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Abstract
Drug treatment can control HIV-1 replication, but it cannot cure infection. This is because
of a long-lived population of quiescent infected cells, known as the latent reservoir (LR),
that can restart active replication even after decades of successful drug treatment. Many
cells in the LR belong to highly expanded clones, but the processes underlying the clonal
structure of the LR are unclear. Understanding the dynamics of the LR and the keys to its
persistence is critical for developing an HIV-1 cure. Here we develop a quantitative model
of LR dynamics that fits available patient data over time scales spanning from days to
decades. We show that the interplay between antigenic stimulation and clonal hetero-
geneity shapes the dynamics of the LR. In particular, we find that large clones play a
central role in long-term persistence, even though they rarely reactivate. Our results
could inform the development of HIV-1 cure strategies.

Author summary
When people with HIV take effective treatment, the virus can no longer be detected in
the blood, but a small number of infected cells persist in a dormant state, forming what
is known as the latent reservoir. This hidden pool of virus is the main barrier to a cure
because it can reactivate if treatment is stopped. In this study, we developed a mathemat-
ical model that simulates the behavior of individual infected cell lineages, or “clones,” to
understand how the reservoir changes over time. Our model incorporates two key forces:
the chance that a latent virus reactivates and the signals from the immune environment
that drive infected cells to divide. Our results show that the reservoir becomes domi-
nated by a few large, long-lived clones that rarely reactivate, while smaller, more dynamic
clones are gradually lost. Importantly, we find that low-level viral replication during
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treatment does not necessarily lead to viral evolution — a distinction that challenges
common assumptions and helps explain why the virus remains genetically stable in indi-
viduals on long-term treatment. Our findings suggest that eliminating the reservoir may
require strategies that go beyond reactivation, targeting the large and persistent clones
that silently maintain the infection.

Introduction
Human immunodeficiency virus (HIV-1) actively replicates in CD4+ T cells [1,2]. During
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the infection process, viral RNA is reverse-transcribed into DNA, which is then incorporated
into the genome of the host cell [3]. This integrated viral DNA is referred to as a provirus.
Most infections result in the rapid production of new viruses, leading to the death of these
infected cells within a few days [4]. However, in a fraction of cells, HIV-1 is capable of lying
in a dormant, “latent” state [5]. While antiretroviral therapy suppresses active HIV-1 repli-
cation, it is unable to eliminate latently infected cells or their integrated proviruses [6]. And
while many latent proviruses are defective, some remain capable of reactivation, resulting in a
quick return to active infection if antiretroviral treatment (ART) is interrupted, even in indi-
viduals who have undergone effective drug treatment for many years [7,8]. This population
of long-lived, latently infected cells, known as the latent reservoir (LR), therefore presents the
major barrier to an HIV-1 cure.

Understanding factors that contribute to LR persistence could greatly contribute to
HIV-1 cure efforts. However, it is difficult to obtain a comprehensive picture of LR dynam-
ics from direct measurements due to its small size. For typical HIV-1-infected individuals,
roughly one in 104 CD4+ T cells are latently infected, and active HIV-1 replication occurs in
only around 1% of these latently infected cells in viral outgrowth experiments [9–11]. Thus,
latently infected cells, especially ones that can readily reactivate, are rare. Subsequent stud-
ies have also found that multiple rounds of stimulation can prompt latent cells that initially
remained dormant to reactivate, making it difficult to determine the total number of latently
infected cells that are capable of reactivation [11,12].

Despite these challenges, recent work has provided insights into the dynamics and hetero-
geneity of the LR. Subsets of cells bearing integrated HIV-1 can undergo clonal expansion in
patients receiving suppressive ART [13,14]. The degree of expansion of clones as well as their
persistence varies greatly and is associated with the specific integration sites [13,14,14] as well
as stimulation by antigens [15,16]. Levels of HIV-1 expression in latently infected cells differ,
and there appears to be progressive selection for more transcriptionally silent integration sites
during long-term ART [17,18]. Persistence can also occur via T cell proliferation, including
both homeostatic proliferation [19] and in response to antigen [15,16,20,21]. While many
highly-expanded clones contain defective proviruses [22,23], at least half of the cells carry-
ing intact proviruses also belong to expanded clones [23–27]. A strong negative correlation
has also been observed between clone size and reactivation rate in viral outgrowth assays [25].
As patients remain on ART for long times, the diversity of observed clones decreases and the
proportion of HIV-1 proviruses in the largest clones progressively increases [28,29].

Mathematical modeling has also provided insights into the LR, with some model
predictions validated in experiments [30]. Studies investigating the relationship between
latently infected cells and plasma viremia during ART [31–36] suggest that as long as ART is
marginally effective, the persistence of latent virus is most strongly influenced by the longevity
of infected cells and the rate at which they reactivate. Recent modeling work has also
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suggested that uneven homeostatic proliferation of latently infected cells early in infection
may lead to the observed spread in clone sizes in the LR [37].

To gain a deeper understanding of the persistence of the latent reservoir in HIV-infected
individuals, it is important to develop mathematical models that reflect the biological mech-
anisms that govern its dynamics. The LR is composed of diverse clones with different T cell
receptors (TCRs), which affect their activation potential and antigen specificity. Moreover,
these clones have distinct viral integration sites, which influence their transcriptional activ-
ity and reactivation probability. These factors contribute to the clonal heterogeneity of the LR
and its persistence. Thus, there is a need to incorporate more comprehensive and biologically
motivated features of clonal heterogeneity, which are not typically incorporated in existing
mathematical models of the LR.

We addressed this challenge by developing a novel stochastic model of LR dynamics that
explicitly accounts for clonal heterogeneity. We consider genetic changes in HIV-1 sequences
and variable probabilities of reactivation, while also incorporating the effects of antigenic
stimulation on latently infected clones with different TCRs. The dynamics of these clonal
populations are integrated with interactions between free viruses, susceptible cells, and cells
that are actively infected. We model multiple latently infected clones, integrated into distinct
T cell clones with different TCRs and thus different responses to antigen.

Our model recapitulates experimentally observed features of HIV-1 infection while also
providing insights into LR structure, dynamics, and persistence. We recover the decay kinet-
ics of HIV-1 RNA in blood, HIV-1 DNA in peripheral blood mononuclear cells (PBMCs),
and latent cells that reactivate upon stimulation, which occur over widely-varying time scales
(days, months, and years) following the start of ART [38–40], without the use of time-varying
parameters (S1 Table). Among other findings, our model reproduces the observation of defec-
tive proviruses in highly expanded clones [22] and the negative correlation found between
clone size and reactivation probability for patients who have undergone ART treatment for
many years [25]. Stimulation by antigens combined with heterogeneous reactivation rates for
different clones leads to a broad distribution of clone sizes, which are stratified by their reacti-
vation rates. Over long times, we find that the LR becomes progressively more concentrated
on a small number of clones with low reactivation rates, which play a key role in LR persis-
tence. These insights could inform the development of new therapeutic approaches to reduce
the size of the LR and achieve a functional HIV-1 cure.

Results
Stochastic model incorporating LR heterogeneity. Our model blends elements from

multiple prior mathematical studies [30–32,37,38,41–46]. We consider four main popula-
tions: uninfected CD4+ T cells (T), productively infected activated CD4+ T cells (A), latently
infected resting CD4+ T cells (L), and HIV-1 virions (V) (Fig 1A). All cells have finite lifes-
pans determined by their respective death rates (see Methods for a complete list of parame-
ters and supporting references). We used a constant replacement rate 𝜆T to approximate the
replenishment of uninfected target cells from the thymus [45,47,48]. The rate of production of
virions is given by the product of the death rate of actively infected cells 𝜇A [49] and the viral
burst size n [50]. Virions are then cleared at a constant rate c [51].

HIV-1 virions can infect susceptible CD4+ T cells. A small fraction of infections, pdef, will
result in defective integrated proviruses due to effects like large deletions or hypermutation.
During ART, this leads to proviruses with fatal defects outnumbering intact proviruses by
a factor of 10–50 to 1 [28]. HIV-1 also mutates during infection due to error-prone reverse
transcription, with an estimated error rate of 3× 10–5 per base per replication cycle [52–54].
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Given the length of the HIV-1 genome, this implies that approximately a third (pmut) of
successful infection events will lead to a mutation. Finally, a fraction pL of infection events
will result in latent rather than active infection. We fit pL such that the HIV-1 DNA per 106

PBMCs at the beginning of ART was in the range 103–104, consistent with patient data [38].
Consistent with reported HIV-1 RNA levels during ART [39,55] and following previous mod-
eling studies [35], we assume that viral replication is attenuated but not perfectly suppressed
during ART.

To account for the heterogeneity of latently infected cells, we modeled each latently
infected clone individually, including the expansion and antigen-driven proliferation of
individual clones (Fig 1B). Clones are defined as latently infected cells with identical TCRs,
integrated proviruses, and integration sites. Each time a new clone is created through a latent
infection event, it is assigned a random probability of reactivation (Methods), following the
observation that integration is stochastic and different integration sites can affect the capacity
for reactivation [56]. In addition, each clone is stimulated by a background concentration of
antigen that fluctuates in time (Methods), inspired by past models of T cell repertoire dynam-
ics [46]. We use the same homeostatic death and proliferation rates for all clones; however,
stochastic differences in antigenic stimulation drive differences in clonal proliferation. As a
simplifying assumption, we model all susceptible T cells as identical, and we only consider
antigen-driven proliferation dynamics for latently infected cells. Our assumption that T cell
activation and recognition of antigens can drive HIV-1 reactivation, and that reactivation is

Fig 1. Model schematic. (A) When a new cell is infected, it forms a new “clone” with a specific TCR sequence. The generation of defective proviruses, point mutations,
and active or latent infection are all determined by chance. (B) Clonal expansion and reactivation are possible outcomes of the dynamics of latently infected clones upon
stimulation by antigens. As a simplifying assumption, susceptible T cells all have identical dynamics in our model, and the dynamics of response to antigen are modeled
only for latently infected cells.

https://doi.org/10.1371/journal.pcbi.1013433.g001
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not deterministic, follows experimental observations [57,58]. Prior work has also shown that
reactivation during homeostatic proliferation is rare [57]. Overall, our model differs from pre-
vious ones that considered a constant rate of reactivation for latently infected cells [35] or dif-
ferent cell populations with different half-lives [34]. We simulated our model using a system
of stochastic differential equations describing the dynamics of cells during HIV-1 infection
both before and during ART (Methods).

Seeding of the reservoir and clonal proliferation pre-ART. We first simulated the seed-
ing and development of the latent reservoir during the first months of infection. Simulations
begin with a number of virions in the system and zero active and latently infected cells (Meth-
ods). We decreased viral infectivity after one month to capture suppression of viral replication
by the immune system. Even during the first weeks of infection, we observed a large num-
ber of distinct latently infected clones in the reservoir. Most clones are very small: for up to
a year after infection, the average clone size is less than 10 cells, with a median clone size of
2 cells (Fig 2). During this time, the largest clone is typically smaller than 1000 cells. Most of
these clones are also short-lived. The average age of a clone after one year of infection is 15
days, with a median age of 6 days. Such short-lived clones are highly likely to reactivate, with
an average probability of reactivation pR around 9%.

During this early phase, some clones will be stimulated to proliferate by exposure to anti-
gens. However, the effect on different clones in the reservoir differs substantially depending
on how likely the latent virus is to reactivate when stimulated. In clones with low reactivation
probability, proliferation due to antigenic stimulation typically results in net growth. In clones
that readily reactivate, however, the reactivation of latent virus reduces the effective growth
rate due to antigenic stimulation, which can ultimately lead to the elimination of these clones.
These dynamics lead to a progressive increase in the number of clones with low reactivation
probabilities and large clone sizes over time, consistent with recent work that has observed a
progressive decrease in clonal diversity with time [29].

Kinetics of plasma viral load, HIV-1 DNA, and the inducible viral reservoir after ART
initiation. After the LR has been seeded, we simulated the response of viral populations,
including both latent and actively infected cells, to long-term ART. To simulate viral kinetics
during ART, we decreased viral infectivity 𝛽 at month 60 due to treatment (Methods), keep-
ing all other parameters constant. Here, we chose 5 years after infection as a start point for
ART initiation following typical times from HIV-1 infection to diagnosis [60,61].

Fig 2. Distribution of clones in the HIV-1 latent reservoir early in infection. Most clones are small and have high reactivation probabilities. However, as time passes,
clones with lower reactivation probabilities begin to grow in size. Stimulation from antigens drives some rare clones with very low probabilities of reactivation to large
sizes. Note gaps in the heatmap occur for clones with <10 cells because we enforce integer numbers of cells for small clones (see Methods).

https://doi.org/10.1371/journal.pcbi.1013433.g002
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Clinical data shows that after initiating ART, HIV-1 RNA in blood decreases rapidly over
the course of around 2 weeks, with observed half-lives tRNA, early

1/2 of 0.9-1.9 days [38,62]. This
is followed by a more gradual decline over the next 4 weeks (tRNA, late

1/2 ∼ 7.8-27.2 days [38,62]).
The total number of latently infected cells, measured by HIV-1 DNA in PBMCs, decays
steadily over the first few months on ART (tDNA

1/2 ∼ 99-133 days). Infectious units per million
PBMCs (IUPM), measured in viral outgrowth assays (Methods) declines very slowly, with a
measured half-life tIUPM

1/2 of approximately 44 months [59].
Our model quantitatively recovers the decay rates of HIV-1 RNA and latently infected cells

(combined across all clones) spanning days, months, and years on ART (Fig 3; see also S1
Fig). In our simulations, viral load first drops sharply, which is primarily driven by the death
of actively infected cells (Fig 3A and S2 Fig). At the same time, small clones are gradually
eliminated through reactivation or random cell death. Due to reduced viral replication, these

Fig 3. Latent reservoir dynamics after ART initiation in 100 replicate simulations. (A) ART first results in the rapid
decline of plasma viral load [38], first due to the death of actively infected cells and later driven by the elimination of small
clones in the LR. (B) Over slightly longer times, the number of latently infected cells steadily declines [38] as small clones
die out and are no longer quickly replenished by new infections. (C) Infectious units per million (IUPM), a measure of
cells in the LR capable of reactivation, declines over the course of years, approximately following the 44-month half-life
measured in clinical data [59].

https://doi.org/10.1371/journal.pcbi.1013433.g003
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clones are no longer replenished at the same rate, leading to a net decline in the total number
of latently infected cells. Clones with high reactivation probabilities are depleted more rapidly
than those that do not readily reactivate (Fig 4A). Collectively, these factors lead to a shift in
the LR toward larger clones with lower rates of reactivation, slowing the decline in viral load
and HIV-1 DNA in PBMCs (Figs 3A, 3B, 4A, and S3 Fig). As larger clones are slowly elimi-
nated, we find a decline in the inducible reservoir consistent with measurements from clinical
data (Fig 3C).

Long-term clonal dynamics in the latent reservoir. During ART, clones with higher
probabilities of reactivation have a shorter effective survival time than clones with lower
probabilities of reactivation. We therefore find that the average probability of reactivation
decreases over time. However, clones that readily reactivate are not entirely eliminated.
Occasional reactivation of latent cells from large clones leads to bursts of viral replication that
partially reseed the reservoir. These dynamics result in a long-term quasi-steady state, where
small clones with high probabilities of reactivation turn over frequently while large, quiescent
clones slowly fluctuate in frequency (S4 Fig and S5 Fig).

Over long times, we find that, for the largest clones, clone size n scales inversely with the
probability of reactivation pr, n∝ p–𝛼

r , with an exponent 𝛼 ∼ 1 (Fig 4A). This finding is con-
sistent with previous work that observed a power law relationship between clone size and
probability of reactivation in viral outgrowth assays in data from multiple subjects years after
ART initiation [25]. Clones that are small and/or have low probabilities of reactivation (i.e.,
ones occupying the lower left corners in Fig 4A) are particularly challenging to quantify in
patient data because their probabilities of being sampled in sequencing HIV-1 DNA from
PBMCs or viral outgrowth assays are exceedingly small. Such clones are likely to be observed
only once in data if they are sampled, which is consistent with observations in clinical
data [25].

Fig 4. Dynamics of the latent reservoir during ART. (A) As ART begins, many clones are observed with different sizes and probabilities of reactivation. Reactivation
and random fluctuations lead to the preferential loss of small clones and ones with high probabilities of activation over time. The largest clone size scales roughly with the
inverse of the reactivation probability, a relationship that is stable over time. (B) Despite viral replication, few mutations accumulate in latent clones during ART.

https://doi.org/10.1371/journal.pcbi.1013433.g004
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Our results also show that after a year on ART, the relative size of large clones changes little
over time (S6 Fig). Collectively, our simulations are consistent with longitudinal studies that
found few significant changes in the proportion of different clones in the LR when sequenc-
ing proviral DNA [28,63,64], while significant changes in clonal distributions can be observed
when sequencing reactivated viruses from viral outgrowth assays [63,64].

Dynamics of clone age pre- and post-ART. To further characterize the clonal dynamics
of the LR, we tracked clone age (defined as the time since the latent infection event that first
established a new clone) and probability of reactivation over time. Before ART begins, most
clones in the LR have been recently deposited, though we also observe a spike in the age dis-
tribution that corresponds to latent infection events during the early, acute stage of infection
(S6 Fig). After ART, the age distribution progressively shifts toward older clones. This is due
to the death of small and highly reactive clones during the time immediately after ART ini-
tiation, as described above. However, there remains a spike in the age distribution near zero
due to new latent infection events in short bursts of viral replication during ART. Overall, this
finding agrees with recent work that has found that the decay of younger clones in the LR is
faster than for older ones [65,66].

Processes driving latent cell proliferation and death. In our model, there are three ways
for latent cells to be produced: homeostatic or antigen-driven proliferation of latent clones,
and new latent infection events. There are two ways that latent cells can be removed from the
reservoir: through reactivation or through homeostatic death. We tracked the contributions
of each of these factors to latent cell proliferation and death both before and after ART (S8
Fig). Interestingly, we found that new infection events only constitute the main contribution
to latent cell growth during a brief period very early in infection. After the latent reservoir has
been seeded, homeostatic proliferation and antigenic stimulation are by far the dominant fac-
tors driving latent cell growth, with homeostatic proliferation making the largest contribution
in our model. Both of these factors have been cited in prior experimental work as contributors
to reservoir growth and persistence [15,16,19–21]. We find that homeostatic death is by far
the largest contributor to latent cell death both before and after ART. However, as described
above, the uneven probabilities of reactivation across clones result in a gradual shift in the
composition of the reservoir (Fig 4A and S3 Fig), even though reactivation constitutes a small
fraction of overall latent cell loss.

Variation in viral dynamics over multiple simulations. We performed 100 replicate
simulations to test the variation in dynamics between different stochastic realizations of the
model (Fig 3). Dynamics early after ART initiation were the most repeatable in our simu-
lations, and the dynamics of latent clones after years of ART was the most variable. This is
expected because the dynamics immediately after ART initiation involve large numbers of
cells and are therefore nearly deterministic, while long-term ART dynamics are driven by
fluctuations of smaller numbers of latent clones.

Because our replicate simulations were performed with identical underlying parame-
ters, they demonstrate the minimum level of stochasticity inherent in our model. However,
real variation in viral dynamics between individuals are influenced by a broad range of fac-
tors, including differences in host immune responses, duration of infection before ART, and
therapy adherence and effectiveness, that would best be modeled by variation in simulation
parameters. Thus, these replicate simulations represent a lower bound on variation between
individuals.

Choice of reactivation probability distribution and the role of heterogeneous reacti-
vation rates. Evidence suggests that different latent clones have different propensities for
reactivation [22,25,56,67,68]. Ultimately, in our model this heterogeneity in reactivation
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plays a central role in concisely explaining widely differing and multiphasic decay rates of
HIV-1 RNA in blood, HIV-1 DNA in PBMCs, and IUPM observed in clinical data. Heteroge-
neous reactivation rates are also essential to reproduce the observed association between the
probability of reactivation in viral outgrowth assays and latent clone size [25].

However, there is no singular distribution of reactivation probabilities that uniquely repro-
duces the observed clinical values. For simplicity, we opted to use a lognormal distribution,
which is a natural choice when a variable (i.e., probability of reactivation) is obtained as the
product of many independent explanatory variables (e.g., virus genetic background, cell type,
integration site, local chromatin context, etc. [68]). Previous modeling work has used a log-
normal distribution for turnover rates to define uneven proliferation of clones in the first year
of infection [37]. Modeling the probabilities of reactivation with this distribution, which is
grounded in the underlying biology of latent infection and consistent with clinical data, allows
us to extend our model not only to active infection but also to describe long-term dynamics of
the latent reservoir during ART.

Models with reactivation probabilities that were the same for all clones were difficult to fit
with constraints on short-term and long-term viral dynamics. With the probability of reac-
tivation set to 1% for all clones, for example, we find that the dynamics shortly after ART
begins are recovered well, but the long-term decay of the LR is much faster than expected
(S9 Fig).

Role of heterogeneity in antigenic stimulation. To gauge the importance of heteroge-
neous antigenic stimulation in our model, we considered an alternative scenario in which the
level of antigenic stimulation was kept at a constant, uniform level across all latent clones. In
such simulations, the level of antigenic stimulation must be carefully tuned: low values result
in the rapid death of latent clones, while high ones cause unbounded proliferation. Simula-
tions with a concentration of antigen equal to the long-term average in standard simulations
successfully recovered viral kinetics immediately post-ART (S10 Fig). However, this condition
also led to a more rapid decay of the LR than expected from clinical constraints. In addition,
the maximum clone size was sharply limited in simulations with constant antigenic stimu-
lation, more than an order of magnitude smaller than the largest clone sizes in our standard
simulations (S10 Fig). This feature is also inconsistent with observations of highly expanded
clones that can comprise substantial fractions of the overall intact reservoir within an individ-
ual [25,69]. Thus, at least in our model, we find that heterogeneous antigenic stimulation and
rates of reactivation are needed to fit the constraints of clinical data.

Presence or absence of HIV-1 evolution during ART. While ART strongly suppresses
viral replication, it may not be completely effective. Past modeling work has suggested that
low amounts of replication can continue after treatment intensification and may influence the
level of detectable virus, but are unlikely to allow for long-term sequence evolution [32,34–
36]. Others have argued that ongoing HIV-1 replication can lead to measurable viral evo-
lution during ART [70–72], though this point is hotly debated [73,74], and multiple studies
have failed to observe evolution in the reservoir during ART [75–78].

To test whether or not viral sequence evolution would occur in our model, we tracked the
number of accumulated mutations in individual clones after ART initiation. In our simula-
tions, the mean number of new infection events resulting from active infection in a single cell
is smaller than one due to the suppressive effects of ART (S8 Fig). This implies that persis-
tent, self-sustaining active replication is impossible. However, because our model is stochas-
tic, we observe occasional “bursts” of viral replication. In phylogenetic terms, the replication
dynamics in our model would thus generate star-like phylogenies (i.e., with few mutations
around stable clones in the LR), rather than the ladder-like trees that can be generated from
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sequential evolution. Despite occasional bursts, we found no evidence for progressive accu-
mulation of mutations or genetic divergence over time (Fig 4B), consistent with past observa-
tions [75–78] and modeling work [32,34–36].

One prominent prior study that argued for continued HIV-1 evolution during ART was
based on observations made during the first year of ART [72]. As stated above, we do not find
evidence for significant sequence evolution in our model. However, we do observe immense
changes in individual clone sizes during early ART, especially for many small clones that are
eliminated (S5 Fig). These dynamics support previous arguments that sampling of different
clones could explain the appearance of evolution shortly following ART [69].

Effects of early intervention on LR structure. Recent studies found that the composi-
tion of the LR is altered in individuals who have undergone early ART treatment [79]. To
mimic early ART, we adjusted our simulations to include a sharp drop in viral infectivity 15
days after initial HIV-1 infection (Methods). Unlike previous simulations, early intervention
results in a much smaller number of clones in the LR (Fig 5A), which quickly becomes

Fig 5. Distribution of clones in the latent reservoir after early intervention. (A) We simulated the effects of early
intervention by initiating ART conditions 12 days after infection. At this time, there are few clones that are large or
have small probabilities of reactivation, limiting the potential for clonal expansion. (B) After 8 months, few clones
remain.

https://doi.org/10.1371/journal.pcbi.1013433.g005
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dominated by just a few large clones (Fig 5B). Our simulations thus recapitulate studies show-
ing that the LR in those with early ART are mono- or oligo-clonal, with little reactivation
and background replication [79] and fewer intact proviruses [22]. While our model was not
calibrated to model analytical treatment interruption (ATI, a process in which individuals
temporarily cease ART in a controlled setting), exploratory simulations also showed that
viral rebound occurred much slower for the early ART scenario (S11 Fig, Methods). Delayed
viral rebound after early ART has been observed both in clinical data [80–82] and in animal
models [83,84].

Factors underlying long-term LR persistence. Despite suppressive ART, the latent reser-
voir persists for decades in HIV-1-infected individuals. How do different components of the
LR contribute to its persistence? We find that the presence of large latent clones is the most
important factor in the long-term persistence of the latent reservoir, despite their low proba-
bilities of reactivation. In fact, small pr allows these clones to grow to large sizes with minimal
decay due to reactivation (Fig 4A). Because they are large, these clones are also very unlikely
to die stochastically due to fluctuations in clone size, unlike smaller clones that turn over
rapidly (S5 Fig).

Interestingly, the largest clones are not the ones that are most likely to generate rebound
viruses. On average, the rate of viral outgrowth is proportional to the product of the clone size
and reactivation probability. In typical simulations, this is maximized by clones with inter-
mediate sizes and reactivation probabilities. This is because clones with very small probabili-
ties of reactivation are fairly rare, and clones with very high probabilities of reactivation tend
to be small and short-lived. This can be seen quantitatively by computing the total contribu-
tion of clones of different sizes to reactivation during ART (S12 Fig). Thus, even though we
find that the largest clones (with small probabilities of reactivation) are chiefly responsible for
LR persistence, they are unlikely to be the typical first source of outgrowing viruses during
rebound.

Relatedly, it has sometimes been challenging to identify the source of rebound viruses in
the latent reservoir in ATI studies [85]. Given that we find clones of size 102-103 contribute
most to reactivation, and considering the size of the LR in our simulations, this suggests that
one would typically need to sequence roughly 8,500 intact proviruses to sample a specific
clone driving rebound. In the case of early ART, fewer intact proviruses may need to be sam-
pled to identify the rebound virus (roughly 400 in a typical case), given the smaller size of
the LR.

Discussion
Here we developed a stochastic model of the latent reservoir of HIV-1 that accounts for the
inherent heterogeneity of different clones in the reservoir. Our mechanistic approach and
direct simulation of each clone allows us to delve deeper into the underlying processes shap-
ing reservoir dynamics. Our model recapitulates changes in HIV-1 measurements in clinical
data over the scale of days (decline in HIV-1 RNA in the blood after ART) to years (decline in
IUPM over years on ART). We also quantitatively recover a “power law” relationship between
clone size and reactivation for large clones, and we find realistic distributions of clones in the
LR in simulations that mimic early intervention with antiretroviral drug treatment.

Our results complement several recent experimental investigations of the latent reservoir.
Studies have shown preferential integration of intact proviruses into transcriptionally silent
regions of the genome [17], and that most transcriptionally active proviruses were selected
against during ART [18]. Less transcriptionally active proviruses may be in a deeper state
of latency, and thus correspond with clones with smaller probabilities of reactivation in our
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model. We consistently find that more reactive latent clones are selected against during long-
term ART, as reactivation limits their capacity for proliferation and self-renewal. A number of
studies have also pointed to the importance of antigenic stimulation in LR persistence [15,21].
In our model, antigenic stimulation is essential for driving the growth of the largest clones; as
in prior studies of the T cell repertoire [46], birth-death noise alone is not sufficient to drive
very broad differences in clone sizes. Computationally, our work also connects with recent
studies that have begun to explore the consequences of heterogeneity and clonal structure in
the latent reservoir [37,69,86].

Beyond comparisons with experimental and clinical data, our model makes several predic-
tions about the structure and long-term dynamics of the latent reservoir. Our study suggests
that the LR consists of a very large number of clones, especially small clones. Due to their
small size and (for some clones) low probability of reactivation when stimulated, they would
be difficult to detect through conventional means in studies that seek to characterize the viral
reservoir. Nonetheless, collectively, they contribute to the diversity of the latent reservoir and
serve as a potential source of viral rebound.

Clonal heterogeneity, including the propensity of different clones for reactivation and
stimulation by antigens, emerged as a critical factor to reconcile both short- and long-term
dynamics of the latent reservoir after ART. Differences in probabilities of reactivation lead
to a slow but progressive “coarsening” of the reservoir, as clones that readily reactivate are
eliminated and larger, quiescent ones persist. The persistence of clones with low probabili-
ties of reactivation in our model aligns with recent longitudinal studies that have reported the
positive selection of proviruses with lower transcriptional activity during prolonged ART [18].

Our simulations also show nuanced effects of sporadic viral replication during ART. With
zero viral replication, all small clones in the LR would ultimately be eliminated due to random
clone size fluctuations. However, the level of active replication needed to sustain a population
of small clones is insufficient to produce long-term sequence evolution of the virus [32,34–
36]. This emphasizes an important distinction between viral replication and evolution, espe-
cially evolution within the LR. Persistent, self-sustaining viral replication will lead to the accu-
mulation of mutations (i.e., evolution) over time. However, the same is not true for sporadic
bursts of replication that cannot be sustained, and which must be restarted from the same
pool of unmutated latent viruses after previous active infections die out. Our model suggests
that sporadic replication during ART is consistent with experimental data, but persistent
replication is not.

Past work has identified various factors that could affect clonal proliferation, including
exposure to antigen and different HIV-1 integration sites [56]. Here, we found that random
differences in antigenic stimulation alone are sufficient to reproduce the observed structure of
the latent reservoir. This result should not be interpreted as evidence that different integration
sites do not play a role in heterogeneous clonal expansion. Rather, our work shows that differ-
ences in antigenic stimulation can already lead to stratification in clone sizes and dynamics.
Additional factors could also further contribute to the heterogeneity of the LR. For exam-
ple, a proliferative advantage associated with specific integration sites could promote clonal
expansion, potentially extending the lifetime of the reservoir.

Our study has several limitations. In repeat simulations, we chose identical underlying
parameters, including the time for ART initiation. In future work, it would be ideal to sam-
ple the biologically plausible parameter space more deeply, giving a greater sense of the types
of variation in viral dynamics that can or cannot be captured in our model. It could also be
helpful to rigorously match simulation conditions with the details of clinical data sets to bet-
ter constrain model parameters and identify areas where the model must be extended. Our
model could also be further tuned to align with outcomes from ATI trials [85] or observed
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fluctuations in clone size [87]. Regarding differences in the timing of ART, specifically, we
find that the distribution of small clones rapidly reaches quasi-equilibrium soon after acute
infection (Fig 2). However, very large clones typically take more time to appear. Thus, we
expect viral dynamics that depend on the existence of very large clones (or a very broad dis-
tribution of clone sizes) to be most sensitive to the timing of ART initiation.

Extensions to our model could also improve its realism and fit to data. For example, we
currently model the effects of host immune responses implicitly by reducing viral infectivity.
Explicitly modeling host immunity could allow us to understand how differences in immune
responses affect the latent reservoir and its dynamics. This would be useful, for example, in
investigating unique properties of the reservoir in elite controllers [88]. In addition, some
studies have observed large latent clones that are transcriptionally active [18] and contribute
to active viral replication [21]. In our current model, we would expect these instances to be
rare. However, it may be possible to explain these cases through differences in the baseline
proliferation or death rates of individual clones, independent from antigenic stimulation, as
in other recent computational LR models [37].

Many assays have been devised to quantify the magnitude and diversity of the HIV-1 latent
reservoir, but quantifying the true size of the LR remains challenging [11]. To address this, a
hybrid approach combining stochastic modeling and statistical analysis that accounts for the
limitations of experimental noise, similar to proposals for T cell repertoire diversity estima-
tion [89], may offer an effective quantitative measurement of the LR. Our work could con-
tribute to this effort by providing a way to study small clones, which are difficult to access
experimentally, using a rigorous model constrained by experimental and clinical data.

Understanding the structure and dynamics of the HIV-1 latent reservoir could aid in the
development of HIV-1 cure strategies that aim to eliminate or permanently suppress the LR.
Our model contributes to these efforts by providing a quantitative description of the LR that
is consistent with existing data, but which also extends to “unseen” areas that are difficult
to characterize experimentally. One important finding relevant for HIV-1 cure strategies is
that large clones that are replication-competent but relatively unlikely to reactivate play a key
role in long-term persistence of the LR. In future work, our model could be used to simulate
responses to different types of therapeutic interventions, evaluating plausible paths to an
HIV-1 cure.

Methods
Our model consists of four main populations: uninfected CD4+ T cells (T), productively
infected activated CD4+ T cells (A), latently infected resting CD4+ T cells (L), and HIV-1 viri-
ons (V). All cells have finite lifespans determined by their respective death rates, and virions
are cleared at a clearance rate c. Uninfected cells are produced at a constant, fixed rate, and
virions at a rate proportional to the number of active cells. HIV-1 virions can infect target
CD4+ T cells, and upon infection, a small fraction will result in cells with defective proviruses
due to effects like large deletions or hyper-mutations. Functional proviruses will accumu-
late a mutation with probability pmut. Finally, a small fraction of infection events will result in
latently infected cells. To account for stochasticity, these processes are modeled with probabil-
ities instead of rates.

To account for the heterogeneity of the LR in our model, we define a latently infected
clone as a set of cells that have the same TCR, proviral DNA sequence, and integration site.
Individual clones will differ in how they are stimulated by antigens and their propensity for
reactivation. Due to differences in integration sites, each new clone Li is assigned a random
probability of reactivation pri . Following work describing dynamics of T cell repertoires [46],
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we describe the stimulation of each clone by antigens with fi(t) =∑m
j=1 kijaj(t) where kij is

the interaction coefficient between clone i and antigen j (when clones are cross-reactive), and
aj(t) is the overall concentration of an antigen j as a function of time. We assume that antigen
concentration decays exponentially after its introduction at random times as pathogens are
encountered and cleared, either passively or through the action of the immune response.

When a latently infected cell is stimulated to divide, there is a probability of the latent
provirus reactivating, converting the cell into an actively infected cell. In this case, the num-
ber of latent cells decreases by 1 and the number of actively infected cells increases by 1. If
no reactivation occurs, then the latently infected cell proceeds to divide in response to the
antigen interaction.

The dynamics followed by a latently infected clone Li are then driven by its basal division
rate 𝜈L, death rate 𝜇L, probability of reactivation pri , and its interaction with antigens fi(t).
These dynamics can be described by a stochastic process in which events (division, death, ...)
are selected to occur with probabilities proportional to their rates. After each event, time then
advances by a random increment that is exponentially distributed following the sum of all of
the rates [90].

While mathematically exact, this explicit simulation approach becomes extremely com-
putationally intensive when dealing with large systems (i.e., large numbers of cells or viri-
ons, in our case). However, in this limit the dynamics can be simplified. One can instead then
describe the evolution of different populations according to stochastic differential equations
(SDEs), which feature a deterministic component and a random term that adds noise to the
dynamics [90]. This noise can represent both finite population noise (i.e., the system size is
not infinite, so by chance there may be slightly more or less than the expected number of
cell deaths at some point in time, for example) and stochastic variation in the environment
(i.e., fluctuations in the concentration of antigens, in our case). As one prototypical example,
Brownian motion can be modeled with SDEs.

Taking this limit, the dynamics of each latent clone i are described by the SDE

dLi = [(1 – 2pri) fi + 𝜈L – 𝜇L]Lidt +
√
(𝜈L + fi + 𝜇L)LidWLi (1)

Here, the first term multiplying the time step dt is the deterministic term, representing
changes in latent clone size from antigenic stimulation and reactivation, homeostatic prolif-
eration, and death, respectively. The second term multiplying the Gaussian white noise, dWLi ,
quantifies the random fluctuations in these contributions to clone size fluctuations.

As mentioned above, the function fi(t) encodes the fluctuating level of antigenic stimu-
lation experienced by clone i. The stochastic process giving rise to fi(t) is a sum of Poisson-
distributed, exponentially decaying spikes. This process is not easily amenable to analytical
treatment or simulations, so following the approach of Desponds et al. [46], we assume that
correlations among clones are weak and replace the function with a simpler one with the same
temporal autocorrelation, that is an Ornstein-Uhlenbeck process:

dfi
dt
= –𝜆ffi +

√
2𝛾f𝜂i(t) . (2)

Here 𝜂i(t) is a Gaussian white noise, 𝜆f is the inverse of the characteristic lifetime of anti-
gens, and 𝛾f quantifies the strength of variability of the antigenic environment. The antigen
concentration experienced by each clone, then, stochastically fluctuates around a baseline
value over the course of the simulation.
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To model the active cells and virions we need to consider what happens during an infec-
tion event, which is illustrated in Fig 1. A virion with sequence k finds and successfully infects
a susceptible T cell at rate 𝛽. During infection, there is a probability pdef that the integrated
provirus will be defective due to large deletions, hypermutation, or other similar alterations.
For proviruses that are not defective, we model the accumulation of point mutations with
probability pmut. Finally, we consider a probability pL for the infection to be latent. Each latent
infection defines a new latent clone, since we assume that the probability that two identical
viruses integrate at the same location in two T cells with identical T cell receptors in sepa-
rate infection events is essentially zero. This clone could share the same sequence as another
latently infected clone but have a very different integration site and, therefore, a different
probability of reactivation.

In the same limit as above, the dynamics governing actively infected cells and virions are
defined by the following system of SDEs:

[dAk

dVk
] = [∑

n
i=1 fipriLi + (1 – pdef) (1 – pmut) (1 – pL)𝛽TVk – 𝜇AAk

𝛾Ak – 𝛽TVk – cVk
]dt +DdW , (3)

DDT = B , (4)

B =
⎡⎢⎢⎢⎢⎢⎣

n
∑
i=1

fipriLi + (1 – pdef) (1 – pmut) (1 – pL)𝛽TVk + 𝜇AAk – (1 – pdef) (1 – pmut) (1 – pL)𝛽TVk

– (1 – pdef) (1 – pmut) (1 – pL)𝛽TVk 𝛾Ak + 𝛽TVk + cVk

⎤⎥⎥⎥⎥⎥⎦
.

(5)

In other words, change in the number of actively infected cells with sequence k is driven
by: 1) latent reactivation, 2) new infection events that do not result in a defective virus or
latent infection (mutants have a different sequence k′, and thus they also do not contribute
here), and 3) the death of actively infected cells. Virions are produced at what we assume for
simplicity to be a constant rate from actively infected cells, and they can be lost either from
clearance/degradation by the host or through new infection events. The noise term D couples
the fluctuations of the virions and actively infected cells.

Finally, the susceptible T cells in our model follow the simple stochastic differential
equation

dT = 𝜆Tdt – 𝛽TVdt – 𝜇TTdt +
√
(𝜆T + 𝛽TV + 𝜇TT)dWT . (6)

That is, new susceptible T cells are produced at a constant rate by the thymus, and they are
lost by either infection (in which case they become actively infected cells) or death.

Tuning the reactivation probability distribution
We explored various values of 𝜇, the average of the logarithm of probabilities of reactivation.
We then adjusted 𝜎, the spread of the logarithm of probabilities of reactivation to align with
the multiphasic decay patterns observed in viral load, HIV-1 DNA, and IUPM measurements.
Generally, as 𝜇 increases, the number of clones with high probabilities of reactivation and
smaller sizes increases. This leads to a sharper drop in HIV-1 DNA post ART and a shorter
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time for the reservoir to become oligo-/monoclonal. Thus, the values of 𝜇 and 𝜎 are con-
strained, if not completely determined, by existing clinical data. To illustrate our findings, we
used a log-normal distribution with 𝜇 = –1 and 𝜎 = 0.8. Experimental measurements of the
distribution of probabilities of reactivation would be of great interest, allowing us to more
precisely model long-term behavior of the reservoir.

Modeling seeding of the reservoir and ART initiation
To simulate the initial establishment of the reservoir, we first calibrated the parameter 𝛽 to
capture the observed rise in viral load in the early stages of infection [91,92]. Subsequently,
after a month, we decreased the value of 𝛽 to emulate the immune system’s suppression of
viral replication, while maintaining fixed conditions for clonal proliferation prior to ART
initiation. This adjusted 𝛽 value determines the viral load set point in chronic infection, and
these conditions remain constant until the initiation of ART, which in our primary example
simulation occurs 60 months post-infection.

Upon ART initiation, the impact of treatment is simulated by modifying the value of 𝛽.
Specifically, this adjustment aims to align the initial decline in viral load in simulations with
the decay of HIV-1 RNA in blood observed in clinical data during the first two weeks fol-
lowing ART initiation [38]. Given that the number of virions we observe is proportional to
the number of active cells and to the viral load, we follow the methodology outlined in Hill
et al. [44] to estimate viral load, where the number of actively infected cells is divided by
1680. This value is the geometric mean of different estimates from clinical data for the cell
to virus ratio, obtained by balancing viral production and decay at equilibrium with an esti-
mate that virus particles in the lymphoid tissue outnumber the ones in circulation 100-fold.
Throughout the pre-ART and ART periods, all other parameters are held constant and remain
unchanged.

To replicate scenarios involving elite control or early ART initiation, we introduced a rapid
decline in infectivity (𝛽) shortly after the initial HIV-1 infection. Rather than waiting for
60 months to commence ART, we transitioned to the 𝛽ART value after only half a month of
infection.

Metrics for quantifying the HIV-1 latent reservoir and infection
We used infectious units per million (IUPM) to quantify the abundance of replication-
competent HIV-1, which is measured in viral outgrowth assays. In our simulations, we used
the product of each non-defective clone’s size and its probability of reactivation, summed over
all clones, as a proxy for IUPM. This quantity should indeed be proportional to the probability
that a latent clone is sampled and successfully reactivates when stimulated, which is analogous
to IUPM.

We quantified HIV-1 DNA per 106 peripheral blood mononuclear cells (PBMCs) by divid-
ing the total number of latent cells by the total number of T cells and multiplying the result
by 106.

As described above, we quantified HIV-1 RNA in blood in our simulations by dividing the
current number of actively infected cells by 1680, the geometric mean of different estimates
for the cell to virus ratio, obtained by balancing viral production and decay at equilibrium
with an estimate that virus particles in the lymphoid tissue outnumber the ones in circulation
100-fold [44].
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Computational implementation
We used the Euler-Maruyama method to simulate the dynamics of our system of stochastic
differential equations (SDEs) [93]. This numerical technique allows us to approximate the
deterministic component of the SDEs using the Euler method at each time step. To incorpo-
rate the stochastic component, a random term is introduced, generated by a normally dis-
tributed random number with a mean of zero. The standard deviation of this random term
was determined by the coefficients present in the SDEs.

Due to the complexity of our model, it was not computationally feasible to simulate the full
model using a realistic number of CD4+ T cells, roughly 1.75× 1011 for a typical adult [94].
We therefore used two complementary approaches to perform our simulations. First, we
simulated the full model at smaller system sizes (i.e., numbers of CD4+ T cells). Second, we
developed and simulated simplified models that could readily scale to larger system sizes. As
described in sections below, we carefully compared the output of both the full and simplified
models for smaller system sizes to ensure that the simplified models accurately captured LR
dynamics from the full model.

Here we refer to the order of magnitude of a simulation as the total number of CD4+ T
cells included in the simulation. For example, we refer to a simulation including a realis-
tic number of CD4+ T cells for an adult, around 1.75× 1011, as a simulation at order 11. The
figures presented in the full simulation were based on an order of magnitude of 9, that is, a
total number of CD4+ T cells of 1.75× 107. In these simulations, the thymic production of T
cells, viral infectivity, and metrics for quantifying HIV-1 presence and the LR are scaled in
proportion to the total number of T cells in the simulation. For example, if the total number
of CD4+ T cells decreases by an order of magnitude, the infectivity 𝛽 increases an order of
magnitude such that the product 𝛽T remains the same.

Simulation of analytical treatment interruption
We performed initial simulations to mimic analytical treatment interruption (ATI) studies,
which stop ART treatment after a certain period of time. Here, we defined rebound as the
point where viral load exceeds the detectable threshold of 200 RNA copies per mL. We cal-
culated the rebound time by taking the difference (in days) between when this threshold was
reached and when ART was interrupted. In our simulations, we mimicked ART interruption
by changing the infectivity parameter 𝛽 from its value during ART, 𝛽ART, to its value dur-
ing chronic infection, 𝛽AI. However, we note that our model parameters were not adjusted to
reproduce average statistics from ATI trials. In future work, such data could be used to further
refine the model.

Supporting information
S1 Table. Table of parameters used in the model. The infectivity parameters are listed for an
order 11 simulation, but should be increased by one order of magnitude for every one order
decrease in the simulation.
(PDF)

S1 Fig. Viral kinetics in a typical simulation at order 10. Dynamics of virions, latently
infected cells, and actively infected cells for the first ten years of infection in an order 10 simu-
lation. Viral infectivity drops one month after infection to mimic partial immune control, and
ART begins five years after infection.
(EPS)
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S2 Fig. Relative contributions to actively infected cells. In our model, two processes can
create actively infected cells: new infection events and the reactivation of latent viruses. Here
we show the fraction that each process contributes to the production of actively infected cells
over the course of a typical simulation. Before ART, new infection events are by far the dom-
inant contribution to active infections, except for a short time after acute infection when
infectivity drops significantly, modeling partial immune control of viral replication. Once
ART begins, most actively infected cells arise through the reactivation of latents rather than
new infections. This means that viral replication during ART occurs in self-limiting bursts:
reactivation events produce less than one new active infection, on average.
(EPS)

S3 Fig. Distribution of latent clone reactivation probabilities pre- and post-ART. Before
ART, the distribution of probabilities of reactivation for clones in the latent reservoir mostly
follows the underlying probability distribution used in our simulations (Methods), indicat-
ing little selection for or against reactivation during this time. After ART, the distribution
progressively shifts towards smaller probabilities of reactivation as more reactive clones are
purged from the reservoir.
(TIF)

S4 Fig. Distribution of clones in the HIV-1 latent reservoir in a typical simulation. Before
ART, clones are broadly distributed in size and reactivation probability. After ART, small
clones lost to stochastic fluctuations are no longer completely replenished through new infec-
tions. Clones with higher probabilities of reactivation also preferentially eliminated.
(TIF)

S5 Fig. Distribution of clone ages and sizes in a typical simulation. (A) Distribution of ages
(in months) for large clones with low probabilities of reactivation (n > 100 cells and pr < 0.01)
and small clones with high probabilities of reactivation (n < 100 cells and pr > 0.01) in one
simulation. (B) Distribution of clone sizes from the start of ART until 3 months after ART
initiation, showing the rapid elimination of small clones after ART begins.
(TIF)

S6 Fig. Fold change in clone size for large clones after ART. Here we show the distribu-
tion of ratios of clone size at two and four years after ART initiation and clone size at one year
after ART initiation, specifically for large clones (n > 1000 at one year after ART). On average,
clones decrease slowly in size over time.
(TIF)

S7 Fig. Distribution of latent clone ages pre- and post-ART. Before ART begins, most
clones are young, though there is also a significant spike in the distribution corresponding to
clones produced during the early, acute phase of infection. After ART, the clone age distri-
bution shifts toward larger values, with substantial contributions from clones deposited very
early in infection.
(TIF)

S8 Fig. Contribution of different processes to latent cell proliferation and death. (A) Rela-
tive contribution of antigenic stimulation, homeostatic proliferation, and new infection events
towards LR growth. New infection events are only dominant in the early, acute phase of infec-
tion. (B) Relative contribution of reactivation and homeostatic death towards LR decay.
While reactivation shapes the long-term composition of the LR (S3 Fig), homeostatic death is
largely responsible for the reduction in the overall size of the reservoir.
(EPS)

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013433 September 15, 2025 18/ 24

https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013433.s003
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013433.s004
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013433.s005
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013433.s006
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013433.s007
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013433.s008
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013433.s009
https://doi.org/10.1371/journal.pcbi.1013433


ID: pcbi.1013433 — 2025/9/15 — page 19 — #19

PLOS COMPUTATIONAL BIOLOGY Clonal heterogeneity and antigenic stimulation shape HIV latent reservoir persistence

S9 Fig. Distribution of clone sizes and post-ART viral kinetics in a typical simulation with
a constant probability of reactivation for all clones. The inducible reservoir decays rapidly
in a simulation with the probability of reactivation set to 1% for all clones.
(EPS)

S10 Fig. Distribution of clone sizes and post-ART viral kinetics in a typical simulation
with a constant level of antigenic stimulation for all clones. Compared to standard simula-
tions, the maximum clone size is limited and the inducible reservoir decays more rapidly.
(EPS)

S11 Fig. Time to rebound in example simulations of ART interruption. We performed
exploratory simulations mimicking analytical treatment interruption (ATI)—a process in
which individuals temporarily cease ART in a controlled setting—by restoring the infectiv-
ity parameter 𝛽 to its setpoint value after some time on ART. We defined time to rebound as
the first time with viral load >200 copies/mL. (A) In standard simulations, the typical time to
rebound after five years on ART was 10 days. (B) For early ART simulations, time to rebound
could be much more variable due to the small size of the reservoir. Thus, we simulated ATI at
one year post-ART in the early ART case to obtain a tighter distribution in times to rebound.
Here, the mean time to rebound for early ART was 26 days, substantially longer than the time
to rebound in the standard simulations despite a shorter time on ART.
(TIF)

S12 Fig. Contributions to reactivation from latent clones of different sizes during ART.
Small to medium-sized clones (roughly between 10 and 1000 cells) contribute more to reac-
tivation during ART than larger ones, despite their longer persistence.
(EPS)

S13 Fig. Comparison of decays between full simulation and simplified model. Decays of
the total number of latently infected cells as well as the rate of new latent clones being pro-
duced. (A), Start of ART. (B), First year on ART.
(EPS)
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