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Abstract

Dogs and laboratory mice are commonly trained to perform complex tasks by guiding
them through a curriculum of simpler tasks (‘shaping’). What are the principles behind
effective shaping strategies? Here, we propose a teacher-student framework for shaping
behavior, where an autonomous teacher agent decides its student’s task based on the
student’s transcript of successes and failures on previously assigned tasks. Using algo-
rithms for Monte Carlo planning under uncertainty, we show that near-optimal shaping
algorithms achieve a careful balance between reinforcement and extinction. Near-optimal
algorithms track learning rate to adaptively alternate between simpler and harder tasks.
Based on this intuition, we derive an adaptive shaping heuristic with minimal param-
eters, which we show is near-optimal on a sequence learning task and robustly trains
deep reinforcement learning agents on navigation tasks that involve sparse, delayed
rewards. Extensions to continuous curricula are explored. Our work provides a starting
point towards a general computational framework for shaping behavior that applies to
both animals and artificial agents.

Author summary

Animals are commonly trained by ‘shaping’ their behavior using a sequence of simpler
tasks towards a complex behavior. Many schools of thought have proposed heuristics
for shaping based on qualitative principles of reinforcement learning. We introduce

a general computational framework for shaping behavior, paying special attention to
the constraints faced when training animals. Using machine learning algorithms for
planning under uncertainty, we explain why simple strategies fail, provide a normative
foundation for existing heuristics, and propose new adaptive algorithms for designing
curricula.
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1. Introduction

Animal trainers “shape” an animal’s behavior towards a complex sequence of actions [1-4].
Shaping is essential when an animal rarely executes the correct sequence during innate behav-
ior. This simple intuition highlights a fundamental constraint that arises due to the curse

of dimensionality: learning a complex behavior through random, unguided exploration is
impractical when the dimensionality of behavior is large, regardless of which learning rule
the animal employs. Shaping tackles this issue by iteratively approximating longer bits of the
behavior, limiting the search space at every stage of training.

A shaping protocol typically involves hand-designing a series of simpler tasks leading to
the full task during training. The animal is rewarded for successfully completing an assigned
sub-task, and the curriculum progresses once the animal is sufficiently good at completing
this sub-task [5-9]. Researchers often rely on simple heuristics and prior experience to design
these protocols, and it remains unclear whether these heuristics are close to optimal even in
simple scenarios, or when these strategies might fail. Such hand curated shaping becomes
rate-limiting with increasingly complex tasks and those that need large numbers of subjects.
While there have been attempts to automate behavioral shaping [10,11], there has been rela-
tively little effort to systematically optimize the curriculum in learning tasks in the laboratory.
Understanding the principles that drive effective shaping, coupled with closed-loop training
strategies, would considerably reduce the training time for both laboratory animals and artifi-
cial agents, while providing insight into factors that contribute to slow or fast learning [12,13].
Our goal is to develop a general computational framework for shaping behavior that applies
to both animals and artificial agents.

In machine learning, the importance of shaping-inspired approaches for training agents
was recognized early on [14-20]. More recently, numerous automatic curriculum learning
(ACL) techniques have been developed for training deep reinforcement learning (RL) agents
(reviewed in [21]). Within the ACL framework, an autonomous teacher agent determines
the distribution of the student’s tasks based on the student’s past behavior. However, these
approaches rely on arbitrary control over the agent’s states [22-24], exploration [25-32] or the
reward structure [33-35]. For example, a well-known strategy called potential-based reward
shaping [33] modifies the reward function to expedite learning while preserving the optimal
policy. Such a procedure is infeasible in experimental situations where the animal has to inter-
rupt its behavior in order to acquire reward. In other cases, these methods assume that the
agent’s performance can be measured on a range of arbitrary test tasks [36] or require access
to expert demonstrations [24,37,38].

Although these assumptions are reasonable for training artificial RL agents and have
demonstrated success in numerous tasks, they are not suitable for training animals. When
training animals, we typically have 1) limited flexibility in controlling rewards and exploration
statistics, 2) partial observability, as animals can often be evaluated based only on whether
they have succeeded or failed on the task (their true “state” remains unknown), and 3) no
delineation between training and test trials. In addition, animals often have an innate reper-
toire of responses and behaviors they may resort to by default, and a training procedure which
recognizes and takes advantage of this feature may be more successful.

2. Framework

To address these issues, we propose an ACL framework, which we term outcome-based
curriculum learning (OCL). In OCL, a teacher agent decides the student’s next task based
solely on the student’s outcomes, i.e., its history of successes or failures on past tasks, with the
long-term goal of minimizing the time to reach a desired level of performance on the final
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task. By observing and delivering rewards based on binary outcomes, teacher algorithms are
task-agnostic, and are applicable for training both artificial agents and animals. Closest to
our framework is the teacher-student curriculum learning framework proposed by Matiisen
et al. [39,40]. Inspired by the concept of learning progress [41] in developmental psychology,
Matiisen et al. [39] propose heuristic strategies where the teacher selects the task on which
the student shows the greatest improvement on scores. However, we find below that these
heuristics perform poorly compared to our simpler alternatives.

To gain intuition, it is helpful to visualize teaching with OCL as ‘navigation’ through an
(unknown) difficulty landscape that is shaped by the student’s innate biases towards per-
forming behaviors pertinent to the task. Such a difficulty landscape is illustrated in Fig 1A
for a task whose difficulty increases along two independent axes. We define difficulty as the
negative log probability of success on a task (here parameterized by the two skill axes) given
the student’s current policy. The difficulty landscape thus depends on the task as well as the
student’s innate biases and learned behavior.

In this manuscript, we consider tasks that can be decomposed into a single difficulty scale.
Such tasks lend themselves naturally to a curriculum. A student begins with the simplest ver-
sion of the task and progresses through difficulty levels (as set by the curriculum) until they
succeed at the entire task. In the discrete version of OCL, the experimenter designs tasks and
rates them based on their difficulty in discrete levels from 1 to N (Fig 1B). A desired threshold
level of performance is specified for the Nth task (the full task). Given this input, the teacher
algorithms that we consider below choose the appropriate difficulty level for the student
based on their past transcripts. At the start of every interaction, the teacher receives as input a
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Fig 1. A: Teaching using our OCL framework can be visualized using a difficulty landscape (here, parameterized by two skill axes), which quantifies the student’s
success probability for each difficulty level. A student assigned an extremely difficult task will not learn, since they are unlikely to succeed and thus receive little rein-
forcement. The teacher’s purpose is to adaptively assign tasks (shown in yellow) based on the student’s progress and the difficulty landscape. A successful curriculum
charts a short path through the landscape, lowering the difficulty while promoting quick learning. B: Tasks from a pre-defined set are ordered based on their difficulty,
as measured by the success probability of a naive agent. An autonomous teacher decides the student’s task (71, 72, 73 ... ) based on the student’s transcript of successes
and failures (represented here as Os and 1s respectively) on previously assigned tasks. C: We apply our OCL framework to three biologically relevant goal-oriented tasks
involving delayed rewards: a generic sequence learning task, an odor-guided trail tracking task and a plume-tracking task involving localization to a target based on
sparse cues.

https://doi.org/10.1371/journal.pchi.1013454.9001
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transcript and proposes the difficulty level k. The student attempts the task for T (fixed)
rounds, adding to the performance transcript. This two-way interaction continues until the
student attains a satisfactory level of success on the final task.

We first investigate in detail a sequence learning task, where an RL-based student is
required to learn the correct sequence of N actions (Fig 1C). The sequence learning task
encompasses a large variety of behavioral tasks, including tricks such as the roll — fetch — sit
sequence described above, numerous Skinnerian tasks, as well as common laboratory behav-
ioral experiments which have a self-initiated trial structure. The difficulty landscape of such
tasks is determined by the complexity of the sequence (NN) and the innate probability that
the student will execute the correct action at each step of the sequence. Since the probability
of success decreases exponentially with N, the agent is unlikely to learn the full task without
shaping when N is sufficiently large.

The simplicity of the task structure allows us to examine normative teacher strategies using
modified Monte Carlo planning algorithms for decision-making under uncertainty. Using
insights from these normative strategies, we use differential evolution to design near-optimal
heuristics that are agnostic to the task, learning rule, and learning parameters. Next, we apply
our method on two novel, naturalistic, sequential decision-making tasks that involve delayed
rewards: odor-guided trail tracking and plume-based odor localization (Fig 1C). We show
that deep reinforcement learning agents can be trained using our adaptive teacher algorithms
to solve these tasks using only a single reward delivered at the end of the task. Finally, we
extend this framework to continuous parameterizations of the task, where the teacher has the
option of breaking down the task into simpler components.

3. Results
3.1. Sequence learning

In the sequence learning task, a student RL agent begins each trial at a fixed start state and
receives a reward r if they perform the correct sequence of N actions (Fig 2A, see Appendix
A in S1 Text for full details). If the student fails to take the correct action at any step in the
sequence, the student receives no reward and the episode terminates. The probability that
the student takes the correct action at step i is given by o (g; + €;), where g; is the (fixed)
innate bias that determines the probability the student will take the correct action before any
learning occurs. o is the logistic function. For example, if the agent prior to learning takes

K possible actions at step i with equal probability and only one of them is correct, we have

€; = -log(K-1). The action value ¢; is initially set to zero and updated using a standard
temporal-difference (TD) learning rule with learning rate .

The sequence learning task naturally splits into discrete difficulty levels: the teacher mod-
ulates difficulty by increasing, decreasing or maintaining the step k at which the student is
rewarded. The innate biases ¢;’s play a key role in the dynamics since they determine the prob-
ability of success (and thus the rate of reinforcement) when the difficulty level is increased.
We assume for simplicity that all &;’s are equal to €; the general case is considered later. We
seek OCL algorithms that minimize the time the student takes to succeed at a rate greater
than a threshold 7 on the full task without prior knowledge of the student’s innate biases and
learning parameters.

3.2. An incremental teacher strategy is not robust

An intuitive baseline strategy when designing a curriculum is an incremental (INC) approach:
the teacher increments the difficulty by one when the student’s estimated success rate $
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Fig 2. A: The sequence learning setup. In the full task, the student is required to take a sequence of N correct actions to get reward. In intermediate levels of the task,
the reward is delivered if the student takes k < N correct actions. €; is the innate bias of the student to take the correct action at the ith step, prior to training. We assume
€; = € for all i unless otherwise specified. B: The incremental teacher (INC) fails once € < -1.7. C: The g values (in grayscale) for the correct action at each step shown for
€ =-1.5(top) and € = -1.8 (bottom). The red line shows the assigned task level. Note the striped dynamics in the top row caused due to alternating reinforcement and
extinction. In the bottom row, € is too small, forcing learning to stall. D: Time series of g values for actions at the first (solid black) and third (dashed gray) steps for the
two examples shown in panel C.

https://doi.org/10.1371/journal.pcbi.1013454.9002

exceeds 7 at the current level. Note that since the success rate changes due to learning, a
reasonable estimator § should consider recent transcripts yet a sufficient number of them
to minimize sampling noise. We consider different estimation procedures for computing $
and find that an exponential moving average estimator is computationally inexpensive and
achieves comparable performance as other more sophisticated methods (Appendix E and
Fig B in S1 Text).

INC is stable for large € (Fig 2B). However, INC abruptly and consistently fails when ¢ is
below a threshold (¢ < -1.7 in Fig 2B). This value of € corresponds to a naive success rate of
~15% at each difficulty level. Our results imply that the sparsity of positive feedback when
the success rate is below this value to eventually generate a catastrophic failure. Examining the
dynamics of the g values provides insight into why this catastrophic failure occurs.

Let us first examine g value dynamics when the student is required to directly solve the
case k = 5, where ¢ is chosen such that the student is capable of learning without a curricu-
lum. The dynamics of g values exhibit a ‘reinforcement wave, where actions are sequentially
reinforced backwards from the final state to the start [42]. This backward propagation is a
generic feature of RL, since the goal acts as the sole source of reward and reinforcement prop-
agates through learning rules that act locally. Now, suppose the difficulty is incremented by
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one (k = 6). Immediately after this change, the student executes the correct sequence of actions
until the fifth step, but will likely fail to receive reward as the final step has not been rein-
forced. These (possibly brief) series of failures produce a long-lasting extinction wave that
propagates backwards to earlier steps with dynamics that parallel those of the reinforcement
wave. In short, transient failures after every difficulty increment have long-term effects on
learning dynamics and success rate.

When visualized over the course of a curriculum, q values assume characteristic “striped”-
dynamics that emerge due to alternating waves of extinction and reinforcement (top panel in
Fig 2C). These striped dynamics reflect the transient failures and eventual successes that fol-
low an increment to higher difficulty when ¢ is larger than the failure threshold. Extinction
dominates reinforcement when ¢ is below a critical value, leading to catastrophic unlearn-
ing of previous actions and subsequent lack of learning progress. In this event, the agent may
eventually learn after a very large number of trials, but extinction negates the benefit of a
curriculum by forcing the agent to learn from scratch.

More broadly, reinforcement and extinction effects are related to the value that an agent
associates with future actions. In animal behavior, one common and historically salient anal-
ogy for these values is motivation. An animal that does well and receives consistent reward
is intuitively more motivated than an animal that does not receive reward. Our framework
predicts that when a curriculum increases the task difficulty, an animal receives less reward
than expected, resulting in a transient dip in motivation. However, when the new task is espe-
cially hard, the motivation loss may not be transient, resulting in behavioral extinction. Since
extinction is unavoidable after significant increases in difficulty (¢ < 1), optimal strategies
that are robust in this regime will have to ameliorate this effect while completing the curricu-
lum as quickly as possible. That is, effective curriculum design strategies should achieve an
optimal balance between extinction and reinforcement.

3.3. Near-optimal teacher algorithms alternate between difficulty levels

To gain insight into near-optimal strategies, we formulate the teacher’s task for the sequence
learning task as optimal decision-making under uncertainty using the framework of Partially
Observable Markov Decision Processes (POMDPs) [43-45]. Specifically, the teacher decides
whether to increase, decrease or keep the same difficulty level based on the student’s past his-
tory, and receives a unit reward when the student crosses the threshold success rate on the
full task. A discount factor incentivizes the teacher to minimize the time to reach this goal.
As when training animals, one challenge is that the student’s true learning state (encoded by
the g values) are hidden as the teacher receives only a finite transcript of successes and failures
on previously assigned tasks. Another challenge is that the teacher is not a priori aware of the
student’s innate biases and learning rate. Moreover, the long horizon and sparse reward makes
planning computationally prohibitive.

To solve this task, we employ an online POMDP solver (called POMCP [46]) that relies
on Monte Carlo planning and inference (Fig 3A). This solver plans based on the inferred
joint distribution of ¢’s, € and «, which is represented as a collection of particles with dif-
ferent parameter values. A planning algorithm based on Monte Carlo Tree Search (MCTYS)
[47] balances exploration and exploitation to decide the next action. The student’s transcript
on the following round is then used to update the joint distribution using Bayes’ rule imple-
mented as a particle filter, after which this cycle is repeated. With sufficient sampling of parti-
cles and planning paths, the solver provides a near-optimal adaptive teacher algorithm for the
sequence learning task. Due to the large size of our POMDP, the implementation of POMCP
is nontrivial, with details in Appendix E and E.
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Fig 3. A: An overview of the POMCP teacher, which cycles between inferring the student’s g values, innate bias and learning rate based on the transcript and
planning using a Monte Carlo tree search. B: The adaptive heuristic (ADP), which employs a simple decision rule to stay, increment or decrement the current difficulty
based on the estimated success rate § (computed using an exponential moving average over past transcripts). C: POMCP and ADP are comparable and significantly out-
perform other algorithms [39] when the task is non-trivial (low €), including when INC fails (¢ < -1.7). Here N = 10. Note that planning using POMCP is intractable
when € = -3. Barplot means are estimated from 10 repeats. D,E: POMCP and ADP adaptively alternate between difficulty levels, thereby preventing catastrophic
extinction. Note the drop in difficulty levels after significant extinction in both cases. Here € = -2.

https://doi.org/10.1371/journal.pchi.1013454.9003

The POMCP teacher exhibits a non-monotonic curriculum, repeatedly reverting back to
easier tasks before ramping up the difficulty. The q values for earlier steps in the sequence
are relatively stable and lack the alternating reinforcement and extinction dynamics that we
observe for the INC teacher (Fig 3D). This robustness extends to € values lower than the crit-
ical value at which INC fails (¢ = -2 in Fig 3C). Indeed, as shown in the example in Fig 3D, the
POMCP teacher recognizes and compensates for significant extinction by rapidly decreasing
the difficulty, increasing difficulty only after sufficient re-learning occurs.

3.4. A heuristic adaptive algorithm achieves near-optimal curriculum
design

The POMCP teacher’s strategy suggests simple principles to overcome extinction while mak-
ing learning progress. Specifically, a robust teacher algorithm has to 1) increase difficulty
when the estimated success rate (3) is sufficiently large (similar to INC), 2) continue at the
same difficulty level when the success rate is below this threshold value as long as the stu-
dent continues to learn (A$ > ), and 3) decrease difficulty if the student begins to show signs
of significant extinction (AS$ < 1) for some . These three principles motivate our choice of

a decision-tree-based teacher algorithm that uses § and AS as features. The precise splits and
leaves of the trees can be optimized using various search procedures. More complex trees can
be constructed by taking into account second or higher-order differences of the success rate.
For the sequence learning task, we find that the features (3(t), A3(¢)) are adequate to produce
a successful teacher, which we term Adaptive (ADP). We optimize the decision tree using
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differential evolution (Fig 3B, see Appendix B in S1 Text for details). Note that this optimized
ADP is used for all benchmarks below with no additional tuning.

The ADP teacher shows dynamics similar to POMCP, mitigating extinction waves by alter-
nating between difficulty levels (Fig 3E). We benchmark ADP against INC, POMCP and four
algorithms proposed by Matiisen et al. [39] (Fig 3C). These latter four algorithms are based on
the principle of maximizing learning progress [41]: a student should attempt the difficulty level
at which they make the fastest progress (as measured by the slope of the learning curve on a
particular task). The algorithms differ in how progress is measured and how tasks are sampled
based on their relative progress.

ADP is competitive with POMCP (for the range of parameter values that POMCP can be
feasibly evaluated) and significantly outperforms the other algorithms for small values of ¢,
which is the regime where curriculum design is non-trivial and baseline algorithms such as
INC fail. Moreover, ADP is robust when the innate biases are not equal (Fig A in S1 Text).
Since our OCL framework is task-agnostic and model-agnostic, ADP can be directly applied
to other tasks and artificial agents provided that sub-tasks are arranged on a discrete, mono-
tonic difficulty scale.

Our ADP teacher algorithm is similar to ‘staircase’ procedures that effectively extend INC
with a lower threshold, and decrement the difficulty level when this low threshold is reached
[48,49]. A key distinction in our approach is that decrements are based on the change in suc-
cess rate rather than a second threshold on success rate. While implementing a low threshold
on § is within the expressive capacity of our ADP framework, we find that our evolved teacher
instead relies on AS in its decision making (Fig 3B).

3.5. Performance of ADP on deep RL tasks with delayed rewards

To examine whether ADP can design curricula for complex behaviorally relevant tasks and
learning models, we train deep RL agents to solve two navigation tasks with delayed rewards:
odor-guided trail tracking and plume-source localization.

Dogs are routinely trained to track odor trails, and various heuristics have been devel-
oped by trainers to efficiently teach dogs [50]. In a successful trail tracking episode, the stu-
dent begins with a random orientation from one end of the trail and receives a reward only
when they get to the other end of the trail. Trails are long, meandering and broken so that the
agent is highly unlikely to get to the end through random exploration and should thus learn a
non-trivial strategy to actively follow the trail and receive reward.

The trail tracking paradigm (Fig 4A-4D) provides a natural split of tasks onto a difficulty
scale. We design a parametric generative model for trails where the parameters control the
length, average curvature and brokenness of the trails (Appendix C in S1 Text). Samples of
trails along tasks of increasing difficulty are shown in Fig 4B. We develop a deep RL frame-
work for trail tracking, where the tracking student uses its sensorimotor history of sensed
odor and self-motion to modulate their orientation in the subsequent step (see Appendix C
in S1 Text for full details). Sensorimotor history is encoded using a visuospatial, egocentric
representation (Fig 4A), so that the student has a memory determined by the size of the visu-
ospatial observation window. The student uses a convolutional neural network architecture
which is trained using Proximal Policy Optimization (PPO) [51].

We observe the following outcomes. Without a curriculum, a student trained on the final
level of the task never attains reward within the training cutoft (about 1000 curriculum steps).
ADP outperforms both INC and a curriculum (RAND) that randomly chooses from the
task set (Fig 4C). Their curricula show that ADP alternates as in the sequence learning task,
presumably mitigating extinction effects associated with the transition to more difficult tasks.
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Fig 4. Deep reinforcement learning agents trained using a curriculum solve navigation tasks with delayed rewards. A: The trail track-
ing paradigm. A sample trajectory of a trained agent navigating a randomly sampled odor trail. The colors show odor concentration.

The inset shows the egocentric visuospatial input received by the network, where the agent’s location is in red and odor detections are in
green. B: Sample trails from the six difficulty levels. C: ADP outperforms INC and RAND (each teacher-student interaction is a step). The
agent does not learn the task without a curriculum. Results are plotted from 5 repeats. D: The success rate of the agent in finding the target
over training (black dashed line) for INC and ADP. The curriculum is shown in red. Note the significant forgetting shown by the student
trained using INC approach compared to ADP. E-G: As in panels A-D for a localization task. The agent is required to navigate towards a
source which emits Poisson-distributed cues whose detection probability decreases with distance from the source (colored in green on a
log scale). Results are plotted from 15 repeats.

https://doi.org/10.1371/journal.pcbi.1013454.9004

INC is comparable to ADP but experiences a greater degree of forgetting as seen in the longer
time it spends at the highest difficulty level (Fig 4D). The path of an agent tracking the trail

is shown in Fig 4A. The agent exhibits a preference for localizing at the edge of the gradient.
When it encounters a break, the student performs repeated loops of increasing radius until
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it re-establishes contact with the trail. A detailed analysis of the student’s tracking behavior
during trail tracking is postponed to future work.

Next, we extended this framework to a localization task (Fig 4E-4G) inspired by natural-
istic plume tracking [52,53] and sound localization tasks. In each episode, the student begins
at a random location a certain distance from a target whose (fixed) location is unknown. A
unit reward is delivered when the student localizes at the target. The student receives sparse,
Poisson-distributed cues from the target with probability that depends on the relative location
to the target. These cues provide information about the location of the target, which can be
used by the student to solve the task (see Appendix C in S1 Text for full details). The delayed
reward and sparse cues provide a challenge for training agents without a shaping protocol. We
consider a curriculum where the difficulty scale is determined by the rate of detecting a cue at
the student’s initial position, as well as the student’s distance from the target (Fig 4F). Similar
to the trail tracking setting, results recapitulate the better performance of ADP compared to
INC and RAND (Fig 4G, 4H).

3.6. Continuous curricula

Our analysis up to this point assumes discrete curricula. A consequence of discrete curricula
is that an unexpectedly large jump in difficulty from one level to the next can stall learning.
In such situations, an animal trainer has the option of decomposing the task further and pro-
ceed with an INC approach. However, if the jump from one level to the next is too small, the
student will progress in small steps while the teacher incurs a temporal cost on unnecessary
evaluations. On a continuous curriculum, an optimal teacher has to adjust difficulty incre-
ments such that they reflect the student’s innate biases. Here, we explore preliminary ideas for
designing continuous curricula using a continuous extension of the sequence learning task
and a concomitant modification of the student’s learning algorithm (see Appendix D in S1
Text for more details).

We consider a continuous ADP teacher modified to accommodate the particulars of a
continuous curriculum. At the start of an interaction, the experimenter proposes an initial
“rough guess” for the difficulty increment used by the teacher. As the ADP teacher progresses,
it tweaks the size of this increment based on the student’s performance. In addition to the
three actions (increase, decrease and maintain difficulty), we introduce a second set of three
actions: increase, decrease and retain the increment interval (the teacher selects from nine
actions at each step). As in the discrete case, we use differential evolution to find the best
decision tree (Fig 5A). Fig 5C, 5D shows trajectories for the continuous ADP teacher, which
compares favorably with INC in benchmarks (Fig 5B).

4. Discussion

From Skinner’s missile guidance pigeons [54] to laboratory rodent experiments to state of the
art artificial RL agents, curriculum design plays a foundational role in training agents to solve
complex tasks. Here, inspired by behavioral shaping, we propose adaptive algorithms that can
be applied for training both animals and artificial RL agents, and evaluate our algorithms on
RL agents trained to solve biologically-inspired tasks. In a sequence learning task, dual waves
of reinforcement and extinction modulate the student’s performance, necessitating a careful
shaping strategy that balances reinforcement and extinction. A naive teacher, ING, fails to
prevent extinction when students encounter large jumps in difficulty. A near-optimal teacher
strategy (POMCP), discovered by formulating teaching as optimal planning under uncer-
tainty, relies on frequent alternations between the current and previous task difficulty levels,
which ameliorates extinction. Inspired by this observation, we use differential evolution to
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Fig 5. Algorithms for designing continuous curricula A: Decision tree showing the continuous version of ADP which includes actions
that “grow” and “shrink” the increments between continuously parameterized difficulty levels. See the text for more details of the task
in the continuous setting. B: ADP significantly outperforms INC when the task is difficult (low €). Barplot means are estimated from 10
repeats. C,D: The q values plotted as in Fig 3D, 3E. Similar to the discrete setting, INC shows catastrophic extinction and never learns the

task for sufficiently small €. Continuous ADP first decreases increment size and smoothly increases the difficulty level while balancing
reinforcement and extinction.

https://doi.org/10.1371/journal.pcbi.1013454.g005

design a decision-tree-based heuristic algorithm, ADP. ADP is much more efficient and
achieves performance comparable to that of POMCP, significantly outperforms other algo-
rithms on the sequence learning task and requires no fine-tuning for the task or student. ADP
outperforms other curriculum strategies when applied to train deep RL agents on complex,
naturalistic navigational tasks.

We focus primarily on cases where the curriculum can be decomposed into rigid, discrete
difficulty levels. Real-world tasks can often be further broken down when student’s encounter
a bottleneck. We explore one continuous generalization of ADP that relies on finite approx-
imations to continuous intervals, coupled with a K-step TD learning rule. The continuous
setting poses a distinct challenge: since the teacher a priori does not know whether the stu-
dent can solve an incrementally harder version of the task, estimating this through a tran-
script takes additional samples and thus incurs a temporal cost. Infintesimal increases in
difficulty are not optimal. On the other hand, large jumps in difficulty will stall learning. We
expect competitive algorithms to appropriately balance these two factors; a more exhaustive
exploration of continuous OCL algorithms will be considered in future work.

For many real-world tasks, there are multiple axes that must all be optimized simultane-
ously. For example, a tennis player has to learn and compose multiple elements — footwork,
racquet motions, tactics — in order to improve general playing skill. In the trail tracking set-
ting, we have simplified all such factors (length, average curvature, brokenness of the trails)
into a single difficulty scale, when ideally, the teacher should choose how to modulate the
difficulty along each factor. In such a setting, reinforcement and extinction may take place
along each axis of the task. A naive generalization of our framework would simply apply a
teacher algorithm to each task in parallel, though correlations between tasks may either help
or hinder the learning process. Generalizing our teacher algorithms to settings where there
are multiple relevant skills represents an exciting future direction.

There are numerous examples of laboratory tasks where the framework can be applied,
often using methods similar to clicker training to provide immediate feedback and to break
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down a complex task into simpler sub-tasks. For example, in an olfactory discrimination task
involving odor mixtures, mice were trained to detect a target odor in the presence of up to
fourteen other background odors [8]. In that work, the authors used a hand-designed curricu-
lum to train mice starting from easier tasks (single odors), and gradually move to tasks where
the number of components in the mixture increases. The complexity of the mixture provides a
natural linear scale for difficulty. The decision to move up the curriculum to the next level was
dependent on the experimenter’s observations and decisions. To apply our framework to this
task, task difficulty would first be defined in experiments as the average number of compo-
nents in the background mixture. The animal’s performance is gauged by measuring the suc-
cess rate over a fixed set of trials of a certain difficulty, adding to an existing ‘transcript. The
algorithms in our framework take as input the transcript and produce an output that specifies
whether the task difficulty (here, the mixture complexity) should be increased, decreased or
kept the same.

A second example setting is the virtual reality navigation task [55,56], where head-fixed
mice are trained to navigate in a virtual corridor by manipulating the ball that they stand on.
Mice run down the virtual corridor, paying attention to different number of visual cues on
the left and right walls. Training for this task is done by gradually increasing the length of the
corridor (see Supplementary Fig 1 in [56]). Training is reported to take several weeks or even
months, and requires frequently lowering the difficulty to the previous stage if animals are
confused and do not perform well in an incremented task level. Such decisions of moving the
curriculum are again made by experimenters.

In a third example, Poddar et al. [11] introduced an automated procedure to train rats on
different tasks including making center-out joystick movements and making precisely timed
lever presses. Training occurred in their home cages using a fully automated training system,
whose parameters appear to be experimenter determined. Rats took several weeks and tens
of thousands of trials to learn these tasks (see Figs 2 and 4 in [11]). Applying our framework
to both these examples would require translating aspects of the task (such as the length of the
corridor in the former case or the timing precision necessary to receive reward in the latter
case) to discrete difficulty levels. Measuring a set of binary outcomes for a particular difficulty
level adds to the transcript, which is then read by the teacher algorithm to set subsequent
difficulty levels.

Such laboratory tasks often involve extensive training lasting for weeks or more [9]. Con-
cepts like task difficulty levels, innate bias, behavioral reinforcement, and extinction have nat-
ural analogs when using shaping to train animals. It is often unclear whether lengthy training
is due to the innate difficulty in animals learning the tasks at hand, or inefficient curriculum
design [13]. Developing better teacher algorithms for animal training may result in signifi-
cant savings in time and cost to produce well-trained subjects. Importantly, using a common
protocol across laboratories may also reduce variability in behavioral and physiological out-
comes of trained animals. We anticipate future work that applies our teacher algorithms to a
laboratory animal training, measuring how well our principles hold in an applied setting.

In addition to practical benefits for laboratory research, any demonstration of more rapid
training of animals will also shed light on their capabilities and limits of learning. Gradual
shaping we discuss here may also be related to gradual introduction of more intuitive coin-
cidences that exploit an animal’s priors to allow more rapid learning [13]. Such hand-crafted
shaping is common in laboratory experiments [5-9], but more precise quantitative descrip-
tions of behavioral learning algorithms such as ours opens the possibility of designing near-
optimal teaching strategies in more general scenarios, similar to the POMCP formulation that
we have developed here for a RL-based student. Optimistically, such formulations might even
impact curriculum design for human students.
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