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Abstract
Simulating within-host virus sequence evolution allows for the investigation of fac-
tors such as the role of recombination in virus diversification and the impact of selec-
tive pressures on virus evolution. Here, we provide a new software to simulate virus
within-host evolution called wavess (within-host adaptive virus evolution sequence
simulator), a discrete-time individual-based model and a corresponding user-friendly
R package. The underlying model simulates recombination, a latent infected cell
reservoir, and three forms of selection: conserved sites fitness and replicative fit-
ness in comparison to a reference sequence, and immune fitness including cross-
reactivity imposed by a co-evolving immune response. In the R package, we also pro-
vide functions to generate model inputs from empirical data, as well as functions to
analyze the simulation outputs. At user-defined time points, the software returns var-
ious counts related to the virus population(s) and a set of sampled virus sequences.
We applied this model to investigate the selection pressures on HIV-1 env sequences
longitudinally collected from 11 individuals. The best-fitting immune cost differed
across individuals, mirroring the real-world expectation of heterogeneous immune
responses among human hosts. Furthermore, the phylogenies reconstructed from
these simulated sequences were similar to the phylogenies reconstructed from the
real sequences for all summary statistics tested. To our knowledge, compared to other
similar models, wavess has been more rigorously validated against real within-host
virus sequences, and is the first to be implemented as an R package. The wavess
R package can be downloaded from https://github.com/MolEvolEpid/wavess.
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Author summary
During a virus infection, the virus population within an individual has the potential to
evolve over time. While the evolutionary rate and duration of infection determine the
number of mutations the virus can accumulate, changes to a virus sequence may impact
protein function and host immune recognition; viruses with maintained or improved
functional capacities that have evaded the host immune system survive, while others
might go extinct. Thus, the history of virus evolution within an individual can be cap-
tured by sequencing viruses sampled over time. Here, we present an individual-based
model and corresponding user-friendly R package, wavess, that allows users to simu-
late within-host virus evolution and evaluate different parameters that affect sequence
evolution. We tested and validated wavess by showing that the phylogenetic trees
reconstructed from simulated sequences match those generated from empirical HIV-1
data. Taken together, we believe that wavess will be a useful tool for the virus evolution
research community.

Introduction
The diversity acquired by virus sequences during long-term evolution within a host pro-
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vides useful information for applications such as inferring transmission, developing vaccine
candidates, and understanding latent virus reservoir dynamics, ultimately with the goal
of curing an infected person. However, in many instances, we are limited in the amount
of within-host virus sequence data available to study outcomes of interest, and further-
more, these data may not provide insight into potential underlying mechanisms driving
virus evolution. A realistic model of within-host virus evolution calibrated to real sequence
data can overcome some of these limitations and enable us to, for instance, investigate
sequence evolution over time under different biological scenarios, or perform parameter
inference via approximate Bayesian computation.

While many genetic simulation software packages exist [1], few are tailored to within-host
evolution of viruses. Those that are applicable to virus evolution tend to be individual-based
forward simulation models since important biological features such as recombination and
selection can be easily incorporated (e.g., the general simulation framework SLiM [2] and the
virus-specific simulation framework SANTA-SIM [3]). It is often not straightforward to cus-
tomize general simulation frameworks for long-term or chronic within-host virus evolution.
On the other hand, more specialized packages that are tailored to within-host virus evolution
are not focused on explicitly modeling the immune response to infection, for instance detailed
modeling of immune epitopes and their cross-reactivity. Furthermore, it is important to
validate any given model against real within-host virus sequences, which has been done for
simple summary statistics [3,4], but not for more complex statistics such as those generated
from reconstructed phylogenies. Finally, while the goal of these tools is to provide researchers
with realistic models, they lack pre- and post-processing capabilities that allow for direct
incorporation of empirical data into the analysis. Large amounts of empirical data are avail-
able for many viruses, and such data can be used to inform model inputs and validate model
outputs. Therefore, there is an existing need for a within-host virus sequence evolution simu-
lation framework that is readily informed by empirical data, easy to use, and straightforward
to validate against real-world data.

Here, we present the user-friendly R package and corresponding model, wavess, a
within-host adaptive virus evolution sequence simulator. wavess allows users to run easily
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customizable forward-in-time individual-based models to study within-host virus evolu-
tion in long-term or chronic infections. Previously, we developed a similar, but simpler,
model with HIV in mind [5], which included the ability to simulate virus sequences option-
ally including selection, recombination, and latency. In our new implementation, providing a
comprehensive R package, wavess includes functionality to take empirical data and generate
simulation inputs; therefore, with appropriate adaptations to model inputs and parameters,
wavess could be applied to other chronic infections such as HCV, or to long-term infections
of typically non-chronic viruses such as SARS-CoV-2. We also provide functions for output
sequence analysis to support model fitting and downstream analyses. Using HIV-1 as an
example, we show that, given empirically informed inputs, the model output sequences reca-
pitulate the trends observed in real data for several distinct phylogenetic summary statistics.
Below, we first describe the model and package implementation, then delve into a theoreti-
cal sensitivity analysis followed by comparison of model output to empirical data, and finally
provide detailed methods for the theoretical and empirical analyses.

Design and implementation
wavess, which is heavily inspired by the model developed by Immonen et al. [5], models
the within-host evolution of human viruses as a sequence of synchronized generations begin-
ning with one or more founder sequences. Each generation is one full virus life cycle, from
infecting a cell to exiting the cell. Within a generation, infected host cells can change state
between being active or latent, viruses in active cells can undergo mutation and recombina-
tion, and virus fitness may change based on selective pressures (Fig 1). The next generation of
infecting viruses is sampled based on virus fitness. Event counts (e.g., latent cell dynamics,

Fig 1. Overview of the wavess algorithm and R package.The left panel describes required and optional inputs, the middle panel describes the algorithm itself, and the
right panel describes the model output and potential analysis.

https://doi.org/10.1371/journal.pcbi.1013437.g001
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mutation events, cells with a recombination event) and virus sequences are sampled according
to a specified sampling scheme.

Infected cells
Two populations of infected cells are tracked: an active population and a latent one. The active
population can be initialized with one or more infected cells, each containing a virus founder
sequence; all founder sequences must be of equal length. Each infected cell in the active pop-
ulation contains one or two virus sequences that can mutate and recombine, and active cells
can produce viruses that infect the next generation of active cells. By default, the active cell
population follows a discrete logistic growth curve. The viruses that are selected for the next
generation are randomly sampled based on their fitness (see below). The number of latently
infected cells in each generation is determined by user-specified rates of death, proliferation,
activation (transition from latent to active), and deposition (transition from active to latent).
These rates are constant and do not change over time. Viruses in latent cells cannot mutate or
recombine, and latent cells do not produce viruses.

Viruses
Each virus has a nucleotide sequence on which the virus fitness is calculated. Nucleotide
sequences must all be the same length and are not allowed to have gaps. In each generation,
the viruses in active cells can mutate and recombine. Indels are not modeled.

Mutation. The probability of a particular nucleotide mutating to another is specified by a
per-site and per-generation mutation rate and a nucleotide substitution rate matrix Q [6]. The
Qmatrix can correspond to any desired model of DNA evolution.

Recombination. The probability of a recombination event is specified by a per-site and
per-generation recombination rate; therefore, there may be more than one cross-over event
between two parent viruses in a single active cell. Cells in which at least one template switch
occurs are dually infected. All other cells are singly infected.

Selection
Three selective pressures are considered in wavess: (i) conserved fitness, selection con-
strained by a set of conserved sites in comparison to a reference sequence; (ii) replicative
fitness, selection driven by replicative ability in comparison to a reference sequence; and (iii)
immune fitness, selection imposed by a co-evolving immune response at a set of pre-defined
epitope locations. Each of the three forms of selection has a fitness cost associated with it. The
fitness cost is set in the range [0,1), where 0 indicates no cost, and 1, which indicates no ability
to survive, is not allowed as we require a non-zero probability of survival.

The fitness, Fj, of virus j is defined by the product of the fitness of each component:

Fj = FCj × FRj × FIj , (1)

where FCj is the conserved fitness, FRj the replicative fitness, and FIj the immune fitness. We
describe each of the components of this equation below.

Fitness by comparison to a reference sequence. Conserved fitness and replicative fitness
are computed by comparing nucleotides in the virus to an aligned reference sequence, which
can be different for each fitness type. Every site in the aligned founder sequence is labeled
either conserved or non-conserved. Conserved fitness dictates that a mutation that causes a
difference from the reference nucleotide at a conserved site is deleterious to the virus, thus
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simulating purifying selection. Replicative fitness dictates that at non-conserved sites, non-
reference nucleotides are considered to be slightly less viable than the reference. The equation
used to compute FCj and FRj is

FXj = (1 – c)n, for any X∈ {C,R}, (2)

where n is the number of conserved (non-conserved) sites that differ from the reference
sequence for X = C (X = R), and c is the per-site cost associated with a difference from the ref-
erence sequence [5] (Fig 2A). The wavess R package uses a default value of c = 0.99 when
X = C to impose a high cost of mutations in conserved sites and a default value of c = 0.001 [7]
when X = R. For small c, Eq 2 is equivalent to e–cn, which has previously been used to simulate
replicative fitness [8].

A nucleotide position is never considered for both conserved and replicative fitness. When
only replicative fitness is modeled, all positions in the simulated sequence that are not an
insertion relative to the reference sequence are included in the fitness calculation for FRj . How-
ever, when both forms of fitness are used, if the position is considered to be a conserved site,
then it is not included when calculating replicative fitness. When modeling conserved fitness,
if the nucleotide in the founder sequence at a user-defined conserved site is not the same
as the expected conserved nucleotide, then it is not considered a conserved site under the
assumption that the virus founder sequence was viable within its true host.

Fitness due to a co-evolving immune response. Wemodel a co-evolving immune
response as part of the host environment, which dynamically adapts to recognize frequent
virus amino acid epitopes at pre-defined locations of equal length in the sequence. This
immune recognition imposes a fitness cost to viruses which contain that epitope, and the
strength of recognition optionally increases over time to allow for modeling processes such
as antibody affinity maturation or T-cell clonal expansion. Once a virus epitope is recognized,
the memory is retained such that an identical sequence coming up, say from the latent reser-
voir, is immediately recognized. Further, cross-reactivity results in (weaker) recognition of
mutated but similar epitopes.

Once an epitope i reaches a user-defined frequency in the population, the fitness cost due
to the immune response, ci, increases linearly each generation t until it reaches a maximum

Fig 2. Visualization of model components related to selection. (A) Fitness by comparison to a reference sequence (Eq 2) for different values of n (number of muta-
tions) and c (cost per mutation). (B) Depiction of the host immune response to an epitope (Eq 3). Over time, an epitope is recognized once it reaches a certain frequency,
followed by a gradual linear increase in the strength of the immune response until a maximum immune cost is reached. (C) Beta distribution from which the reduction
in immune cost d is sampled, based on edit distance (number of amino acid mutations) h (Eq 4).

https://doi.org/10.1371/journal.pcbi.1013437.g002
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value c∗i (Fig 2B), as

ci(t) =min{c∗i , c∗i (t – t0i )/g} , t≥ t0i , (3)

where t0i is the time when the immune response against epitope i is generated and g is the
time it takes to reach its maximum.

To model cross-reactivity when a new epitope variant arises in an environment where
the host immune system has already mounted an immune response against the virus, we
first determine the number of amino acid positions that differ (edit distance) between the
new epitope and each of the immune-recognized epitopes. We then identify the cost ch of
the immune-recognized epitope with the minimum edit distance h to the new epitope. The
strength of cross-reactivity to the new epitope, cix , and therefore the immune cost to the new
epitope, is the product of ch and a random value d (the cross-reactivity factor) drawn from a
Beta distribution with 𝛼 = 1 and 𝛽 = h2 (Fig 2C):

cix = ch d . (4)

We chose to use a Beta distribution because we assume that larger edit distances between
new and recognized epitopes correlate with lower cross-reactivity. The fitness cost of the
cross-reactive epitope remains the same across generations unless it reaches the aforemen-
tioned user-defined frequency in the population. If this happens, then the immune response
evolves according to Eq 3, where the epitope recognition generation t0i is based on the cross-
reactive immune cost and the original time to maximum immune cost: t– cixg. This is to
maintain the same slope in immune cost increase over time for all epitopes at a given location.

We assume that the immune fitness cost of a virus j is driven by the epitope with the
strongest immune response against it, leading to an immune fitness FIj of:

FIj = 1 –max
i∈j

ci , (5)

where epitope imust be present in virus j.

Model implementation
The wavess R [9] package includes functions for learning model inputs from empirical
sequence data, simulating within-host virus evolution, and generating summary statistics of
the output for model evaluation (Fig 1). The back-end of the function that implements the
wavess algorithm, run_wavess(), is implemented in Python 3 [10]. We also provide a
run_wavess.py file that may be used instead of the R function. The default model param-
eter values and example inputs included in the package are listed in Table 1 and are tuned
to HIV-1 env gp120. The R package, Python script, and example data are hosted on GitHub
(https://github.com/MolEvolEpid/wavess). The package includes vignettes that describe in
detail generating model inputs, running wavess, and analyzing model outputs.

Inputs. run_wavess() has three required inputs, each of which can be generated with
a helper function:

1. A per-generation infected cell population growth curve (define_growth_curve();
e.g., Fig 3A).

2. A sampling scheme (define_sampling_scheme()).
3. The founder sequence(s) of the infection (extract_seqs()).

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013437 September 18, 2025 6/ 20

https://github.com/MolEvolEpid/wavess
https://doi.org/10.1371/journal.pcbi.1013437


ID: pcbi.1013437 — 2025/9/20 — page 7 — #7

PLOS COMPUTATIONAL BIOLOGY wavess: An R package for simulation of adaptive within-host virus sequence evolution

Table 1.Model parameters.
Parameter Default value [range]a Unit Notes/Reference
Virus
Sequence features
Founder sequence(s) HIV-1 env gp120 NA DEMB11US006 [11]
Conserved sites See Methods NA Empirical [12]
Replicative reference HIV-1 subtype B consensus NA [12,13]
Population
Generation time 1 [1 – 2] Days [7]
Starting population size 10 [1 – 1000] Infected cells
Maximum growth rate 0.3 [0.01 – 1] generation–1

Maximum population size 2000 [1, 000 – 10, 000] Infected cells [7]
Mutation rate 4 × 10–5 [10–5 – 10–4] site–1generation–1 [14]
Q matrix See Methods Unitless [15]
Recombination rate 1.5 × 10–5 [10–6 – 10–4] site–1generation–1 [16]
Individual fitness
Conserved cost 0.99 [0 – 0.99] Unitless
Replicative cost 0.001 [0 – 0.003] Unitless [7]
Immune cost 0.3 [0 – 0.9] Unitless Fitted
Host
Immune response
Epitope location See Methods NA Empirical [12]
Number of epitopes 10 NA Empirical [12]
Epitope amino acid length 10 [1 – 20] NA Empirical [12]
Threshold epitope count 100 [1 – 1000] NA
Time to maximum immune cost 90 [1 – 10, 000] Days [17]
Latency rates
Deposition rate 0.001 [0.0001 – 0.01] day–1

Activation rate 0.01 [0.001 – 0.1] day–1

Homeostatic proliferation rate 0.01 [0.001 – 0.1] day–1 [18]
Latent death rate 0.01 [0.001 – 0.1] day–1 Set to equal proliferation rate
a Default value as of wavess v1.0.0; range is what is investigated in the sensitivity analysis of this report.

https://doi.org/10.1371/journal.pcbi.1013437.t001

Fig 3. Visualization of example model inputs and empirical data used to informmodel inputs. (A) Example active
(deterministic) and latent (stochastic) growth curves based on default values. (B) Conserved nucleotide sites for the
example founder sequence (gp120 of DEMB11US006). (C) Epitope probability distribution for HXB2 gp120. After being
converted to nucleotides, these positions can be mapped to the founder sequence.

https://doi.org/10.1371/journal.pcbi.1013437.g003
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An example HIV founder sequence (gp120 of DEMB11US006 [11]) is included in the
package, but users can also extract a founder sequence from their own alignment or simply
provide their own founder sequence.

By default, no selective pressures are modeled. Rather, there are optional inputs corre-
sponding to modeling the three different types of selective pressure: conserved, replicative,
and immune. We provide helper functions to generate these inputs based on empirical data:

1. identify_conserved_sites() takes as input an alignment of the genomic
region to be simulated that is representative of virus diversity, and provides conserved
sites and a consensus sequence that can be used as the reference sequence for modeling
replicative fitness.

2. sample_epitopes() provides epitope locations randomly sampled from an
epitope probability distribution that can be generated with get_epitope_
frequencies(), which takes as input known amino acid epitope locations along
the sequence.

The example data provided for modeling virus fitness are specific to the example founder
sequence, and include a vector of conserved sites (Fig 3B), the HIV-1 subtype B consensus
sequence from the Los Alamos National Laboratory (LANL) HIV database [12,13], and ENV
amino acid epitope locations (Fig 3C), also from the LANL HIV database [12].

Outputs and analysis. Themodel outputs event counts, the sampled sequences, and the
fitness of each sampled sequence. We also provide the function calc_tr_stats() to cal-
culate summary statistics based on a phylogeny reconstructed from the output sequence data.
We focus on calculating summary statistics that capture various expected characteristics of the
phylogenies of chronic virus infections. Note, however, that other summary statistics might be
more useful depending on the question(s) investigated. The phylogenetic summary statistics
calculated include:

1. Mean branch length. This measures the phylogenetic inter-node genetic distance,
affected by the overall evolutionary rate of the simulated evolutionary system.

2. Mean change in diversity per unit time, measured as the change in within-timepoint
tip-to-tip distance across time (slope) calculated using linear regression. This captures
how the virus population diversity has changed over time.

3. Mean change in divergence per unit time, measured as the change in root-to-tip dis-
tance across time (slope) calculated using linear regression. This captures how virus
divergence from the root state has changed over time.

4. Mean leaf depth, measured as the Sackin index normalized by the number of tips in the
phylogeny (treebalance::avgLeafDepI()) [19]. This captures how ladder-like
the tree is, which may be indicative of the strength of selection.

5. Mean number of lineages through time, calculated as the maximum parsimony score
(phangorn::parsimony()) based on ancestral reconstruction of tree tip labels
indicating sampling timepoints [20], normalized by the number of timepoints minus
one. This estimate of the mean number of phylogenetic lineages that survived from one
sampling to the next is another potential indicator of selection strength.

calc_tr_stats() also takes a branch length threshold, which is used to collapse
branches less than that value into hard polytomies prior to computing the mean leaf depth.
This allows the user to reduce bias in the leaf depth calculation due to zero or very short
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branches, which have no information about the bifurcation pattern but still influence the leaf
depth calculation.

Dependencies. The R package dependencies include the Python packages numpy [21]
and scipy [22], and the R packages ape [23], phangorn [20], treebalance [19],
reticulate [24], dplyr [25], tibble [25], and tidyr [25]. For plotting in the
vignettes, ggplot2 [25] and ggtree [26] are used. For the Python implementation, the
pandas [27] and Bio [28] packages are also required.

Results
Summary statistics are sensitive to input parameters
Model sensitivity to input parameter values is dependent on the model output of interest,
which is defined by the research question at hand. As an example, we investigate the impact of
14 numeric input parameters on the HIV-1 phylogeny resulting from sequences sampled from
the active cell population during ten years of infection. To do so, we first generated 42 points
in parameter space using Latin Hypercube Sampling (LHS) with values across the ranges
defined in Table 1. As expected, these different points resulted in a wide range in the number
of mutation, recombination, and latency events, and in virus fitness (Fig 4A).

We next used the LHS points to generate trajectories through parameter space based on
the elementary effects sensitivity analysis method [29] with a perturbation size of 20% of
the parameter range. To account for model stochasticity, we computed a normalized mean
elementary effect, 𝜇∗∗, where the between-point difference for a parameter is divided by
the within-point difference across replicate simulations (see Methods). For some pairs of
parameters and summary statistics, there is a similar amount of within-point versus between-
point variability (Fig 4B and S1 FigA), indicating that, on average, we do not observe a dif-
ference in the summary statistic when that parameter value is perturbed. For other pairs, the
between-point difference is larger than the within-point difference (Fig 4B and S1 FigA), indi-
cating that those summary statistics are sensitive to those parameter values. Furthermore,
while the correlation between 𝜇∗∗ and the mean between-point difference is strong across
summary statistics (S1 FigB), there is a weaker correlation between 𝜇∗∗ and the partial rank
correlation coefficient (PRCC) (S1 FigC). This difference may be because 𝜇∗∗ accounts for
non-monotonic effects of parameter perturbations on summary statistic values, but PRCC
does not.

In these HIV-1 infected host simulations, the parameters with the most influence on the
phylogeny were mutation rate and immune cost (Fig 4B). Mean branch length, and mean
annual change in diversity and divergence, all branch length statistics, were most sensitive
to mutation rate (partial rank correlation coefficient [PRCC] = 0.69, 0.55 and 0.79, respec-
tively), with a 20% change in parameter value across the range tested leading to a greater
than two-fold change over stochastic effects. The mean number of lineages through time was
most sensitive to immune cost (PRCC = –0.70), with a 20% change leading to a greater than
three-fold change in mean number of lineages through time relative to stochastic effects.
Other parameters for which a summary statistic was at least two-fold higher with a pertur-
bation change compared to no change include epitope length, days to maximum immune
cost, and recombination rate. Changing other parameters resulted in less than a two-fold
change in all summary statistics, although mean branch length was generally impacted the
most. Average leaf depth, a metric of tree imbalance, was not very sensitive to input parame-
ters under the sampling scheme we used here, although this may be due to large within-point
stochasticity as the correlation between average leaf depth and immune cost was quite strong
(PRCC = 0.65).
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Fig 4. Sensitivity of model output to input parameters. (A) Event counts and fitness over time colored by the most relevant parameter value. (B) Normalized mean
elementary effect (𝜇∗∗) of a 20% change in input parameter values across the range in Table 1 relative to stochastic noise for five phylogenetic summary statistics. The
partial rank correlation coefficient is shown in parentheses.

https://doi.org/10.1371/journal.pcbi.1013437.g004

Model output matches empirical data
The usefulness of wavess depends on how well it recapitulates empirical data for the
research question of interest. As an example, we investigated how well we can match our
model output to empirical HIV-1 env sequences sampled longitudinally from infected indi-
viduals [30,31], and whether this can shed any insights into the immune response of the
individuals. We carried out this analysis bearing in mind that virus evolution in these indi-
viduals was also a stochastic event with only one realization. For this analysis, we used the
functions provided in the wavess R package to generate dataset-specific inputs, includ-
ing founder sequences and sampling schemes. To investigate the host immune response, we
varied the immune cost and epitope locations across simulations (see Methods). To evalu-
ate the model, we used the normalized phylogenetic summary statistics described above, and
computed the normalized sum of squared errors (SSE) between the phylogeny reconstructed
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from the empirical data and the phylogenies of each of the simulated sequence alignments.
The summary statistics are not strongly correlated with each other in the empirical data
(S2 Fig).

We found that selecting different epitope locations did not significantly affect the phylo-
genetic summary statistics even when accounting for immune cost (S3 Fig). Furthermore,
we observed very little difference between simulations with an immune cost of 0 and 0.1,
and between simulations with an immune cost of 0.6 and higher; however, summary statis-
tic values differed in the 0.1-0.6 range (Fig 5A and S4 Fig). Within the 0.1-0.6 range, the
empirical summary statistic value fell into the range of simulated summary statistic values
for all datasets and summary statistics (n = 55; S4 Fig). For most datasets, we observed one
immune cost with a lower SSE than the rest, and the value of the immune cost with the
lowest SSE differed across individuals (Fig 5B and S5 Fig). This suggests that the selection
pressure imposed by the immune response had different strengths among the individuals
studied, which mirrors the previously observed heterogeneous immune response among
people [32–34].

We next took a subset of the simulations including only the top 5% based on normalized
SSE for each dataset (n=30 per dataset). In this subset, we again observed that the distribution
of immune costs varied by individual (Fig 6A). Across all 11 individuals, the empirical sum-
mary statistics were on average 0.78 standard deviations away from the mean simulated value
(range: [0.01, 2.36]) (Fig 6B). Furthermore, the summary statistic from the best-fitting simu-
lation result and the empirical data were often very similar (Fig 5B). Finally, for the empiri-
cal compared to the best-fitting simulated data, the distribution of rate heterogeneity across
nucleotide sites estimated using empirical Bayesian methods had similar shapes with long
right tails, but the empirical data had a lower median rate (0.52 versus 0.76) and a higher
maximum rate (25.2 versus 12.62) (S6 Fig). Empirical phylogenies and rate heterogeneity
distributions of representative datasets with an estimated low, medium, and high immune

Fig 5. Summary of simulations performed using empirical founder sequences and sampling schemes with varying immune cost. (A) Phylogenetic summary statis-
tics for each immune cost. (B) Mean sum of the squared errors (SSE) of the simulated data relative to the empirical data for each immune cost. Color indicates number of
replicates performed for a given immune cost.

https://doi.org/10.1371/journal.pcbi.1013437.g005

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013437 September 18, 2025 11/ 20

https://doi.org/10.1371/journal.pcbi.1013437.g005
https://doi.org/10.1371/journal.pcbi.1013437


ID: pcbi.1013437 — 2025/9/20 — page 12 — #12

PLOS COMPUTATIONAL BIOLOGY wavess: An R package for simulation of adaptive within-host virus sequence evolution

Fig 6. Summary of top 5% of simulation results based on sum of the squared errors between the empirical and simulated data (n=30 per dataset). (A) Distribu-
tion of immune costs. (B) Distribution of phylogenetic summary statistics. Open black circles indicate the best-fitting simulated data and green asterisks indicate the
empirical data value.

https://doi.org/10.1371/journal.pcbi.1013437.g006

cost are shown in Fig 7, together with the phylogeny and site rate heterogeneity distribution
from the best-fitting simulated data for that sampling scheme.

These findings suggest that the within-host virus evolution simulations generated by
wavess can recapitulate empirical data, and can provide insights into the evolutionary
parameters that impact HIV-1 within-host evolution.

Availability and future directions
wavess is hosted on GitHub (https://github.com/MolEvolEpid/wavess). Both the R pack-
age and the Python script are included in the repository. While we believe that the current
implementation of wavess will allow researchers to answer many biological questions of
interest, there is also substantial room to extend the functionality of the package even fur-
ther. Ways in which wavess could be extended in the future include: (1) allowing for the
simulation of segmented viruses, (2) tracking recombination events and virus ancestors and
descendants to enable the generation of ancestral recombination graphs and genealogies,
(3) dividing the immune response into separate antibody and cytotoxic T cell-like immune
responses, (4) adding evolution specific to drug resistance, (5) allowing latent cells to have
different lifespans, (6) allowing for compartmentalization of viruses into different tissues,
and (7) modeling indels. Furthermore, wavess could be embedded into epidemiological-
level models of transmission (e.g. [36]) to make them more realistic. Taken together, we
envision that wavess will be an extremely useful tool for the virus evolution research
community.
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Fig 7. Phylogenies reconstructed from empirical (top) and simulated (bottom) HIV-1 within-host sequences. For representative datasets with an estimated (A) low,
(B) moderate, or (C) high immune cost. The color indicates the estimated sampling time from infection. The scale bar (0.01) is in units of substitutions/site. The inset for
each plot shows the distribution of site-rates estimated by IQ-TREE using an empirical Bayesian method [35].

https://doi.org/10.1371/journal.pcbi.1013437.g007

Methods
Elementary effects sensitivity analysis modified for stochastic simulations
We followed the standard elementary effects one-at-a-time global sensitivity analysis algo-
rithm to generate points (sets of 14 parameter values) in parameter space and trajectories of
those points [29]. We performed replicate simulations for each point to account for stochas-
ticity in model output. Specifically, we generated 42 trajectories consisting of 15 points each
and performed 10 replicate simulations for each point along the trajectory. To ensure broad
coverage of the parameter space, the initial 42 points were generated using LHS [37] on the
0-1 range with the R function lhs::optimumLHS() [38]. Note that LHS assumes that the
input parameter distributions are uncorrelated, which we believe is a reasonable assumption
for the parameters used in the sensitivity analysis here. For a given trajectory, the order in
which parameters were perturbed was selected at random and each parameter was perturbed
by ±0.2. The perturbation direction was selected randomly, and if the resulting value was
outside the range 0-1 then the opposite direction was selected. Values from LHS followed by
perturbation were linearly transformed from the 0-1 range to the true parameter value using
the ranges indicated in Table 1.

For parameter values that were not perturbed, the default values were used (Table 1).
For each simulation, 20 samples were taken from the active cell population at generation
5 and each year post-infection, and a maximum-likelihood phylogeny was inferred from
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each resulting simulated sequence alignment using IQ-TREE 2 [35] with the GTR+I+R
nucleotide substitution model. Phylogenies were rooted on the founder sequence using
phytools::reroot() [39]; the founder sequence was then dropped from the tree. For
each collapsed rooted phylogeny, we computed the five summary statistics described above
using wavess::calc_tr_stats() with a branch length threshold of 1/1503, where
1503 is the length of the founder sequence; these were the model outputs of interest for the
sensitivity analysis.

In a standard elementary effects sensitivity analysis, the revised mean elementary effect
𝜇∗k is computed for each parameter k, which estimates the impact of the parameter on model
output by comparing the output between adjacent points in the trajectory [40]. To extend
this to stochastic models, one option is to to calculate 𝜇∗k using the mean value of the model
output across replicate simulations for each point in parameter space [41]. However, this
method does not allow us to determine whether a given parameter change leads to more of a
difference than is stochastically observed across replicates at one point in parameter space.
Therefore, we instead modified the elementary effects equation by, for each trajectory,
normalizing the mean between-point difference in the value of each model output across
replicates by the mean within-point difference of the model output across replicates for the
original point. Then we calculated the mean normalized value across all trajectories.

The mean between-point difference for the kth of p parameters for a single trajectory r was
calculated as:

Brk =
1
n2

n
∑
i=1

n
∑
j=1

|y(x1,… , xk–1, xk +Δ, xk+1,… , xp)i – y(x1,… , xk–1, xk, xk+1,… , xp)j|, (6)

where n is the number of replicates (10) and y is a model output. Note that the perturbation
size we used here is identical across all simulations (0.2), so we do not need to divide the
difference by the perturbation size. This allows for a more straightforward comparison of the
normalized values.

The mean within-point difference for parameter k of a single trajectory is given by:

Wrk =
2

n(n – 1)

n
∑
i=2

i–1
∑
j=1

|y(x1,… , xk–1, xk, xk+1,… , xp)i – y(x1,… , xk–1, xk, xk+1,… , xp)j|. (7)

The normalized mean elementary effect is then calculated as:

𝜇∗∗k =
1
m

m
∑
r=1

Brk
Wrk

, (8)

wherem is the number of trajectories (in our analysis,m=42). 𝜇∗∗k thus allows us to determine
whether a given parameter change has more of a difference than is stochastically observed
using the original parameter value. Note that the framework described here can be used to
investigate sensitivity to any sampling scheme and model output of interest.

We also computed the partial rank correlation coefficient (PRCC) for the 42 initial
points in parameter space obtained from LHS using epiR::epi.prcc() [42] to inves-
tigate the direction of effect between each parameter and summary statistic. Note, however,
that this metric only captures monotonic relationships between the parameter and model
output.
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Model inputs and analysis for comparison to empirical data
Sample information. We validated wavess using HIV-1 env sequences sampled longitu-

dinally from 11 individuals infected with HIV-1 subtype B (n = 7 from [30], n = 4 from [31]),
describing natural HIV-1 evolution. This number excludes individuals from these studies
with viruses containing > 1% nucleotide sequence diversity at the first time point (n = 3)
because we focus on validating the model with datasets where we have sequences from early
in infection, and where the individual was likely infected with only one variant. The indi-
viduals included in our analysis were either treatment-naive or were eventually put on rela-
tively ineffective treatment targeting non-ENV proteins. In one patient (P2), we observed a
decrease in virus load and an increase in CD4+ T cell counts for the last three sampling times
(S7 Fig). As treatment appeared to be working at these times, we removed the correspond-
ing samples from the analysis. We included all other samples, even when patients were being
treated, as the treatment did not appear to be working well based on viral load and CD4+

T cell count. Furthermore, the evolution of envelope sequences should not be influenced
by these drugs. We customized the simulations for each individual by using person-specific
founder sequences and sampling schemes that matched the empirical data for each one. To
obtain sampling times, we assumed that the infection time was the midpoint between the last
negative and first positive test; this is considered sero-conversion time by the original authors.
Sequences and metadata were obtained from the LANL HIV database [12]. All dataset IDs
used here match the IDs from the original publications.

Input sequences. To generate person-specific founder sequences, we first chose the
longest sequence from the first time point for each individual. In the event of a tie, one
sequence was chosen randomly. We aligned this sequence to the HXB2 (GenBank accession
number K03455) env gene as well as the subtype B sequence DEMB11US006 (GenBank acces-
sion number KC473833) [11] using the mafft v7.526 ginsi command [43]. We then trimmed
off any portion of the sequence outside the env gene. Next, we identified, across all sequences,
the smallest (6225, env start) and largest (7786) HXB2 nucleotide coordinates within env. To
ensure consistency across simulations, we chose to simulate this entire portion of env (1562
nucleotides). For sequences that did not span this entire region, we filled in leading and trail-
ing missing nucleotides with DEMB11US006 to generate the full founder sequence.

Conserved sites. We considered conserved sites to be HXB2 positions that are identi-
cal in > 99% of sequences in the env filtered alignment of all HIV-1 subtypes from the LANL
HIV database [12], identified using wavess::identify_conserved_sites().
These positions were mapped from HXB2 to each individual founder sequence using
wavess::map_ref_founder().

Reference sequence. We used the HIV-1 Subtype B consensus sequence from the LANL
HIV database [12,13] as the reference sequence for replicative fitness. This was aligned to the
founder sequence using the mafft v7.526 ginsi command [43]

Epitopes. To determine the epitope length to use for our simulations, we identified all
linear human gp120 epitopes from the LANL HIV database and used the median length
(10 amino acids, or 30 nucleotides) for our simulations.

We used the binding, contacts, and neutralization features from the LANL ENV fea-
tures database [12] to determine the probability of an epitope occurring at each HXB2
position across the length of the founder sequence using wavess::get_epitope_
frequencies(). We then used this distribution to randomly sample 10 non-overlapping
epitopes of length 30nt across the sequence for each simulation replicate using
wavess::sample_epitopes(). The same set of epitope locations was used for each
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set of immune cost simulations, and for each dataset. The start positions were mapped from
HXB2 to each individual founder sequence via alignment using wavess::map_ref_
founder(); each epitope was set to be 30nt long beginning from this start position.

Parameter values. As HIV sequence evolution is influenced by the strength of an individ-
ual’s immune responses [32–34], we varied the immune cost and epitope locations across sim-
ulations. Each combination of immune cost (range 0-0.9, n = 10) and epitope location (n = 20
sets for immune costs of 0 and 0.7-0.9, n = 100 for immune costs of 0.1-0.6) was simulated
once, yielding 680 simulations per sampling scheme. All other parameters were fixed at the
values defined in Table 1. wavess::define_growth_curve() with default values was
used to define the infected cell growth curve.

Phylogenies. We first removed leading and trailing segments of the simulated sequences
that originated from DEMB11US006, thus keeping only the portion of the simulated
sequences derived from the empirical sequence. Then we built phylogenetic trees for each
set of empirical and simulated sequences using IQ-TREE 2 [35] with the GTR+I+R model
of sequence evolution and the –rate option to obtain empirical Bayesian estimates of
site rates [44]. Phylogenies were rooted on the sequences from the first timepoint using
phytools::reroot() [39]. We then calculated the five summary statistics described
above for each tree using wavess::calc_tr_stats() with a branch length threshold
of 1/Lf, where Lf is the length of the original founder sequence. Next, we computed the dif-
ference between phylogenies representing the empirical sequences to the phylogenies recon-
structed from each of the sets of simulated sequences by calculating the sum of the squared
errors between the empirical and simulated data for centered and scaled values of the five
phylogenetic summary statistics.

Data analysis and visualization
We used the Snakemake (v7.32.4) workflow manager [45] to develop an analysis pipeline
and parallelize simulations. All data analysis and visualization was performed in R v4.3.3 [9]
with the following packages (in addition to wavess): ape v5.8 [23], phytools v2.1.1 [39],
tidyverse v2.0.0 [25], epiR v2.0.78 [42], ggcorrplot v0.1.4.1 [46], ggridges
v0.5.4 [47], ggtree v3.10.0 [26], treeio v1.26.0 [48], scales v1.3.0 [49], and ggpubr
v0.6.0 [50].

Supporting information
S1 Fig. Comparison of metrics to quantify the sensitivity of a model output (facets) to
parameter (color) perturbations. (A) Mean within-point difference in model output across
replicates (𝜇∗∗ denominator) compared to mean between-point difference with a param-
eter perturbation (𝜇∗∗ numerator). Black line is y = x. (B) Normalized mean elementary
effect (𝜇∗∗) compared to mean between-point difference with a parameter perturbation
(𝜇∗∗ numerator). (C) Normalized mean elementary effect (𝜇∗∗) compared to the partial rank
correlation coefficient. R indicates Pearson correlation coefficient, 𝜌 indicates Spearman
correlation coefficient.
(TIF)

S2 Fig. Spearman correlation between phylogenetic summary statistics. Based on 11
maximum-likelihood phylogenies reconstructed from empirical data.
(TIF)
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S3 Fig. Comparison of phylogenetic summary statistics for different sets of epitope
locations.
(TIF)

S4 Fig. Phylogenetic summary statistics. For each real dataset (red line) and simulated
dataset across immune costs (black point).
(TIF)

S5 Fig. Mean sum of squared errors between simulated and empirical data. For each
dataset and phylogenetic summary statistic across immune costs.
(TIF)

S6 Fig. Distribution of nucleotide site rates for each dataset. Calculated by IQ-TREE using
an empirical Bayesian method where, for each site, the posterior mean site rate across rate cat-
egories is weighted by the posterior probability of the site being in each category. The top row
is the rates estimated from real sequence alignments and the bottom row is rates estimated
from the best-fitting simulated data.
(TIF)

S7 Fig. Viral load and CD4 count over time for individuals included in the analysis.The
dotted line indicates when an individual was no longer treatment-naive. Samples removed
prior to the analysis are indicated as open circles on the plot.
(TIF)
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