massive parallel vascularization from networks created in the
second stage by using a volumetric cost functional and the domain decomposition
explained in Section Space-filling vascular generation.

Next, the model parameters were defined to characterize the vascular networks in each of
these stages. These parameters are the following:

• Qi: mean flow rate prescribed at inflow in ml/min (taken from [33] as the time average
inlet flow for each major cerebral territory after the circle of Willis);

• NT: number of terminal vessels in the network targeted for each stage;
• Pgeo: geometric parameters:
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Fig 4. Decomposition into sub-domains for the ACA (top row), MCA (middle row) and PCA (bottom row) territories.
Each color represents a sub-domain. The projections from the lateral, ventral, and caudal directions are shown in each case.

https://doi.org/10.1371/journal.pcbi.1013459.g004

– 𝛾: power-law parameter to relate parent and children vessels,
– 𝛿: radius symmetry ratio at bifurcations,
– 𝜃min: minimum branching angle between parent and children vessels,
– 𝜙min: minimum out-of-plane opening angle;

• Popt: optimization parameters:
– 𝜈: perfusion area factor,
– fr: region reduction factor after 2 000 unsuccessful candidates,
– fn: neighborhood search factor,
– Δv: number of points used to discretize edges of the triangle generated when a

new connection candidate is evaluated, which defines the discrete mesh where the
optimal connection is established;

• Distribution vessel type: the vessel bifurcates only if it is located entirely within the
domain.

Table 1 presents the parameters employed in the vascularization stages for the setting of the
PDCCO algorithm. The sprouting cost functional employed in stage S1 was configured with
Cv = 1 ⋅ 104, Cp = 0.5, Cd = 1. Then, a volumetric cost functional was used for the two subse-
quent stages.

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013459 September 8, 2025 10/ 38

https://doi.org/10.1371/journal.pcbi.1013459.g004
https://doi.org/10.1371/journal.pcbi.1013459


ID: pcbi.1013459 — 2025/9/18 — page 11 — #11

PLOS COMPUTATIONAL BIOLOGY Blood flow simulation in the human cerebral cortex

Table 1. Parameters to configure the multi-staged vascularization using the PDCCO algorithm. For the definition of parameters, see Section Vascularization
stages.
Stage Domain Qinlet NT Pgeo Popt Input/output Cost Vessel

[ml/min] (𝜸, 𝜹, 𝜽min,𝝓min) (𝜈, fr, fn,𝚫v) network function type
S1 ΩA

pial 70 1300 (3, 0.4, 20○, 0○) (0.01,0.9,100,7) T A
0 /T A

1 Fsprout Distribution
ΩM

pial 125 1700 (3, 0.4, 20○, 0○) (0.01,0.9,100,7) T M
0 /T M

1 Fsprout Distribution
ΩP

pial 65 1000 (3, 0.4, 20○, 0○) (0.01,0.9,100,7) T P
0 /T P

1 Fsprout Distribution
S2 ΩA

pial 70 6500 (3, 0, 20○, 0○) (0.01,0.9,100,7) T A
1 /T A

2 Fvol Distribution
ΩM

pial 125 8500 (3, 0, 20○, 0○) (0.01,0.9,100,7) T M
1 /T M

2 Fvol Distribution
ΩP

pial 65 5000 (3, 0, 20○, 0○) (0.01,0.9,100,7) T P
1 /T P

2 Fvol Distribution
S3 ΩA

pial 70 37803 (3, 0, 20○, 0○) (0.01,0.9,100,7) T A
2 /T A

3 Fvol Distribution
ΩM

pial 125 51595 (3, 0, 20○, 0○) (0.01,0.9,100,7) T M
2 /T M

3 Fvol Distribution
ΩP

pial 65 27579 (3, 0, 20○, 0○) (0.01,0.9,100,7) T P
2 /T P

3 Fvol Distribution

https://doi.org/10.1371/journal.pcbi.1013459.t001

The set of terminal vessels in network T3 is denoted by ter(T3), and each sub-network
in the different territories is denoted as ter(T X

3 ), where X∈ {A,M,P}. The final number of
terminal vessels NT after completion of the final stage S3, in T3, that is, the cardinality of the
set ter(T3), was chosen to reach a vascular density of 1.2 terminals/mm2 (for the surface area
of each territory, refer to Section Pial space and vascular territories). In this context, each ter-
minal vessel in the set ter(T3) would correspond to a descending arteriole that penetrates
the gray matter and provides blood to a certain columnar domain [48]. This terminal vessel
density is in agreement with Schmid et al. [40], where the authors reported a density of one
descending arteriole per square millimeter.

Inter-territorial pressure distribution equalization. In this section we describe an
important step to deliver consistent results across the different territories. Consistency
here must be understood in the sense of scaling network diameter values for each terri-
tory such that, for the flow supplied to each of them, the resulting pressure distributions
in all networks are as similar as possible. We term this procedure as pressure distribution
equalization.

Note that the inflow boundary conditions defined in Table 1 and the initial sub-networks
T X
0 , X∈ {A,M,P} were taken from Blanco et al. [33]. The vessel diameters in these sub-

networks were defined in the same reference according to typical values encountered in the
literature. However, the matching between inlet vessel diameter and the flow rate supplied
to each territory was not specifically calibrated at the time of these publications. In fact, a
quick assessment in the light of the Murray’s Law, that is considering the relation between
the flow rate and the cube of the inlet vessel radius (Q = 𝜉r3, r: vessel radius, 𝜉: proportion-
ality constant, see [46,49]) yields the data reported in Table 2. Clearly, the different values of
𝜉 obtained for the different territories indicate that the flow rate/network diameter relation
is not the same across the territories, which can be explained by the fact that the flow data
does not correspond to the specific patient anatomic geometry and therefore vessel diame-
ters. This was manifested in the vascularization process, where the networks T A

3 , T M
3 , and T P

3
rendered pressure distributions that were not equalized. Observe that these pressure distri-
butions are obtained under the steady-state assumption that governs the CCO vasculariza-
tion process. To mitigate this lack of consistency across the pairs (T X

0 ,QX
inlet), X∈ {A,M,P},

from the ADANmodel, we found an optimal scaling factor fS that affects all vessel diameters
for each network such that the pressure distributions rendered by the PDCCO algorithm (i.e.
from the steady state Poiseuille model) were equalized. To perform this equalization process
we computed an optimal scaling factor over the networks T A

3 and T P
3 such that the quadratic
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Table 2.Data and parameters regarding inter-territorial pressure distribution equalization. Qinlet: flow rate at
the inlet, rADANinlet : inlet vessel radius given in ADANmodel, 𝜉ADAN: proportionality constant in Murray’s law for
ADANmodel, fS scaling factor for vessel diameters, rinlet: inlet vessel radius after equalization, and 𝜉: proportionality
constant in Murray’s law for the scaled network after equalization.
Network Qinlet rADANinlet 𝝃ADAN fS rinlet 𝝃

[ml/min] [μm] [1/s] [μm] [1/s]
T A
3 70 965 1 298 0.895 864 1 809
T M
3 125 1 041 1 847 1.000 1 041 1 847
T P
3 65 869 1 651 0.915 795 2 156

https://doi.org/10.1371/journal.pcbi.1013459.t002

error between the corresponding pressure distributions and that one delivered by the net-
work T M

3 , was minimized. In approximating these distributions we shifted the pressure value
at the inlet vessel corresponding to the circle of Willis to 80 mmHg, and we took 1000 bins
uniformly distributed in the range [0, 80]mmHg. Table 2 also shows the actual inlet radius
that results after the equalization procedure, and the same proportionality factor after the
equalization.

ADANmodel
Wemade use of the anatomically detailed arterial network (ADAN) model developed by
Blanco et al. [33] as a framework:

• to provide an initial vascular architecture of the cerebral vessels to be expanded, as
explained in Section Initial cerebral network; and

• to be coupled with the automatically-generated vascular networks of the pial circulation
to carry out one-dimensional blood flow simulations.

Notably, the use of the ADANmodel adds negligible computational burden to the simu-
lations (see Section Numerical method). However, the most significant reason for coupling
the ADANmodel to the inlets of the CCO networks was to handle forward-backward travel-
ing waves between the cerebral network and the rest of the arterial system consistently. This is
crucial in avoiding the introduction of boundary artifacts in microcirculatory hemodynamics
due to poorly defined boundary conditions.

The ADANmodel comprises 2142 arteries, including 1598 arterial segments with a well-
acknowledged name and 544 perforator arteries. This model has been used to investigate
complex hemodynamic phenomena such as subclavian steal syndrome [50], and, in line with
the present study, cerebral blood pressure gradients [32].

The three vascular territories generated in Section Automatic vascularization were coupled
to their corresponding locations within the ADANmodel, resulting in a natural expansion of
the original ADANmodel, now accounting for the highly detailed description of the pial cir-
culation. The vascular network featured in the top panel of Fig 5 replaces the original cerebral
vascular networks in the ADANmodel shown in the right panels of Fig 2. Mathematically,
ADAN and CCO networks are coupled following mass and energy conservation at junctions,
as described in Section Blood flow model.

Importantly, no perforator arteries are present in the cerebral vascular networks of the
ADANmodel that are expanded by the CCO vascularization process. The original ADAN
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Fig 5. Pial vascular network built with the proposed multi-stage approach. Top panel: Orthogonal projections on transverse, coronal and sagittal
planes, and ventro-lateral perspective, with color-code given by vessel diameter in µm. Mid panel: Multi-staged vascularization of the pial space. From
left to right: initial sub-networks from the ADANmodel (totaling 450 vessel segments), first and second sequential vascularization stages with different
cost functions (totaling 8 390 and 40 390 vessel segments, respectively), and third vascularization stage after merging the parallelized sub-domain
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networks (totaling 234 344 vessel segments). Bottom panel: Distribution of vessel diameters D, vessel lengths L, and their joint kernel density estimate
distribution in the pial networks for each of the three territories, T A

3 (red), T M
3 (green), and T P

3 (blue), and also for the entire pial network T3 (gray). All
distributions are in logarithmic scale.

https://doi.org/10.1371/journal.pcbi.1013459.g005

model contains small perforator-like vessels around the circle of Willis. These vessels supply
small structures at the base of the brain (e.g., lenticulostriate, thalamotuberal, hypothalamic
arteries, among others), and remained unaffected after coupling the CCO networks to the
ADANmodel.

Blood flowmodel
Blood flow in the vascular network is described following the 1D theory of incompressible
fluid flow in deformable vessels. The 1D mass and momentum conservation laws (see deriva-
tion in [41]) describe the pressure P, flow rate Q, and lumen area A as a function of time t and
the longitudinal coordinate x, as follows

𝜕A
𝜕t +

𝜕Q
𝜕x = 0, (2)

𝜕Q
𝜕t +

𝜕
𝜕x(

Q2

A
) = –A𝜌

𝜕P
𝜕x –

8𝜋𝜇
𝜌A Q, (3)

where 𝜌 and 𝜇 are the blood density and viscosity, respectively. The vessel wall is consid-
ered to be a nonlinear viscoelastic structure, and under the thin-wall assumption, mechanical
equilibrium determines the following relation between pressure and lumen area

P = P0 +
𝜋r0h
A
(Ee𝜀 + Ec𝜖r ln(e𝜒 + 1) +

Km

2
√
AA0

𝜕A
𝜕t ), (4)

𝜀 =
√

A
A0

– 1, 𝜒 = 𝜀 – 𝜖0𝜖r
, (5)

where A0 = 𝜋r20 is the reference lumen area at the reference pressure P0, h is the wall thickness,
Ee and Ec are the effective elastic moduli of the elastin and collagen fibers, 𝜖0 and 𝜖r are mean
and standard deviation of the fiber recruitment normal distribution function, and Km is the
viscoelastic coefficient.

At junctions, with N converging vessels, coupling conditions stand for conservation of
mass and total energy, that is

N
∑
i=1

Qi = 0, (6)

P1 +
𝜌
2
(Q1

A1
)
2

= Pi +
𝜌
2
(Qi

Ai
)
2

i = 2,… ,N. (7)

Peripheral boundary conditions are modeled using 3-element Windkessel elements, which
provide a closure equation at the end of each terminal vessel that relates the outlet flow rate
Qo to the outlet pressure Po as follows

R1R2C
dQo

dt
= R2C

d
dt
(Po – Pt) + (Po – Pt) – (R1 + R2)Qo, (8)
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where R1, R2, and C are the parameters that represent the peripheral resistances and compli-
ance downstream to each terminal vessel, and Pt is the reference pressure.

In the 1D simulations, we used the same non-Newtonian constitutive model for the blood
employed in the PDCCO vascularization process [47], where the viscosity is a function of the
vessel radius 𝜇NN(r0).

Numerical method
The blood flow Eqs (2), (3) and (4) constitute an advection-diffusion-reaction system of par-
tial differential equations (PDEs). This system is recast in hyperbolic form following the
strategy presented in [51,52] to obtain a system of first order PDEs. The hyperbolized system
is discretized in time and space using an explicit, local time-stepping, second order finite vol-
ume scheme, as per [53]. This approach ensures high-order accuracy also at junctions [54].
The method also considers consistent coupling conditions at junctions of viscoelastic vessels,
as discussed in [55].

The maximum value of the local time step was Δtmax = 1ms, and the time step in each ves-
sel was determined such that time synchronization is guaranteed at all junctions, while the
following Courant-Friedrichs-Lewy stability condition was maintained CFL<0.9. Concern-
ing the spatial discretization, the characteristic cell length was set to Δxc = 1 cm, and smaller
vessels were discretized with a single computational cell. The ordinary differential equation of
the Windkessel model (8) was discretized with an explicit Euler method, and its coupling to
1D terminal vessels is described in [53].

All simulations shown in this work were performed in the Santos Dumont high perfor-
mance facility available at the LNCC (MCTI, Brazil), using 5 computational nodes, each
equipped with 2x Intel Xeon Cascade Lake Gold 6252, for a total of 48 cores per node, which
amounts to 240 cores allocated for each simulation. To ensure periodic state, we simulated
10 cardiac cycles, and used the results of the last cycle for the analysis. Total simulation run-
ning time was approximately 80h. This large computational burden is primarily driven by the
explicit numerical method used to discretize the blood flow model in the case of viscoleas-
tic vessel walls. For more details about the computational cost in 1D simulations using the
present numerical method, the reader is referred to [53].

It is worthwhile to note that the overall computational burden is attributed to the large
number of vessels present in the CCO networks. Moreover, since these vessels are the small-
est ones, the time-step selection to meet the CFL stability condition depends exclusively on
the length of these vessels. This, in addition to the use of a local time-stepping technique,
reduces the number of computations that involve the vessels of the ADAN network. The
number of vessels in the coupled ADAN-CCO model is 238 385, with 1.7% being from the
ADANmodel (4 041 vessels) and 98.3% from the CCO model (234 344 vessels). The num-
ber of computational cells is 245 006, which shows that most of the cells pertain to the CCO
network. Regarding the time step, the average time step in the ADAN-CCO coupled model
results Δtavg = 5.7 ⋅ 10–6 s, while the minimum and maximum values are Δtmin = 1.22 ⋅ 10–7 s
and Δtmin = 5.0 ⋅ 10–4 s, respectively. As a consequence, the use of the ADANmodel incurs
negligible additional cost in the computations.

Parameter setting
Simulations were performed employing the ADANmodel coupled to the CCO networks of
the ACA, MCA and PCA territories. We considered two physiological scenarios of interest,
the normotensive condition, and the hypertensive condition. For the normotensive setting, all
the parameters for the ADAN-CCO coupled model were calibrated according to the criteria
presented in [56]. Specifically, we have
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• Terminal parameters (R1,R2,C) in the ADANmodel were calibrated following the pro-
cedure described in [57] to ensure a correct blood flow distribution among the different
organs and vascular territories.

• Terminal parameters (R1,R2) in the CCO model are purely resistive and were calibrated
such that they guarantee a uniform flow rate across all network outlets, as done in [32].

• Lumen area (A0) in the ADAN-CCO coupled model was retrieved from the specialized
literature, as described in [33].

• Arterial wall thickness (h) in the ADAN-CCO coupled model was computed following
the relation reported in [33], obtained by fitting data from [58].

• Material parameters (Ee,Ec,Km, 𝜖r, 𝜖0) in the ADAN-CCO coupled model were cali-
brated following the criteria used in [56].

For the hypertensive setting, the parameters were modified following a similar strategy to
that proposed by Blanco et al. [32], that is, applying a multiplication factor fH as described in
Table 3. Peripheral resistances in the CCO networks were scaled differently than the rest of
the ADAN network because part of the resistance is found in the pial network itself. These
factors were such that both hemispheres receive the same average blood flow.

In addition to the viscoelastic scenario used as the reference solution, we also considered
alternative modeling scenarios to assess the impact of modeling hypotheses. Particularly, we
considered removing viscoelasticity from the model, that is setting Km = 0 in (4), and assumed
Newtonian blood behavior, which implies 𝜇N = 0.032P. This assumption for the Newtonian
model is consistent with the asymptotic value of the viscosity delivered by the non-Newtonian
model 𝜇NN for large values of vessel radius r0, corresponding to a hematocrit of 0.45 (see also
[47]).

Statistical analysis
Scenarios were analyzed not only by investigating the hemodynamics over time, that is pres-
sure P(t), and flow rate Q(t), but also in terms of maximum, minimum and average values
along the cardiac cycle. The descriptive statistics were computed for the population of vessels
in the vascular network. The maximum (systolic), minimum (diastolic) and mean values, of
pressure and flow rate (Z∈ {P,Q}), are defined as

Zs = max
t∈[0,T]

Z(t), (9)

Zd = min
t∈[0,T]

Z(t), (10)

Zm =
1
T ∫

T

0
Z(t)dt. (11)

Also, for selected paths, whose longitudinal coordinate is denoted by x∈ [0,L], x = 0 being
the root of the corresponding territory, and x = L the final terminal point of the path (with
total length L), the pressure is reported as a contour plot in the (t,x) space, that is P(t,x), so

Table 3.Multiplication factors for the modification of parameters in the hypertensive scenario.
Model ADAN ADAN CCO ADAN+CCO
Parameter R1,R2 C R1,R2 Ee h A0
fH 1.40 0.85 1.47 2.0 1.4 0.81

https://doi.org/10.1371/journal.pcbi.1013459.t003
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that the wave propagation in the spatio-temporal domain can be visualized. Maximum, min-
imum and average pressure values, i.e. Ps(x), Pd(x), and Pm(x), are also reported along the
paths, as functions of the distance traveled through the path.

In addition, we defined the pulsatility index PI from the flow rate waveform as follows

PI = Qs –Qd

Qm
, (12)

where Qs, Qd, and Qm are the systolic, diastolic and mean flow respectively, and the pulse
pressure PP as

PP = Ps – Pd. (13)

From these, we defined the damping factors DF for the pulsatility index and for the pulse
pressure as follows

DFY =
maxT3 Y

Y
Y∈ {PI, PP}, (14)

where maxT3 Y is the maximum value reached by index Y∈ {PI, PP} in the network T3.
Observe that DFPI and DFPP are quantities that vary along T3, which which can help to unveil
a variable damping phenomenon of the energy through the different regions of the brain.
Expression (14) is a generalization of the methodology to compute the damping factors used
in the clinic, where the numerator is a reference value for quantity Y, which is typically mea-
sured at a proximal location, and the denominator is the same quantity measured at a distal
location. For the sake of generality, in (14) we chose maxT3 Y as the reference value.

Results
Vascular morphometry
In this section we describe the morphometric features of the pial vascular networks T X

3 , X∈
{A,M,P} in terms of vessel diameters and lengths. We also report the results for the union of
these three networks, that is T3 = T A

3 ∪ T M
3 ∪ T P

3 .
The pial vascular network T3 resulting from the proposed multi-stage approach is shown

in Fig 5, top panel. In turn, the corresponding vascular networks, T A
k , T M

k , and T P
k , k∈

{0, 1, 2, 3}, through the consecutive stages can be seen in Fig 5, mid panel. Considering
the final sub-networks T X

3 , X∈ {A,M,P}, and the entire network T3, Fig 5, bottom panel,
presents, in logarithmic scale, the distributions of vessel segment diameters (left), the dis-
tributions of the vessel lengths (mid), and their joint kernel density estimate (right). Mean,
median, standard deviation and lower and upper quartiles for the vessel diameters and lengths
in the different territories, and for the entire network, are reported in the top half part of
Table 4. The cumulative vessel length, the cumulative vascular volume, and the number of
vessel segments in each network are reported in the same table. Recall that in the three ter-
ritories we considered a density of 1.2 terminal segments per mm2, so this feature is main-
tained along the three territories. The bottom half of Table 4 reports the statistics for the set of
terminal vessel segments, denoted by ter( ⋅ ) for network ( ⋅ ).

Hemodynamics in the human cortex
Here we report a comprehensive characterization of the hemodynamics according to the
pulsatile 1D blood flow model of the cortex vascular network T3 for the normotensive and
hypertensive conditions studied in this work.
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Table 4. Statistics for vessel diameterD and vessel length L in the pial vascular networks for the different territories and for the entire network. ( ⋅ ): mean
value, ( ⋅ )𝜎: standard deviation, (̃ ⋅ ): median value, [( ⋅ )Q1 , ( ⋅ )Q3 ]: lower and upper quartiles. LT: cumulative vessel length, VT: cumulative vascular volume, NV:
number of vessels.
Network Vessel diameter [µm] Vessel length [µm] Cumulative

D (D𝝈) D̃ [DQ1 ,DQ3] L (L𝝈) L̃ [LQ1 ,LQ3] LT [mm] VT [mm3] NV
T A
3 78.6 (67.9) 60.0 [47.2,85.3] 731 (567) 591 [349,953] 55 345.1 854.88 75 700
T M
3 85.4 (70.6) 65.6 [51.4,93.5] 728 (584) 585 [342,941] 75 246.0 1 442.78 103 408
T P
3 80.1 (65.9) 61.2 [48.3,87.1] 733 (595) 587 [343,953] 40 512.6 579.55 55 236
T3 82.0 (68.7) 62.8 [49.3,89.3] 730 (581) 587 [345,948] 171 103.7 2 877.21 234 344

Set of terminal vessel segments ter( ⋅ )
ter(T A

3 ) 49.3 (10.2) 47.5 [41.7, 55.1] 876 (570) 739 [492,1112] – – 37 803
ter(T M

3 ) 53.6 (11.1) 51.7 [45.3, 60.0] 859 (581) 720 [475,1088] – – 51 595
ter(T P

3 ) 50.4 (10.4) 48.6 [42.7, 56.2] 872 (600) 728 [483,1099] – – 27 579
ter(T3) 51.1 (10.8) 49.7 [43.4, 57.6] 868 (582) 728 [482,1099] – – 116 977

https://doi.org/10.1371/journal.pcbi.1013459.t004

For the normotensive case, mean (standard deviation), and median [lower, upper quar-
tiles] values for the blood pressure and flow rate in the different territories, and for the entire
network, are reported in Table 5. Fig 6 presents data for the normotensive scenario. Fig 6, top
panel, presents the statistics for the blood pressure (left) and flow rate (mid), as well as their
joint kernel density estimate distribution (right), from where we can see the skewed aspect of
the flow rate distribution in the cortical network. Then, we arbitrarily selected three vascu-
lar paths, one per vascular territory, and characterized the hemodynamics along these paths.
Fig 6, mid panel, features, for each path, the blood pressure (top left inset) and the flow rate
(top right inset, in logarithmic scale) waveforms at four locations evenly spaced along each
path. The shape of the pressure waveform as a space-time field is also displayed (bottom left
inset), to characterize the variation of the pressure tracing as we move from the proximal
location (root of the corresponding vascular network) to the terminal point at the proposed
penetrating vessel location. The length of each path, denoted by L, is also reported in the
figure. In addition, the systolic (maximum), mean, and diastolic (minimum) pressure values
as a function of the longitudinal coordinate along each path are reported (bottom right inset).
The pressure gradient was not significantly different for the different territories, and what
differed was actually the length through which the gradient acts upon to define the pressure
level, and the pressure drop increased in the last section of the paths. In turn, Fig 6, bottom
panel, shows the blood pressure as a field in the entire vascular network T3 for five selected
time instants during the cardiac cycle, namely t∈ {0.1, 0.2, 0.5, 0.7, 1.0} s. In these spanshots,
we can see the highly non-homogeneous nature of the pressure field regardless of the instant
along the cardiac cycle, which resulted in a persistent non-homogeneous cortical perfusion
pressure.

Table 5.Descriptive statistics for temporal mean pressure Pm and mean flow rate Qm in the pial vascular net-
works for the different territories and for the entire network in the normotensive scenario. ( ⋅ ): mean value,
( ⋅ )𝜎: standard deviation, (̃ ⋅ ): median value, [( ⋅ )Q1 , ( ⋅ )Q3 ]: lower and upper quartiles. NV: number of vessels.
Network Pressure [mmHg] Flow rate 10–5[ml/s]

Pm (Pm,𝝈) P̃m [Pm,Q1 ,Pm,Q3] Qm (Qm,𝝈) Q̃m [Qm,Q1 ,Qm,Q3] NV
T A
3 57.3 (10.0) 57.4 [49.9,64.8] 139.8 (2 266) 5.7 [2.8,16.5] 75 700
T M
3 56.1 (8.6) 56.2 [49.8,62.4] 201.0 (3 767) 7.6 [3.7,22.2] 103 408
T P
3 56.8 (10.4) 56.8 [49.7,64.1] 137.6 (1 994) 7.1 [3.6,20.6] 55 236
T3 56.7 (9.5) 56.7 [49.8,63.5] 166.3 (2 977) 6.9 [3.4,19.9] 234 344

https://doi.org/10.1371/journal.pcbi.1013459.t005
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Fig 6. Hemodynamics in the cerebral cortex for the normotensive scenario. Flow rate is reported in logarithmic scale. Top panel: Distribution
of mean blood pressure over time Pm, mean flow rate over time Qm, and their joint kernel density estimate distribution in the pial networks for
each of the three territories T A

3 (red), T M
3 (green), and T P

3 (blue), and also for the entire pial network T3 (gray). Mid panel: Pressure (top left
inset) and flow rate (top right inset) waveforms along four evenly spaced locations placed in three arbitrarily chosen paths with length L (one
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per territory); pressure through space is characterized in the space-time domain (bottom left inset, isolines in white), and using the maximum,
mean and minimum temporal values of the pressure waveforms along each path (bottom right inset) from the corresponding territory root to
the terminal point at distance L. Bottom panel: Visualization of the blood pressure in each vessel along the entire cortex network for five different
time-instants during the cardiac cycle.

https://doi.org/10.1371/journal.pcbi.1013459.g006

The systolic, mean and diastolic pressure values for different vascular districts in the model
are reported in Table 6 for both normotensive and hypertensive scenarios. Specifically, that
table reports the systolic/mean/diastolic blood pressure values at the left brachial artery (BA),
the proximal left internal carotid artery (l. ICA p.), the distal left internal carotid artery (l. ICA
d.), and the corresponding median values for different arterial vessel subsets within the three
networks T A

3 , T M
3 and T P

3 , considering different vessel diameters, and different ranges of the
vessel distance to the root of the territory. Considering the normotensive condition as the ref-
erence value, the systolic pressure overall increased approximately 62%, while the mean pres-
sure increased 37% and the diastolic pressure was slightly reduced by 5%. From the same table
it can be seen that while vessel diameter had a mild correlation with the pressure levels (the
smaller the vessel, the lower the pressure), the main factor determining the pressure level in
a vessel was the distance to the root of the territory. Vessels located at more distal locations
feature a substantially reduced blood pressure, consistently among the three territories. More-
over, the PCA territory was the one that features the lowest (median) pressure levels, and this
happened not only for small vessels (40 µm <D≤ 60µm), but also for mid-sized arterioles

Table 6. Comparison of the systolic Ps, mean Pm and diastolic Pd pressure values at different locations for the
normotensive and hypertensive scenarios. BA: brachial artery, l. ICA: left internal carotid artery, p.: proximal, d.:
distal, (̃ ⋅ ): median value computed for the vessels in each territory that meet the criteria of diameter D and distance
to the territory root L.

Pressure [mmHg]
District Normotension Hypertension

Ps / Pm / Pd Ps / Pm / Pd
BA 111 / 93 / 75 183 / 132 / 75
l. ICA p. 111 / 94 / 77 179 / 143 / 76
l. ICA d. 107 / 90 / 74 170 / 128 / 73
Network Root distance Vessel diameter P̃s / P̃m / P̃d P̃s / P̃m / P̃d
T A
3 0 cm < L≤ 8 cm 260 µm <D≤ 280 µm 88 / 75 / 61 141 / 104 / 58

40 µm <D≤ 60 µm 79 / 67 / 54 126 / 93 / 51
8 cm < L≤ 16 cm 260 µm <D≤ 280 µm 69 / 60 / 48 111 / 82 / 45

40 µm <D≤ 60 µm 67 / 58 / 46 109 / 79 / 44
16 cm < L≤ 24 cm 260 µm <D≤ 280 µm 58 / 51 / 40 95 / 69 / 38

40 µm <D≤ 60 µm 55 / 48 / 38 90 / 66 / 36
T M
3 0 cm < L≤ 8 cm 260 µm <D≤ 280 µm 94 / 79 / 64 149 / 110 / 62

40 µm <D≤ 60 µm 80 / 68 / 54 128 / 94 / 52
8 cm < L≤ 16 cm 260 µm <D≤ 280 µm 76 / 65 / 52 122 / 89 / 50

40 µm <D≤ 60 µm 71 / 60 / 48 113 / 83 / 46
16 cm < L≤ 24 cm 260 µm <D≤ 280 µm 61 / 53 / 42 100 / 73 / 40

40 µm <D≤ 60 µm 59 / 50 / 40 95 / 69 / 38
T P
3 0 cm < L≤ 8 cm 260 µm <D≤ 280 µm 90 / 77 / 62 144 / 106 / 59

40 µm <D≤ 60 µm 76 / 65 / 52 122 / 89 / 49
8 cm < L≤ 16 cm 260 µm <D≤ 280 µm 67 / 58 / 46 108 / 79 / 44

40 µm <D≤ 60 µm 62 / 53 / 42 100 / 72 / 40
16 cm < L≤ 24 cm 260 µm <D≤ 280 µm 48 / 41 / 33 78 / 56 / 30

40 µm <D≤ 60 µm 44 / 38 / 30 72 / 52 / 28

https://doi.org/10.1371/journal.pcbi.1013459.t006

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013459 September 8, 2025 20/ 38

https://doi.org/10.1371/journal.pcbi.1013459.g006
https://doi.org/10.1371/journal.pcbi.1013459.t006
https://doi.org/10.1371/journal.pcbi.1013459


ID: pcbi.1013459 — 2025/9/18 — page 21 — #21

PLOS COMPUTATIONAL BIOLOGY Blood flow simulation in the human cerebral cortex

(260 µm <D≤ 280µm). For same-sized arterioles, it can also be seen that the pressure gradi-
ent between proximal and distal locations was larger in hypertension than the normotensive
case.

Pulse pressure, denoted by PP, and flow pulsatility index, denoted by PI for the normoten-
sive and hypertensive scenarios are shown in Fig 7 (in each column left: normotension, right:
hypertension). Regarding the pulse pressure, we can observe a spatial variation determin-
ing reduced pulse pressure values as we move distally in the network, both in normotension
and hypertension. Pulse pressure was higher in the hypertensive subject, with a wider distri-
bution with respect to the normotensive case. The pulsatility index in the normotensive case
decreased from major vessels towards the periphery, while in hypertension the values were all
substantially increased, remaining within a more narrow range of variation, as can be seen in
the spatial distribution and in the corresponding violin plots in Fig 7.

Table 7 presents the statistics for these two indices. Observe that these indices were roughly
uniform across the three territories, and featured a narrow and also homogeneous interquar-
tile range. The same table presents the statistics for the damping factors computed from each
of those indices, namely DFPP and DFPI, correspondingly, for the normotensive (top half) and
hypertensive (bottom half) scenarios. Note that the damping factors depended on the maxi-
mum value achieved by the index on each territory, that is why the damping factor computed
from the PP was roughly homogeneous across territories while the damping factor computed
from the PI slightly differed for each territory due to different maxima of DFPI, with larger
values in the MCA, followed by the ACA and then the PCA territories. From the analysis of
these indices we got that the hemodynamic response in the hypertensive scenario was signifi-
cantly worsened by featuring substantially increased pulse pressure (208% increase), increased

Fig 7. Comparison of the hemodynamics in the cerebral cortex between the normotensive and hypertensive scenarios using pulse-related
indexes. Left panel: Pulse pressure across the entire cortex network as a field (top insets) and distribution of the pulse pressure in the different territo-
ries (bottom insets). Right panel: Pulsatility (flow rate-based) index across the entire cortex network as a field (top insets) and distribution of the index
in the different territories (bottom insets). Statistics are shown for networks T A

3 (red), T M
3 (green), and T P

3 (blue), and also for the entire pial network
T3 (gray), considering both scenarios, normotensive (left plots) and hypertensive (right plots).

https://doi.org/10.1371/journal.pcbi.1013459.g007
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Table 7.Descriptive statistics for pulse pressure PP, the pulsatility index PI, and the damping factors obtained
from these two indexes (DFPP and DFPI) in the pial vascular networks for the different territories and for the
entire network in the normotensive (top half) and hypertensive (bottom half) scenarios. (̃ ⋅ ): median value,
[( ⋅ )Q1 , ( ⋅ )Q3]: lower and upper quartiles. The number of vessels NV is reported in Table 5.
Normotensive scenario
Network Pulse pressure (PP in [mmHg]) Flow rate pulsatility

P̃P [PPQ1 , PPQ3 ] D̃FPP [DFPP,Q1 , DFPP,Q3] P̃I [PIQ1 , PIQ3] D̃FPI [DFPI,Q1 , DFPP,Q3 ]
T A
3 20.5 [17.7, 23.5] 1.70 [1.48, 1.97] 0.38 [0.37, 0.40] 2.01 [1.92, 2.07]
T M
3 20.8 [18.3, 23.2] 1.60 [1.43, 1.82] 0.39 [0.38, 0.41] 2.50 [2.40, 2.57]
T P
3 20.8 [18.2, 23.7] 1.60 [1.41, 1.83] 0.39 [0.38, 0.40] 1.71 [1.65, 1.75]
T3 20.7 [18.1, 23.4] 1.63 [1.44, 1.87] 0.39 [0.38, 0.40] 2.07 [1.78, 2.48]
Hypertensive scenario

Pulse pressure (PP in [mmHg]) Flow rate pulsatility
P̃P [PPQ1 , PPQ3 ] D̃FPP [DFPP,Q1 , DFPP,Q3] P̃I [PIQ1 , PIQ3] D̃FPI [DFPI,Q1 , DFPP,Q3 ]

T A
3 64.4 [56.5, 72.2] 1.55 [1.38, 1.77] 0.84 [0.83, 0.85] 1.18 [1.17, 1.20]
T M
3 63.4 [56.8, 69.9] 1.53 [1.39, 1.71] 0.84 [0.83, 0.84] 1.40 [1.38, 1.41]
T P
3 64.0 [56.6, 71.7] 1.51 [1.35, 1.71] 0.84 [0.83, 0.85] 1.12 [1.11, 1.13]
T3 63.8 [56.7, 71.0] 1.53 [1.38, 1.73] 0.84 [0.83, 0.85] 1.20 [1.16, 1.39]

https://doi.org/10.1371/journal.pcbi.1013459.t007

pulsatility index (115% increase), and decreased damping factors (42% decrease for the pul-
satility index damping factor and 5% decrease for the pulse pressure damping factor). Also,
results show that the pulsatility index damping factor was a better proxy for the hypertensive
scenario compared to the pulse pressure damping factor.

We conclude this section by reporting an analysis of the hemodynamics as we move into
the depths of the vascular network T3, as well as the hemodynamic environments encoun-
tered at the terminal outlets of network T3. In our model, the latter represent the feeding
points where perforating vessels would penetrate the pial surface into the gray and white mat-
ter to vascularize the brain tissue. Therefore, we differentiate between two different concepts:
transport-level hemodynamics and perfusion-level hemodynamics.

To analyze the transport-level hemodynamics, we considered 1 000 randomly chosen
paths from the territory root towards the terminal outlets, for each vascular territory. Then,
we analyzed the pulsatility index PI and the mean pressure Pm along these paths. Also, we
computed the maximum value of these quantities as a function of the distance to the root,
denoted by L, resulting in the transport pulsatility index PIt, and transport mean pressure
Ptm. Fig 8-top-half displays the transport-level analysis for the three territories (in each col-
umn left: normotension, right: hypertension). As we can see, the pulsatility index decreases
almost linearly, while the mean pressure decreases nonlinearly as we travel distally within
the vasculature. In the normotensive case, the transport pulsatility index declines at a rate of
dPIt
dx = –1.67 ⋅ 10–2 cm–1 (average of territories, linear regression model), while in the hyperten-
sive condition that rate is dPIt

dx = –0.43 ⋅ 10–2 cm–1. For the transport mean pressure, the rate of

decrease is dPtm
dx = –2.46mmHg/cm in normotension (average of territories, linear regression

model), and dPtm
dx = –3.57mmHg/cm in hypertension, characterizing a larger pressure gradi-

ent in the latter case. Inter-territorial differences in transport pressure were observed, with the
PCA territory exhibiting greater transport pressure gradients and a higher rate of decay.

Concerning the perfusion-level hemodynamics, we looked into the blood flow at terminal
outlets by exploring the relation between the pulsatility index PIp, the mean pressure Ppm, the
terminal vessel diameters D and their distance to the corresponding territory root, denoted
by L. Fig 8-bottom-half presents these results for the three territories (in each column left:
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Fig 8. Transport-level hemodynamics (top-half) along 1 000 randomly chosen vascular paths per vascular territory, and perfusion-level
hemodynamics (bottom-half) defined at all terminal vessels.The transport-level quantities along the path are shown with a thick black line.
Colorbar indicates vessel diameter values in the perfusion-level panels. Left panels: Pulsatility index (PI) as a function of the distance to the
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territory root. Right panels: Mean blood pressure as a function of the distance to the territory root. In each panel, each row corresponds to a
given territory: T A

3 (red), T M
3 (green), and T P

3 (blue). In each panel, the normotensive (left) and the hypertensive (right) scenarios are displayed.

https://doi.org/10.1371/journal.pcbi.1013459.g008

normotension, right: hypertension). It is noteworthy that, in the normotensive scenario, the
pulsatility index showed a mild decline trend as a function of the distance L and a less pro-
nounced dependence on the vessel diameter D. In contrast, the hypertensive scenario was
characterized by a mild positive trend of the pulsatility index with the distance to the territory
root. The rates of change of the perfusion pulsatility index are dPIp

dx = –1.65 ⋅ 10–3 cm–1 (average
of territories, linear regression model) in normotension and dPIp

dx = 2.28 ⋅ 10–3 cm–1 in hyper-
tension, with a greater rate of increase featured by the PCA territory. In turn, the mean blood
pressure featured the expected trend as we delve towards more distant outlets for both sce-
narios. In normotension, the perfusion mean pressure ranges from 80mmHg to 30mmHg,
with an overall drop of 50mmHg, and with a gradient of dPpm

dx = –2.23,mmHg/cm (average
of territories, linear regression model). In hypertension the same perfusion mean pressure
dropped from 110mmHg to 40mmHg, with a difference of 70mmHg, and with a gradient of
dPpm
dx = –3.06,mmHg/cm. Notice that, in hypertension, the increased perfusion pressure had
larger impact on the proximal terminal vessels, while the distal vessels were exposed to rel-
atively normal perfusion pressure values. Additionally, perfusion pressure exhibited greater
gradients and a faster rate of decay in the PCA territory.

We can observe that there exist two concurrent hemodynamic components: heterogeneity
of blood pressure across the cortex (and its associated pulse pressure) and of flow rate pulsatil-
ity. In addition, we have a differentiated manifestation of transport-level and perfusion-level
hemodynamic environments. The combination of these elements determines a continuum
of mechanical stimuli that affects mechanical stress in vascular walls and endothelial shear
stresses differently throughout the various cortical regions. In Section Pressure gradients in
the cortex, and Section Pulse pressure, flow pulsatility and the damping factor we discuss in
more detail the interplay between these hemodynamic forces.

Exploring modeling assumptions
Concerning the constitutive behavior of the arterial wall and blood, Table 8 presents the
statistics for mean pressure, pulse pressure, and pulsatility index in normotensive and
hypertensive cases, considering all combinations of elastic/viscoelastic wall behavior and
Newtonian/non-Newtonian blood behavior. These results correspond to the entire vascular

Table 8.Descriptive statistics for mean pressure Pm, pulse pressure PP and the pulsatility index PI for the entire
network in the normotensive and hypertensive scenarios considering different modeling ingredients. (̃ ⋅ ):
median value, [( ⋅ )Q1 , ( ⋅ )Q3]: lower and upper quartiles. The number of vessels is NV = 234 344.
Normotensive scenario

P̃m [P̃m,Q1 , P̃m,Q3] P̃P [PPQ1 , PPQ3] P̃I [PIQ1 , PIQ3 ]
Newtonian Elastic 56.7 [49.6, 63.8] 28.8 [26.2, 31.1] 0.489 [0.446, 0.531]

Viscoelastic 56.1 [49.4, 62.8] 20.4 [17.9, 23.1] 0.386 [0.376, 0.403]
Non-Newtonian Elastic 57.1 [50.0, 64.3] 29.0 [26.4, 31.3] 0.495 [0.452, 0.534]

Viscoelastic 56.7 [49.8, 63.5] 20.7 [18.1, 23.4] 0.386 [0.377, 0.403]

Hypertensive scenario
Newtonian Elastic 77.3 [67.7, 87.2] 66.5 [59.1, 73.7] 0.851 [0.826, 0.871]

Viscoelastic 76.7 [67.6, 86.1] 63.0 [56.0, 70.0] 0.838 [0.829, 0.846]
Non-Newtonian Elastic 78.0 [68.3, 88.0] 67.1 [59.7, 74.4] 0.854 [0.831, 0.873]

Viscoelastic 77.6 [68.2, 87.2] 63.8 [56.7, 71.0] 0.838 [0.829, 0.846]

https://doi.org/10.1371/journal.pcbi.1013459.t008
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network T3. In addition, Fig 9 displays the comparison between elastic and viscoelastic con-
stitutive models (case with non-Newtonian blood behavior) in terms of pressure and flow rate

Fig 9. Effect of viscoelasticity in the normotensive (top panel) and hypertensive (bottom panel) scenarios. Pressure and flow rate waveforms at two different sites
along the selected path through the MCA territory (left plots) and pulsatility index at transport and perfusion levels (right plots) in the ACA territory.

https://doi.org/10.1371/journal.pcbi.1013459.g009
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waveforms at two sites selected through the MCA path shown in Fig 6-central panel (cor-
responding to x∈ { L4 ,L}, L = 19.1 cm), and in terms of transport-level and perfusion-level
pulsatility index in the ACA territory.

The choice between Newtonian and non-Newtonian blood behavior has a negligible
impact on the mean pressure, pulse pressure, and pulsatility index (differences of around 1%),
regardless of whether the scenario involves normotension or hypertension. Differences in
waveforms and the hemodynamic environment characterized by the pulsatility index are also
negligible.

When comparing elastic and viscoelastic wall models, considerable differences are
observed. The mean pressure is marginally smaller in the viscoelastic case, and the pulse pres-
sure features significantly larger values in the elastic model. In normotension, differences
reach 40%, and in hypertension, these differences are in the order of 6% (non-Newtonian
cases). The pulsatility index also features high sensitivity in the normotensive case, with val-
ues approximately 30% larger for the elastic model, whereas in hypertension, these differences
are reduced to 2% (non-Newtonian cases). The differences pointed out in the above can also
be observed in the pressure and flow rate signals, where the damping effect of the viscoelas-
tic model yields smaller pulse pressure values and flow pulsatility indexes throughout the
different locations across the selected vascular path.

Notably, the pulsatility index features larger values and a wider range of variability in the
elastic case at the perfusion level, i.e. at terminal sites. This trend is also present at the trans-
port level, where the elastic case features sharper declines along the paths. These differences
still exist in the hypertensive case, but are relatively smaller.

Discussion
Large-scale modeling of cerebral hemodynamics
Investigating realistic blood flow conditions in different regions of the brain has proven to be
a challenge for the modeling community. This difficulty arises primarily from the complex-
ity of connecting two aspects of the problem: (i) constructing vascular networks in intricate
geometries and (ii) simulating pulsatile blood flow phenomena within these networks. Several
notable contributions have attempted to address this issue using various strategies. Table 9
presents a comparison of the modeling strategies adopted in several contributions in this field,
including the one proposed in the present work.

In this work, we present two major contributions from the modeling perspective: (i) the
construction of a comprehensive vascular network for the entire left cerebral cortex in a
human brain model, and (ii) the simulation of pulsatile 1D blood flow by coupling the ADAN
model to the cerebral cortical network T3. This was achieved by leveraging a combination of
modeling tools developed by the authors in prior works [33,38,39,53–55], enabling the con-
struction of large vascular networks in complex geometries (see Fig 5) and facilitating pul-
satile simulations that account for the most salient aspects underlying the problem, including
convective terms, non-linear pressure-area relationships, blood rheology, and wall viscoelas-
ticity (see Fig 6). The following sections will discuss these two significant contributions in
detail.

Pial vascular architecture
The proposed strategy successfully replicated the complex vascular architecture of the pial
surface, accounting for the intricate landscape formed by the multiple gyri and sulci present
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Table 9.Model ingredients adopted in the studies available in the literature.
Ref. Vascular network Vascular extension Vessel diameter [µm] Mathematical model Flow regime Other features
[21] From image (rat) 2.8mm3 of cortical

tissue
[3.24, 56.4] † 0D blood flow and

transport
Steady-state Full capillary network and

collaterals within cortex
[22] From image (mouse) 1.14 – 2.85mm3 of cor-

tical tissue
3.8± 0.3 ‡ 0D blood flow,

hematocrit and
transport

Steady-state Porous medium for surrounding
tissue

[26] From image (rat) 2.5mm3 of cortical
tissue

3.1± 1.1 ‡ 1D blood flow Steady-state Large arterioles and venules linked
through porous medium

[25] From image (human) Large vessels in the
brain

[1 460, 2 460] † 1D blood flow Pulsatile Large arteries of the head coupled
to a porous medium representing
the pial surface

[28] Arteries from image,
arterioles synthetic
(human)

Entire pial surface [50, 400] † 0D blood flow Steady-state Collaterals on mid-sized arter-
ies plus coupling to a small-scale
collateral mesh

[27] From image (human) Entire brain – 3D porous medium Steady-state Multi-compartment model for
arteries, capillaries and veins

[24] Arteries from image,
peripheral beds
synthetic (mouse)

Entire brain [3, 80] † ¶ 0D blood flow and
hematocrit

Steady-state Synthetic networks provide clo-
sure between arterial and venous
networks

[29] Arteries and veins
from image, periph-
eral beds synthetic
(human)

Entire brain [58.3, 320]† 0D blood flow and
transport

Steady-state Simulated magnetic resonance
metrics

This work Synthetic (human) Entire pial surface in
the left hemisphere

62.8[49.3, 89.3] § 1D blood flow Pulsatile Coupling with the entire ADAN
model

†: minimum-maximum range.
‡: mean and standard deviation.
¶: extracted from cumulative distribution function.
§: median and interquartile range.

https://doi.org/10.1371/journal.pcbi.1013459.t009

in the human cerebrum (see Fig 3), while balancing richness of complexity, anatomical con-
straints and computational cost [44]. Previous works applied similar strategies to generate
arterial networks, and obtained results in portions of the human cerebral cortex [59], and
also in the brain of rats [23,24,60]. The resulting vascular architecture obtained in this work is
consistent with these previous works.

Qualitatively, the resulting vascular network closely resembles the pial vascular networks
reported in the literature [61,62] (see Fig 5). Quantitatively, half of the pial vessel diameters
fall within the interquartile range of [49.3, 89.3]µm, with a median of 62.7 µm. Regarding
the terminal vessel diameters, the lower and upper quartiles are [43.4, 57.6]µm with median
49.7 µm (see Table 4). These ranges are consistent with the diameter of arterioles that pen-
etrate into the cortex or form anastomoses (mostly around 40µm and 50µm) [61]. More
specifically, penetrating vessels that give rise to long cortical arteries (65 µm in diameter),
middle cortical arteries (30 µm to 60µm in diameter), and short cortical arteries (20 µm in
diameter) are also close to the range observed [63], especially regarding the middle intracor-
tical arteries, which yield branches between 1.5mm and 2.0mm below the surface, a value
confirmed by [40].

As previously mentioned, the vessel density of 1.2 per mm2 was established in accordance
with [40] (1.0 per mm2), and resulted in 116 977 terminals along the 975 cm2 surface area of
generation (or 97 500 mm2, territorial overlap included). As a matter of comparison, this is
a lower value when compared to rats (8.3 per mm2) [40], and the same happens when refer-
ing to the diameter of penetrating vessels [60]. Previous studies [64,65] estimated a higher
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number of penetrating vessels per mm2 since the authors worked with primate and rodent
brains. Therefore, scaling animal data to study human circulation phenomena via compu-
tational modeling must be done cautiously. The density of terminal vessels generated in the
present model of the human cerebral cortex allows us to assume that the next vascularization
stage involves the sprouting of penetrating arterioles that perfuse the gray and white matter
tissues [40,48,65–67]. Therefore, the hemodynamic environment observed at the terminal ves-
sels represents the mechanical stimulus to which penetrating arterioles are exposed, according
to the present model.

The differences observed in inlet vessel diameters among the three territories (see Table 2,
with the largest difference between the MCA and PCA at 24%) diminish as we move deeper
into the pial networks (see Table 4, with the largest median difference between the MCA and
ACA at 8.5%). The complete pial network presents consistent distributions of diameters, and
the variation of medians from each territory to the complete network remains under 5% in
all cases. The number of terminal vessels per territorial surface is a major contributor to this,
since the power law for bifurcations of vessel segments [46] would scale the diameters in the
binary tree down at each branching level, considering the terminal flow to be uniform as dic-
tated by the compartmental model in the CCO algorithm [37]. Regarding this power law scal-
ing parameter, some works [68] mention that it varies along the cortex, from 3.61 in the larger
arteries, down to 2.73 when penetrating the cortex. Here, this parameter was considered to be
constant and equal to 3.0, which corresponds to the case of uniform endothelial shear stress
[46,49]. Previous settings used for the generation of the cerebral cortical network, consider-
ing the power law parameter of 3.5, rendered vessels with substantially larger diameters when
targeting the terminal density of 1.2 terminal vessels per mm2, which was not aligned with the
literature [61]. Furthermore, according to [69], the arborizations that perfuse the cortical tis-
sue do not follow a power law model, but are better represented by a stem-crown model. That
study is of the utmost relevance towards the construction of vessel branches located at more
distal locations in our model.

Notably, despite significant differences in the geometric features and covered areas of the
ACA, MCA, and PCA territories, the vessel lengths remain significantly consistent across the
three territories (see Table 4, where the largest median difference between the ACA and MCA
territories is 1%).

Pressure gradients in the cortex
In a previous study [32], we provided compelling evidence for the presence of significant
pressure gradients within the human cerebral cortex. In that research, we used a simplified
model of the peripheral vascular beds located at the base of the brain–specifically, distal to
the lenticulostriate artery–and over the convexity, particularly distal to the posterior parietal
branch of the middle cerebral artery. These findings have impacted the analysis and inter-
pretation of various conditions associated with small vessel disease and neurodegenerative
disorders. Importantly, understanding the causes of neurodegenerative conditions related to
blood flow in light of the heterogeneities encountered in cerebral hemodynamics has opened
new research avenues in this field. As a result of that contribution, there has been increased
awareness regarding the appropriateness of applying uniform blood pressure targets across the
general population [70–73].

The ambibaric brain theory has offered a new evolutionary perspective on the cerebral cir-
culation, featuring essential physiological, pathophysiological, and clinical implications [31].
From the experiments performed in the present study, we observe that the pressure levels in
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peripheral vascular beds vary depending upon the specific region of the cortex being exam-
ined. Regions more distant from the Circle of Willis exhibit the lowest pressure levels, regard-
less of the specific territory. In contrast, areas closer to the base of the brain, even when part
of the cortex, display higher pressure levels. As a rule of thumb, the greater the vascular dis-
tance traveled by blood, the lower the recorded pressure (see Figs 6 and 8-top right panel). It
is important to note that this model represents the cortical vasculature down to the terminal
vessels that stand for the arterioles that penetrate the gray/white matter tissues. The pressure
levels and flow pulse experienced by these distal columnar arborizations, which derive from
the arterioles and supply the gray and white matter, differ significantly based on the loca-
tion of the terminal vessels. Therefore, the findings reported in this work not only support the
ambibaric brain theory, but also illustrate a continuum of pressure levels from the base of the
brain to the deepest regions of the cortex. Additionally, the compartmentalization of these
deeper cortical areas and the differentiation of hemodynamic environments at both the trans-
port and perfusion levels bring relatively novel aspects that deserve further investigation. (see
Fig 8-right panels).

From the results reported in this work, we note that the range of pressure levels is wider
in hypertension with respect to the one observed in normotension. Systolic hypertension is
characterized by elevated systolic pressure, moderately increased mean pressure, and slightly
decreased diastolic pressure, leading to a higher arterial pulse pressure (see Table 6). Pres-
sure gradients experienced by the cerebral vasculature are greater in a hypertensive state,
which creates more heterogeneous mechanical stimuli across the cortex, thereby promoting
remodeling in a spatially differentiated manner (see Fig 8-right panels). Proximal territories
exposed to higher pressure and pulse pressure may exhibit a different remodeling mechanism
than distal territories [74,75]. This region-dependent maladaptation may contribute to the
acceleration of detrimental conditions affecting the brain.

Moreover, according to the reported simulations, the lowest pressure values in the corti-
cal network change little, with differences around 10mmHg when comparing normotensive
and hypertensive conditions (see Table 6 and Fig 8-bottom right panel). This suggests that any
treatment aimed at reducing central arterial pressure might exacerbate the reduction of dias-
tolic blood pressure at the smallest arteriolar vessels that supply the most distal regions of the
cortex [71,72]. Although the cerebrovascular compliance provides some protective effects for
these distal areas regarding pressure, pulsatile conditions are significantly worsened in hyper-
tension at both the transport and perfusion levels (see Figs 7 and 8-left panels). This combi-
nation of low blood pressure with high pulsatility (see next section) creates a harmful envi-
ronment that may trigger specific adaptations in the distal regions of the hypertensive brain,
which are different from those encountered in proximal locations [76].

Pulse pressure, flow pulsatility and the damping factor
The hypertensive condition establishes a pathological interaction between macro- and
microvascular vessels. The combined effects of these adaptations significantly alter the shape
of the pressure waveform as it travels from the aortic root to the periphery. This alteration
provides a strong mechanical stimulus that affects local flow conditions, including endothe-
lial shear stresses and the mass transfer of substances between blood flow and surrounding
tissues in smaller vessels. Elevated pressure, pulse pressure, and flow pulsatility create delete-
rious hemodynamic conditions that extend from the central vessels to the microcirculation
[77].

In addition to the individual values of systolic and diastolic blood pressure, pulse pressure
is an important surrogate of arterial stiffness, a key aspect of the aging cardiovascular system
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in both normotensive and hypertensive patients, which can result in microvascular damage
[78]. Furthermore, hypertension may accelerate the process of arterial stiffening through a
positive feedback cycle, which can worsen hypertension itself [79]. It has also been well estab-
lished that there exists a relationship between the flow pulsatility index and various brain dis-
eases [80], as well as the impact of hypertensive conditions on this index [81]. More recently,
Arts et al. [82] explored the relationship between pulsations in large arteries and how these
pulsations are transmitted to small arteries and the microcirculation, through the concept
of cerebrovascular damping. Their findings indicated that in healthy individuals, there is a
damping effect–quantified by the damping factor as defined here–on flow pulsatility when
comparing the root of the MCA territory to small cerebral perforating arteries. Specifically,
the pulsatility and damping factors for healthy individuals were reported to be 0.40± 0.14
and 2.1± 0.81 for vessels around the basal ganglia, and 0.42± 0.13 and 2.0± 0.93 for vessels
around the semi-oval center. These biomarkers are intended to describe the transfer of energy
from central circulation to peripheral vascular beds. In this study, we directly assessed the
hemodynamics in the deeper regions of the cerebral vasculature and estimated changes in
both the pulsatility index and pulse pressure over the convexity. It is important to note that
our simulations rendered maximum values of the pulsatility index, and of the pulse pressure
(see (14)) in the neighborhood of the root of each vascular territory (see Fig 7). Hence, we
obtained a damping factor for the pulsatility index (median [IQR]) of 2.07 [1.78, 2.48] in nor-
motensive individuals, compared to 1.20 [1.16, 1.39] in hypertensive patients (see Table 7).
These results are also consistent with those observed by Van Den Kerkhof et al., [83], who uti-
lized magnetic resonance imaging to investigate healthy and hypertensive subjects. That study
also showed a positive correlation between the pulsatility index and arterial pressure, while
the damping factor exhibited a negative correlation with arterial pressure. In another study
by the same research group [84], they found that a reduced damping factor–calculated using
the pulsatility index of the middle cerebral artery and the lenticulostriate artery–was signif-
icantly associated with the presence of perivascular spaces in the basal ganglia, a condition
commonly seen in small vessel disease [85]. Furthermore, this correlation was even stronger
in hypertensive patients.

Zarrinkoob et al. [86] explored the damping effect of the cerebral vasculature on the flow
pulsatility from the proximal to the distal cerebral arteries. The research involved both healthy
young and elderly subjects, while also examining the relationship to aortic stiffness. Their
findings revealed that the cerebral vasculature in younger individuals exhibits a more pro-
nounced damping effect on flow pulsatility compared to older individuals. The damping fac-
tors varied across different arterial territories. In that study, these factors were specifically
related to pulsatility indexes of the internal carotid artery and the vertebral artery. The damp-
ing factor values recorded were 1.31± 0.20 for young subjects compared to 1.16± 0.20 for
elderly subjects for the distal middle cerebral artery, 1.48± 0.25 for young versus 1.26± 0.22
for elderly subjects for the distal anterior cerebral artery, and 1.69± 0.38 for young subjects
compared to 1.32± 0.20 for elderly subjects for the posterior cerebral artery. The combina-
tion of increased pulsatile flow and reduced damping factors supports the theory of pulse
wave encephalopathy (PWE) [87], which suggests that higher pulsatile flow reaching more
distal arterial segments can lead to damage in the cerebral microvasculature. Additionally, a
new metric called the pulsatility transmission function was proposed in [88] to classify the
risk of PWE more effectively. This new index aims to provide a better understanding of cere-
bral hemodynamics at the organ level using spatially distributed data obtained from magnetic
resonance imaging.

The results obtained in the present study provide valuable insights that build on previ-
ous research. The pulse pressure affecting peripheral vessels is lower than that at the base of
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the brain (see Table 6 and Fig 7), with this damping effect being only mildly stronger in nor-
motensive conditions compared to hypertensive ones. The pulsatility index is a better indica-
tor of hypertensive states, showing not only higher and more uniform values across the con-
vexity but also a significantly reduced damping effect (see again Fig 7). Typically, maximum
pulsatility occurs in the root vessels. At the transport level, both the pulse pressure and the
pulsatility index decrease as we move towards more distal locations in the vascular network in
both normotensive and hypertensive conditions (see Fig 8-top left panel). However, the situa-
tion is different at the perfusion level. While pressure continues to decrease when moving dis-
tally for normotensive and hypertensive cases, the pulsatility index features an inverted trend
in hypertension compared to normotension, and with values considerably higher, which pose
detrimental conditions in the hypertensive state (see Fig 8-left panels). Therefore, the vas-
cular adaptations that occur in the cerebral vasculature depend on the location of the vessel
[89]. This suggests that, in normotensive cases, blood flow is more uniform along the car-
diac cycle, and so endothelial shear stresses. In contrast, hypertensive conditions are char-
acterized by stiffened vascular walls, and more fluctuating shear stresses, which can lead to
increased flow-induced cyclic fatigue in the endothelial cells, affecting endothelial permeabil-
ity, mass transport, and cerebrovascular reactivity, among other functional properties of the
brain [90,91].

Pathophysiology of neurodegenerative diseases
Diseases of the nervous system have become the leading causes of disability-adjusted life years
(DALYS). Among these, stroke accounts for 52% and dementia for 9% [92]. The major neu-
rodegenerative condition is dementia, and among dementias what is labeled as “Alzheimer’s
Disease” is the most common. However, the typical patient with this diagnosis harbours up to
8 different pathologies [93].

Moreover, all major dementias have a vascular component, ranging from 61% in fron-
totemporal dementia and up to 83% in Alzheimer’s disease [94]. Vascular and neurodegener-
ative conditions not only occur together but interact at all levels, including the microcircula-
tion [95].

The concept of the ambibaric brain offers a framework to interpret brain lesions; for exam-
ple, it explains the mechanism of the common association of apathy, gait disorders and execu-
tive dysfunction (the AGED triad) [96].

In light of these findings, the present contribution provides a mechanistic substratum
based on first principles to allow us to quantify the hemodynamic environment and its poten-
tial association with the onset and progress of these conditions. According to the findings
reported in this study, the heterogeneity in the mechanical stimuli (see Figs 6, 7 and 8) that
take place over the pial surface should draw attention to their spatial dependence for the
explanation of disease etiology.

Impact of modeling assumptions
In this study, we explored the constitutive assumptions regarding blood behavior (Newtonian/non-
Newtonian) and vascular wall behavior (elastic/viscoelastic). We observed that the choice of
blood behavior did not impact the model predictions. Indeed, vessel diameters in the CCO
vascular network are primarily within the range where the viscosity, as predicted by the non-
Newtonian model, does not substantially differ from the Newtonian case. Simulations involv-
ing a larger number of smaller vessels may be more sensitive to the blood constitutive model
(see Table 8).
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Regarding the comparison between elastic and viscoelastic wall models, we have observed
that differences are substantial, mainly in terms of the oscillatory components of pressure
and flow rate that are responsible for the pulse pressure, the pulsatility index, and the overall
waveform signature (see Fig 9). In terms of flow pulsatility, the elastic wall model predicted
larger values from the root to the terminal sites, with a wider distribution of values and a pos-
itive trend between the outlet distance to the root and the pulsatility index, something that is
inverted in the viscoelastic case. Notably, this would explain the modification of the rate of
change in the pulsatility index observed in hypertension because, in that scenario, the elastic
component is increased compared to the viscoelastic case. Therefore, viscoelasticity is key in
the damping of flow pulsatility towards the more distant sites of the cortical circulation.

Limitations
We have adopted a simplified approach to model hypertension by adjusting model param-
eters in a manner similar to that used in previous studies in this field. Additionally, we have
constructed a single vascular model, which restricts our analysis to one cerebrovascular archi-
tecture. We have not included blood flow control mechanisms, as we considered that the
characterization of the hypertensive scenario already takes into account the compensatory
adjustments of the cardiovascular system under such pathological condition. Peripheral beds
were modeled with Windkessel elements, and no venous blood vessels were considered in
the network. Also, the extensive network was built only for the left hemisphere, while the
right hemisphere topology remained as in the original ADANmodel, and no collateral con-
nections were included in the proposed model, assuming that the cortex vascular network is
completely patent. If we were to include obstructive lesions, as seen in other contributions, it
would be necessary to incorporate inter-hemispheric and intra-hemispheric collateral con-
nections that would become activated, due to intense pressure gradients, in such pathological
scenarios. In addition, the bifurcation power law parameter was considered constant through-
out stages in this study, as discussed in Section Pial vascular architecture. An approach that
varies this parameter along the levels of bifurcation would be more suitable, especially when
constructing the penetrating arborizations that vascularize the gray and white matter tissues.

Final remarks
In this study, we proposed a computational modeling strategy to investigate the hemodynam-
ics in the pial surface that supplies human brain’s cortex.

First, we exploited advanced computational tools to automate the creation of a vascular
network based on an anatomically consistent geometric representation of the pial surface in
a patient-specific model of the human brain. This process achieved a terminal vessel density
of 1 vessel/mm2, which corresponds to the density of penetrating arterioles that supply the
underlying gray and white matter tissues. The resulting model includes 234 344 vessel seg-
ments with a total cumulative length of 171.1m and an intravascular volume of 2.88 cm3. The
median [IQR] vessel diameter in the vacular network is 62.7 [49.3, 89.3]µm.

Second, we presented blood flow simulations that achieved an unprecedented level of
detail by coupling the pial vascular network to the ADANmodel. This allowed us to provide
estimates of hemodynamic phenomena ranging from the large arteries down to the arterioles
that penetrate the cortical gray and white matter. Under normotensive conditions, the median
pressure and flow rate values are 56.7 [49.8, 63.5]mmHg and 6.9 [3.4, 19.9] × 10–5ml/s,
respectively.
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We have successfully modeled the distribution of blood flow-related quantities, includ-
ing systolic, diastolic, and mean blood pressure, pulse pressure, pulsatility index, and associ-
ated damping factors in both normotensive and hypertensive conditions. As expected, systolic
pressure is significantly elevated in hypertension, while we noted a slight decrease in diastolic
pressure. For reference, while normotensive (hypertensive) readings in the brachial artery are
111/75mmHg (183/75mmHg), these values at the distal internal carotid artery pressure are
107/74mmHg (170/73mmHg). Correspondingly, in the smaller vessels of the distal anterior
cerebral artery territories, the median values are 55/38mmHg (90/36mmHg), while being
59/40mmHg (95/38mmHg) in the distal middle cerebral artery territories, and 44/30mmHg
(72/28mmHg) in the distal posterior cerebral artery territories. Thus, the posterior cerebral
territories are more susceptible to hypotension in this model.

By examining the pressure levels at the terminal vessels, we observed that the spatial pres-
sure gradients over the convexity in normotension were limited to 50mmHg, while in hyper-
tension, these gradients reached up to 70mmHg. These gradients can be explained by the
cumulative vascular distance that blood must travel before reaching its final destination in the
various territories on the pial surface before penetrating into the gray and white matter tis-
sues. Notably, the farther a pial vessel is from the Circle of Willis, the lower its pressure level
is. Additionally, the diameter of the vessels is not as critical as the path length in determining
blood systolic and diastolic pressures.

Flow-related indices aligned well with values reported in specialized literature. When
comparing hypertension to normotension, the median [IQR] pulse pressure resulted
20.7 [18.1, 23.4]mmHg for normotension and 63.8 [56.7, 71.0]mmHg for hypertension. The
pulsatility index was 0.84 [0.83, 0.85] versus 0.39 [0.38, 0.40], and the damping factor was
1.20 [1.16, 1.39] versus 2.07 [1.78, 2.48]. Increased pulsatility and reduced damping factors
promote a highly fluctuating shear stress on endothelial cells, which may lead to structural
fatigue and dysfunction of the endothelial layer.

Finally, we also concluded that viscoelasticity is a key component in the conformation
of pressure and flow rate waveform signatures, having a significant impact on the charac-
terization of pulse pressure and the flow pulsatility index at the transport level down to the
perfusion level.
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