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Abstract
Protein Language Models (PLMs) use transformer architectures to capture patterns
within protein primary sequences, providing a powerful computational representation of
the amino acid sequence. Through large-scale training on protein primary sequences,
PLMs generate vector representations that encapsulate the biochemical and structural
properties of proteins. At the core of PLMs is the attention mechanism, which facilitates
the capture of long-range dependencies by computing pairwise importance scores across
residues, thereby highlighting regions of biological interaction within the sequence. The
attention matrices offer an untapped opportunity to uncover specific biological properties
of proteins, particularly their functions. In this work, we introduce a novel approach, using
the Evolutionary Scale Modelling (ESM) , for identifying High Attention (HA) sites within
protein primary sequences, corresponding to key residues that define protein families. By
examining attention patterns across multiple layers, we pinpoint residues that contribute
most to family classification and function prediction. Our contributions are as follows: (1)
we propose a method for identifying HA sites at critical residues from the middle layers
of the PLM; (2) we demonstrate that these HA sites provide interpretable links to bio-
logical functions; and (3) we show that HA sites improve active site predictions for func-
tions of unannotated proteins. We make available the HA sites for the human proteome.
This work offers a broadly applicable approach to protein classification and functional
annotation and provides a biological interpretation of the PLM’s representation.

Author summary
Understanding how proteins function is critical to advances in biology and medicine.
Protein language models (PLMs) enable large-scale analysis of amino acid sequences by
identifying key regions important for distinguishing proteins. In this work, we analyze
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the attention mechanism of Evolutionary Scale Modeling (ESM), a state-of-the-art PLM,
to uncover residues that the model deems most important. We introduce a method to
identify “High Attention (HA)” sites—specific residues in the primary sequence that
drive family classification and functional prediction. Our analysis shows that HA sites
often overlap with biologically important residues, such as active sites. This suggests
that PLMs implicitly capture functional signals within protein sequences. By interpret-
ing the model’s internal priorities, we provide insight into how PLMs process proteins
and offer a way to improve function prediction. As part of this work, we release HA-site
annotations for the entire human proteome as a resource for the community.

1. Introduction
Understanding a protein’s characteristics from the sequence is crucial to predicting its func-
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tion, and analyzing protein data at scale requires computational representations of the amino
acid sequence [1,2]. Protein Language Models (PLMs) are computational tools that apply
transformer-based architectures, originally developed for natural language processing, to
protein biology [3]. These models are trained on large datasets of protein primary sequences
to learn meaningful representations of the sequences by capturing patterns across the amino
acid sequence. A product of the PLM is a numerical representation per amino acid (AA)
within a sequence, called embeddings. The embeddings encapsulate information about
the proteins’ biochemical and structural properties, making PLMs valuable for a variety of
downstream tasks, such as predicting protein function, classifying proteins into families, and
exploring structural relationships among proteins [4–7]. Within the PLMmodel, the atten-
tion mechanism is the key innovation that facilitates capturing long-range dependencies and
contextual relationships across the sequence [8]. The attention mechanism computes atten-
tion scores using the Query (Q) and Key (K) matrices. These scores determine the importance
of each amino acid by weighing its interactions with other residues in the sequence. The Value
(V) matrix is then used to generate the contextualized representations at each layer through
weighted aggregation based on the attention scores [9].

The PLM utilizes multiple layers of attention, and the model refines its understanding
of the sequence over the layers, improving the depth and accuracy of the learned represen-
tations. Attention matrices produced at each layer of the model reflect how the PLM inter-
prets the importance of specific residues within a protein primary sequence [10]. Therefore,
the attention mechanism within PLMs, which assigns weights to each amino acid (AA) in a
sequence based on its relevance to others, contains crucial information about which residues
may be important to the proteins’ function and structure [11,12]. However, previous work has
not fully explored how these attention patterns correlate with known biological functions or
the classification of proteins into families [1,13].

Proteins with similar sequences tend to have similar representation vectors in the high-
dimensional space generated by PLMs [13,14], which suggests that the model recognizes
common features among these proteins. Therefore, within the attention layers, the model is
driven to converge toward identifying similarities in the sequence [15]. Thus, we hypothesize
that investigating the parts of the sequence that the model prioritizes will provide insights into
the key residues that are important to the protein’s biological properties.

In this work, we develop a method to systematically identify key residues—termed High
Attention (HA) sites and show that these sites are indicators of the protein family and func-
tion, described graphically in Fig 1. We specifically focus on a state-of-art PLM, Evolutionary
Scale Modelling 2 (ESM-2) [16], which was trained on a corpus of protein primary sequences
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Fig 1. Overview diagram of the method and contributions of this work. Panel A shows a high-level description of the data and method used to identify high-attention
(HA) sites. We use the ESMmodel to analyze all human proteins, by running the protein language model on all human protein primary sequences and obtaining the
attention matrices. We implement our attention analysis algorithm (described in Sect 2.2) to obtain a set of HA sites for each protein. This dataset of HA sites is made
publicly available. Panel B shows three tasks that can be performed with the set of HA sites. (1) The HA sites can be used to confirm the protein family alignment and
validate a protein’s membership within a family based on the similarity of the progression of attention values. (2) The HA sites can define vectors that can be used to
determine pairwise similarities between proteins. (3) The HA sites are also predictive of functionally important regions of the protein, as they are spatially close to active
sites and residues crucial to the specificity of the protein.

https://doi.org/10.1371/journal.pcbi.1013424.g001

and provides the attention values at each layer, embedding vector for each residue in the
sequence, and the predicted structure contact map for the sequence [11]. Our approach iden-
tifies the specific layer in the PLM where attention converges on these HA sites, providing a
clearer understanding of how the model distinguishes between different protein families. By
focusing on these key residues, we demonstrate that these HA sites can be used to better pre-
dict protein function and classify proteins into families. We also enhance the interpretabil-
ity of PLMs, by identifying the biological significance of the computational representations
within the model. The major contributions of this work are:

1. Identification of High Attention Sites (HA sites): We develop a robust method to iden-
tify the specific residues in protein primary sequences that receive the most attention
in the middle layers of the PLM, which are critical for the model’s family classification
decisions.

2. Protein Family Identifier: We show how the attention patterns in PLMs can be ana-
lyzed to provide a clearer understanding of the model’s predictions, linking HA sites to
distinguishing features of protein families, specifically biological functions and protein
primary sequence and structure.

3. Enhanced Functional Prediction: We demonstrate that using HA sites improves the
prediction of protein functions, particularly for proteins with previously unknown
functions, offering a dataset of predicted, functionally important residue annotations
across the human proteome.

4. We make the set of HA sites available for the entire human protein, along with the
alignment based on the HA sites for all human protein families, to facilitate studying
key sites in each protein family.
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1.1. Background
To avoid ambiguity, we define key terms—protein language models, protein representation
vectors, attention matrices, and protein families—as their usage can vary across proteomics
and language modeling.

Protein Language Models (PLMs) apply transformer architectures to protein sequences,
treating each amino acid as a token to learn context-aware embeddings. These embeddings
capture patterns in sequence data and support downstream tasks like structure and function
prediction [1,6,7]. PLMs produce token-level vectors for each amino acid, which are aggre-
gated using pooling methods (mean, max, or CLS token) to form a single protein representa-
tion vector. These representation vectors enable protein similarity comparisons but may miss
residue-specific functional importance [17,18]. these pooling techniques consider each AA
token to be of equal importance to the protein function, which is biologically incorrect - AAs
at specific residues within a protein primary sequence can have a much higher impact on the
overall structure and function than others [10,19]. Attention mechanisms in PLMs compute
context-dependent relationships between amino acids using Query, Key, and Value matrices.
These attention matrices, layered through the transformer, capture long-range dependen-
cies and can reveal critical functional residues at the sequence level. Similarities in attention
matrices across proteins may also indicate shared functional or structural features [15,20,21].
Protein families group evolutionarily related proteins with similar sequences, structures, and
functions, often defined by conserved regions identified through alignments or annotations
(PFAM, GO, PDB). Traditional protein family classification relies on sequence alignments
(MSA), structural comparisons (PDB), and functional annotations (GO); in this work, we
explore how similarity in attention matrices from protein language models can also indicate
shared function, sequence, and structure [19,22–24]. This study uses the ESM2 model, a
650M-parameter bidirectional transformer with 33 layers and 14 attention heads per layer,
which provides both residue-level embeddings and predicted contact maps. ESM2’s access
to detailed attention data enables analysis of structural and functional similarities through
attention convergence [11,25,26].

2. Method
We identify key residues that influence PLM representations of similar proteins. Our method
systematically detects the earliest PLM layer with consistent attention matrices across a
protein family, using it to pinpoint high-attention (HA) sites. We then assess how well the HA
sites capture the family’s defining characteristics: function, sequence, and structure.

2.1. Dataset
We download all human proteins (protein name and sequence) from UniProt, producing
20,085 proteins. From Hugging Face, we access the ESM-2 model, specifically the pre-trained
model esm2_t33_650M_UR50D with 33 layers, 14 attention heads per layer, and 650M
parameters. We use the pre-trained model to obtain each attention matrix (14 x 33 matrices
of size sequence length x sequence length), the representation vector of length 1280 for
each token AA (1280 x sequence length), and the contact map (sequence length x sequence
length). For each protein, we get the PFam ID, leading to 7,289 unique families. We also
obtain the structure file for each protein from the Protein Data Bank (PDB), the largest
protein structure database. For proteins with multiple PDB entries, we selected the structure
with the highest sequence coverage and the lowest resolution. Only canonical protein
sequences, as defined by UniProt, were considered, and structures containing mutations were
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excluded. When no experimental structure was available for the canonical sequence, we used
an AlphaFold2-predicted structure generated from the UniProt sequence and downloaded
the corresponding PDB file. Thus, we obtain the structure for 20,074 proteins. We also down-
load the protein family annotation from Pfam for each of the human proteins. From Uniprot,
we download residues that are annotated as “active sites”, which are residues known to be
involved in enymatic catalysis.

2.2. Identifying the convergence layer and key residues from attention
matrices
We use the ESM-2 650-million parameter model on all human protein primary sequences
obtained from UniProt (20,085 proteins) [27]. We run ESM-2 and obtain the attention matrix
for each layer (L = 33 layers) for each attention head (H = 14 attention heads) for each pro-
tein. Because each attention head uses different learned linear transformations, the attention
heads are attuned to different aspects of the sequence. Since this work focuses on analyzing
the change in attention as the sequence progresses through the model (through the layers)
rather than across heads, we first pool the attention heads (H) to create one attention matrix
per layer. For each protein sequence (length n), we perform mean pooling, taking the mean
across all the attention heads at each (i,j) cell in the matrices, where i,j are two residue sites
in protein p. We apply mean pooling to summarize layer-level attention, as it captures gen-
eral trends across all heads while preserving variation important for characterizing overall
attention dynamics [28].

The columns of the attention matrix denote the importance of the token AA at a given
column on all other tokens in the sequence. Thus, to quantify the global importance of one
residue, we perform a column-wise summation of the pooled attention matrix. This approach
is chosen because summing over columns captures how much total attention is allocated to
each residue across the entire sequence, reflecting its significance as a key reference point.
In contrast, summing over rows would measure how much attention a residue distributes to
others, which does not directly quantify its importance in being attended to by the model. We
create a vector, vl with values in the range 0 to 1 for each attention layer, such that the value in
position i in the vector, vl denotes the relative importance of the token AA at position i in the
sequence in layer l. We normalize this vector to values between 0 and 1 to allow for compari-
son between the residues, as we aim to identify the residues with the highest relative attention.
The operations are described in Eqs 1–3 and in Fig 2.

Fig 2. Schematic diagram of the calculations performed on the attention matrices to create the normalized vector per layer. For one protein of length n, all attention
matrices are obtained from the PLM and we first mean pool the attention heads, H, for each layer, L. This leads to a n×nmatrix for each layer. We do a column sum of
this matrix to measure the importance of each residue across the sequence and create a 1×n vector for each layer. Column sums highlight tokens that receive the most
attention across all queries, indicating their overall importance. We normalize this vector to facilitate the comparison of the attention values across proteins. We then
concatenate these per-layer vectors into a matrix of size L×n, to evaluate the change in attention for each residue over the layers.

https://doi.org/10.1371/journal.pcbi.1013424.g002
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AMl =
1
H

H
∑
h=1

AM(h)l ⟺ pool(AM(1)l ,… ,AM(H)l ) (1)

sl =
n
∑
i=1

AMl(i, ∶) ⟺ colsum(AMl) (2)

vl =
sl

max(sl)
⟺ sl

max(sl)
(3)

HA sites are defined as residues with normalized attention values that exhibit a bimodal
distribution, where a subset of residues have high attention while others have significantly
lower attention. Instead of using a fixed threshold to define high and low attention residues,
we allow the attention values for each protein to determine the separation dynamically. This
ensures that the method remains globally applicable across all human proteins, regardless
of variations in attention distributions. To systematically identify the convergence layer, we
first normalize and pool the attention values for each layer l into a vector vl, then sort vl in
descending order. We fit two connected linear segments to this curve using a piecewise linear
fitting algorithm that tests every possible breakpoint, fits a least-squares line to the points on
each side, and selects the split that minimizes the total mean-squared error (MSE). Once the
optimal breakpoint is found, we compute the angle 𝜃 between the two fitted segments. The
layer whose 𝜃 is closest to 90 degrees is chosen as the convergence layer, and residues to the
left of that breakpoint are designated as high-attention (HA) sites. We perform this calcula-
tion for each protein, thus allowing the definition of the convergence layer to change for each
protein depending on its individual attention values.

The choice of 90 degrees is based on its role in maximizing the separation between high
and low attention residues. At this angle, the transition between high and low attention
values is the sharpest, maximizing the difference between the attention values between the
residues to the left and right of the intersection point. This ensures that we identify the layer
in which the attention is most heavily concentrated around these specific residues, rather than
broadly distributed across all the AA tokens. The indices corresponding to the high-attention
residues—those to the left of the intersection point of the two fit lines—are identified as HA
sites.

2.3. Using HA sites to measure similarity of proteins
We show that the HA sites can characterize a protein family and thus can be used to
determine a similarity relationship between two proteins. We develop this method to enable
comparing proteins of varying lengths while maintaining residue-level granularity.

To compare two proteins, we compare the normalized attention of their HA sites over the
layers of the PLM. For each HA site in a protein, we create vector t, such that the ith index of t
is the normalized, summed attention value (described in Sect 2.2) of the given HA site residue
at layer i. For a given protein with HA site at residuem, t[i] = vi[m]. We generate one such
vector for each HA site in a protein and to compare two proteins, we calculate the pairwise
cosine distance between the two sets of HA sites. We then take an average of the distances to
create a distance measure for the two proteins. With this method, the t vectors are the dimen-
sion of the number of layers of the PLM (L), and thus, this method does not depend on the
length of the protein.

We evaluate the ability to distinguish between proteins in a known family against proteins
randomly chosen from the set. We calculate the distribution of scores within the same family
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(in-family) and compare it with the distribution of scores between randomly chosen proteins
(out-family) and perform a Kolmogorov–Smirnov (KS) test to determine the significance of
the difference between the distributions. The KS test is a non-parametric test that quantifies
the maximum difference between two cumulative distribution functions, making it effective
in detecting shifts in distribution without assuming a specific underlying data model. Thus,
we use this test to evaluate whether the distance distribution for in-family proteins is distin-
guishable from that of randomly chosen proteins, as a distance measure should be able to
distinguish between these two groups adequately [29]. The KS test scores reflect the practical
use case of assessing whether two novel proteins belong to the same family by testing if their
similarity score is significantly different from that of unrelated protein pairs. We perform the
same KS comparison using the cosine distance between the mean-pooled representation vec-
tor, the max-pooled representation vector, and the CLS token vectors (described in Sect 1.1).
We also perform a silhouette score analysis for each distance measure type to evaluate the
ability to create separable clusters between in-family and out-family proteins. The silhouette
score quantifies how similar a protein is to others within its own family compared to those
outside it, providing an interpretable metric of cluster cohesion and separation [30].

2.4. Evaluate the relationship between HA sites and active sites
Protein families are a useful functional model for organizing similar proteins; proteins that
share sequence or structure typically share function.

The active site of a protein is crucial to the protein’s function as it is the region where sub-
strate molecules bind and undergo a chemical reaction. Therefore, we evaluate the correla-
tion between the active sites and HA sites of a protein. From UniProt, we obtain the active
site residues. Using the protein structures obtained from the Protein Data Bank, we com-
pare the distance in three-dimensional space between the active site and HA site. We use the
coordinate of the CA atom for the HA-site residue and the active site residue and calculate
the euclidean distance between these two coordinates. If a protein has multiple HA sites and
active sites, the closest pair is considered. For the protein families with no active site anno-
tation in UniProt, we perform a qualitative analysis of the HA sites as a prediction of their
active site.

2.5. Evaluating HA sites correlation to known definitions of protein
families (sequence and structure)
Traditionally, the sequence and structure of proteins are used to define a protein family, and
so we compare the HA sites to the sequence and structure motifs that classically define a pro-
tein family. We perform a multiple sequence alignment using ClustalOmegaCommandline
[31] package from BioPython, which uses a progressive alignment strategy for each protein
family. We find the percent consensus of residue identity and compare the consensus at HA
sites to the average consensus across the alignment.

To evaluate the correlation between the HA sites with the protein structure, we use the
contact map generated from ESM to compare the correlation between the attention matrix
values and the contact map. The attention matrix indicates the importance of one token AA
on another, while the contact map indicates the physical distance between two token AAs. We
calculate the spearman correlation between each (i,j), for all I∈ set(HA site), in the attention
matrix and the contact map, for all layers of attention to evaluate the importance of these sites
on the predicted structure.
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3. Results
3.1. Layer of convergence and HA sites are consistently identified
in the middle layers of the PLM for all human proteins
Once the attention matrices for all amino acid sequences are generated and normalized, we
evaluate the progression of attention over each token AA through the layers. We perform
column normalization to evaluate the significance of a token AA to the other tokens in the
sequence. We plot the resulting vector of attention values for each layer for one protein as
a heatmap (rows are the layers and columns are the token AAs), where the brighter colors
indicate high attention and the darker colors indicate low attention. In Fig 3, we show selected
attention matrices and normalized heatmap for one example protein, P07477. Panel A shows
the attention matrices from the ESMmodel for layers 0(first), 10, 20, and 32(last). In layer
0, all residues have similar levels of importance, for layer 10, self-attention and several high
attention residues emerge. Layers 20 and 32 have a similar pattern of self-attention and
show more localized attention specific to residues that are close together. Panel B shows the
heatmap for P07477, after our normalization method, where each row shows the vector vl for
l∈ [0, 32]. The heatmap highlights the pattern seen in the attention matrices, as the early lay-
ers of the model have relatively similar levels of attention across all residues, as the normalized
values for the row are all close to one. In the middle layers of the model, the relative attention
pattern changes to high attention (close to 1) for certain residues, and close to 0 attention
for all other residues. The attention pattern then builds toward locally-specific attention
distributed evenly across the sequence by layer 32 (last layer). The heatmaps for all proteins
are included in the associated github.

Proteins within a protein family share similar attention patterns as they progress through
the network, which is made evident by comparing the normalized heatmaps between protein

Fig 3. Selected attention matrices and normalized heatmap for the protein P07477. (A) Attention matrices from the ESMmodel at
layers 0 (first), 10, 20, and 32 (last). In layer 0, all residues exhibit similar levels of importance; in layer 10, self-attention and several high-
attention residues emerge. Layers 20 displays localized attention patterns, focusing on residues in close proximity. Layer 32 shows pairwise
attention between residues that are close in the sequence, as well the structurally related, resembling a contact map. (B) Normalized
heatmap for P07477, where each row represents the vector vl for l∈ [0, 32]. The heatmap reveals attention patterns consistent with the
matrices: the first layers display uniform attention across residues, while the middle layers highlight distinct residues with high attention.
By layer 32, attention becomes locally specific across the sequence.

https://doi.org/10.1371/journal.pcbi.1013424.g003
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family members. Fig 4 show the aligned heatmaps for all members of one example protein
family, Trypsin Serine Protease (PF00089).The aligned heatmaps illustrate the attention val-
ues across 33 layers for each protein, with residues aligned by their index positions. Each row
corresponds to a different protein identified by its UniProt ID, and high attention values are
indicated by bright colors. We show the aligned heatmaps to facilitate comparison between
residues that are similar across the proteins; the empty sections of the heatmap correspond to
gaps in the alignment. We observe a remarkable consistency in the attention patterns across
all selected proteins. Notably, the residues with high attention follow nearly identical patterns
across all proteins in the family. This consistent attention distribution suggests that the model
is capturing conserved regions that are critical to the family definition, thus these regions
likely correspond to sites essential for the protease activity.

Fig 4. Aligned heatmaps showing the consistency of attention patterns across 33 layers for all proteins in the trypsin serine pro-
tease family (PF00089). Each row represents a distinct protein, identified by its UniProt ID, with attention values aligned by residue
index. White regions indicate gaps in the alignment, dark blue regions correspond to relatively low attention, and bright yellow represents
residues with high attention. Residues with high attention consistently follow the same pattern across layers for all proteins, highlighting
conserved regions within the family. This strong similarity in attention distribution suggests a shared functional relevance among these
high-attention residues across the family. The domain shared across the proteins in the family is also annotated, relating the attention
values to the domain defining the family.

https://doi.org/10.1371/journal.pcbi.1013424.g004
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White regions in the heatmaps represent gaps in the sequence alignment, yet even with
these gaps, the high-attention patterns remain aligned. This further emphasizes the conser-
vation of these important residues despite minor variations in individual sequences. The pro-
tein derived from homology, E5RG02, is specifically labeled and is truncated compared to the
other family members, and yet follows similar attention patterns, reinforcing the observation
that the attention patterns are maintained across homologous sequences.

Fig 5 plots the ordered attention values in vL for each layer, and we show these plots for
a randomly chosen protein, P70477. This illustrates how this method captures the shift in
attention patterns across layers and identifies the HA residues. Panel (A) plots the sorted nor-
malized attention values across each layer and the two fit lines. Here, we observe the slope of
the initial attention decay, represented by the angle 𝜃 which varies with layer depth. In panel
(B), we plot 𝜃 across all layers, we identify the “layer of convergence”—the layer at which 𝜃
is closest to 90 degrees, representing the layer with the sharpest change in values between

Fig 5. For a selected protein, P07477, an illustration of the method to identify the layer of convergence and the high attention (HA) sites. Panel (A) plots the sorted
normalized attention values, sort(vl), in black and the two fit lines in red, and this plot is shown for each layer. Each plot shows 𝜃, the angle representing the slope of
the initial attention decay, which varies by layer. Panel (B) plots 𝜃 over all the layers in green and shows the layer with 𝜃 closest to 90 degree in red. This layer is defined
as the layer of convergence. Panel (C) shows a zoomed-in version of the normalized attention values and fit lines for layer 10, chosen in panel B. The x-axis is truncated
for readability, as the slope for the rest of the indices is close to 0, and we focus on the breakpoint between the two lines. The green dotted line denotes the break point
between the two fit lines, and we choose the residues to the left of the breakpoint as the HA sites. The zoomed-in panel shows that this method identifies the break-
point at the first low-attention residue(0.06 attention for this protein), and thus the residues to the right of this point correspond to the brightly colored columns in the
heatmap. Panel (D) highlights the layer of convergence (layer 10 for this protein) with the red box and the brightly colored residues within this box (at index 59, 142, and
200) are the defined HA sites.

https://doi.org/10.1371/journal.pcbi.1013424.g005
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high-attention residues and all others. For P07477, this point occurs at layer 10. Within the
layer of convergence, a more detailed examination in panel (C) shows the breakpoint between
the two fit lines and, thus, between high-attention and low-attention residues. This break-
point allows us to define HA sites, which correspond to residues where attention is most
concentrated. In panel (D), the layer of convergence is highlighted, with the identified HA
sites shown in bright yellow. These HA sites vary from protein to protein, but the approach
ensures that each site is selected based on the model’s attention distribution specific to that
protein’s sequence features. This method demonstrates the model’s ability to adaptively focus
on residues that are likely to be functionally or structurally significant across diverse AA
sequences within the same family, providing insight into shared and unique aspects of protein
function.

The number of HA sites across the human proteome ranges from 0 to 39. We find that only
1.38% of proteins do not have an identified HA site. Ninety percent of proteins have between
1 and 9 HA sites, with 50% of proteins having 1-5 HA sites. Over 50% of proteins converge
to find these HA sites at layer 10. 90% of proteins converge between layers 6-14. We show a
histogram of these results in Fig 6

3.2. Distance measure defined by the HA sites creates tighter clusters than
pooled representation vectors
We evaluate the ability of the attention-based distance measure (described in Sect 2.3) to
distinguish between inter- and intra-family proteins. We first evaluate the distribution of
distance scores created between inter and intra-family proteins using our attention-based
distance measure and compare to distributions from a cosine distance of the pooled vec-
tors (CLS, mean, max). Using a single CPU with 40 GB of memory, we compute the pairwise
distances for the largest protein family (n = 680) in an average of 2 minutes and 12 seconds
across 10 runs. By providing the HA site annotations, convergence layer, and precomputed
heatmap matrix, our framework enables efficient computation of pairwise distances between
any two human proteins. We show these distributions for one protein family, trypsin-like
serine protease (PF00089), in Fig 7. The pairwise distances from within the family are more
diverse for the CLS token and the mean-pooled representation vector. The max-pooled

Fig 6. Results for HA sites and layer of convergence for all human proteins with an HA site. Panel (A) shows a histogram of the number of HA sites per protein and
Panel (B) shows a histogram of the layer of convergence for each protein. The majority of proteins have 2 HA sites which emerge at layer 10, showing that for almost all
proteins, the PLM converges on a set of important residues in early layers.

https://doi.org/10.1371/journal.pcbi.1013424.g006
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Fig 7. Shows the pairwise vector distances for one protein family, PF00089, (blue) compared to randomly chosen proteins (orange) using various distance mea-
sures to evaluate the utility in each similarity measure in identifying proteins from the same family. An ideal distance measure would create an in-family distribution
that is separable from the random distribution with a narrow range of distances for the in-family proteins (as we expect them to be similar to one another). For Panel
A, we use the CLS vector (described in Sect 1.1) for each protein and calculate the cosine distance between the two CLS vectors to determine the similarity of the two
corresponding proteins. For Panel B and C, we use the mean-pooled vector and the max-pooled vector (described in Sect 1.1), respectively, to define the protein and
measure the distance between two proteins by taking the cosine distance between their pooled vectors. For Panel D, we use HA-based method (described in Sect 2.3) to
calculate the distances between in-family and random proteins. We display the results for one protein family, serine protease. This shows that the in-family distribution is
the tightest (smallest range of distance values) for the max pooled (Panel C) and HA-based measures (Panel D). However, the in-family distribution for the max-pooled
vectors (Panel C) is not easily separable from the background distribution, showing that even randomly chosen proteins share a low distance value with this measure.
The HA-based method creates a distribution for the in-family distances that are easily separable from the background distribution, satisfying the requirements for an
optimal distance measure for family definition.

https://doi.org/10.1371/journal.pcbi.1013424.g007

representation vector has a smaller range of pairwise distances within the family, but
the mean within the family overlaps with the mean in the background distribution. Our
HA-based distance measure creates a small range of distributions within a family while also
being separable from the random distribution.

To compare the distributions, we performed a total of 29,156 K-S tests between inter and
intra-family distribution of similarity scores (7,289 families x [attention-based, CLS, mean,
max] distance measure]). Table 1 shows the summary statistics for the KS tests over all the
protein families; the full table with individual family results can be found in the associated
github. The HA vector method has the highest average and median value, showing that it is
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Table 1.We analyze the in-family vs. random family pairwise distances for all human protein families.This table
reports the statistics of the KS tests between the in-family distribution and the random distribution, averaged over all
human protein families. We see that the HA-based method has the highest mean KS test value, which shows that it
has the highest separation between in-family and out-of-family.
Method Min Max Mean Median Confidence

Interval
# Significant
Families

HA based 0.784 0.881 0.836 0.842 [0.793,1] 1407
CLS 0.700 0.820 0.760 0.770 [0.388,1] 1125
Mean Pooled 0.680 0.800 0.740 0.750 [0.428,1] 1255
Max Pooled 0.750 0.860 0.805 0.810 [0.250,1] 1340

https://doi.org/10.1371/journal.pcbi.1013424.t001

most distinguishable between in-family and random distributions. We report the p-value
distribution for the distance measures in Fig D in Supplement.

We perform a silhouette score analysis to evaluate how well each distance metric captures
family-specific structure by quantifying how distinctly proteins cluster within their assigned
families compared to proteins from other families. Fig 8 shows the distribution of silhouette
scores for each protein family for each distance measure. We see that the ha-based method
has a much higher silhouette score than the other three distance methods, showing the abil-
ity to separate protein families from one another. We also report the global silhouette score
across all families for each distance measure: 0.560 for HA based, -0.072 for mean, 0.096 for
max, and -0.11 for cls. The mean and cls methods have negative score showing that they are
more likely to cluster to incorrect protein families. The HA based method has a larger score
than max. We do not expect the silhouette score to be exactly 1 for all families, as the high-
dimensional nature of the vectors used typically skews the clustering score lower.

Fig 8. Distribution of silhouette scores across protein families for each distance metric. Violin plots show the
density of silhouette scores for the HA-based, mean, max, and CLS representations. The HA-based method yields
substantially higher scores than the other three, indicating a stronger ability to separate proteins by family. The
global silhouette scores for each method are: 0.560 for HA-based, -0.072 for mean, 0.096 for max, and -0.11 for
CLS. Negative values for the mean and CLS methods indicate that proteins are, on average, closer to proteins from
other families than to their own, suggesting poor clustering performance. The HA-based method also outperforms
the max method, further supporting its effectiveness. Note that silhouette scores are not expected to reach 1 even
for well-separated clusters, as the high-dimensional nature of protein representations tends to compress score
ranges.

https://doi.org/10.1371/journal.pcbi.1013424.g008
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3.3. Identifying HA sites can help predict active site location
We first evaluate the spatial distance between the HA site and the active site. Fig 9 shows the
histogram of distances between HA sites and active sites for 5,594 proteins with an active site
annotation in UniProt. For 65% of HA and active site pairs, they are at a euclidean distance
of less than 12Å. 40.9% of HA sites are within 8Å and 17.9% of HA sites are within 4Å. We
compare the spatial distances between HA sites and active sites to those between randomly
selected sites and active sites, and show the two distributions in Fig 9. We perform a Mann-
Whitney U test on the distributions and get a p-value of 0.3× 10–4, showing that the two dis-
tributions consistently have different ranges of values. For randomly selected sites, 3.83% are
within 8Å of an active site and 0.85% are within 4Å of an active site.

Fig 10 shows three proteins with their HA sites annotated in red, active sites annotated
in green, and any overlap is displayed in pink. These proteins have an HA site that overlaps

Fig 9. For all human proteins with active site annotation, we measure the spatial distance between the HA sites
and their nearest active site and plot a histogram of these distances. 40.9% of HA sites are within 8Å and 17.9%
of HA sites are within 4Å. We compare the spatial distances between HA sites and active sites to those between ran-
domly selected sites and active sites. We perform a Mann-Whitney test on these two distributions and find that the
p-value is 1.2e–10, showing the separation between the true and random distance distributions.

https://doi.org/10.1371/journal.pcbi.1013424.g009

Fig 10. Three protein structures with active site annotations are visualized in 3-dimensional space.TheHA sites are annotated in red, and the
active sites are annotated in green. A residue that is both an HA site and an active site is annotated in pink. These structures show that the HA sites are
in similar regions of the folded protein structure.

https://doi.org/10.1371/journal.pcbi.1013424.g010
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with the active site, and the HA site residues are close to the active sites in the folded protein
structure.

To show the utility of the HA sites, we use them to analyze two protein families that do
not have an active site annotation in UniProt, methyltransferase (PF13847) and interferon-
inducible GTPase (PF05049). Fig 11 shows the proteins in these two families, with their
heatmaps and structures with HA sites annotated in red. In the methyltransferase family,
we have two proteins of similar lengths (282 and 374) and one longer protein (689). Across
all three protein examples, the layer of convergence identifies three HA sites on the beta
strands. In QbN6R0, the longest example, the HA sites are separated by more AA than in
the shorter examples, but the PLM identifies the same residues in all three examples. This
family is a lysine methyltransferase and two of the three HA sites for all proteins are Lysine
and S-Adenosyl methionine residues, which have been shown to be responsible for the

Fig 11. For two protein families (methylase and interferon-inducible GTPase) without active site annotations, we analyze the plausibility of the HA site as an active
region of the protein. For each protein, we show the heatmap and the protein structure with the HA sites annotated in red. Panel A shows the methyltransferase family,
and Panel B shows the GTPase family, with their heatmaps and structures annotated with HA sites in red. All proteins do not have an active site annotation in UniProt.
For Panel A, the methyltransferase family, two shorter proteins (282 and 374 amino acids) and one longer protein (689 amino acids) share three HA sites on beta strands.
Despite differences in sequence length, the same residues are identified by the PLM. Two HA sites correspond to lysine and S-Adenosyl methionine residues critical for
catalysis [32], while the third site aligns with a tyrosine near the catalytic pocket [33]. In the GTPase family (Panel B), the HA sites differ slightly: one protein has two
sites in a beta-strand and alpha helix, while the other has both on beta strands. A third HA site in both proteins is within the magnesium-binding region, enhancing GTP
binding. All HA sites are located in the conserved G-domain [34,35].

https://doi.org/10.1371/journal.pcbi.1013424.g011
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catalytic function [32]. The specific residue annotations are not in UniProt, but upon investi-
gation, they overlap with methionine and lysine that must be present in the catalytic pocket
and require a nearby tyrosine, which is the third HA site in two of the protein [33]. For the
GTPase family, the HA sites vary slightly between the two example proteins, as in one protein,
two HA sites are in a beta-strand and alpha helix, while in the other protein, they are both on
the beta-strand. In both proteins, the third HA site is within the domain region known the
bind to magnesium, which can enhance GPT binding. All the predicted HA sites are within
the G-domain, a conserved domain found in GTP-binding proteins [34,35].

These results highlight the capability of HA sites to serve as reliable indicators of protein
function. HA sites often correspond to residues directly involved in the protein’s activity,
making them valuable targets for functional analysis.

3.4. Identification of HA sites precedes the PLMs identification of sequence
and structure features typically associated with protein families
We find the association between the HA sites to the sequence motifs and structure of the pro-
tein; we compare at what attention layer the PLM attends to the HA sites versus the residues
that are significant to the sequence and structure.

For the serine protease family (PF00089), we analyzed the multiple sequence alignments
(MSAs), shown in Fig 12 with active sites annotated in dark blue and high-attention (HA)
sites annotated in red. The consensus of residues at each alignment position was displayed
below the MSA, highlighting conserved and variable regions across the family. To enable
detailed examination, specific sections of the MSA were zoomed in on and presented as
Panels A, B, and C. These panels emphasize the percent consensus at each HA site and their
spatial relationship to active sites.

Fig 12. For the serine protease family (PF00089), we show the full multiple sequence alignments with active sites annotated in dark blue and HA sites annotated
in red.The consensus of residues at each site is shown below the alignment. Panels A, B, and C show a zoomed-in section of the MSA to facilitate visualization of the
percent consensus at each HA site and the relative position between the HA sites and active sites. In panel A, the percent consensus of the HA site is not the highest
within that region and the HA site is within 4 residues of the active site. In panel B, the HA site is again at a low consensus site but is further from the nearest active site.
However, this HA site occurs right before the GWG residue pattern that is often found within the active site of serine proteases, as the Glycines play a role in the structure
of the pocket and the Tryptophan within the pocket interacts with hydrophobic amino acids on the substrate and influences the specificity [36–38]. Panel C is on the
active site, which shows the functional importance of this HA site.

https://doi.org/10.1371/journal.pcbi.1013424.g012
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In Panel A, the HA site exhibits a moderate percent consensus and is located within four
residues of the nearest active site. Panel B highlights an HA site with lower consensus that is
positioned further from the nearest active site. Interestingly, this HA site occurs just before
the conserved GWGmotif, a sequence pattern frequently found within the active pocket of
serine proteases [36–38]. The glycines in this motif are responsible for the shape of the cat-
alytic pocket, while the tryptophan interacts with hydrophobic residues on the substrate,
influencing the specificity of substrate binding. Panel C presents an HA site that overlaps
exactly with an active site. This shows that the HA sites are not solely governed by the regions
of high consensus, and thus PLM attends to features outside of simple sequence similarity
early on in the model.

Fig 13 shows a histogram of the consensus at each HA site for all protein families. 56.5%
of all HA sites have a 50% or lower consensus and 11.4% of all HA sites have a 100% consen-
sus. For the HA sites that are at 100% residue consensus, 92.7% are overlapping with a known
active site. A high rate of consensus is expected for active sites, as they are typically conserved
across all proteins in the family.

To investigate whether the convergence of HA site attention in earlier layers reflects
structural information, we compare the attention matrix at each layer to the protein contact
map. Since attention is known to contribute to structure prediction, one hypothesis is that the
convergence of HA site attention (typically around layer 10) may coincide with layers where
attention patterns begin to reflect protein structure. We compute the correlation between
each layer’s attention matrix and the contact map. Fig 14 A shows the correlation between the
attention matrix and the contact map over each layer, where each line indicates the correla-
tion values for an individual protein and the black line is the average across all proteins. The
correlation tends to oscillate around constant value for most of the network layers and there is
a pronounced uptick in correlation at the last layer. Furthermore, Fig 14 B shows a histogram
of the layer with the highest correlation value between the attention matrix and the contact
map, and 94.7% of proteins have the highest correlation at the last layer. Because the ESM-2

Fig 13. Histogram of the percent consensus among sequences in the family of the residue at each HA site for all
proteins in the human proteome. 56.5% of HA sites occur at positions with less than 50% consensus and 11.4% of
HA sites occur at positions with 100% consensus. This is consistent with the expectation that functionally important
residues are often conserved within protein families. Among the HA sites with 100% residue consensus, 92.7% over-
lap with known active sites. This high rate of overlap supports the idea that HA sites capture biologically meaningful
signals, particularly at conserved and functionally relevant positions.

https://doi.org/10.1371/journal.pcbi.1013424.g013
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Fig 14. Panel A shows the correlation between the attention matrix and the contact map over each layer for all human proteins.The blue plot lines are the correlate
on of the attention matrix and the contact map for each protein, and the black line is the average over all proteins. There is no significant correlation through the layer,
but at layer 33, the average correlation increases significantly. This shows that the last layer is the most related to the structure, rather than the middle layer, which is
where the layer of convergence occurs. To further elucidate this, Panel B shows a histogram of the layer with the largest correlation between the attention matrix and
the contact map for all human proteins. The majority of proteins have the highest correlation at the last layer. Therefore, the convergence layer that occurs in the middle
layers of the model is not necessarily correlated to the structure of the protein, and so the HA sites are not necessarily structurally important residues.

https://doi.org/10.1371/journal.pcbi.1013424.g014

model uses regression on the attention matrices to generate the contact map, we do not expect
the attention matrices to be exactly equivalent to the contact map, explaining the lower levels
of correlation. If the convergence layers were driven by structural alignment, we would expect
this correlation to peak near the convergence layer. However, we observe that correlation
with the contact map increases steadily across layers, reaching a maximum in the final layer
for most proteins. This suggests that structural information captured by attention continues
to develop beyond the layer at which HA sites converge. The increase in correlation over the
layers shows that the early attention layers are not significantly correlated to the structure in
comparison with the last layer of attention.

4. Discussion
We conclude that HA sites are ubiquitous across all human proteins, and the PLM relies on
their identification to categorize the protein into groups. HA sites are (1) found across all pro-
teins in the human proteome, (2) reliably near important functional regions of the protein,
and (3) robust across protein families with a wide range of sequence lengths. The PLM con-
verges on the HA sites early on in the attention layers and then generates more fine-grained
attention to distinguish specific changes in the sequence. These HA sites are reliably consistent
across members of the same protein family. We provide the HA sites for all proteins and the
protein family alignments for the entire human proteome.

Throughout the ESMmodel layers, attention patterns evolve in a structured manner. In
the initial layers, attention is highly diffuse, resembling random initialization. As the model
converges, attention becomes focused on a small number of high-attention sites that are con-
served within a protein family. These family-specific sites persist with relatively high attention
in later layers, while the model begins to distribute additional attention to sites that are more
specific to the individual sequence. In the final layers, attention is again broadly distributed,
but now reflects the specific amino acid composition and structure of the protein, integrating
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information accumulated across earlier layers. In this study, we focus on the initial high-
attention sites to highlight the model’s ability to identify family-specific residues, which may
underlie its generalization performance.

A common task with PLMs is to use the resulting vectors to find similarities between pro-
teins. Using the normalized attention at the HA sites creates a tighter cluster for in-family
proteins than using the representation vectors. This is because the representation vectors are
a result of the last layer of attention, which is locally specific rather than globally specific.
Therefore, the representation vectors are more suited to study the local structure of the pro-
tein, than the global functional family of the protein. To correctly distinguish functional
similarities between proteins, the HA sites should be used.

The HA sites are also correlated in 3D space to the active sites of the protein. This follows
from the notion that the HA sites are efficient protein family identifiers, as the active sites are
essential to the function. We propose that because the HA sites are or are near known active
sites, they can be used to identify regions of the protein that are potential active sites. We have
shown the functional relevance of the HA sites for two protein families with no active site
annotation and shown that the HA sites identify the residues that perform similar functions
regardless of the length of the proteins.

The attention layers at the end of the model are correlated to the structure of the protein,
and thus they contain the specific local pairwise relationships that are important to the pro-
tein folds. Instead, the HA sites emerge in the early attention layers as clear signals, with all
other pairwise attention at very low values. These HA sites are not correlated to the location of
high sequence conservation. We have shown that the HA sites can be used to define the pro-
tein family but are not correlated with statistical significance to the structure or the sequence
definition of the protein family. Thus, we conclude that the HA sites are early detectors of the
function of the protein.

Because the ESMmodel is trained on the full set of protein primary sequences, it is
exposed to examples from all protein families, including those not explicitly annotated as
functionally similar. As a result, the model learns to recognize sequence relationships and
latent features that characterize each family. Our findings suggest that, during inference, the
model first identifies features that broadly classify a protein into its family—evident at the
convergence layer—before refining more detailed representations in deeper layers. The consis-
tency of HA sites across family members and their early emergence in the network’s attention
patterns indicate that they may play a role in shaping how the model organizes information
across layers. While we do not claim that HA sites are directly involved in model “decision-
making,” their stable presence and proximity to functionally relevant residues suggest they
are an interpretable byproduct of the model’s learned internal structure.

While the described method and analysis make gains in explaining the PLM and
identifying functional residues, we recognize opportunities for improvement. Our analysis is
limited to the first layer, the layer of convergence, with high attention values for functionally
relevant residues, but is limited in discussion of the progression of attention as the model pro-
gresses past the layer of convergence. The secondary attention sites that emerge are likely to be
informative of functional residues that are more specific and based on the local context of the
protein. Furthermore, our analysis focuses on the ESMmodel, as it offers access to the con-
tact maps. While we expect other bidirectional models (BERT-style) to function similarly, the
specific parameters of the model could influence which features have high attention. To this
end, we use ProtTrans, a BERT-style PLM [39], to get the attention matrices for an example
protein family, PF00089, and we find that for the trypsin-like serine protease family, the iden-
tified HA-site residues are the same. However, this analysis can be expanded upon to evaluate
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any changes across all human proteins. Furthermore, we evaluate only one type of ESM model
without considering other specifications of parameters (number of layers, number of param-
eters, dimension size). These hyperparameters of the trained model may influence the speci-
ficity of the high-attention sites. We expect that a larger model would identify similar features
in the layer of convergence as they remain the features that define the family, but that the layer
of convergence would be achieved earlier and subsequent high-attention sites would represent
more detailed, local interactions. This method provides a necessary first step in explainability
for PLMs by evaluating the attention progression and identifying a biological reason for the
early high-attention sites across the entire human proteome.
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