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Abstract

Agent-based models (ABMs) have become essential tools for simulating complex bio-
logical, ecological, and social systems where emergent behaviors arise from the inter-
actions among individual agents. Quantifying uncertainty through global sensitivity anal-
ysis is crucial for assessing the robustness and reliability of ABM predictions. However,
most global sensitivity methods demand substantial computational resources, making
them impractical for highly complex models. Here, we introduce SMoRe GloS (Surrogate
Modeling for Recapitulating Global Sensitivity), a novel, computationally efficient method
for performing global sensitivity analysis of ABMs. By leveraging explicitly formulated sur-
rogate models, SMoRe GloS allows for comprehensive parameter space exploration and
uncertainty quantification without sacrificing accuracy. We demonstrate our method’s
flexibility by applying it to two biological ABMs: a simple 2D in vitro cell proliferation
model and a complex 3D vascular tumor growth model. Our results show that SMoRe
GloS is compatible with simpler methods like the Morris one-at-a-time method, and more
computationally intensive variance-based methods like eFAST. SMoRe GloS accurately
recovered global sensitivity indices in each case while achieving substantial speedups,
completing analyses in minutes. In contrast, direct implementation of eFAST amounted
to several days of CPU time for the complex ABM. Remarkably, our method also esti-
mates sensitivities for ABM parameters representing processes not explicitly included

in the surrogate model, further enhancing its utility. By making global sensitivity analysis
feasible for computationally expensive models, SMoRe GloS opens up new opportunities
for uncertainty quantification in complex systems, allowing for more in depth exploration
of model behavior, thereby increasing confidence in model predictions.
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Author summary

Of the variety of computationally complex modeling approaches that exist, agent-based
models (ABMs) have emerged as a powerful tool for understanding the interconnected
molecular, cellular, and microenvironmental dynamics in health and disease. ABMs are
well-suited to capture connectivity and heterogeneity across multiple time and spatial
scales in biological and social systems. However, their computational demands escalate
and become prohibitive when simulating millions of agents. Fast and accurate meth-
ods for global sensitivity analysis and uncertainty quantification are crucial for making
ABMs more predictive and reliable. Our approach, Global Sensitivity using Surrogate
Models, SMoRe GloS, provides a much-needed flexible, accurate, and efficient platform
for exploring parameter uncertainty and sensitivity in complex, multiscale ABM:s.

Introduction

Scientists today are generating abundant data and information as they seek to improve our
comprehension of the world around us, revealing the inherent complexity of real-world sys-
tems. Agent-based models (ABMs) have emerged as a significant tool for understanding such
complex systems, being particularly well-suited to capturing emergent phenomena [1-4].
However, ABMs present significant challenges. The computational cost of running ABMs
can become prohibitive when simulating millions of agents [5,6] and the absence of closed-
form expressions linking ABM output with input parameters makes it difficult to assess the
robustness of results to parameter perturbations [7]. Furthermore, each additional parame-
ter introduces additional uncertainty into the model input space. This uncertainty in model
inputs will necessarily propagate to model outputs, raising questions about model accuracy
and reliability.

Parameter sensitivity analysis is a widely used technique to quantify uncertainty in model
outputs as a function of uncertainty in the inputs, helping us better understand the limita-
tions of the model [8]. This type of analysis identifies which input parameters - and, by exten-
sion, the real-world processes they represent — are the most critical determinants of an out-
put of interest [9]. Several methods have been developed for sensitivity analysis in parametric
models, including variance-based methods, moment-independent techniques, Monte Carlo
methods, and methods using spectral analysis (for recent reviews, see [10,11]).

Simple global sensitivity analysis methods include one-at-a-time methods like the Morris
method (MOAT) [12], which is computationally efficient but provides only limited informa-
tion and is best suited for factor prioritization or preliminary screening of model parameters.
For more robust insights, variance-based methods such as the extended Fourier Amplitude
Sensitivity Test (eFAST) or Sobol indices are generally preferred. These methods are capable
of both factor prioritization and factor fixing but come with a much higher computational
cost [9,13,14]. Regression-based methods, like Partial Rank Correlation Coeflicient (PRCC),
may be employed for factor mapping, which aims to identify important inputs within spe-
cific output domains. These methods also have high computational costs [10,15]. Aside from
MOAT, the computational expense of simulating complex models remains a major challenge
when applying global sensitivity methods to ABMs.

One approach to addressing some of these challenges is to use surrogate models, also
known as metamodels or response surfaces. These computationally efficient surrogate mod-
els capture the dominant features of complex systems [16], such as ABMs, without the pro-
hibitive computational costs [17-20]. Notably, machine learning (ML) surrogates are gaining
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popularity [21]. However, they require extensive ABM simulations for training and often offer
limited biological interpretability [22].

To mitigate these issues, we have proposed employing explicitly formulated surrogate mod-
els for approximating ABM behavior and parameterizing computationally complex ABMs
with multi-dimensional data [5,6]. This work presents a novel application of this technique to
address the critical lack of fast and accurate methods for global sensitivity analysis of large-
scale, complex ABMs. Specifically, we develop a new, computationally efficient method,
Surrogate Modeling for Recapitulating Global Sensitivity (SMoRe GloS), that uses explic-
itly formulated surrogate models to infer the global sensitivity of input parameters in ABMs
describing complex real-world systems. Our method is agnostic to any specific method for
global sensitivity analysis and is easily adapted per user specification. We demonstrate our
approach by applying SMoRe GloS to two spatio-temporally resolved ABMs: a 2D in vitro
cell proliferation model and a 3D vascular tumor growth model. The remainder of this paper
outlines how SMoRe GloS computes global sensitivity indices using both efficient and ver-
satile methods, compares these results to direct sensitivity computations, and highlights the
computational advantages of our approach.

Methods
SMoRe GloS: Surrogate Modeling for Recapitulating Global Sensitivity

Our new method for global analysis of computationally complex models, SMoRe GloS, is
implemented in five steps: (1) Generate ABM output; (2) Formulate candidate surrogate mod-
els; (3) Select a surrogate model; (4) Infer relationship between surrogate model and ABM
parameters; and (5) Use the relationship between surrogate model and ABM parameters to
infer global sensitivity of ABM parameters. These are described in further detail below. See SI
for details on how we implemented each of these case studies.

For convenience, we introduce the following notation. We will refer to the ABM parame-
ters included in the global sensitivity analysis as papm = (PaBMm,1> > PaBMm ) @ € R™, together
with a probability distribution p on Q, will denote the minimal sample space of papm. Sur-
rogate model parameters will be denoted psm = (Psy,1>++ Psm,n)- Finally, we will refer to the
surrogate model as SM.

Step 1: Generate ABM output

Sample ABM parameter values over Q, making sure to include points along the bound-
ary of Q, together with some interior points. Aim for good coverage of Q, bearing in mind
the increased computational expense as more parameter values are selected. For this, choose
a sampling method appropriate to the model dimensionality and available computational
resources—for example, a regular grid, Latin Hypercube Sampling (LHS), or a low-discrepancy
sequence such as Sobol sampling-considering each has advantages and disadvantages [23,24].
Next, generate ABM output at each sampled parameter vector, making sure to run multiple
simulations in order to get meaningful averaged behavior.

Step 2: Formulate candidate surrogate models

Formulate (several) candidate SMs informed by the complex system being studied, the
mechanisms encoded within the ABM, the ABM output generated in Step 1, and most impor-
tantly, the output metric of interest in which we want to quantify the relative influence of each
ABM parameter. More details on formulating explicit SMs are available here: [5,6]. Ideally,
arrive at several candidate SMs.

Step 3: Select a surrogate model

Select the best candidate from the various SMs formulated in Step 2 as follows. Consider-

ing each SM in turn, begin by fitting the SM to ABM output generated at each sampled ABM
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parameter vector (Step 1). In this process, make sure to collect information on goodness-of-fit
of, and uncertainty in, the fitted SM parameters (discussed below). For the given SM, aggre-
gate this information across all ABM output. Repeat this process for every candidate SM.

Goodness-of-fit criteria: Fit the SM to ABM output by maximum likelihood estimation
(MLE) [25], weighted least squares optimization [26], or other method of parameter estima-
tion. Record the quality of the fit.

Uncertainty in SM parameters: Quantify the uncertainty in SM parameters by computing
confidence bounds when fitting the SM parameters to ABM output generated from each sam-
pled ABM parameter vector. These confidence bounds will be used later, in Step 4. Several
methods may be employed for uncertainty quantification (see for instance [16]).

Also quantify how well constrained SM parameters are by noting the span of their confi-
dence bounds. For this, we introduce a metric called the identifiability index, which is com-
puted for each SM parameter and reflects whether uncertainty analysis yields upper and/or
lower bounds within physically or biologically relevant ranges. Specifically, a parameter
receives an identifiability index of 2 if both bounds fall within the relevant range, 1 if only one
bound does, and 0 if neither bound is informative. For example, in this work, we use profile
likelihoods to assess uncertainty in parameter estimates. A parameter is assigned an index
of 0 for a flat profile, 1 for an L-shaped profile, and 2 for a U-shaped profile in the vicinity of
its best-fit value (Fig A in S1 Text). For further implementation details, see the SI. In SMoRe
GloS, we compute the identifiability index for each SM parameter at every sampled point in
ABM parameter space. A high frequency of 2’s indicates that the parameter is consistently
well-constrained, whereas a predominance of 0’s suggests unidentifiability, potentially due to
an over-parameterized SM.

SM Selection: Select the best SM by considering both the goodness-of-fit and the identifi-
ability index. The goal is to choose an SM that both minimizes residual sum of squares (RSS)
scores across ABM output, and has well-constrained SM parameters, as evidenced by a high
frequency of 2’s in their identifiability indices. If selecting between SMs with different num-
bers of free parameters, model selection theory should be applied, for instance, by computing
an Information Criterion [27] (see SI for details).

Step 4: Infer relationship between SM and ABM parameters

Quantify the functional relationship between ABM parameters and SM parameters as fol-
lows (Fig 1 top row). View each SM parameter as an unknown function - or hypersurface - of
the ABM parameters. The (95%) confidence bounds on SM parameters inferred in Step 3 then
correspond to discrete points on upper and lower (95%) confidence hypersurfaces ‘above’ the
given ABM parameter vector, yielding a range of values for all SM parameters correspond-
ing to each ABM parameter vector. These ranges are usually an interval for each SM param-
eter. The Cartesian product of these intervals — a hyperrectangle — defines the region of SM
parameter space that best fits ABM output at that ABM parameter vector. These Cartesian
products quantify the ‘stiff and sloppy’ nature of SM parameters [28], providing informa-
tion about the directions of SM parameter space that produce small (sloppy) or large (stiff)
changes in model behavior. In particular, as the ABM parameter vector is varied, the defor-
mations of these hyperrectangles give rise to variations in ‘stiffness and sloppiness, which are
used to determine ABM parameter sensitivities in Step 5. For more details on how to generate
SM parameter hypersurfaces, refer to [5].

Step 5: Use relationship between surrogate model and ABM parameters to infer global
sensitivity of ABM parameters

Select an output metric of interest, say f, on the ABM and a method for computing the
global sensitivity of f to changes in ABM parameters. f is a real-valued function on ABM
parameter space, that is, f: Q — R. The global sensitivity, GS, is then a function of f and the
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Fig 1. Schematic representation of the SMoRe GloS framework for sensitivity analysis of ABMs. For simplicity, two ABM parameters,
Ay and A, and one surrogate model (SM) parameter, S, are depicted. The first row shows Steps 1-4 of SMoRe GloS, where S; is con-
strained as a function of Aj and A;. The black dots represent sampled ABM parameters, the gray bars indicate uncertainty in §; and the
blue planes represent the reconstructed parameter surfaces for S;. The salmon region denotes the interior of the ABM parameter space,
defined by the convex hull of the sampled points. The second row illustrates Step 5, where any global sensitivity method can be applied. The
white dots represent points in ABM parameter space sampled for computing global sensitivity, and the dashed black lines show the corre-
sponding ranges of S;. The third row illustrates the implementation of the MOAT method in this framework. Points pg and p; are examples
of white dots from the second row that represent points in ABM parameter space used to compute an elementary effect in A;. These points
correspond to regions Ry and R; in SM parameter space. The time series curves are the trajectories sampled from these regions. The purple
and yellow distributions denote the output metric of interest calculated from each trajectory. The elementary effect is approximated by the
difference between the means of these distributions.

https://doi.org/10.1371/journal.pcbi.1

013427.9001

probability distribution on ABM parameter space, p. Denote by GS(f(-); p) € R™ the sen-
sitivity of f to each of the m varied ABM parameters. The fundamental concept of SMoRe
GloS is that an SM is used to estimate f in computing GS (Fig 1 middle row). Specifically, the

value of f at an ABM parameter vector, papm, is approximated by sampling uniformly over the
hyperrectangle in SM parameter space in Step 4 above (Fig 1 bottom row). That is,
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f(Pasm) ~ f J(Bsv)du (Pswis Pasm) » (1)

Qsm (Pasm)

where Qg (papm ) is the hyperrectangle in SM parameter space corresponding to pap, f is
the functional on SM parameter space to match f, and (-, papm) is the uniform probability
distribution on Qs (papm ). For notational simplicity, we will use f for fand u for (-, papm)
going forward. Putting this together with global sensitivity yields the following:

Gs(fp)~Gs( [ fEsodus ). @
Qsm(*)
Eq 2 is independent of the GSA method used.

SMoRe GloS case study implementation

We illustrate SMoRe GloS with two ABMs: one describing an in vitro cell proliferation assay
in 2-dimensions that can be simulated easily and quickly; and one describing vascular tumor
growth in 3-dimensions that is computationally complex and more expensive to simulate.
Further details, including how SMoRe GloS was implemented for each case, are provided
below and in the SL
Global Sensitivity Analysis Methods We demonstrate how SMoRe GloS works using two
global sensitivity methods: the one-step-at-a-time Morris method (MOAT), and the variance
decomposition-based method, eFAST (extended Fourier amplitude sensitivity test). MOAT
perturbs each parameter individually to compute its global sensitivity measure [12,29]. This
method has a low computational cost, and its output is in the same units as that of the met-
ric, making the sensitivity indices readily interpretable. Its main limitations are its inabil-
ity to capture higher-order interactions between model parameters and the fact that it does
not yield a definitive boundary separating the important parameters from less influential
ones. eFAST estimates the variance of the chosen model output, and the contribution of input
parameters as well as their interactions to this variance. The algorithm then separates the out-
put variance into the fraction of the variance that can be explained by variation in each input
parameter. The result of this analysis is the main effect and total effect sensitivity indices [13].
eFAST can efficiently handle models with nonlinear responses and complex interactions and
is model-independent. However, it is computationally expensive.
Simple 2D In Vitro Cell Proliferation ABM We first test our new method using the easy-to-
simulate ABM presented in [6,30], which describes a 2-dimensional on lattice birth-death-
migration model of cell proliferation. This ABM has seven input parameters summarized
in Table 1, and is described in further detail in the SI. We infer the global sensitivity of the
total cell count at the end of the simulation (¢ = 3 days) with respect to these parameters. To
learn the mapping between the ABM and SM parameters, we followed the same steps as pre-
viously [6]. In particular, we simulate through Day 3 and record ABM output at set times to
match experimental data [31].

Based on the approach in [6], we chose the following ODE formulation for the SM, with
the numbers of cells in G1/S phase (N;5) and G2/M phase (N,,;) as model variables.

dNis Nis+ Noy
= —ﬂch+C((;(2—7)N 5 (3)
dt ! K¢ M
dN.
diM = AcNis - acNoy. 4)
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Table 1. List of ABM and surrogate model (SM) parameters.
2D In Vitro Cell Proliferation Model

ABM Parameters SM Parameters (Eqs (3)-(4))
Name Meaning Name Meaning
Ka Carrying capacity Ac G1/S - G2/M transition rate
Tcon Contact inhibition ac G2/M — G1/S transition rate
s Cell migration rate K¢ Carrying capacity
PG1-S G1 — S transition rate
Ps-G2 S — G2 transition rate
PG2-M G2 — M transition rate
PM—Gl1 M — G1 transition rate
3D Vascular Tumor Growth Model
ABM Parameters SM Parameters (Eqs (5)-(4))
Name Meaning Name Meaning
Pdiv Progenitor proliferation rate s Exponential growth rate
Sdiv Stem cell proliferation rate r Logistic growth rate
Tmig Tip cell migration rate K Logistic carrying capacity
Plim Progenitor division limit o vB growth rate
I vB death rate
v vB exponent

https://doi.org/10.1371/journal.pchi.1013427.t001

For more details on how this SM was derived, see [6]. SM parameters are summarized in
Table 1.
Complex 3D Vascular Tumor Growth ABM We next test our method on the computation-
ally complex ABM of vascular tumor growth in 3 dimensions presented in [32]. This on-
lattice ABM consists of two modules that communicate with each other: a cancer cell module,
governing tumor cell proliferation, migration, and death, and a vascular module, governing
vascular network growth and remodeling. The ABM has ~ 30 input parameters of which four
were used in this analysis. These are summarized in Table 1. The ABM is described in further
detail in the SI. We infer the global sensitivity of the four ABM parameters with respect to
three output metrics: (1) final tumor volume, (2) area under the tumor volume time-course,
and (3) time to half-maximum tumor volume.

We chose an ODE formulation for the SM, with the total number of tumor cells (N) as the
model variable. Three possible formulations were considered for the SM since each of these is
a well-established model for tumor growth [33,34]:

N
Exponential Growth : i—t = AN, (5)
dN N
Logistic Growth : — = rN|(1-—], 6
ogistic Gro I . ( K) (6)
dN 1
von Bertalanffy Growth : il aN® - BN, 6=1--, v>1. (7)
v

SM parameters appearing in the above equations are summarized in Table 1.

Results
Global sensitivity analysis of 2D in vitro cell proliferation ABM

We first implement Steps 1 and 2 of SMoRe GloS, generating output at sampled points in
parameter space for the easy-to-run 2D in vitro cell proliferation ABM. Fig 2A presents a sto-
ryboard showing the spatial and cell cycle phase distributions of cells at various time points
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Fig 2. SMoRe GloS recapitulates global sensitivity of cell culture ABM. A) ABM storyboard showing cells by location and cell-cycle phase. B) Time series of the G1/S
and G2/M cell-cycle phases. C) ABM parameters included in the sensitivity analysis. The yellow box highlights local spatial parameters that are not explicitly captured by
the surrogate model (SM). D) RSS distribution of SM fits to all ABM parameter vectors. Orange line indicates the log-normal distribution that best fits this distribution.
E) Identifiability donuts of SM parameters where color indicates the identifiability index, and area the proportion of ABM parameter vectors for which the given SM
parameter had that index. F) MOAT sensitivity analysis results using the ABM (Direct, black bars) and SMoRe GloS$ (Indirect, blue bars), ranked by decreasing sensitivity
using the direct method. Spatial parameters not explicitly captured by the SM are highlighted in yellow.

https://doi.org/10.1371/journal.pcbi.1013427.9g002

during a typical simulation from Day 0 to Day 3. Fig 2B shows time series data of aggregate
cell numbers in the G1/S and G2/M phases of the cell cycle from a typical ABM simulation.
These data highlight the accumulation of cells in G1/S as the total cell count approaches the
carrying capacity and available space is exhausted in the virtual cell culture. ABM parame-
ters, together with the biological processes they regulate, are illustrated in Fig 2C. Parameters
that represent spatial processes are highlighted in yellow and include s, the rate of cell move-
ment, and T, the contact inhibition parameter. We note that the surrogate model chosen
for this ABM, specified in Eqs (3) and (4), is independent of local spatial considerations and,
therefore, does not explicitly incorporate the processes represented by these parameters.
Surrogate model accurately matches ABM output with minimal uncertainty in param-
eter values. Next, following Step 3 of SMoRe GloS, we calibrate the surrogate model to the
ABM output and calculate the residual sum of squares (RSS) to assess the goodness-of-fit. The
distribution of RSS values, summarized in Fig 2D, appears log-normal with a low mean (~ 1),
indicating excellent fit quality. We also apply the profile-likelihood method, as described
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in Step 3, to quantify uncertainty in the surrogate model parameter estimates. Sample pro-
file likelihood curves for each parameter are shown in Fig B in S1 Text. Across all ABM out-
puts, A¢ (G1/S to G2/M transition rate) and ¢ (G2/M to G1/S transition rate) have well-
constrained 95% upper and lower bounds and 100% of their identifiability indices equal to 2
(Fig 2E, first two donuts). K¢ (carrying capacity) is well-constrained in the majority of cases.
In a smaller number of instances, it is identifiable from only one side, resulting in identifiabil-
ity indices of 1 (Fig 2E, last donut).

SMoRe GloS accurately computes global sensitivity indices of parameters in the 2D in
vitro cell proliferation ABM, including those not explicitly represented in the surrogate
model. Finally, we implement Steps 4 and 5 of SMoRe GloS to infer the global sensitivity
of ABM parameters, using two distinct methods: MOAT and eFAST. In each case, we also
directly infer the sensitivities of ABM parameters and use these results to evaluate the efficacy
of SMoRe GloS. We present below the results for MOAT. The results for eFAST are similar and
can be found in Fig C in S1 Text. We take as our output metric the number of cells in culture
at the end of the simulated experiment. Fig 2F compares the global sensitivity of ABM param-
eters inferred directly (black bars) and indirectly using SMoRe GloS (blue bars) with MOAT.
Both approaches produce similar rankings for parameter importance. The direct method indi-
cates higher sensitivity for carrying capacity compared to contact inhibition, although both
are deemed highly sensitive by the indirect method. Both methods agree on the insensitivity
of transition rates between cell cycle phases and the intermediate sensitivity of cell migration
rates. Moreover, relative sensitivities of ABM parameters inferred directly and indirectly are
also in excellent agreement (see Fig D in S1 Text).

These results showcase the capability of SMoRe GloS to infer the sensitivity of ABM
parameters. Remarkably, this includes parameters representing local spatial processes (high-
lighted in yellow), such as cell movement and contact inhibition, which are beyond the scope
of the surrogate model. It also extends to processes not explicitly included in the surrogate
model, such as the transition rates from G1 to S and G2 to M.

Global sensitivity vascular tumor growth ABM

Implementing Step 1 of SMoRe GloS for this case study, we generate output for the computa-
tionally complex ABM that models three-dimensional vascular tumor growth. Fig 3A presents
a storyboard illustrating the growth of a tumor and its associated vasculature at various time
points from a typical simulation. ABM parameters, together with the biological processes

they regulate, are depicted in Fig 3B. The rate of tip cell migration parameter ;g represents

a spatial process, and is highlighted in yellow. Following Step 2 of SMoRe GloS, three can-
didate surrogate models, specified in Egs (5), (6) and (7)), are chosen for this ABM. Impor-
tantly, the parameter rp;g is known to have little effect on tumor growth in this model. We
have included it here to assess the ability of SMoRe GloS to perform factor elimination, i.e.,
identify parameters that have little effect on the model metric.

Surrogate model selection for the computationally complex ABM is guided by
goodness-of-fit and identifiability indices. Fig 3C shows average cell number time courses
(dashed lines), together with standard deviation (gray shaded area), from ABM simulations
generated at a representative set of input parameters. Following Step 3 of SMoRe GloS, this
figure also includes fits of the three candidate SMs to the ABM output: exponential growth
(blue curve, Eq (5)); logistic growth (red curve, Eq (6)); and von Bertalanfty growth (yellow
curve, Eq (7)). Based on visual inspection, the von Bertalanfty model appears to align most
closely with the ABM output, whereas the exponential model appears to align least well. This
observation is consistent with the quantitative assessment of fit quality based on RSS. The von
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Fig 3. Surrogate model (SM) selection for the 3D vascular tumor growth ABM. A) ABM storyboard showing vascular tumor growth. B) ABM parameters included
in the sensitivity analysis. The yellow box highlights local spatial parameters that are not explicitly captured by the surrogate models (SMs). C) Fits of the SMs to ABM
output at a representative ABM parameter vector. D) Histograms of log(RSS) values for each SM across all sampled ABM parameter vectors. E) Comparison of Akaike
Information Criterion (AIC)-based relative log-likelihoods between the three SMs. Individual ABM parameter vectors are represented as darker colored dots. The x-axis
shows the relative log-likelihood of the exponential model, and the y-axis shows the relative log-likelihood of the logistic model, both compared to the von Bertalanffy
model. Positive (resp. negative) values indicate that von Bertalanfty is more (resp. less) likely than the alternative SM. The background is color-coded by the SM selected
by AIC: yellow indicates preference for von Bertalanfty, red for logistic, and blue for exponential. The ABM parameter vector corresponding to panel C) is highlighted
with a black circle. Dashed lines indicate where the log scales change sign. F-H) Identifiability donuts of SM parameters where color indicates the identifiability index,
and area the proportion of ABM parameter vectors for which the given SM parameter had that index.

https://doi.org/10.1371/journal.pcbi.1013427.9g003

Bertalanffy model provides the best fit overall, as evidenced by the high frequency of low RSS
values and low variance in Fig 3D (yellow histogram), while the exponential model yields the
least accurate fits (blue histogram).

The above results are not surprising, given that the exponential model has one free param-
eter, the logistic model has two, and the von Bertalanffy model has three. To facilitate model
selection, the Akaike Information Criterion (AIC) is used to meaningfully compare the fits
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of the three surrogate models to ABM output, with results summarized in Fig 3E. This figure
plots the relative log-likelihood of the von Bertalanffy model compared to the exponential (x-
axis) and logistic (y-axis) models. The right half of the figure indicates when von Bertalanffy
outperforms the exponential model, while the top half indicates when von Bertalanfty outper-
forms the logistic model. In particular, the yellow square represents all cases where von Berta-
lanfly is superior to both the exponential and logistic models (84% of cases). The red square
and triangle represent all cases where logistic is superior to both von Bertalanffy and expo-
nential models (16% of cases). In no instance is the exponential model superior to both von
Bertalanffy and logistic models (blue square and triangle). The labeled dot corresponds to the
ABM parameters whose trajectories are shown in panel C.

Continuing to implement Step 3 of SMoRe GloS, we employ the profile-likelihood method
to quantify uncertainty in the parameter values of all three surrogate models. See Fig E in S1
Text for representative profile likelihood curves. Figs 3F-3H show the corresponding identi-
fiability index donut charts for these surrogate model parameters, aggregated over all ABM
output. As can be seen, parameters in the exponential model (Fig 3F) and the logistic model
(Figs 3G) have identifiability indices of 2 in almost all cases, suggesting these parameters are
well constrained by the ABM output. In contrast, the identifiability indices for the von Berta-
lanffy model parameters 3 and v are almost evenly distributed between 0’s and 1’s, and almost
exclusively 1’s for a. This indicates that the von Bertalanffy model parameters are poorly
constrained by the ABM output. Thus, even though the von Bertalanffy model provides the
best quality of fit, as evidenced by low RSS values, the uncertainty in its parameter values is
greatest. On the other hand, while the exponential model has the most tightly constrained
parameter estimates, it provides the poorest quality of fit.

Considering these results, we expect the logistic model to perform best in the final step of
SMoRe GloS due to its consistently good fits to ABM output and low uncertainty in parameter
values. The exponential and von Bertalanffy only meet one of these criteria and are, therefore,
not expected to yield optimal results.

SMoRe GloS accurately computes the global sensitivity indices of ABM parameters,
with one surrogate model emerging as the best choice. We now proceed to implement
Steps 4 and 5 of SMoRe GloS to infer the global sensitivity of ABM parameters, employing
two distinct methods: MOAT and eFAST. In each case, we also directly infer the sensitiv-
ities of ABM parameters and use these results to evaluate the efficacy of SMoRe GloS. We
present below the results for MOAT. The results for eFAST are similar and can be found in
Fig F in S1 Text.

For the global sensitivity analysis, we use three distinct output metrics to highlight the
importance of surrogate model selection in Step 3 of SMoRe GloS: (1) final tumor size, (2)
area under the tumor volume time-course curve, and (3) time to half-maximum tumor vol-
ume. We selected these metrics for their ability to capture different aspects of the data simu-
lated by the ABM, with the primary aim of emphasizing the importance of surrogate model
selection rather than their biological relevance. Fig 4 compares the MOAT-based global sen-
sitivity of ABM parameters across the three output metrics, showing both direct inference
(black bars) and SMoRe GloS-based estimates with the three surrogate models: exponential
(blue), logistic (red), and von Bertalanfty (yellow). To assess robustness of our method, we
computed MOAT-based global sensitivities for each output metric using the exponential and
logistic surrogate models at three different ABM sample sizes: 15, 25, and 1000. As shown in
Fig G in S1 Text, the inferred sensitivities remained consistent across these sample sizes.

Selecting a surrogate model solely based on goodness-of-fit to ABM output is insufficient for
capturing global sensitivity: For all three global sensitivity metrics, the von Bertalanffy model
— despite its superior fit to the ABM output - fails to adequately capture the sensitivity of
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B.

https://doi.org/10.1371/journal.pcbi.1013427.9004

the ABM parameters (Figs 4A and 4B, yellow bars). Notably, the results for time-to-half-
maximum tumor volume were so poor that they were omitted from the graph (Fig 4C). This
poor performance of the von Bertalanfty model is likely attributable to the lack of parameter
identifiability, as evidenced by the identifiability indices in Fig 3H. This lack of constraint led
to the inclusion of several parameter combinations that produced biologically implausible or
unstable outputs. This highlights the limitations of selecting a surrogate model based solely on
goodness-of-fit to ABM output without accounting for the risk of over-parameterization. Such
an approach can severely compromise the method’s effectiveness.

Selecting a surrogate model solely based on minimizing uncertainty in its parameters is insuf-
ficient for capturing global sensitivity: The exponential and logistic models effectively predict
the global sensitivities of ABM parameters with respect to final tumor size, as shown in Fig 4A
(blue and red bars, respectively). The exponential model marginally outperforms the logistic
model in capturing the sensitivity of the most significant parameter, while the logistic model
excels in predicting the relative sensitivities of ABM parameters (Fig H in S1 Text).

Notably, the exponential model, which has the best identifiability indices, exhibits declin-
ing accuracy in calculating global sensitivity as the output metric becomes more reliant on the
dynamic aspects of tumor growth. While it can accurately predict the order of importance of
ABM parameters for the area under the tumor volume time-course curve (Fig 4B, blue bars),
it fails to capture the true sensitivities of these parameters, and completely fails when assess-
ing the time to half maximum tumor volume (Fig 4C, blue bars). This is further evidenced by
observing the predicted relative importance of ABM parameters (Fig H in S1 Text).

Capturing global sensitivity accurately requires balancing good fits to ABM output with min-
imizing uncertainty in surrogate model parameters: The logistic model consistently reproduces
the sensitivities of ABM parameters across all evaluated metrics (Figs 4A-4C red bars). These
findings highlight the critical need to balance maximized goodness-of-fit with minimizing
surrogate model parameter uncertainty when performing model selection in Step 3 of SMoRe
GloS.

Computational efficiency of SMoRe GloS for computing global sensitivity

The primary advantage of SMoRe GloS over directly computing global sensitivity with a com-
plex model lies in its significant computational efficiency. To perform the ABM simulations,
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we used the University of Michigan’s Great Lakes high-performance computing (HPC) clus-
ter, with each simulation run on a single compute node. Due to the shared nature of the clus-
ter, node specifications may vary. The surrogate model was run on a MacBook Pro (13-inch,
M1, 2020) equipped with an Apple M1 chip featuring an 8-core CPU and 8 GB of unified
memory. Implementing MOAT directly on the 3D vascular tumor growth ABM required 450
ABM simulations, resulting in a total wall time of approximately 75 hours when run seri-
ally. In contrast, SMoRe GloS required 7,500 surrogate model simulations, which took less
than one minute to run (Fig 5A, blue line). For the more computationally intensive eFAST
method, even more ABM simulations were required, further highlighting the efficiency gains
of SMoRe GloS. Using eFAST on the same ABM required 3,120 ABM simulations, which, if
run serially, results in a wall time of ~22 days. In contrast, SMoRe GloS once again demon-
strated its computational superiority by completing the eFAST analysis in under 5 minutes on
a single desktop machine (Fig 5A, orange line).

SMoRe GloS does require an initial investment of computational resources for generat-
ing ABM output at sampled points in the ABM parameter space and profiling the surrogate
model against this output. For the vascular tumor growth model, these steps required 486
ABM simulations. While this number is comparable to the simulations required for directly
computing MOAT sensitivities, it is significantly lower than what would be required for
directly implementing eFAST. With just these 486 simulations, SMoRe GloS successfully reca-
pitulated both MOAT and eFAST global sensitivity results (see Fig 5B). Furthermore, once
SMoRe GloS has been set up, additional global sensitivity analyses using different methods
can be performed without incurring further setup costs.

Discussion

In this paper, we introduce a novel method for inferring the global sensitivity of parameters
in agent-based models (ABMs): Surrogate Modeling for Recapitulating Global Sensitivity
(SMoRe GloS). This first-of-its-kind approach leverages explicitly formulated surrogate mod-
els to approximate ABM outputs, enabling a comprehensive exploration of parameter space
that would otherwise be computationally prohibitive. Our findings demonstrate the potential
of SMoRe GloS to significantly enhance the efficiency of global sensitivity analysis for ABMs,
without compromising accuracy when applied judiciously.

One of the key strengths of SMoRe GloS is its combination of flexibility and adaptability.
We demonstrated that our method performs consistently well with both eFAST and MOAT.
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By being robust to global sensitivity analysis techniques, SMoRe GloS offers greater compati-
bility across various sensitivity methods, with differing objectives like factor elimination, fac-
tor fixing, factor mapping and factor prioritization. This adaptability allows users to tailor the
approach to their specific needs and preferences, which is particularly valuable given the wide
range of applications for ABMs. Our successful application of SMoRe GloS to both, a two-
dimensional cell proliferation assay, and a more complex three-dimensional vascular tumor
growth model, highlights its broad utility.

A key design choice in SMoRe GloS is the use of a mechanistic surrogate model rather than
a machine learning (ML) model. ML-based surrogates require large numbers of ABM simula-
tions for training, often making them prohibitively expensive. In contrast, mechanistic mod-
els generalize more robustly beyond the training set and offer greater interpretability, making
them valuable tools for further analysis. For all but the simplest ABMs, deriving a mean-field
approximation is infeasible or even impossible. As we show here, such approximations are not
required for effective global sensitivity analysis using our approach.

SMoRe GloS offers significant computational efficiency over traditional global sensitivity
analysis methods. While direct implementations of these methods often require a large num-
ber of ABM simulations and substantial CPU time, we demonstrated how our approach can
dramatically reduce both the number of simulations and the computation time. Even after
accounting for the initial cost of setting up the surrogate model, SMoRe GloS provides sub-
stantial advantages in terms of speed and flexibility. This is especially beneficial for more com-
plex tasks, such as factor mapping and prioritization, which typically have high computational
costs.

Additionally, while our implementation used on-grid parameter sampling, which scales
exponentially with the dimensionality of the parameter space, further optimizations-such as
using Latin Hypercube Sampling (LHS) or Sobol sequences, which scale linearly-could fur-
ther reduce the computational cost of setting up the surrogate model. This reduction is cru-
cial, as many complex models require significant time per simulation, making direct global
sensitivity analysis computationally prohibitive. SMoRe GloS, however, makes such analyses
feasible.

Another notable feature of SMoRe GloS is its empirically observed ability to produce global
sensitivity indices for ABM parameters that are not explicitly included in the surrogate model
formulation. This feature suggests potential utility for complex models where certain bio-
logical or real-world processes are difficult to capture with computationally less expensive
surrogate models. The implications are significant: in our case studies, we found that SMoRe
GloS can accurately compute the sensitivity of spatial parameters that appear in an ABM, even
when they are absent from a spatially-independent surrogate model.

One caveat of our approach is that the effectiveness of SMoRe GloS in accurately recov-
ering the correct sensitivity indices of ABM parameters hinges on the choice of surrogate
model. To address this, we advocate for a balanced approach to surrogate model selection,
guided by both goodness-of-fit to ABM output and the identifiability properties of surro-
gate model parameters. Specifically, the focus during surrogate model selection should be on
ensuring it faithfully reproduces the ABM output with minimal uncertainty. The particular
output metrics of interest, for which we wish to determine the sensitivities of ABM parame-
ters, should be considered after selecting a robust surrogate model. Since a well-constrained
surrogate model will be broadly applicable, it can effectively assess a variety of output met-
rics, making our approach particularly valuable given the unpredictable nature of exploratory
modeling.

There are several promising avenues for further developing and extending SMoRe GloS.
One approach under consideration is to rank ABM parameters based on their influence on
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surrogate model parameters, which could then be integrated with a sensitivity analysis of the
surrogate model to produce a global sensitivity ranking for the ABM parameters. This method
may eliminate the need to reconstruct surrogate model parameter hypersurfaces, improv-

ing efficiency. Additionally, obtaining a well-constrained surrogate model that accurately
reproduces ABM outputs is essential. To enhance this, we are exploring machine learning

and equation learning algorithms. These approaches could lead to more robust and accurate
surrogate models, ultimately broadening the applicability and efficiency of SMoRe GloS in
varjous complex biological and real-world systems.

Supplementary Text, Table, and Figure Captions

S1 Text Supplementary information
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