
ID: pcbi.1013426 — 2025/9/25 — page 1 — #1

PLOS COMPUTATIONAL BIOLOGY

OPEN ACCESS

Citation: Beregi S, Parag KV (2025) Optimal
algorithms for controlling infectious diseases in
real time using noisy infection data. PLoS
Comput Biol 21(9): e1013426.
https://doi.org/10.1371/journal.pcbi.1013426

Editor: Tom Britton, Stockholms Universitet,
SWEDEN

Received: August 8, 2024

Accepted: August 11, 2025

Published: September 3, 2025

Peer Review History: PLOS recognizes the
benefits of transparency in the peer review
process; therefore, we enable the publication of
all of the content of peer review and author
responses alongside final, published articles.
The editorial history of this article is available
here: https://doi.org/10.1371/journal.pcbi.
1013426

Copyright: © 2025 Beregi, Parag. This is an
open access article distributed under the terms
of the Creative Commons Attribution License,
which permits unrestricted use, distribution,
and reproduction in any medium, provided the
original author and source are credited.

Data availability statement: The code
generating the results presented here is
available at https://github.com/sandorberegi/
Epidemic-control-with-noisy-real-time-data.

RESEARCH ARTICLE

Optimal algorithms for controlling
infectious diseases in real time using noisy
infection data
Sandor Beregi

 

 

, Kris V. Parag
 

 

∗

Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London,
London, United Kingdom

∗ k.parag@imperial.ac.uk

Abstract
Deciding when to enforce or relax non-pharmaceutical interventions (NPIs) based on
real-time outbreak surveillance data is a central challenge in infectious disease epidemi-
ology. Reporting delays and infection under-ascertainment, which characterise practical
surveillance data, can misinform decision-making, prompting mistimed NPIs that fail to
control spread or permitting deleterious epidemic peaks that overload healthcare capac-
ities. To mitigate these risks, recent studies propose more data-insensitive strategies
that trigger NPIs at predetermined times or infection thresholds. However, these strate-
gies often increase NPI durations, amplifying their substantial costs to livelihood and
life-quality. We develop a novel model-predictive control algorithm that optimises NPI
decisions. We jointly minimise the cumulative risks and costs of interventions of differ-
ent stringency over stochastic epidemic projections. Our algorithm is among the earli-
est to realistically incorporate uncertainties underlying both the generation and surveil-
lance of infections. We find, except under extremely delayed reporting, that our projec-
tive approach outperforms data-insensitive strategies and show that earlier decisions
strikingly improve real-time control with reduced NPI costs. Moreover, we expose how
surveillance quality, disease growth and NPI frequency intrinsically limit our ability to
flatten epidemic peaks or dampen endemic oscillations and reveal why this potentially
makes Ebola virus more controllable than SARS-CoV-2. Our algorithm provides a gen-
eral framework for guiding optimal NPI decisions ahead-of-time and identifying the key
factors limiting practical epidemic control.

Author summary
In our work, we tackle the challenge of determining the best time to enforce or relax
non-pharmaceutical interventions (NPIs), such as mandatory mask wearing, social dis-
tancing or quarantine, to manage the spread of infectious diseases. Making an optimal
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decision on NPIs requires balancing the risks and the burden of prevalent infections on
the healthcare systems against the costs of restrictive measures to livelihood and life-
quality. Real-world data used to inform these decisions can often be unreliable due to
delays in reporting and missed cases. This can lead to NPIs being implemented too late
or too soon, and as such, failing to contain the outbreak or unnecessarily disrupting daily
life. We introduced a novel algorithm that projects future scenarios based on current
data to optimise NPI decisions across interventions with different overall stringency and
costs. Our results show that our method can effectively reduce the duration and cost of
NPIs while better controlling the spread of infections than more traditional approaches
of having fixed thresholds or NPI schedules. Our approach optimises these decisions
even when data is uncertain and is a versatile tool that can adapt to changes in the epi-
demic dynamics, such as the appearance of new variants. Moreover, we highlight how
the quality of surveillance, the growth rate of the disease, and the frequency of NPIs play
crucial roles in managing outbreaks and why this potentially makes Ebola virus more
controllable than SARS-CoV-2.
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Introduction
When and how should we intervene in order to most effectively manage an emerging infec-
tious disease? This is a question that is at the core of public health policy-making and has been
the subject of ongoing debate [1–3]. This decision problem is especially crucial during the
early stages of an outbreak when there is no or limited immunity in the population and vac-
cines or other pharmaceutical remedies are unavailable. In this situation, the main control
measures are non-pharmaceutical interventions (NPIs), such as mandatory social distancing,
mask-wearing, lockdowns and travel restrictions [4–7].

Outbreak management policies need to balance the risks from mistimed and ineffec-
tive intervention decisions with the likely costs of those decisions. An NPI that is applied
too slowly or removed too quickly risks large epidemic peaks or rebounds that overburden
healthcare systems [8]. However, more conservative approaches may prompt long periods
of restrictions that incur costs due to closed economic sectors and borders as well as limited
mobility [9].

Optimising the counteracting costs and risks of NPIs is a challenging and enduring prob-
lem. This problem is further exacerbated by the practical constraints of real-time surveil-
lance. The data available for an unfolding epidemic are subject to multiple sources of noise
and uncertainty that fundamentally limit our ability to infer the state of the epidemic [1,10–
12]. Solutions therefore require evidence-based research into the benefits, risks and societal
costs of different NPIs and public health policies [13–17] as well as rigorous algorithms that
can integrate outcomes of that research with uncertain knowledge of the epidemic state to
guide decision-making [18–21].

Here, we focus on the latter issue and investigate how optimal, data-driven policies can be
derived from real-time surveillance data. Our study analyses the overall effect and costs of
tiered restrictions rather than modelling the mechanisms underpinning individual preven-
tive measures. Our framework can include multiple individual interventions or intervention
packages with known efficacies. Studies such as [5,22,23] retrospectively modelled the effect of
numerous interventions via their impact on the reproduction number. Our model combines
those effects with costs and other benefits (e.g., peak size or endemic load) to make decisions
prospectively about which interventions from among a suite of possible options should be
initiated or removed at any given policy review time. We leverage ideas from control theory
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and reinforcement learning and expose exactly how uncertainties in practical surveillance
intrinsically limit the optimal policies. This approach, which uses feedback control, dynami-
cally updates NPI choices by feeding back data on the incidence of new infections that should
reflect the most recent epidemic state.

However, the reporting of the incidence of infections is subject to delay and under-
ascertainment that is often inherent to real surveillance systems. Under-ascertainment of
infections can result from asymptomatic and mild infections, which are rarely observed, or
from limitations on testing capacities [24]. Consequently, we only receive reports on a ran-
dom fraction of all new infections. Delays can emerge from the lag between infection and
symptom onset or confirmation as well as latencies in testing and processing test results. The
consequence of this is that the reported time series of cases (or a related proxy for infections)
are stochastically behind the actual incidence [1,25,26]. We also highlight that a clear distinc-
tion between our approach and much of the existing literature is our use of the incidence of
new cases or infections instead of prevalence to inform control actions. Establishing preva-
lence is difficult and often requires additional efforts and testing programmes, such as the
REACT scheme in the UK [27]. By framing our optimisation in terms of incidence we focus
on more generalisable decision-making that only requires routinely available data and better
align with existing real-time response frameworks.

These sources of noise and uncertainty sparked an ongoing debate on what is the best
approach for controlling epidemics in real time. At least three challenges have influenced this
debate. First, although feedback control is widely used to solve real-time problems in elec-
trical and mechanical engineering [28–31] these strategies can become destabilised by noise
and delays [1,32–36]. Second, the timing of public health interventions is critical to their effi-
cacy and hence their associated risks and costs [37,38]. Last, integrating costs, risks and noise
within a framework is difficult and often intractable for deriving insights.

In view of these challenges, some studies have proposed feedback-independent methods
that are insensitive to noise and uncertainty in real-time epidemic surveillance. One such
approach is to implement a pre-set sequence of cyclic switching between lockdowns and peri-
ods with no restrictions [39]. This was proposed as a strategy to exit full-lockdown more
reliably [40]. Other works have focussed on optimising the timing of specific interventions
considering a ‘one-shot’ control with the start and ending time to be optimised [38,41,42],
highlighting the importance of timing for efficiency and the detrimental effect of delays in
intervention. This makes a case for using evidence-based policies that dynamically optimise
interventions to available-data. Some recent studies support this optimal timing approach
informed by real-time data over feedback-independent methods even for uncertainty in data
[43,44]. However, those works do not consider the intrinsic stochasticity of the epidemic
and the complex and non-intuitive tradeoffs required to balance the desired public health
outcomes against the costs of interventions.

The last challenge, which stems from the complexity of the decision-making process given
the uncertainties in data, transmission details and the likely effect of actions, has meant that
the majority of approaches in the field on cost-optimal control only consider deterministic
models or limited modelling of noise. As a result, there is scope for fully stochastic but rig-
orous decision-making and modelling frameworks that can guide interventions by providing
insight into how cost-optimal choices and various uncertainties interact.

We consider this real-time control problem in a probabilistic setting, where the epidemic
is modelled by a renewal branching process [45]. This is more realistic than the deterministic
approach, generalisable to multiple diseases and reflects on the intrinsic variability of infec-
tions between individuals. We parameterise our renewal models to describe the dynamics
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of epidemics of COVID-19 and Ebola virus disease. We propose a model predictive opti-
mal control strategy that minimises the costs of NPIs jointly with those generated from the
infections projected to occur under the renewal process given our NPI choices. Our control
approach is based on real-time incidence data which is delayed and under-ascertained, and
incorporates the stochasticity of the epidemic generation process. We also include other key
factors that limit real-time control, such as constraints on how frequently NPI policies can be
changed and restrict control actions that can be applied to a finite set of NPI options rather
than continuous levels of effort.

We assess what limitations data quality imposes on the viability of real-time feedback
control for epidemic management and how this is influenced by disease growth dynamics.
We compare the performance of our proposed optimal control algorithm with two bench-
mark control strategies that apply decisions based on chosen thresholds or times. We demon-
strate that our algorithm not only outperforms these approaches but can adapt to unex-
pected changes such as the emergence of new variants or reduced effectiveness of NPIs due to
behavioural changes.

Methods
Epidemic governing equations
We model the spread of the disease in a population as a generalisation of the standard renewal
branching process [45]. This model is used both to make projections that inform optimal con-
trol and to simulate ‘ground truth’ epidemic trajectories. The renewal branching process is a
stochastic model describing how the incidence of new infections on day t, It, depends on past
infections at times s≤ t and the characteristics of the disease. This is captured by the Poisson
distribution

It ∼ Pois(
t
∑
s=0

IsRswt–s), (1)

where Rt is the effective reproduction number on day t, with the set of weights, wt–s for all s,
obtained from the generation time distribution [46] of the disease. We assume that the gen-
eration time distribution is known or estimated from other paired transmission data. The
weight wt–s is the probability that a secondary infection occurs t–s days after its primary infec-
tion. As is standard practice, we model the stochasticity of the generation time with a Gamma
distribution

tgen ∼Gamma(𝛼gen,𝛽gen). (2)

The shape and scale factors 𝛼gen and 𝛽gen parametrise the probability density function
pgen(t). The weights wt–s used in Eq (1) are then calculated as wt–s = pgen(t – s)/∑t

k=0 pgen(k).
We consider two generation time distributions, with respective parameters provided in
Table 1, which are commonly used to describe epidemics of Ebola virus disease [47] and
COVID-19 [48].

The above formulation generalises the standard renewal model, which describes inci-
dence It ∼ Pois(Rt∑t

t=0 Iswt–s) with the sum∑t
t=0 Iswt–s referred to as total infectiousness of

all infectious individuals [49]. However, this classical formula implies that any intervention
applied to curb the spread of the disease results in an immediate change in the reproduction
number. We apply the generalised formula of Eq (1) to model scenarios where the infectious-
ness of a population and the impact of interventions depend on both the history of infections
and reproduction numbers. The latter dependence has a smoothing effect that better captures
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the finite time effects of realistic interventions on transmissibility. A similar generalisation
was introduced in [50].

The effective reproduction number is derived from the basic reproduction number R0,
which describes how many people an infected individual is expected to infect in a fully sus-
ceptible population. When an NPI is introduced the basic reproduction number R0 is multi-
plicatively changed by a factor ct, yielding

R0t = R0ct. (3)

We consider an action space with three possible NPIs: no intervention (ct = 1), limited
social distancing (ct = 0.5) and full lockdown (ct = 0.2). While this is a simplified classification
of NPI types, our control framework allows for more possible actions to be easily modelled
(e.g., we can introduce an arbitrary number of ct options).

Although in reality the factor ct is unknown and needs to be estimated, we assume
throughout this study, that the effect of any NPI on the reproduction number is known and
without uncertainty. Our framework does allow for the inclusion of uncertainty on these
effects and we present analyses under stochastically varying ct within our results. However,
our goal is not to describe precisely how interventions attenuate transmissibility, but instead
to derive insights into how surveillance quality influences the optimal timing and application
of interventions generally. Consequently, our choices of ct are sensible (i.e., values are within
realistic ranges from the literature) but not specific. The actual effect of an intervention can
vary with location, context and socio-demographic structure. Generally, we do not include
the uncertainty on ct to isolate the influence of the surveillance noise. However, if specific esti-
mates of ct or its uncertainty are available (e.g., from [5,23]) or derived from auxiliary data,
these can be seamlessly integrated within our framework for more precise results.

Optimal model predictive control (MPC) of epidemics
Our study focuses on epidemic control at the early stages of an epidemic with no or limited
immunity in the population and without any available pharmaceutical remedies. Conse-
quently, the main control measures are NPIs, such as social distancing, mask-wearing, stay-
at-home orders, business closures and travel restrictions [22]. These measures limit disease
transmission with the aim of reducing the likely numbers of severe infections below health-
care capacities and minimising expected morbidity and mortality. However, these bene-
fits must be balanced against the costs induced by those NPIs, which may include economic
downturns and loss of livelihood.

An ideal control policy would keep the incidence of new infections at a manageable (tar-
get) level, optimally balancing the costs of treating infections and implementing interventions.
However, this is non-trivial both because disease dynamics can change in real time and our
ability to track those changes is strongly limited by the quality of available surveillance data.
To achieve this, we propose a model predictive control (MPC) framework for optimising epi-
demic interventions based on real-time incidence data. MPC utilises a mathematical model to
project the dynamical behaviour of the controlled system [51].

The MPC algorithm we propose aims to curb disease spread, jointly minimising the risks
and costs arising from infections and applied interventions. We outline our control frame-
work in panel (a) of Fig 1, which consists of the following elements: a plant (the controlled
system) with observable states, state-transition probabilities, an agent with an action space
defining possible control actions, and a reward function.
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Fig 1. Panel (a): Schematic diagram of model predictive control for optimising epidemic interventions. The top chart
introduces the elements of the feedback loop where the actions of the agent are chosen according to the incidence of new
infections (or a proxy such as new cases) which is the monitored output state. The highlighted panel explains the model pre-
dictive method for selecting the optimal NPI from the action space which is based on using short-horizon projections and
the expected reward, E(𝜌), under those projections for various strategies. The strategy with the highest reward (minimum
cost) is implemented. The reward or cost here usually depends on how far the epidemic state is from our desired objectives,
which may aim at jointly reducing both severe epidemic outcomes and intervention intensity. Panels (b) and (c) show
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event-triggered and time-triggered alternative strategies, with NPIs implemented or relaxed based on incidence thresholds
(the event trigger) or according to a pre-defined schedule (the time trigger). Panel (d) illustrates how realistic surveillance
imperfections such as reporting delay and under-reporting distort the true incidence of infections into the incidence of
cases, which we practically must use to inform decision-making. Thick black curves represent the reported cases, while
thin blue curves indicate true infection incidence. Reporting delay manifests (approximately) as a time-lag with respect to
the true incidence curve, whereas under-reporting results in a stochastic downscale of the incidence curve along the vertical
axis.

https://doi.org/10.1371/journal.pcbi.1013426.g001

Our algorithm is analogous to a Markov Decision Process [52] in which the plant is the
population where the disease is spreading, while the output state monitored is the incidence
(number of daily new infections) It. The state transition probabilities, i.e. the probability of
transitioning to any It+1 from any given It are not explicitly defined, but are implicitly deter-
mined by the Poisson distribution of the renewal model (see Eq (1)). The control framework
we use here largely overlaps with Markov decision processes (MDPs) [53]. However, the
renewal model utilises both the immediate and past incidence. This is not exactly Markov but
may be reconfigured into an MDP if higher dimensional state spaces are used [54,55].

The agent in the context of an epidemic is the public health policy-maker i.e., the individ-
ual or group responsible for proposing or removing NPIs, while the action-space comprises
the possible NPI choices. We consider 3 levels of interventions that we class as no intervention,
social distancing and full lockdown. This broadly models stepped interventions which were
common across the COVID-19 pandemic. These include the three tier system that England
used to enforce localised NPIs in 2020, the 4-level alert system applied by New Zealand and
related policies taken by Italy, France, Canada and others [56,57]. Our framework computes
decisions based on the projected reward over a fixed time-horizon which incorporates the
costs of possible actions in our decision space and their risks in terms of expected infections.

In the reward function, we account for costs arising from the economic impact of NPIs
and the risks associated with high numbers of incident infections. We consider a target inci-
dence level that defines some manageable infection level and define the absolute error Ierr =
|It – Itarget|. This target may relate to healthcare capacities e.g., setting a level of incidence such
that the expected hospitalisations resulting from that incidence do not overwhelm health-
care resources. Although, studies rarely consider a target incidence level, our aim is to under-
stand and characterise the intervention tradeoffs (e.g., timing choices) that can jointly limit
expected infections and the costs of those interventions.

Setting Itarget = 0 is analogous to an elimination target, which models the broad aims of
pandemic policies employed by New Zealand [58] and China [59], for example. An Itarget > 0
recognises that elimination is difficult, particularly in the face of infection reintroductions and
so refocuses on stabilising healthcare burdens to sustainable levels that balance the supply and
demand of health resources. Additionally, as we want to minimise the risk of large infection
peaks and overshoots, our reward function also includes a penalty term 𝜙over that activates
when It > 1.5Itarget but is zero otherwise.

While regulating disease spread within the limits of healthcare capacities is of paramount
importance, interventions that restrict mobility or close businesses and trade generate sub-
stantial economic and other costs. We model this with a term 𝜙t attached to every element
of the action-space. There is no cost under no restrictions and the cost of full lockdown is
assumed to be 15-times larger than that of limited social distancing. While some studies into
COVID-19 NPIs suggest stringent interventions are 5-6 times more costly than more limited
measures [9], our factor was chosen to more markedly distinguish between our two NPI tiers
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so that general qualitative insights could be better derived. Including all the above compo-
nents, the reward function on day t is calculated as the negative quantity

rt = –𝛿|It – Itarget| – 𝜙t – 𝜙over. (4)

The agent’s task is to choose the action which maximises the expected reward. We note
that there are alternative reward (or cost) functions that may also be capable of achieving the
same target (e.g. using different norms of the error from the target instead of the absolute
error in the reward function). Although the assessment of different cost functions is out of the
scope of this study, Eq (4) is representative of the various elements that may shape realistic
decision-making, with its components drawn from or inspired by [9,37,44,60]. We also con-
sider practical limitations to decision-making. While we use daily incidence data to inform
our epidemic model, we allow policy review to only occur every 7 or 14 days, i.e., the agent
can only change control actions every week or fortnight. The time between policy updates is
trev and reflects practical intervention constraints, e.g., both in terms of logistics and ensur-
ing compliance, policymakers may not want to switch NPIs any faster than weekly. We also
impose a practical constraint on reward optimisation by considering only finite time hori-
zons for assessing the costs of any action. We denote this projection horizon tproj. This models
the fact that only short-term forecasts are known to be reliable for epidemic decision-making
[61].

The agent calculates the expected reward for each action by simulating the epidemic with
all possible control states until tproj and taking the total temporally discounted reward

𝜌 =
tproj

∑
s=0

rt+s𝛾s, (5)

where 𝛾 < 1 is the temporal discount factor. A higher 𝛾 means that the agent is more con-
cerned about long-term rewards, whereas a smaller 𝛾 means that shorter term benefits are
emphasised. Since the epidemic dynamics are stochastic, the total discounted reward 𝜌 is
probabilistic. We therefore compute the expected total reward E(𝜌) over an ensemble of sim-
ulations. This also allows us to factor in the intrinsic variability of the epidemic generating
process (e.g., from the random times between infections). This joint target-cost optimisa-
tion process is iteratively done in real-time via the feedback loop in Fig 1 and makes use of
short-term projections with a receding horizon [62].

If the projection horizon is longer than the policy review period, i.e., tproj > trev, then, we
can also propose sequences of actions over the projection horizon to be taken by the agent.
We may then compute the expected reward for each action sequence but only implement the
first action of the sequence with the best projected reward whilst subsequent actions are re-
considered at following policy revisions. However, for the scenarios we consider, we found
that this approach increases computational complexity but does not improve performance.
Consequently, for these longer projections, we maintain our original approach of only eval-
uating single possible actions and their consequences across the horizon. We tuned the pro-
jection horizon tproj and the control gain 𝛿 by Bayesian optimisation to achieve the best per-
formance without surveillance noise. We fitted the Gaussian process surrogate model using
the mean total reward from 100 simulations for time-horizons of 21 weeks for each parameter
combination we surveyed and used the surrogate model to find the optimal projection hori-
zon and control gain values. We collect all the key epidemic and control algorithm parameters
in Table 1.
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Table 1. Parameters of the epidemic model and the control algorithms for COVID-19 and Ebola virus.
Parameter name COVID-19 Ebola virus Unit
Basic reproduction number R0 3.5 2.5 1
Mean generation time 𝛼𝜏𝛽𝜏 6.5 15.0 days
Generation time variance 𝛼𝜏𝛽2

𝜏 13.65 31.5 days2

Infection incidence error gain 𝛿 0.00026 0.00065 1
cases/day

Projection window (trev = 7 days) tproj 12 12 days
Projection window (trev = 14 days) tproj 14 14 days
Cost of no intervention 𝜙t 0 0 1
Cost of social distancing 𝜙t 0.01 0.01 1
Cost of full lockdown 𝜙t 0.15 0.15 1
Cost of large overshoots 𝜙over 5.0 5.0 1
Cost discount factor 𝛾 0.95 0.95 1
Threshold for imposing full
lockdown

CLD 2500 3000 cases/day

Threshold for relaxing full
lockdown

Crelax 1500 3500 cases/day

Lockdown length in cycle tLD 45 36 days
No intervention length in cycle trelax 9 21 days

https://doi.org/10.1371/journal.pcbi.1013426.t001

Alternative control strategies
We compare the performance of the above proposed optimal control algorithm with two sim-
pler control strategies: an event-triggered feedback control and a cyclic time-triggered control
strategy. These strategies represent two fundamental approaches for controlling epidemics
in real time, which have either been applied or proposed earlier. Similar event and time-
triggered strategies also have a wider application across engineering and biology [63–65].
Note that for all strategies that we consider, we allow tuning so that the strategies can stabilise
the observed incidence.

The event-triggered control applies or relaxes lockdowns whenever reported incidence
crosses a predefined threshold, which is often heuristically set in practice. This crossing con-
stitutes an event. We illustrate this approach in panel (b) of Fig 1 for an example incidence
time series. Event-triggered control approaches have previously been used to enact interven-
tions, e.g. for influenza [66] and were considered for triggering NPIs to suppress COVID-19
in the UK [4]. Although this strategy applies limited feedback based on the most recent inci-
dence, it is unable to leverage the information in the full past time series or assess the likely
future outcomes of its decisions.

In contrast, the cyclic time-triggered control strategy (see panel (c) of Fig 1) implements
a pre-defined sequence of actions, which is not based on any direct feedback from the epi-
demic dynamics. The periods with full lockdown or no restrictions can be arbitrarily long,
e.g. a 20/10 cyclic control strategy repeats 20 days of full lockdown followed by 10 days of no
restrictions. This strategy was proposed as an effective means of COVID-19 control when
surveillance data are poor quality and hence unreliable for informing decisions [40].

Surveillance noise and uncertainty in incidence data
Ideally, the agent would make decisions about possible NPIs based on the infection inci-
dence in the population. Unfortunately, infection data are rarely available and a proxy such
as the incidence of confirmed cases or deaths is commonly used. We focus here on the daily
incidence of cases Ct but note that other proxies have analogous descriptions [50,67]. These
proxies are commonly subject to practical surveillance imperfections, which we define via a
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stochastic reporting delay 𝜏 and a stochastic reporting rate 𝜈. In our model of the surveillance
imperfections, the true infection incidence data It is first distorted by delay, then we consider
under-ascertainment of the delayed cases (see Fig 2).

Reporting delay describes the lag between an infection and its proxy. For cases this
includes latencies such as the time taken between infection and presenting symptoms or con-
firmation via testing. In our framework, we model the reporting delay for a single case using a
Gamma distribution

𝜏 ∼Gamma(𝛼𝜏 ,𝛽𝜏), (6)

with shape and scale factors 𝛼𝜏 and 𝛽𝜏 , respectively. The mean reporting delay is then 𝛼𝜏𝛽𝜏
while the variance is 𝛼𝜏𝛽2

𝜏 . To control the mean delay 𝜏mean and dispersion 𝛼 directly we re-
parametrise the distribution by the choice 𝛼𝜏 = 𝛼 and 𝛽𝜏 = 𝜏mean/𝛼. We plot the probability
density functions used to model reporting delay are visualised in the top row of Fig S3 in the
Supplement. The cases C̃t reported with delay on day t then result from a weighted sum of
past incidence at day s and the probability that it takes t–s time units before those infections
are reported or confirmed as cases. This follows as

C̃t ∼ p𝜏(s) = Pois(
t
∑
s=0

Isw𝜏
t–s), (7)

where the weight factors w𝜏
t–s are derived from the Gamma distribution of the reporting delay,

w𝜏
t–s = p𝜏(t – s)/∑

t
k=0 p

𝜏(k).
The reporting rate models incomplete or under-reporting, which captures the fact that

proxies commonly represent only a fraction of infections. For example, asymptomatic and
less severe infections are unlikely to appear as cases. This means that only a fraction 𝜈 of the
delayed infection incidence C̃t is reported

Ct = 𝜈tC̃t, (8)

with 𝜈t ∈ [0, 1]. In our model, we assume that the number of reported cases follows a Beta-
binomial distribution

Ct ∼ BetaBin(C̃t,𝛼𝜈 ,𝛽𝜈). (9)

Consequently, the expected number of reported cases is C̃t𝛼𝜈/(𝛼𝜈 +𝛽𝜈) while the vari-
ance is C̃t𝛼𝜈𝛽𝜈(𝛼𝜈 +𝛽𝜈 + C̃t)/((𝛼𝜈 +𝛽𝜈)2(𝛼𝜈 +𝛽𝜈 + 1)). We refer to the ratio of the expected
reported cases and the true infection incidence as the mean reporting ratio 𝜈 ∶= E[Ct/C̃t]

Fig 2. Models of realistic epidemic surveillance. The true infection incidence data It is first distorted by a
probabilistic delay modelled by a convolution with w𝜏t–s, which are probabilities from a Gamma distribution. Under-
ascertainment then occurs by downsampling these delayed cases C̃t using a Beta-binomial distribution. This yields
the reported daily cases Ct, which is frequently used as a proxy for the unobservable It. In some simulations, we
turn either reporting delay or under-reporting off. If there is no reporting delay, C̃t = It and similarly, if there is no
under-reporting Ct = C̃t.

https://doi.org/10.1371/journal.pcbi.1013426.g002
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which is constant in time. To directly control the mean reporting ratio 𝜈mean and the dis-
persion a we choose 𝛼𝜈 = a and 𝛽𝜈 = a(1–𝜈mean)/𝜈mean. Here the distribution of the report-
ing rate depends on the true number of cases. In order to visualise the reporting rate inde-
pendently from the number of infections, we show the probability density functions of the
equivalent Beta distributions of the infection reporting rate in the bottom row of Fig S3 in the
Supplement.

In some cases, we investigate the isolated effect of reporting delay or under-reporting,
which means that for these simulations the other source of surveillance imperfections is
turned off. If there is no reporting delay, C̃t = It and similarly, if there is no under-reporting
Ct = C̃t. These stochastic delay [68] and under-reporting [69] models have been widely used
to describe surveillance noise in the literature, as well as serve as the starting point for decon-
volution and nowcasting methods that attempt to correct for these noise sources [50,70–72].

Estimation of the reproduction number
When projecting likely infections (or proxies) over a horizon in our algorithm, we assume
knowledge of the effect of NPIs on the reproduction number. This is captured by the coeffi-
cients ct. However, we do not assume knowledge of the true basic reproduction number and
so must estimate this quantity from past data.

We start by inferring the time-varying effective reproduction number by applying the
formula [49]

Rt ≈
∑test

s=1 It–s
∑test

s=1Λt–s
, (10)

where Λ is the total infectiousness and is calculated as

Λs =
t
∑
s=0

It–sws, (11)

with weights ws derived from the generation time distribution. Then we recover the basic
reproduction number R0 by factoring in the history of applied control measures

cest =
∑test

t=0 ct–sws

∑test
s=0 ws

(12)

and hence R0est = Rt/cest.
The quality of our estimates in Eqs (10), (11) and (12) depends on the length of the esti-

mation window test. Short windows are more sensitive to stochastic fluctuations in incidence,
while long windows over-smooth estimates and delay projections [49,73]. We apply test = 5
days, which appears to be a good compromise between the two extremes.

Results
Optimal MPC performance
We demonstrate the performance of our MPC algorithm first on perfectly observed incidence
data and then explore the influence of practical surveillance limitations. Our aim here is to
explore the best and worst case limits that surveillance induces on practical, feedback-based
control. Fig 3 presents four scenarios using MPC to mitigate an infectious disease with gen-
eration time (mean: 6.5 days [46,48]) and basic reproduction number (R0 = 3.5 [74]) chosen
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Fig 3. Simulation results with optimal epidemic control. The left panels show reported cases from ensembles of 100
simulations using generation times and reproduction numbers estimated for COVID-19. The faded curves show different
individual realisations of the epidemic with the three black curves marking the 5% and 95% percentiles of the ensemble and
the mean reported cases. The horizontal dashed line shows the incidence target. The highlighted thick curve of reported
cases is coloured based on the NPI implemented on a given day. In rows (b) and (c), the blue thin curve indicates the true
incidence corresponding to that highlighted simulation. In rows (a) and (d) where we do not simulate surveillance noise,
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infection incidence are identical to the reported cases. The right column shows similar diagrams for the effective repro-
duction number. In that column the faded grey curves and the highlighted curve represents the true effective reproduction
number whereas the thin orange curve indicates the estimated value from the reported cases in the highlighted realisation
of the epidemic. The inset pie charts in the right column indicate the ratio of days spent under a given NPI across the full
simulation ensemble. Row (a) represents the baseline case without delay or under-reporting with a policy review period of
trev = 7 days. Compared to the baseline case, panel (b) shows simulations with reporting delay (mean 7 days, shape parame-
ter 𝛼 = 5.0), panel (c) simulations with under-reporting (with mean reporting rate 0.3, dispersion a = 8.0). Panel (d) has no
observation noise but provides simulations under an increased policy review period of trev = 14 days.

https://doi.org/10.1371/journal.pcbi.1013426.g003

to match those previously estimated for COVID-19. Row (a) shows the ideal case where the
agent has access to the true incidence of infections. Here, the MPC strategy is able to keep
incidence near the target incidence level (5000 new infections/day). Note that we cannot pre-
cisely track the target even in this ideal data setting due to intrinsic stochasticity in the epi-
demic, a finite action space of possible interventions and a policy review period that is at least
a week. The resulting fluctuations about the target are a measure of the fundamental control
performance under these settings.

In rows (b) and (c) we demonstrate how reporting delay or under-reporting in isola-
tion affects control performance (cf. panel (d) in Fig 1). As indicated by the panels in the
right column, imperfect monitoring of infection incidence also alters the estimated repro-
duction numbers leading to discrepancies between the observed and true epidemic states.
Row (b) shows the effect of reporting delay with a mean of 7 days. In this case, the MPC
strategy is still able to keep incidence at a manageable level, however, the delay in observ-
ing cases results in late interventions that spur higher peaks in incidence and larger fluctu-
ations once the epidemic is under control. The thick highlighted curve shows the cases that
inform the agent or decision-maker while the thin highlighted curve are the true (unknown)
infections.

Row (c) shows the effect of under-reporting with a mean reporting rate of 0.3, i.e., only
30% of infections are reported as cases. Our MPC algorithm is able to achieve the target level
but the true incidence fluctuates at a higher level due to the under-reporting noise process
which, on average scales down infections to reported cases according to the mean report-
ing rate. The stochasticity of the under-reporting also occasionally misleads the MPC strat-
egy to believe that the epidemic is under control and the incidence is below the target level
or the effective reproduction number is smaller than its true value, causing higher epidemic
peaks than in the ideal surveillance scenario. Interestingly, the average proportion days under
each NPI across the simulation time horizon, i.e. the proportion of days spent with each NPI
in place across all simulated scenarios, is similar across scenarios (a-c), indicating that the
deviations in the performance of the optimal MPC strategy are due to mistimed interven-
tions resulting from the noise in surveillance, causing either overly conservative or relaxed
policies.

Row (d) in Fig 3 shows the effect of increasing the policy review period from 7 to 14
days with no observation noise. In this case, the MPC strategy is still able to keep incidence
at a manageable level, however, the fluctuations in daily incidence, and consequently the
peak and the bounding envelope of the later stabilised epidemic are larger as the agent has a
reduced ability to intervene and update control actions. The overall effect of increasing the
policy review period is similar to having a reporting delay as ultimately, both lead to delayed
responses.
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The limits of control due to delayed reporting
We assess how the delay in reporting limits the performance of each control strategy. We con-
sider scenarios with different but stationary reporting delay distributions. The delay for a sin-
gle infection follows a Gamma distribution 𝜏 ∼Gamma(𝛼𝜏 ,𝛽𝜏), with shape and scale factors
𝛼𝜏 and 𝛽𝜏 , respectively. The mean reporting delay is then 𝛼𝜏𝛽𝜏 while the variance is 𝛼𝜏𝛽2

𝜏 .
This is a common model of reporting delays and has been used to describe surveillance of
COVID-19 and Ebola virus disease among others [46,75–77]. To control the mean delay 𝜏mean

and dispersion 𝛼 directly we re–parametrise the distribution by the choice 𝛼𝜏 = 𝛼 and 𝛽𝜏 =
𝜏mean/𝛼. This means that for a given mean reporting delay, the variance is inversely propor-
tional to the dispersion parameter 𝛼, i.e., larger values of 𝛼 correspond to more deterministic
reporting delays.

We consider 6 mean reporting delays ranging from 3.5 to 21 days, each with 4 different
variances. This allows us to characterise how the mean and the dispersion of the reporting
delay limit optimised and heuristic control strategies. For each scenario, we run an ensemble
of 1000 simulations, each with a different random seed. Fig 4 plots key results for simulations
under COVID-19 disease parameters. Each column of panels depicts the performance of a
different control strategy: MPC, event-triggered, and time-triggered cyclic control. The first
row plots the peak incidence, the second row shows the size of the steady-state solution enve-
lope (the range of oscillations after the epidemic is under control) and the third row charts the
average costs of NPIs. When calculating the steady-state envelope, we look at the maximum
and minimum of daily cases after the incidence of cases falls below the target and the effective
reproduction number is below 1. It is not possible to determine a steady-state envelope for
every epidemic realisation of every scenario as under some parameter combinations the con-
trol algorithm may fail to stabilise the outbreak. If this happens we use the peak value as the
size of the solution envelope. We find that the distribution of peaks and steady-state envelopes
are multi-modal for certain parameter combinations. This results from applying a controller
that has a discrete action space and policy review time longer than the algorithm time step
(which is daily).

For the comparison in Fig 4, we tuned the parameters of the different control algorithms
such that they involve similar intervention costs. For the time-triggered apprach, we selected
a rolling policy of 45 days of full lockdown followed by 9 days of no intervention (i.e. a 45/9
cyclic policy), which is enacted 39 days after the simulated epidemic started. This is to ensure
that the long term average effective reproduction number is approximately 1, so we observe
the epidemic reaching a near steady-state. Arbitrary choices of policy lengths may fail to sta-
bilise the epidemic, resulting in continued (but slower) growth or rapid suppression that is
costly.

Fig 4 indicates that reporting delays have a detrimental effect to feedback-control strategies
i.e., the MPC and event-triggered control approaches, as mistimed action leads to drastically
higher incidence peaks and wider steady-state envelopes. In some realisations, the desired
target is exceeded by a factor as large as 100. Interestingly and perhaps counter to intuition,
the detrimental effect of reporting delay is less if the variance of the reporting delay is high.
Low variance means that the reporting delay is almost deterministic (see results with higher
values of the dispersion parameter 𝛼), while high variance implies that we have a larger por-
tion of cases where the delay is small (and also more cases subject to very large delays, for the
same overall mean lag). As a result, high variance delay distributions allow some access to
more recent infection information, which can aid decision making. Row (c) of Fig 4 shows
the average costs spent on interventions for each strategy under different delay settings. As
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Fig 4. The impact of increasing reporting delay on optimal control. The left panels show results for our MPC algorithm, while the middle and right panels respectively
present equivalent outputs under event-triggered (lockdown and relaxation thresholds of CLD = 2500 new cases/day, and Crelax = 1500 new cases/day) and time-triggered
(cycle of 45 days lockdown, 9 days of no restrictions, starting on day 38) strategies. Row (a) shows scatterplots for peak incidence and row (b) illustrates the steady-state
envelope size relative to the target incidence across different time delay distributions displayed in the top row of Fig S3. The horizontal axis represents different mean
reporting delays with colours depicting different dispersion levels. Larger values of the parameter 𝛼 indicate more deterministic delays. Row (c) shows the mean inter-
vention costs for each ensemble of 1000 epidemics, simulated under estimated parameters from COVID-19. An equivalent analysis for simulated Ebola virus disease
epidemics is presented in Fig S1 of the Supplement.

https://doi.org/10.1371/journal.pcbi.1013426.g004
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expected, we find the optimal control strategy is notably more economical than either the
event-triggered or the time-triggered method.

Time-triggered cyclic control is insensitive to the reporting delay as it follows a pre-defined
sequence of actions irrespective of the observed incidence trajectory. As a result, while the
costs of the interventions are higher than those of MPC, it is possible to devise predefined
intervention strategies that outperform optimal feedback-control under large case reporting
delays with means of 10.5-14.0 days or more, depending on the delay dispersion. This exposes
the limits that surveillance quality can impose on our ability to reactively control an epidemic.
Importantly, as long as the dispersion of our reporting delays is sufficiently large (𝛼 ≈ 1) then
optimal MPC strategies offer a cost-effective intervention approach for any mean delay.

In the Supplement, we also present the results of the same analysis for Ebola virus (See Fig
S1). We find that the performance deterioration caused by reporting delays follows similar
trends to what we observed for COVID-19 in Fig 4. However, a key difference is that Ebola
virus has a longer generation time, which results in slower dynamics, that reduce some of
the negative impact of reporting delays. For comparison, with the MPC approach and a near
deterministic (𝛼 = 200) delay distribution with a mean of 21 days, we obtain peak infection
incidence 100-1000 times larger than the target for COVID-19. In contrast, the same delay
only leads to peaks of about 4-5 times the target for Ebola virus disease.

The limits of control due to under-reporting
Having isolated the influence of reporting delays, we now examine the impact of under-
reporting. This is another common and important surveillance imperfection in which not
all newly infected individuals are reported as cases leading to under-ascertainment of the
true numbers of infections and hence the size of the epidemic. We model the number of daily
reported cases with a Beta-binomial distribution Ct ∼ BetaBin(It,𝛼𝜈 ,𝛽𝜈), with shape param-
eters of 𝛼𝜈 and 𝛽𝜈 . The expected number of reported cases is then It𝛼𝜈/(𝛼𝜈 +𝛽𝜈) while the
variance is It𝛼𝜈𝛽𝜈(𝛼𝜈+𝛽𝜈+It)/((𝛼𝜈+𝛽𝜈)2(𝛼𝜈+𝛽𝜈+1)). We refer to the ratio of the expected
reported cases and the true infection incidence as the mean reporting ratio 𝜈 ∶= E[Ct/It] which
is constant in time. To directly control the mean reporting ratio 𝜈mean and the dispersion, we
choose 𝛼𝜈 = a and 𝛽𝜈 = a(1–𝜈mean)/𝜈mean. This means that larger values of the dispersion
parameter a result in a smaller dispersion in reporting rate.

We consider 6 different mean reporting ratios from 0.1 to 0.85 each with 4 different vari-
ances. A smaller reporting fraction means larger under-reporting. Fig 5 plots the performance
of the MPC, event-triggered and cyclic strategies in successive columns. For these diagrams,
the target incidence is scaled up according to the mean reporting ratio to have comparable
results.

We find that as the variance in under-reporting increases the performance of optimal feed-
back strategies deteriorates. This follows because the under-reported case curve is effectively
a stochastic downscaling of the true infection incidence curve. As a result, larger stochasticity
in fluctuations for a given mean reporting rate more substantially distorts the observed inci-
dence and misleads control. Low variance means that the under-reporting is more determin-
istic, so that reported case incidence better resembles the shape of the true infection incidence
curve.

Both our MPC and the event-triggered strategy show similar patterns in how the peak and
envelope of the controlled epidemics vary with the under-reporting statistics. However, the
MPC algorithm achieves better performance with smaller intervention costs. This improve-
ment derives from the MPC approach leveraging all the available historical information in the
incidence curves. Time-triggered cyclic control is not affected by under-reporting because it
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Fig 5. The impact of increasing under-reporting on optimal control. The left panels show results for our MPC algorithm, while the middle and right panels respec-
tively present equivalent outputs under event-triggered (lockdown and relaxation thresholds of CLD = 2500 new cases/day, and Crelax = 1500 new cases/day) and
time-triggered (cycle of 45 days lockdown, 9 days of no restrictions, starting on day 38) strategies. Row (a) shows scatterplots for peak incidence, row (b) illustrates
the steady-state envelope size relative to the target incidence for different reporting rate distributions displayed in the bottom row of Fig S3. The horizontal axis rep-
resents different mean reporting ratios with colours depicting different dispersion levels. Larger values of the parameter a belong to more deterministic case reporting
distributions (i.e., constant reporting). Row (c) shows the mean intervention costs for each ensemble of 1000 epidemics, simulated under estimated parameters from
COVID-19. An equivalent analysis for simulated Ebola virus disease epidemics is presented in Fig S2 of the Supplement.

https://doi.org/10.1371/journal.pcbi.1013426.g005
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is agnostic to the incidence data and how it is reported. The apparent variation in the perfor-
mance of the cyclic control strategy is due to the scaling of the target according to the under-
reporting rate. While under moderate noise and uncertainty, our MPC approach is more
effective and cost efficient than either of the heuristic methods, cyclic control can outperform
MPC under extreme settings where the reporting rate is very low and the variance is high.

Comparing the effect of under-reporting on control of COVID-19 and Ebola virus (see
Fig S2 in the Supplement) we find similar trends for both pathogens. Even though the drop in
performance that we observe is less pronounced than that due to reporting delay, the slower
dynamics of Ebola virus still makes it more controllable than COVID-19 when uncertainty
in case under-reporting is present. This is evidenced by the solution peaks and steady-state
envelopes being distributed in a smaller interval across the simulation ensembles for Ebola
virus disease than for COVID-19.

Integrating noise and intervention frequency
Having explored the performance limits induced by reporting delays and under-reporting
in isolation, we now consider their combined impact. We analyse ensembles of simulations
under realistic noise distributions for COVID-19 and Ebola virus disease. The uncertainty in
case reporting data can vary markedly depending on the context and national or regional dif-
ferences in how surveillance is conducted. In [1], reporting delays of 9-12 days were estimated
for COVID-19 in Italy, whereas [78] inferred case-reporting rates between 7-38 % across
France. Based, on these, we consider a mean reporting delay of 10.5 days with a dispersion of
(𝛼 = 5.0) and a mean reporting rate of 0.3 with a dispersion of a = 8.0.

Rows (a) and (b) in Fig 6 show results for simulated COVID-19 epidemics under realis-
tic noise distributions and subject to policy review periods of 7 and 14 days, respectively. We
find that the MPC strategy stabilises the epidemic around the target, but fluctuations are con-
siderably larger than in the baseline case (see Fig 3a) due to the delay and under-reporting.
This results in an overshoot of about 5-times the target incidence under a 7-day policy review
period and around 10-times for a 14-day policy review period. Comparing these results with
the simulations in panels (c) and (d) of Fig 6 for epidemics simulated under Ebola virus
parameters, we observe that, the MPC strategy is more effective in controlling these epidemics
and the effect of noise is less detrimental to controllability.

For the Ebola virus epidemics (panel (c)) we find that running the MPC algorithm with a
7-day policy review period causes a 3-times overshoot of the target incidence of cases, which
remarkably, only slightly deteriorates to about 4-times when a 14 policy review period is used
(see panel (d)). This occurs because the longer generation time of Ebola virus results in a
slower epidemic that allows the MPC algorithm more time to effectively adapt to changes in
the epidemic dynamics. Consequently, we must act more swiftly when responding to diseases
with shorter generation times as their faster growth can quickly destabilise data-informed
policies. Note that in scenarios where the same epidemic parameters were used ((a) and
(b) for COVID-19, (c) and (d) for Ebola virus disease) we observe that our MPC algorithm
enacted and sustained NPIs for similar time ratios (with COVID requiring more restrictions
than Ebola). This confirms that differences in performance are due to timing instead of overly
conservative or relaxed strategies.

Sensitivity to uncertainties and changing epidemic dynamics
In the above subsections, we characterised the performance boundaries that practical surveil-
lance place on our optimised MPC approach. Here we examine the robustness of our algo-
rithms to uncertainties and unanticipated changes in disease transmission and intervention
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Fig 6. Optimal control and policy review for realistic simulated epidemics. Rows (a) and (b) represent epidemics sim-
ulated under a COVID-like generation time and basic reproduction number with 7 and 14 days policy review periods,
respectively. Rows (c) and (d) represent epidemics simulated under Ebola-like parameters with 7 and 14 days policy
review periods, respectively. Because Ebola virus disease has a longer generation time, we discard a burn in period of 14
weeks to allow the epidemic to grow towards the initial target. The left column show reported cases from ensembles of 100
simulations with mean delay 10.5 days, delay dispersion 𝛼 = 5.0, mean reporting rate 0.25, a = 8.0. These settings reflect

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013426 September 3, 2025 19/ 29

https://doi.org/10.1371/journal.pcbi.1013426


ID: pcbi.1013426 — 2025/9/25 — page 20 — #20

PLOS COMPUTATIONAL BIOLOGY Optimal algorithms for controlling infectious diseases using noisy infection data

estimates of realistic surveillance noise from the literature. The faded curves show different individual realisations of the
epidemic with the 3 black curves marking the 5% and 95% percentiles of the ensemble as well as the mean reported cases.
The horizontal dashed line shows the incidence target. The highlighted thick curve of reported cases is coloured based on
the NPI implemented on a given day. The blue thin curve indicates the true incidence corresponding to that highlighted
simulation. The right column shows similar diagrams for the effective reproduction number. The faded grey curves and the
highlighted curve represents the effective reproduction number whereas the thin orange curve indicates the estimated value
from the reported cases for the highlighted realisation of the epidemic. The inset pie charts in the right column indicate the
ratio of days spent under a given NPI across the full simulation ensemble.

https://doi.org/10.1371/journal.pcbi.1013426.g006

effect size. For example, if a new strain of the pathogen emerges (e.g., new variants appeared
several times during the COVID-19 pandemic [79]) this can change the basic reproduction
number R0 of the epidemic and hence its controllability. The MPC algorithm has the flexibil-
ity to handle these changes in disease parameters as it infers the reproduction number from
data and uses updated projections against our desired targets to dynamically adjust control
policies. We present simulations in Fig 7, panel (a) in which the basic reproduction number
for COVID-19 increased from 3.5 to 4.5 to model the emergence of a new, more transmissible
variant. In this case, as the reproduction number is re-estimated from the most recent case
counts at every policy review, the MPC algorithm retains control over the outbreak and keeps
infections around the desired target.

Our MPC algorithm is also capable of accommodating uncertainty in the efficacy of NPIs
i.e., unexpected variations in the overall reduction on transmission that an NPI achieves. This
is more realistic than assuming a fixed reduction in transmission because difficult to model
factors such as population behaviours often influence the actual efficacy of any interven-
tion. Since our study focuses on the limiting effect of surveillance noise on feedback-control
strategies, we did not include uncertainty in NPI efficacy in most of our simulations. This
was necessary to isolate and expose the effect of surveillance noise on control performance.
In Fig 7 panel (b), we include uncertainty around the expected effectiveness of NPIs. Here,
instead of assuming fixed reduction factors, we sample from a Beta distribution where the
mean is aligned with the corresponding reductions in R for each NPI except for ‘No restric-
tions’ where we keep the reproduction number at the baseline, R0. Similar NPI effect dis-
tributions can be derived from studies like [5,22] or [23]. Our results indicate that whilst
uncertainty in NPI efficacy may occasionally lead to suboptimal action choices that cause
larger peaks in infection incidence, overall the MPC algorithm still effectively controlled
the epidemic by actively reacting to the discrepancies between the actual new cases and the
target. This demonstrates both the robustness of our approach and the benefits of feedback
control.

Discussion
Here we proposed a model predictive control strategy for optimising epidemic interventions
that uses incidence data in real time. Our approach is one of the first to design feedback and
cost-minimal strategies that integrate both the intrinsic stochasticity of the transmission pro-
cess and the practical noise that is ubiquitous to real surveillance. Our results indicate that,
within the limitations of the data quality, model predictive optimal control is a viable strategy
for cost-effectively guiding intervention decisions in real time. Comparing it to earlier refer-
ence approaches, the MPC strategy appreciably outperforms both event-triggered feedback
control and time-triggered control.
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Fig 7. Optimal control for realistic simulated epidemics with uncertainty in the estimated reproduction number.
Row (a) shows epidemics simulated under COVID-like generation time where the basic reproduction number is changed
from 3.5 to 4.5 on day 130 (black vertical line). Row (b) represents epidemics simulated under COVID-like generation
time and a fixed basic reproduction number with uncertainty in the effect of NPIs on reduction in disease transmissions.
Instead of fixed reduction factors, the factor ct altering the basic reproduction number as R0t = R0ct is sampled form a Beta
distribution Beta(50, 50 × (1 – c)/c), where c is the mean reduction in reproduction number caused by the NPI used. The
mean and variance of this Beta distribution are c and c2(c – 1)/(50+ c), respectively. The exception is ’No restrictions’,
which has ct = 1.. The left column shows reported cases from ensembles of 100 simulations with mean delay of 10.5 days,
delay dispersion 𝛼 = 5.0, mean reporting rate 0.25, a = 8.0. The faded curves show different individual realisations of the
epidemic with the three black curves marking the 5% and 95% percentiles of the ensemble as well as the mean reported
cases. The horizontal dashed line shows the incidence target. The highlighted thick curve of reported cases is coloured based
on the NPI implemented on a given day. The blue thin curve indicates the true incidence corresponding to that highlighted
simulation. The right column shows similar diagrams for the effective reproduction number. The faded grey curves and the
highlighted curve represents the effective reproduction number whereas the thin orange curve indicates the estimated value
from the reported cases in the highlighted realisation of the epidemic. The inset pie charts in the right column indicate the
ratio of days spent under a given NPI across the full simulation ensemble.

https://doi.org/10.1371/journal.pcbi.1013426.g007

Noise in surveillance data has a detrimental effect on MPC and the event-triggered
approaches, impacting the quality of the real-time signals that are fed back to inform inter-
vention choices. However, because the MPC approach considers the complete epidemic state
(event-triggered control only uses recent states) and optimises decisions across stochastic pro-
jections of epidemic dynamics, it is able to better extract and leverage the information within
the incidence data. This allows it to simultaneously achieve better or equivalent noise robust-
ness while utilising a smaller intervention budget than the event triggered approach, which is
limited in performance by its relatively inflexible feedback approach i.e., it imposes or relaxes
NPIs on fixed thresholds.
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If noise levels are extreme, for example when delays are large and relatively deterministic,
time-triggered strategies, which schedule NPIs without directly considering real time data,
can be more effective in limiting peak incidence as this method acts at the same preset time
under all circumstances. This marks the limits of data quality for feedback-control strategies
and indicates that in these scenarios the available data are fundamentally too unreliable for
guiding decision-making. However, the time-triggered strategy comes with notable draw-
backs because its design is heavily reliant on having accurate prior knowledge of epidemic
parameters and NPI efficacies. This makes it extremely non-robust to changes and uncer-
tainties, e.g., if transmissibility is different from what is expected, then the time-triggered
approach may fail to stabilise the epidemic. Whilst MPC relies on several assumptions about
transmission dynamics it does not share this lack of robustness. We therefore find strong evi-
dence that the additional complexity, relative to reference strategies, such as event and time-
triggered approaches, required to compute and perform MPC strategies brings substantial
advantages. Moreover, because this optimisation is sequential it adapts well to unexpected
changes or uncertainties, offering important robustness to the many unknowns during an
unfolding epidemic.

For example, if a new variant emerges that changes the reproduction number, the MPC
algorithm is able to adapt and bring the epidemic under control as long as there are actions
(i.e., possible interventions) in the action space capable of forcing the effective reproduction
number below 1. In the scenario where our strongest NPI is unable to achieve this reduction,
our control algorithm will not be able to stabilise the epidemic. However, this would indi-
cate that these measures are insufficient to control the epidemic, providing useful and timely
evidence for enacting more stringent measures.

Another example of varying transmission parameters occurs when immunity is acquired
by infection. This reduces the susceptible population and decreases the effective reproduc-
tion number. In our modelling framework, this can be easily included by setting Rt = R0tS/N,
where S and N are the susceptible and the total population sizes, respectively. Assuming per-
fect immunity from infection the susceptible population size is calculated as St =N– ∑t

s=0 Is,
which is a common method for including susceptibles in renewal models [23,80]. This would
not affect the MPC algorithm’s operation, as its only link to susceptible depletion is implicit,
through changes in the estimated reproduction number Rt, which naturally declines as immu-
nity builds through infection. As the projections used to determine optimal control actions
are short-term, and the reproduction-number estimate is updated at every decision point, sus-
ceptible depletion has minimal impact over these time frames and so does not affect the opti-
misation over policy choices. Note that we excluded this from our simulations in order to iso-
late the impact of the NPIs and to allow fair comparison among epidemics that have dynamics
on differing timescales.

We also demonstrated that even though it results in larger oscillations, overall, the MPC
algorithm retains control over the epidemic even when the efficacies of NPIs are unreliably
known or have substantial uncertainty. This result corroborates findings in [44] and high-
lights why having an adaptive strategy that considers data and action in feedback is beneficial.
Furthermore, the inherent uncertainties in policy efficacy make a strong case for data-driven
control and forecasting frameworks allowing for the efficient testing of various scenarios to
support informed decision-making.

Our results also emphasise that while noise can degrade even optimal MPC strategies,
these rigorously optimised control approaches are valuable in almost all settings. Note that
we did not correct for these sources of noise when assessing their detrimental effects on epi-
demic controllability. In real-time epidemic analysis, reporting delays and underreporting
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are typically recognised and, where possible, auxiliary data are often used to inform correc-
tions. Our aim here, however, was not to simulate exactly what analysts should or would do in
real-time, but to understand the intrinsic performance bounds that imperfections in routinely
collected data impose. While several studies have focussed on estimating and compensating
for under-reporting [24] and reporting delays [81–83], the additional knowledge about the
reporting process or the auxiliary data required [84,85] may often be unavailable, expensive
to collect or only become available later in epidemics. Consequently, we focussed on char-
acterising performance when little else is known about the epidemic than its time series of
cases.

While surveillance data corrections can improve estimates, they can also introduce addi-
tional bias if the underlying assumptions are incorrect [86,87]. The feasibility of adjusting for
imperfect reporting therefore varies greatly by location and by disease. Only a few pathogens,
most notably COVID-19, benefited from the dense, near-real-time monitoring needed to
support rigorous corrections. Even then, some forms of under-reporting, such as infections
that never manifest symptoms, remained challenging to quantify [88]. Moreover, there are
also inherent practical delays involved with the public announcement and implementation of
NPIs from the point of decision [89], which would result in delayed action even with perfect
knowledge of the epidemic states. For example, having a policy review period that is several
weeks for a pathogen with dynamics that vary on daily timescales can mean that interventions
are inevitably late or suboptimal. This effectively causes an additional lag in the feedback loop
and may itself prevent controllability. Our study helps understanding a range of scenarios
between the best and worst cases and identifies the kinds of noise that most impair epidemic
control.

We also found that the speed of disease spread is an important factor that influences both
the limiting impact of surveillance imperfections and sets the required timescales for a suite
of interventions to be successful. It is easier to control a slower spreading pathogen like Ebola
virus disease (mean generation time ∼ 15 days), as compared to COVID-19 (mean generation
time ∼ 6 days). Generally, for a slower spreading disease there is more tolerance for having
larger reporting delays and less frequent policy reviews. Accordingly, there is also less sensi-
tivity to the timing of interventions. The negative effect of having a lower policy review fre-
quency (or longer time between policy updates) implies that it is ideal to review intervention
decisions as often as possible (hence allowing for a more continuous feedback loop). How-
ever, because NPIs are intrusive and costly, doing so would probably drive changes in public
behaviour that have a rebound effect on the effectiveness of the NPIs [90,91]. For example,
the level of adherence to closure or social distancing policies may wane due to fatigue or per-
ceived risk [92,93]. This illustrates the complex multi-loop feedback circuits that can exist and
will form the subject of our future study.

Although our MPC approach is adaptive and efficient at controlling unfolding epidemics,
it currently leaves several factors unmodelled. Specifically, we do not consider how dynamic
changes in behaviour, mobility or other individual-level variations in response to policy and
epidemic data alter transmissibility. We also assume that the population is well-mixed which
means we neglect heterogeneity in transmission (e.g., superspreading) as well as spatial and
sociodemographic differences that can modulate spread. However, our MPC framework can
accommodate some of these sources of heterogeneity (e.g., we can easily include superspread-
ing via more dispersed renewal models). Our future work will focus on better understanding
how heterogeneity may affect intervention choices.

While the realism of our study is dependent on having accurate knowledge of relative costs
(both economic and due to health outcomes), our framework is flexible and easily incorpo-
rates estimates of these quantities as well as finer resolution intervention options (e.g., we can
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directly expand our action space to include NPIs with intermediate stringency such as manda-
tory wearing of masks, restrictions to larger meetings, or limiting in-person attendance to
work or education). We also do not assess the impact of model errors beyond those stem-
ming from imperfect surveillance and always assume that our model is parameterised using
the best available knowledge for the generation time distribution and the basic reproduction
number. Our goal was simply to construct a general framework that can qualitatively explore
and evaluate how optimal and suboptimal but known control strategies depend on realistic
surveillance limitations.

Our results unequivocally demonstrate that timing is a crucial factor in intervention effi-
ciency. The same interventions or interventions under the same overall budget applied dif-
ferently across time can yield markedly different disease control outcomes due to this sen-
sitivity to timing. Even when optimal algorithms such as our MPC approach are applied,
mistimed action (due to delays in data or irregular and slow NPI reviews), can be detrimen-
tal and cause substantial reductions in policy effectiveness, large epidemic peaks and high
endemic loads. Ascertainment of infections is also important but even suboptimal strate-
gies are more robust to this type of noise than delays. Consequently, improving the speed of
epidemic detection and response systems should be a priority for disease surveillance and
policy.

Supporting information
S1 Fig. The impact of increasing reporting delay on optimal control. The left panels show
results for our MPC algorithm, while the middle and right panels respectively present equiv-
alent outputs under event-triggered (lockdown and relaxation thresholds of CLD = 3000 new
cases/day, and Crelax = 3500 new cases/day) and time-triggered (cycle of 36 days lockdown,
21 days of no restrictions, starting on day 143) strategies. Row (a) shows scatterplots for peak
incidence and row (b) illustrates the steady-state envelope size relative to the target incidence
across different time delay distributions displayed in the top row of Fig S3. The horizontal
axis represents different mean reporting delays with colours depicting different dispersion
levels. Larger values of the parameter 𝛼 indicate more deterministic delays. Row (c) shows
the mean intervention costs for each ensemble of 1000 epidemics, simulated under estimated
parameters from Ebola virus disease.
(EPS)

S2 Fig. The impact of increasing under-reporting on optimal control. The left panels show
results for our MPC algorithm, while the middle and right panels respectively present equiv-
alent outputs under event-triggered (lockdown and relaxation thresholds of CLD = 3000 new
cases/day, and Crelax = 3500 new cases/day) and time-triggered (cycle of 36 days lockdown,
21 days of no restrictions, starting on day 143) strategies. Row (a) shows scatterplots for peak
incidence, row (b) illustrates the steady-state envelope size relative to the target incidence for
different reporting rate distributions displayed in the bottom row of Fig S3. The horizontal
axis represents different mean reporting ratios with colours depicting different dispersion lev-
els. Larger values of the parameter a belong to more deterministic case reporting distributions
(i.e., constant reporting). Row (c) shows the mean intervention costs for each ensemble of
1000 epidemics, simulated under estimated parameters from Ebola virus disease.
(EPS)

S3 Fig. Probability density functions (PDFs) of the simulated surveillance noise. Top row:
case reporting delay distributions modelled using Gamma distributions. The shape parameter
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𝛼 controls dispersion (larger 𝛼 results in lower variance). Numbers above the curves indi-
cate the mean of each distribution. Bottom row: infection reporting rate distributions mod-
elled using Beta distributions. The parameter a controls dispersion (larger a results in lower
variance). Numbers above the curves indicate the mean reporting rate.
(EPS)
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