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Abstract 

Molecular residual disease (MRD) detection, initially developed for hematologic 

malignancies, has become a critical biomarker for monitoring solid tumors. MRD 

detection primarily relies on circulating tumor DNA (ctDNA) analysis using next-

generation sequencing, offering high sensitivity and broad genomic coverage. 

However, challenges remain in designing cost-effective panels that maximize 

mutation detection while maintaining biological relevance. Fixed panels often lack 

sufficient patient-specific mutation coverage, while WES-based personalized MRD 

assays, despite their high sensitivity, are costly and less accessible. We developed 

a tumor comprehensive genomic profiling (CGP)-informed personalized MRD assay 

to detect tumor-derived mutations, which allowed us to design patient-specific 

personalized panels and meanwhile, provide a cost-effective alternative to whole 

exome sequencing (WES). To address these limitations, we developed MRDtarget, 

a heuristic multivariate Gaussian model-based targeted capture region selection 

method. By expanding beyond traditional hotspot regions, MRDtarget optimizes vari-

ant tracking for MRD detection, significantly improving sensitivity. Using a Bayesian 

inference-based heuristic approach, MRDtarget integrates multi-feature informa-

tiveness rates to identify optimal genomic regions for capture. Experimental results 

demonstrate that MRDtarget enables the detection of more variants per patient. This 

study underscores the importance of rational panel design to improve MRD sensitiv-

ity and provides a novel approach to enhance precision diagnostics and treatment 

for solid tumor patients.
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Author summary

Minimal residual disease (MRD) detection plays a critical role in cancer prog-
nosis and treatment monitoring, especially for solid tumors. However, existing 
sequencing panels often fail to provide sufficient coverage of tumor-specific 
mutations in every patient, limiting the clinical sensitivity of MRD detection. To 
address this gap, we developed MRDtarget, a computational tool that designs 
personalized targeted sequencing panels by optimizing the selection of genomic 
regions likely to contain informative mutations. Our method goes beyond con-
ventional hotspot-based panels by incorporating multi-dimensional mutation 
features, including recurrence, clonality, and functional relevance, into a prob-
abilistic model that prioritizes regions most informative for MRD detection. We 
evaluated MRDtarget using both clinical and public datasets and found that it 
consistently outperforms traditional approaches in mutation capture efficiency 
and patient coverage. Notably, it raises the proportion of patients with four or 
more trackable mutations—considered the minimum threshold for reliable MRD 
monitoring. MRDtarget also demonstrates robust performance across different 
cancer types and sequencing conditions. This approach enables a cost-effective 
and personalized solution for improving MRD detection, with broad implications 
for early relapse prediction and treatment guidance in precision oncology.

1.  Introduction

Molecular residual disease (MRD), initially defined in hematologic malignancies, has 
been extended to solid tumors, where it serves as a valuable biomarker for recur-
rence risk and prognosis [1,2]. MRD detection primarily targets circulating tumor DNA 
(ctDNA) [3,4] or circulating tumor cells (CTCs) [5], helping clinicians identify high-risk 
patients early and guiding personalized treatment decisions [5,6]. Among detec-
tion methods, ctDNA mutation analysis using next-generation sequencing (NGS) 
has become the standard due to its high sensitivity, broad genomic coverage, and 
throughput. NGS-based ctDNA MRD detection is divided into fixed and personalized 
panel assays. Fixed panels, like CAPP-seq [7], are cost-effective and quickly deploy-
able but have limited mutation coverage, particularly for rare cancers. WES-based 
personalized MRD assays, such as Signatera [8], use patient-specific tumor muta-
tion profiles to achieve greater sensitivity and specificity with ultra-deep sequencing 
but are expensive and require tumor tissue sequencing. Tumor-informed strate-
gies, which incorporate patient-specific mutation data, outperform tumor-agnostic 
approaches by reducing noise and improving detection. However, developing afford-
able, comprehensive genomic profiling (CGP) panels with sensitivity comparable 
to WES-MRD [9] remains a key challenge in advancing solid tumor MRD detection 
(detailed in the S1 Text).

The limit of detection (LOD) for ctDNA mutation-based MRD detection using NGS 
depends on factors such as cell-free DNA (cfDNA) input, sequencing depth, and the 
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number of tracked mutations. Clinical MRD detection typically involves monitoring multiple specific mutations, significantly 
enhancing sensitivity and reliability. Increasing the number of tracked mutations under fixed cfDNA input and sequencing 
depth further reduces the LOD [10]. We developed a probability model based on binomial distribution theory, demonstrating 
that with 30 ng and 60 ng cfDNA input and four tracked mutations, the LOD reaches 0.02% (S1 Fig) and 0.01% (S2 Fig), 
which is consistent with the performance of the WES-customized MRD product Signatera that also achieves an LOD of 
0.01%. However, traditional multi-gene panels often focus on a limited number of critical driver genes, limiting their sensi-
tivity due to tumor heterogeneity [11]. Effective tissue-based panel designs must maximize detectable mutations in each 
patient’s tumor while maintaining the biological significance of mutation sites. This requires consistently detecting ctDNA at 
a frequency of ≥0.01% (with 60 ng cfDNA input) and achieving at least 95% patient coverage with four or more trackable 
mutation sites [8,12,13]. To meet these demands, novel algorithms are needed to enhance mutation detection capabilities, 
incorporate patient-specific mutation burdens, and maximize trackable mutations. These advancements will optimize MRD 
detection’s sensitivity and stability, addressing the challenges posed by tumor heterogeneity and detection complexity.

To enhance the sensitivity of MRD detection, we focus on panel design by optimizing targeted capture sequencing 
regions to increase the number of mutations tracked for MRD detection, thereby improving analytical performance. To 
achieve this, we developed a heuristic multivariate Gaussian model-based targeted capture region selection method, 
MRDtarget. The core functionality of MRDtarget lies in overcoming the limitations of traditional hotspot detection regions 
by screening exonic regions and expanding suitable genomic regions for detection. The process begins with manually 
selecting features of potential expansion regions based on expert knowledge. These features are then transformed into 
informativeness rates using a Poisson-Binomial model. Next, multi-feature informativeness rates are integrated to construct 
a Multivariate Gaussian Distribution model. Finally, an optimal set of expansion regions is identified using a heuristic approach 
based on Bayesian inference. Experimental results demonstrate that MRDtarget, compared to traditional multi-gene panel 
capture region selection methods, can more precisely and efficiently increase the number of mutations detected.

2.  Materials and methods

We aim to enhance the detection rate of gene mutations by optimizing targeted capture sequencing regions, thereby 
improving the accuracy of MRD detection. This study focuses on two key aspects: first, optimizing mainstream hotspot 
detection region selection strategies; and second, proposing the screening of additional exonic regions beyond hotspot 
target regions. To achieve the expansion of detection regions beyond hotspots, this study introduces a heuristic algorithm 
based on Bayesian inference. The algorithm combines the probability density of a multivariate Gaussian distribution with 
Mahalanobis distance to identify and expand suitable genomic regions for detection. This ensures the scientific rigor and 
practicality of the expanded targeted capture sequencing regions (Fig 1).

2.1  Optimization of hotspot detection region selection

Currently, mainstream hotspot region selection strategies rely primarily on records from public databases, supplemented 
by manual review, to define targeted capture regions based on drug guidelines, clinical recommendations, and known 
hotspot regions. Building on this approach, this study further optimizes and expands the capture regions with a focus 
on improving the detection of exonic regions. The optimization process incorporates two key aspects: selecting exonic 
regions with high detection rates identified through Whole Exome Sequencing (WES) and targeting exonic regions with 
high detection rates within hotspot genes identified by WES.

1]	 Identifying Seed Regions: Seed genes are selected based on their relevance to prediction, prognosis, inheritance, 
diagnosis, or immunotherapy efficacy in the target cancer type. The selection prioritizes key cancer-related genes, 
including those approved by the NCCN, FDA, or NMPA, potential targets from literature reviews, and experimental 
targets currently in clinical trials listed on ClinicalTrials.gov (https://clinicaltrials.gov/).

https://clinicaltrials.gov/
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2]	 Standardizing WES Gene Exon Intervals: A unique transcript is designated for each gene to ensure analytical consis-
tency. Commonly referenced transcripts are chosen for documented genes, while the longest transcript in NCBI is used 
for others. Exon region coordinates are extracted from annotation files to form the WES gene exon set, which is refined 
by intersecting probe-covered regions from the training dataset with exon regions.

3]	 Feature Extraction Based on Exons: Patient data and corresponding WES variant sets are analyzed, sourced from clin-
ical samples, published literature, and the TCGA database (https://portal.gdc.cancer.gov/). Metrics such as the number 
of patients with variants, total variants, and exon length are recorded. The Recurrence Index (RI) is calculated for each 
exon to prioritize target regions, representing the average number of variants per kilobase, as defined by Eq. (1).

	
RI = 1000 ∗ nwp

nl ∗ np 	 (1)

np represents the number of patients in whom variants were detected in the exon region, i.e., the number of covered 
patients, L denotes the length of the exon detection region, and n is the total number of samples in the dataset. When 
counting the number of patients covered by the exon detection region, splice mutations (5’ or 3’ ends of exons) are 
included if the detection region contains the exon.

4)	Selection of High Detection Rate Exon Regions: It involves sorting the Recurrence Index (RI) values in descending 
order to identify the most significant exon regions.

2.2  Screening of candidate regions for targeted sequencing based on a heuristic multivariate Gaussian model

In Section 2.1, we identified hotspot regions as the foundation for targeted capture region selection. Building on this, our study 
introduces a Bayesian inference-based heuristic algorithm to screen additional exon detection regions beyond the hotspots, 
expanding gene coverage and enhancing mutation detection. The algorithm (Table 1) integrates the probability density of a 
multivariate Gaussian distribution with Mahalanobis distance to identify high-priority exon regions for targeted sequencing. 
Core steps include feature extraction, multivariate Gaussian modeling, and heuristic screening via Bayesian inference.

Fig 1.  The workflow of MRDtarget.

https://doi.org/10.1371/journal.pcbi.1013443.g001

https://portal.gdc.cancer.gov/
https://doi.org/10.1371/journal.pcbi.1013443.g001
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2.2.1 Feature extraction.  MRDtarget begins by segmenting genomic regions to define the characteristics of exon 
detection regions. Specifically, for each exon, mutations within a 40 bp range are aggregated into a mutation cluster. The 
40 bp window size was chosen based on typical probe design constraints in targeted sequencing panels, balancing region 
compactness with mutation clustering frequency. This window size is consistent with prior panel designs such as CAPP-
Seq [7], where similar parameters are used to accommodate hybridization efficiency and regional mutation density. The 
region is then defined from the start position of the first mutation in the cluster to the end position of the last mutation. As a 
result, the length distribution of the regions includes mutation cluster regions of 40 bp or less. Based on this segmentation, 
the study extracts the following four key features from each 40 bp segment within the exon detection regions:

1)	The WES Recurrence Index (RI): This metric evaluates mutation coverage in patients for each candidate detection 
region, representing the average number of variants per kilobase within the whole exome sequencing sample set. It is 
calculated using Eq. (1), with L = 40 as specified in Eq. (2).

	
RIe = 1000 ∗ nwp

40 ∗ np 	 (2)

Table 1.  The algorithm of screening extended regions in targeted sequencing.

Algorithm: Method for Screening Extended Regions in Targeted Sequencing

Input:
• � Known target capture sequencing regions X ∈ Rn×d : where n represents the number of data 

points and d represents the feature dimensions.
• � Candidate target capture sequencing regions to be evaluated Xt ∈ Rm×d : where m is the 

number of points to be evaluated.
•  Significance level: α = 0.05.
•  Regularization term: ∈= 10–6.

Output: Target capture sequencing expanded regions R ∈ Xt.

Step 1: Compute Mean Vector and Covariance Matrix
•  Compute the mean vector µ for the known target capture sequencing regions:

µ =
1
n

n∑
i=1

xi

•  Compute the covariance matrix Σ for the known regions:

Σ =
1

n – 1

n∑
i=1

(xi – µ) (xi – µ)
⊤

•  To ensure the invertibility of Σ, add a regularization term ∈ to its diagonal:

Σ = Σ+ ∈ I

Step 2: Compute the Critical Value of the Chi-Squared Distribution
•  Based on the feature dimensions d, calculate the critical value χ2threshold:

χ2threshold = χ2α,d

Step 3: Compute Mahalanobis Distance
•  For each candidate region xw ∈ Xt , calculate the squared Mahalanobis distance:

D2 (xw) = (xw – µ)
⊤
Σ–1 (xw – µ)

Step 4: Heuristic Bayesian Decision and Selection
•  Initialize the target capture expanded regions set R = ϕ
•  For each candidate point xw ∈ Xt :

•  if D (xw)
2 ≤ χ2threshold, add xw  to R:

R = R ∪ {xw};

•  Otherwise, skip this point.
Step 5: Output

•  Return the final set of expanded target capture sequencing regions R.

https://doi.org/10.1371/journal.pcbi.1013443.t001

https://doi.org/10.1371/journal.pcbi.1013443.t001
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RIe represents the WES sample detection rate, nwp  denotes the number of patients covered by the 40 bp region, and np 
is the total number of samples.

2)	Recurrence Improvement Index (RII): This metric evaluates the improvement in detecting additional variants for each 
candidate region, assessing its potential value in enhancing sample mutation coverage. When the total number of 
mutations covered by the existing regions is Ncover . Upon including the candidate region, the additional number of 
mutations covered for the sample is N40bp–only . Assuming the designed target capture region ultimately aims to achieve 
N mutations covered per sample, the increase in the number of mutations detected in samples is defined as follows Eq. 
(3):

	

Nadd =




0 , Ncover ≥ N
N – Ncover , N40bp–only + Ncover ≥ N
N40bp–only , N40bp–only + Ncover < N 	 (3)

Recurrence Improvement Index (RII) is defined as Eq. (4):

	
RII =

∑np
i=1 Nadd

le 	 (4)

RII represents the additional mutation detection contribution rate, Nadd denotes the number of additionally covered 
mutations, and le represents the length of the additional probe region.

3)	Clonal Recurrence Improvement Index (Clonal RII) measures the number of additional samples with clonal mutations 
detected by each candidate region, evaluating the potential value of the region in improving clonal mutation coverage. 
When the number of clonal mutations covered by the existing regions for a sample is Ncover–clonal , Upon including the 
candidate region, the additional number of clonal mutations covered for the sample is N40bp–only–clonal. Assuming the 
designed target capture region ultimately aims to achieve N mutations covered per sample, additional Covered Clonal 
Mutation Count is defined as Eq. (5):

	

Nadd–clonal =




0 , Ncover–clonal ≥ N
N – Ncover–clonal , N40bp–only–clonal + Ncover–clonal ≥ N
N40bp–only–clonal , N40bp–only–clonal + Ncover–clonal < N 	 (5)

Clonal Recurrence Improvement Index (Clonal RII, RIIC) is defined as Eq. (6). Clonal mutations were defined based 
on cellular prevalence estimates using PyClone-VI. Specifically, variants in the cluster with maximum cellular prevalence 
were classified as clonal mutations. This threshold was selected to ensure robust representation of dominant tumor clones 
in downstream MRD analysis.

	
RIIC =

∑np
i=1 Nadd–clonal

le 	 (6)

4)	The Functional Recurrence Improvement Index (Functional RII) was defined to evaluate the additional coverage con-
tribution of candidate regions for functional (non-benign) mutations. When the number of non-benign (nb) mutations 
covered by the existing regions is Ncover–nb. Upon including the candidate region, the additional number of non-benign 
mutations covered for the sample is N40bp–only–nb. Assuming the designed target capture region ultimately aims to 
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achieve N mutations covered per sample, the increase in the number of functional (non-benign) mutations detected in 
samples is defined as follows Eq. (7):

	

Nadd–nb =




0 , Ncover–nb ≥ N
N – Ncover–nb , N40bp–only–nb + Ncover–nb ≥ N
N40bp–only–nb , N40bp–only–nb + Ncover–nb < N 	 (7)

Functional Recurrence Improvement Index (Functional RII, RIIf) is defined as Eq. (8):

	
RIIf =

∑np
i=1 Nadd–nb

le 	 (8)

2.2.2  Feature informativity rate.  To facilitate the analysis, we introduce the concept of Feature Informativity Rate 
(FIR), which measures the performance of extracted features in candidate regions for targeted sequencing. Assume the 
extracted feature set is f, where fi  represents the i-th feature, and the number of instances corresponding to this feature 
is n (ni represents the number of instances for the i-th feature). The Informativeness is defined as Iij, representing the 
informativeness of the j-th instance of the i-th feature. Specifically: Iij = 0: Non-informative instance, Iij = 1: Informative 
instance. Iij is assumed to be independent and follows a Bernoulli distribution (Eq. (9)), which varies across features. The 
number of informative instances surrounding fi  is denoted as nis. Notably, all hotspot detection regions mentioned in Section 
2.1 are treated as informative instances. This definition of FIR helps quantify the contribution of different features in candidate 
regions to mutation detection, aiding in the systematic evaluation and optimization of targeted sequencing regions.

	 Iij ∼ Bernouilli (pij)	 (9)

	 P (Iij = 1) = pij, j = 1, . . . , nis + 1	 (10)

pij represents the informativity rate of the jth instance of the i-th feature. In the given feature set fi , the total number of 
informative instances, Ni, is defined as Eq. (11):

	
Ni =

∑nis+1

j=1
Iij, j = 1, . . . , nis + 1

	 (11)

The total number of informative instances, Ni, in feature fi  represents the sum of all informative instances. Since the distri-
bution of Iij varies, Ni follows a Poisson-Binomial distribution. The cumulative distribution function (CDF) of Ni is defined as 
Eq. (12):

	 FNi(l) = P(Ni ≤ l), l = 0, . . . , nis + 1	 (12)

We focus on the probability of having at least l informative instances in the feature set fi . Specifically, the formula for calcu-
lating the feature informativity rate fi(l) is as follows Eq. (13):

	 fi(l) = 1 – FNi(l – 1)	 (13)

where, fi(l) represents the probability that the feature set fi  contains at least l  informative instances; FNi(l – 1)) is the cumu-
lative distribution function (CDF) of Ni, the total number of informative instances in fi . The default value for l  is set to nis+1, 
where nisdenotes the number of informative instances in the surrounding region.
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Based on the above definition, a feature informativity rate vector fi  can be computed for each candidate region for tar-
geted sequencing Eq. (16):

	 fi = {fi1, fi2, ..., fim}	 (14)

where: m represents the total number of features in the candidate region for targeted sequencing. It should be noted that 
the Poisson-Binomial model assumes conditional independence among feature instances. While features such as RI and 
RIIC may exhibit mild correlations, we adopt this assumption for tractability and interpretability. Future extensions may 
consider dependency-aware models.

2.2.3  Multivariate Gaussian modeling.  Based on the analysis in Section 2.2.2, feature informativity rates for 
each candidate region in targeted sequencing were obtained. According to probabilistic statistical theory, the feature 
informativity rates for each dimension approximately follow a Gaussian distribution [14]. Therefore, the overall feature 
informativity rates can be modeled using a Multivariate Gaussian Distribution, with the probability density function defined 
as Eq. (15):

	
p(x|C) =

1
(2π)d/2|Σ|1/2

exp
(
–
1
2
(x – µ)⊤Σ–1(x – µ)

)

	 (15)

where:

•	 d refers to the number of features used to represent each candidate region in the informativity vector x

•	 x ∈ Rd : A d-dimensional feature vector representing a candidate region to be evaluated.

•	 µ ∈ Rd : The mean vector, representing the center of the known capture sequencing region distribution C.

•	Σ ∈ Rd×d: The covariance matrix, representing the relationships between features.

•	 |Σ|: The determinant of the covariance matrix.

•	Σ–1: The inverse of the covariance matrix.

To ensure the numerical stability and invertibility of the covariance matrix Σ, a small regularization term ∈ (default value 
∈= 10–6) is added to its diagonal elements. The definition is Eq. (16):

	 Σ = Σ+ ∈ I,∈= 10–6	 (16)

I is the identity matrix. Regularization techniques are widely used to address potential singularity issues in covariance 
matrices and are broadly applied in multivariate Gaussian modeling [15].

The multivariate Gaussian distribution is uniquely determined by the mean vector µ and the covariance matrix Σ. µ 
is to describe the central location of the distribution, reflecting the average feature informativity rates of known capture 
sequencing regions. Σ is to capture the correlations between features, helping to comprehensively characterize the 
statistical properties of candidate regions. For a candidate region xw , its conformity to the distribution characteristics of 
known capture sequencing regions can be assessed by computing its probability density p(xw ) under the distribution C. If 
p(xw ) is high, the candidate region is close to the central characteristics of the known distribution and can be considered 
a potential expansion region for targeted sequencing. If p(xw ) is low, the candidate region significantly deviates from the 
known distribution and can be regarded as an outlier, unsuitable for expansion.

2.2.4  Heuristic screening based on bayesian inference.  To estimate the prior probability of a candidate exon 
region xw , we adopt a Bayesian-inspired heuristic approach that leverages the Mahalanobis distance from xw  to the 
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centroid of known capture regions. This distance is transformed into a probability score using an exponential decay 
function, where smaller distances yield higher probabilities, indicating closer similarity to the known distribution. Although 
this transformation deviates from classical Bayesian priors, it effectively captures the centrality of data points within a 
multivariate Gaussian framework. Similar strategies have been applied in functional data classification (e.g., Galeano 
et al. [16]), and anomaly detection using local Mahalanobis distances (e.g., Yang et al. [17]) and weighted Mahalanobis 
models (e.g., Wen et al. [18]). The squared Mahalanobis distance D2 is calculated as Eq. (17):

	 D2 = (xw – µ)
⊤
Σ–1 (xw – µ)	 (17)

Here, µ is the mean vector of known target regions, and Σ is the covariance matrix. A small D2 indicates that xw  is close to 
the distribution center, suggesting suitability as an expanded capture region. Conversely, a large D2 implies outlier status.

The prior probability P(C) for a candidate region is computed via Eq. (18):

	
P(C) = exp

(
–
D(xw)
T

)

	 (18)

Where T  is a critical value derived from the Chi-Squared distribution, used for normalizing the distance and ensuring the 
prior probability lies within the range [0, 1]. And T  is calculated based on the significance level α and degrees of freedom d 
(number of features) using Eq. (19). The use of exponential decay to transform Mahalanobis distance into a prior proba-
bility is inspired by its effectiveness in probabilistic outlier detection. This transformation allows soft penalization of outlier 
regions while preserving a continuous scoring spectrum. Similar approaches have been used in functional data classifica-
tion (e.g., Galeano et al.) [16], where distance-based scores are mapped into probability estimates to reflect centrality in 
the feature space.

	
T =

√
χ2α,d 	 (19)

Under the assumption of multivariate normality, the squared Mahalanobis distance D(xw)
2 follows a Chi-Squared distribu-

tion with degrees of freedom d. Therefore, outliers can be determined using the critical value of the Chi-Squared distribu-
tion. Given a significance level α (set to 0.05 by default) and the number of features d, the critical value is calculated using 
Eq. (20):

	 χ2threshold = ChiSquared–1(1 – α, d)	 (20)

Here, ChiSquared–1 is the inverse cumulative distribution function of the Chi-Squared distribution. When D(xw)
2 ≤ χ2threshold

, xw  belongs to the known distribution and can be considered as a potential extension region for targeted sequencing. 
Conversely, when D(xw)

2 ≤ χ2threshold, xw  is considered an outlier and unsuitable as an extension region.

3.  Results

3.1.  Sample preparation

To validate the effectiveness of MRDtarget, its performance was analyzed and evaluated using both public database 
samples and clinical samples. The validation compared WES results with targeted capture sequencing results obtained 
using a conventional pre-optimized panel, hereafter referred to as Tdesigner, and the optimized panel generated by our 
proposed algorithm, MRDtarget. Tdesigner was constructed based on standard hotspot region selection strategies, relying 
on public database records and clinical guidelines without incorporating recurrence-based metrics or statistical screening. 
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In contrast, MRDtarget integrates WES-derived recurrence features and a Bayesian heuristic model to expand the capture 
region beyond known hotspots. Key performance metrics, including variant density and clonal population clustering, were 
used to comprehensively assess the performance improvements achieved by MRDtarget over Tdesigner.

3.1.1.  TCGA sample cohort.  This study utilized 1,024 lung cancer samples from The Cancer Genome Atlas (TCGA) 
database, sequenced using Whole Exome Sequencing. The cohort included 544 lung adenocarcinoma cases (TCGA Project 
ID: TCGA-LUAD) and 480 lung squamous cell carcinoma cases (TCGA Project ID: TCGA-LUSC), representing the pathological 
subtypes of lung cancer. By comparing variant detection results from WES, pre-optimized, and post-optimized targeted capture 
panels, the study aimed to comprehensively assess the sensitivity and practical utility of the optimized panel design.

3.1.2.  Clinical sample cohort.  We also included 150 clinical solid tumor tissue samples, comprising 123 lung cancer 
cases, 10 breast cancer cases, 8 digestive system tumor cases, and 9 cases of other solid tumors. Each sample was 
analyzed using both pre-optimized and post-optimized targeted capture panels, with sequencing depth exceeding 500x. 
Variant counts were compared between the two panels for the same samples. PyClone-VI [19] was subsequently employed 
to conduct clustering analysis on the detected variants, enabling the classification of clonal and sub-clonal variants.

3.1.3.  Preprocessing.  Raw sequencing data were preprocessed by trimming terminal adaptors and removing low-
quality sequences, defined as those with more than 50% N bases or more than 50% of bases having a quality score (Q) 
<5. The clean reads were aligned to the reference human genome (GRCh37.p13, GCF_000001405.25) using BWA-
MEM2 (version 2.2.1a) [20]. Patient-specific somatic variants were identified by analyzing sequencing data from primary 
tumors and matched peripheral blood lymphocyte (PBL) samples. Tumor somatic single-nucleotide variants (SNVs) and 
small insertions and deletions (InDels) were called using RealDcaller2 (version 2.0.9) and TNscope (v3.8.0; Sentieon 
Inc.), as described previously [21,22]. Structural variants (SVs) were profiled using NCsv2 (version 1.2.0), an in-house tool 
developed at Geneplus-Beijing [21,22].

3.2.  Performance on TCGA samples

3.2.1  Variant density.  Existing studies have demonstrated that increasing the number of variant monitoring sites 
can lower the limit of detection (LoD) and enhance the sensitivity of MRD detection [23]. In this study, variants from the 
TCGA dataset were filtered by excluding those with Variant_Classification values of RNA, 3’Flank, 5’Flank, or intergenic 
region (IGR), as well as mutations located outside the ± 50 bp range of intron regions. To evaluate the effectiveness of 
the proposed MRDtarget tool, we compared the optimized method with WES across TCGA samples. Variant density for 
both MRDtarget and WES was calculated, with the variant density (d), representing the average number of variants per 
kilobase, as defined by Eq. (21):

	
d = 1000 ∗ nm

lr 	 (21)

Here, d represents the variant density, nm is the number of variants (sourced from a publicly available variant dataset) detected 
within the targeted capture region, and lr is the length of the targeted capture region. Variant density quantifies the effective-
ness of targeted sequencing methods in detecting variants, with higher values indicating enhanced detection capabilities. We 
calculated and visualized the variant density across all chromosomes (excluding the Y chromosome) for each targeted capture 
region (Fig 2A). MRDtarget, representing the optimized method, showed a significant improvement over WES, achieving a 
5.67-fold and 1.57-fold increase in mean and median variant density, respectively. This demonstrates the superior variant cap-
ture capability of MRDtarget, consistently outperforming WES across all autosomes and the X chromosome.

To evaluate the performance of MRDtarget against traditional panel design strategies, we compared the variant den-
sities of MRDtarget, Tdesigner, and WES (Fig 2B). The significantly distinct variant density distributions (p < 0.01) among 
the three methods highlight their differing gene detection and capture strategies. MRDtarget outperformed Tdesigner, 
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achieving a mean variant density of 80 versus 25 and a median of 18 versus 10, representing 2.20-fold and 0.8-fold 
improvements, respectively. Both MRDtarget and Tdesigner showed higher variant densities than WES, with MRDtar-
get achieving 5.67-fold and 1.57-fold increases in mean and median densities, while Tdesigner achieved 1.083-fold and 
0.429-fold improvements. These results emphasize the superior performance of MRDtarget in enhancing variant detection 
by focusing on high-variant-density regions, providing precise genomic insights for applications such as precision oncol-
ogy and MRD detection. Further optimization of Tdesigner, incorporating data-driven strategies, could enhance its ability 
to prioritize key genomic regions.

Fig 2.  Comparison of Variant Density Distributions Across Methods. Variant density distributions across all chromosomes (excluding the Y chromo-
some) are shown for MRDtarget, Tdesigner, and WES. (A) Variant densities for each targeted capture region were calculated and visualized, highlighting 
the improved performance of MRDtarget compared to WES. (B) A comparison of the variant density distributions among MRDtarget, Tdesigner, and 
WES demonstrates their distinct gene detection strategies. MRDtarget consistently achieves higher variant densities across autosomes and the X chro-
mosome, emphasizing its optimized capture capability.

https://doi.org/10.1371/journal.pcbi.1013443.g002

https://doi.org/10.1371/journal.pcbi.1013443.g002
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3.3.  Performance on clinical cancer samples

We analyzed 150 clinical solid tumor tissue samples, including 123 lung cancer cases, 10 breast cancer cases, 8 diges-
tive system tumor cases, and 9 cases of other solid tumors, using both pre-optimized (Tdesigner) and post-optimized 
(MRDtarget) targeted capture panels with sequencing depths exceeding 500x. Previous studies [12,13] have emphasized 
the need for NGS-based ctDNA multi-gene panels to comprehensively cover class I/II gene variants and reliably detect 
ctDNA at abundances ≥0.01% with 60 ng of cfDNA. Such panel designs must increase the number of detectable tumor tis-
sue variants per patient while ensuring that 95% of patients have four or more monitorable variant sites, thereby enhanc-
ing MRD detection sensitivity. Variant counts between the two panels were compared, and clonal population clustering 
was conducted using PyClone-VI to annotate clonal and sub-clonal variants.

3.3.1  Variant counts.  We first evaluated the performance of MRDtarget and Tdesigner in detecting variants across 
different cancer types. As shown in Fig 3A, MRDtarget demonstrated superior variant detection capabilities compared to 

Fig 3.  The performance on variant detection. (A) Median variant counts detected by MRDtarget and Tdesigner across 123 lung cancer cases, 10 
breast cancer cases, 8 digestive system tumor cases, and 9 other solid tumors. (B) Comparison of clonal variants detected by MRDtarget and Tdesigner. 
(C) Patient coverage analysis for MRDtarget and Tdesigner.

https://doi.org/10.1371/journal.pcbi.1013443.g003

https://doi.org/10.1371/journal.pcbi.1013443.g003
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Tdesigner across all tumor types. The median variant counts detected by MRDtarget and Tdesigner in 123 lung cancer 
cases, 10 breast cancer cases, 8 digestive system tumor cases, and 9 other solid tumor cases were (13, 15, 17.5, 6) and 
(5, 7, 5.5, 3), respectively. These results highlight MRDtarget’s enhanced ability to identify variants across diverse tumor 
types, emphasizing its robustness and reliability for broader clinical applications. Next, we compared the performance 
of MRDtarget and Tdesigner in detecting clonal variants. As shown in Fig 3B, Tdesigner identified 425 clonal variants, 
while MRDtarget detected 789. In 64.7% of the samples (97 out of 150), MRDtarget identified more clonal variants than 
Tdesigner, with a median increase of three variants per sample. These findings demonstrate that the optimized MRDtarget 
panel significantly improves the detection of clonal variants. The ability to detect more clonal variants highlights 
MRDtarget’s improved sensitivity and efficiency, which are critical for MRD monitoring. Clonal variants are closely 
associated with disease progression and treatment outcomes, making MRDtarget a more effective tool for reliable MRD 
assessments. Finally, we analyzed the patient coverage achieved by MRDtarget and Tdesigner under a fixed number of 
mutations. As shown in Fig 3C, MRDtarget achieved 97% patient coverage for those with four or more trackable mutation 
sites, exceeding the 95% threshold required to maximize population coverage and MRD detection sensitivity [8,12,13]. In 
comparison, Tdesigner only covered 70% of patients meeting this criterion. From a clinical perspective, achieving four or 
more trackable mutations per patient is often considered a critical threshold for reliable MRD monitoring. Our optimized 
MRDtarget achieves this in 97% of patients, exceeding the 95% benchmark suggested in prior studies [8,12,13].

3.3.2  Clonal variant counts.  Study [23] has shown that clonal variants hold greater prognostic value than 
subclonal variants in MRD monitoring. In our experiment with 150 clinical cancer samples, as illustrated in Fig 4, 
each bar represents a single patient. The top portion of each bar shows the number of clonal variants detected, 
while the bottom portion indicates the subclonal variants, using MRDtarget and Tdesigner for the same patients. A 
comparison demonstrates that MRDtarget consistently detects a higher total number of variants for most patients, 
with notable increases in both clonal and subclonal variants. The improved detection of clonal variants aligns with 
MRDtarget’s design goal of prioritizing clinically significant regions, while the enhanced detection of subclonal 
variants reflects its broader sensitivity to low-abundance variants. These advancements are particularly significant 

Fig 4.  The performance on clonal variants. Each bar represents a single patient, with the top portion indicating the number of major clonal variants 
and the bottom portion representing subclonal variants detected using MRDtarget and Tdesigner.

https://doi.org/10.1371/journal.pcbi.1013443.g004

https://doi.org/10.1371/journal.pcbi.1013443.g004
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for MRD monitoring, where comprehensive variant detection is essential for accurately assessing tumor burden and 
disease progression. By identifying more variants across both categories, MRDtarget generates a more detailed and 
reliable genomic profile, enhancing patient stratification and supporting the development of personalized therapeutic 
strategies.

4.  Discussion and conclusion

MRDtarget is an advanced tool for optimizing targeted capture sequencing regions in MRD detection. By integrating 
a heuristic multivariate Gaussian model, MRDtarget overcomes key limitations of traditional panel design strategies, 
such as limited patient-specific mutation coverage and reduced sensitivity. By expanding beyond hotspot regions and 
incorporating high-density exonic regions, MRDtarget enhances its utility across diverse cancer types. Compared 
to Tdesigner and WES, MRDtarget demonstrates superior performance, achieving significantly higher variant den-
sities and providing better coverage of clonal and subclonal variants. Notably, it consistently outperforms Tdesigner 
in patient coverage, with 97% of patients having four or more trackable mutation sites, exceeding the 95% threshold 
for optimal MRD detection. Its ability to detect more clonal variants, which are critical for disease progression and 
treatment decisions, enhances the precision of MRD assessments and supports personalized therapeutic strate-
gies. MRDtarget’s tailored capture strategies address tumor heterogeneity by prioritizing regions likely to harbor key 
variants, enabling a more detailed genomic profile. This is essential for applications in biomarker discovery, preci-
sion oncology, and genetic research. The use of Bayesian inference and multivariate Gaussian modeling provides 
a reliable statistical foundation, ensuring accuracy and reproducibility. All features are currently standardized and 
treated equally, with no additional weighting applied. However, we would like to emphasize that in the heuristic 
screening stage based on Bayesian inference, the final selection of candidate regions is guided by their similarity to 
known hotspot regions. These hotspot regions themselves are determined using conventional panel design strat-
egies, which often prioritize regions with high RI values. As a result, although we do not explicitly assign weights 
to individual features, the upstream selection of hotspot regions may implicitly introduce a bias that favors certain 
features—particularly RI—during the final region selection process. However, the tool’s reliance on existing features 
for region selection highlights an area for improvement. Expanding the feature set could enhance its robustness and 
adaptability across diverse cancer types and genomic contexts. Future efforts will focus on expanding the feature set 
to further improve precision and applicability. In addition, we plan to conduct a sensitivity analysis to quantitatively 
assess the relationship between probe length, sequencing cost, and detection sensitivity. This will enable a more 
balanced design of capture panels that optimize both efficiency and clinical feasibility. Although the current analysis 
was based on the hs37d5 (GRCh37.p13) reference genome, chosen for its compatibility and widespread use in clini-
cal pipelines, we acknowledge its limitations in handling sex-specific variation. Notably, Y chromosome variants were 
not explicitly excluded during downstream analysis. This design choice aimed to ensure broad applicability across 
mixed-sex populations. As a result, features from X- and Y-linked regions were calculated uniformly, without sex-
specific weighting. While this may reduce precision in certain scenarios, it simplifies implementation across hetero-
geneous cohorts. Following best practices in sex-aware genomic analysis (Olney et al., 2020) [24], future versions 
of MRDtarget will adopt sex-specific reference genomes based on GRCh38.p14 and incorporate population-stratified 
modeling strategies to improve the accuracy, robustness, and equity of variant detection.

In conclusion, MRDtarget represents a significant advancement in MRD detection, offering an efficient and sensi-
tive framework for targeted sequencing panel optimization. MRDtarget can push more patients above the four-variant 
threshold further underscores its potential to improve real-world MRD detection coverage. And its strong performance in 
variant detection and patient coverage underscores its potential for advancing precision oncology and improving clinical 
outcomes. With further refinement and validation, MRDtarget could play a central role in developing cost-effective, high-
performance genomic profiling panels for cancer diagnosis and treatment.
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5.  Key points

•	 Novel Heuristic Model: MRDtarget integrates a multivariate Gaussian model with Bayesian inference to optimize tar-
geted capture region selection, achieving higher variant densities and ensuring 97% patient coverage with four or more 
trackable mutations.

•	 Expansion of Exonic Regions: Focuses on high-density exonic regions to enhance variant detection beyond traditional 
hotspot strategies.

•	 Iterative Refinement of Target Regions: Employs a systematic process of feature extraction, statistical modeling, and 
heuristic optimization to iteratively refine and expand capture regions for enhanced variant detection.
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