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Abstract
Gene signatures predictive of chemotherapeutic response have the potential to extend
the reach of precision medicine by allowing oncologists to optimize treatment for individu-
als. Most published predictive signatures are only capable of predicting response for indi-
vidual drugs, but most chemotherapy regimens utilize combinations of different agents.
We propose a unified framework, called the chemogram, that uses predictive signatures
to rank the relative predicted sensitivity of different drugs for individual tumors. Using
this approach, providers could efficiently screen against many therapeutics to optimize
chemotherapy at any time, whether it be for a treatment-naive tumor or a chemo-resistant
tumor requiring a new treatment strategy. To demonstrate the utility of the chemogram,
we used predictive signatures (extracted from a previously established method) in our
framework to rank predicted sensitivity among drugs within cell lines. We then compared
the rank order of predicted and observed response against each drug. Across most can-
cer types, chemogram-generated predictions were more accurate than predictions made
by randomly generated gene signatures, signatures extracted from differential expres-
sion alone, and was comparable to another established method of drug response pre-
diction. Our framework demonstrates the ability of transcriptomic signatures to not only
predict chemotherapeutic response, but also correctly assign rankings of drug sensitivity
on an individual basis. Additionally, scaling the chemogram to include more drugs does
not compromise accuracy.

Author summary
Standard chemotherapy typically takes a “one-size-fits-all” approach, even though indi-
vidual patients may respond very differently to the same drugs. In our work, we present
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a framework called the “chemogram” that would personalize chemotherapy decisions
using only gene expression data from a patient’s tumor. Our approach uses predictive
gene signatures to rank how sensitive a tumor might be to different chemotherapy drugs
and ranks predicted sensitivity among those drugs. This ranking could help doctors
choose treatments that are more likely to work and avoid those that might cause side
effects without real benefit to the patient. Importantly, our chemogram does not require
complicated or time-consuming lab tests. Instead, it uses data that is relatively easy to
collect and process. We tested the chemogram across hundreds of cancer cell lines and
found it could accurately predict rank order of drug sensitivity in a few types of cancer.
While further development and validation of the chemogram is necessary before it can
be used in a clinical setting, we believe this approach has the potential to bring personal-
ized chemotherapy within reach for many more patients, especially for those who don’t
qualify for targeted therapies.

publicly available. The code to download and
clean data, perform the chemogram, and
reproduce the figures as shown here are
available on Github at
github.com/kxlinr/evol-chemogram.
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The rapid proliferation and high variability of cancer cells enables tumors to quickly adapt to
selection pressures, posing a significant challenge for individualized treatment. Most stan-
dard chemotherapy regimens adopt a one-size-fits-all approach, where patients will receive
drugs that have been shown to be superior for a clinical trial cohort. Although such treat-
ments may benefit a large portion of cancer patients depending on the cancer type, they are
not guaranteed to be effective from individual to individual. One approach for addressing this
inter-patient heterogeneity is precision medicine, particularly targeted therapy which takes
advantage of certain actionable mutations that may be present in subsets of patients. How-
ever, most cancer patients lack such mutations and cannot benefit from this form of treatment
[1]. 14% of all cancer patients are eligible for targeted therapy, and a mere 7% of all cancer
patients respond to this form of treatment [2]. Thus, a majority of individuals with cancer
will not receive precision medicine and instead are likely to be treated with a one-size-fits-all
chemotherapy regimen.

Most cancer patients needing chemotherapy receive a combination of different drugs that
can attack the tumor in multiple ways at once [3]. However, drug sensitivity is typically not
measured for individuals prior to treatment. As a result, it is currently unclear if any given
patient will truly benefit from every drug they receive, or if one or more of those agents is
inducing negative side effects with limited benefit to the patient. Ideally, tumor biopsies would
be screened for drug response prior to treatment so that only drugs with proven efficacy for
the individual are administered. However, high-throughput drug screening requires substan-
tial tissue, costly materials, and can take weeks to months depending on the facility. By the
time the results are generated and returned to the clinician, the patient may have evolved a
different sensitivity profile. For this reason, it is critical that pre-treatment analyses of drug
response are performed quickly to allow timely implementation of treatment regimens.

An established clinical workflow is already in place to personalize drug regimens for
patients who need antibiotics. These patients will often have an antibiogram performed on
a sample of their infection, where a drug screen is performed on the sample to select antibi-
otics that effectively target bacteria without having an unnecessarily broad-spectrum treat-
ment regimen [4]. This pipeline is effective in a clinical setting because bacteria grow far more
rapidly than human tissue and antibiotics are less expensive and less toxic than chemothera-
peutics. As aforementioned, drug screens for human tissue samples are time-consuming and
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costly, making them impractical for clinical purposes [5]. To perform a drug screen, the tis-
sue needs to be expanded in vitro so there are enough cells to test on. This further complicates
matters because growing human tissue in a dish requires the cells to adapt to an incredibly
different environment. If the tissue survives this selection process, the resulting cells are an
imperfect model of the parent tumor. Alternatively, surgical samples can be seeded in vitro
as 3-dimensional organoid cultures [6]. Organoid models of tumors do not require the same
selection for adherent monoculture that typical 2D tissue culture requires, allowing tumor
cells to expand in an environment more similar to where the sample was taken from. Despite
this advantage, other challenges remain in culturing surgical samples as an organoid for the
purpose of assessing drug sensitivity. Sample proliferation and outgrowth in an organoid cul-
ture is still not guaranteed, and materials for culturing the cells and assaying drug sensitivity
can be expensive. Due to these significant hurdles, there are many ongoing efforts to predict
drug response without requiring an in vitro drug screen.

Most published drug response prediction models utilize gene expression, whether it
be exclusively or in conjunction with other data such as the chemical structures of drugs,
genomics, or proteomics. As the availability of multi-omics data increases exponentially,
more models are including such information to predict drug response [7–9]. However, clin-
ical implementation of approaches that utilize multiple types of data may be slowed due to
the cost and speed of obtaining all the information needed to employ the model. Model com-
plexity can vary from relatively simple, such as gene signatures, to complex, such as neural
networks and other machine learning methods [10]. Gene signatures are a straightforward
tool that can be easily translated into a clinical setting, and several have already been incor-
porated into decision-making algorithms (e.g. Mammaprint [11,12], OncotypeDx [12,13],
Prolaris [14,15], Decipher [16]). Previously, we established a method to extract gene signa-
tures predictive of drug response based on exploiting convergent evolution by identifying
gene expression patterns in genomically disparate tumors exhibiting sensitivity to the same
agent [17]. Rather than predicting disease state and project outcome as the other aforemen-
tioned gene signatures have, our gene signatures are meant to guide treatment decisions by
directly predicting chemotherapeutic response. In Scarborough et al., we derived a pan-cancer
sensitivity signature for cisplatin across epithelial-origin cancer cell lines in The Genomics of
Drug Sensitivity in Cancer (GDSC). We first identified similarities in differential gene expres-
sion across all epithelial-origin cancer cell lines that exhibited sensitivity to cisplatin, then
compared their transcriptomes against cell lines that showed resistance to cisplatin. From
this subset, the genes found to be the most highly co-expressed in tumor samples fromThe
Cancer Genome Atlas (TCGA) were isolated to form the final cisplatin signature. We demon-
strated that this signature can predict cisplatin response within cell lines from GDSC, and
expression levels of the signature align with clinical trends observed in tumor samples from
TCGA and the Total Cancer Care databases. As a preliminary validation, we conducted a case
study in a novel muscle-invasive bladder cancer dataset to assess the signature’s ability to esti-
mate risk level and found the signature to be predictive among patients who have received
cisplatin-containing treatment.

Utilizing this established signature model to generate gene signatures predictive of numer-
ous common chemotherapeutics, we present a novel framework for predicting and ranking
drug sensitivity among those therapies. Our proposed workflow, which we refer to as a tran-
scriptomic chemogram, would serve a similar purpose as an antibiogram. Just as an antibi-
ogram provides clinical decision support for antibiotic selection, a chemogram would inform
oncologists which chemotherapies would be optimal for an individual cancer patient by using
predictive gene signatures to assess sensitivity across multiple drugs. With this method, the
sensitivity profile of a tumor can be extensively characterized in an efficient manner that
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forgoes the need for a drug screen and can be performed at scale. Furthermore, a tumor’s
sensitivity profile could easily be reassessed with biopsies of recurrent tumors or metastatic
lesions. A chemogram could also be used to determine appropriate treatments for patients
who have cancer types that lack well-defined options for second-line chemotherapy. This
is often the case for individuals with rare cancers that lack extensive research [18,19]. By
using a chemogram to personalize chemotherapy and adjust treatment as the tumor evolves,
patients with any type of cancer would be less likely to receive drugs that lack efficacy against
their tumor at any time throughout treatment. We introduce this proof-of-concept and
demonstrate the application of a transcriptomic chemogram in vitro using 10 predictive gene
signatures.

Results
Gene signatures can predict and rank drug sensitivity of individual
samples
Using the evolution-inspired extraction pipeline defined by Scarborough et al., we extracted
26 predictive gene signatures using the public datasets of The Cancer Genome Atlas (TCGA)
and the Genomics of Drug Sensitivity in Cancer (GDSC) (see Supplemental File 1) [17]. For
each drug for which we derive a signature for, this extraction method identifies differentially
up-regulated genes between the most sensitive and most resistant GDSC cell lines across can-
cer types of epithelial origin. Three differential expression analysis methods are used, and only
the genes found by all three methods are maintained for the next step. The resulting subset of
genes is then filtered to maintain the most highly co-expressed genes among patient samples
in TCGA.This method is repeated 5 times with a randomized 80% of cell lines, and the genes
found in at least 3 of the 5 runs are included in the final signature.

For simplicity, we first demonstrated the chemogram with cisplatin, 5-fluorouracil, and
gemcitabine, which are commonly used in various clinical settings. Later, we exhibit the
scalability of the chemogram using the top 10 signatures by individual accuracy (Fig 1, see
Methods). To do so, we use the method described by Scarborough et al. to assess drug sen-
sitivity by generating a signature score (the median normalized expression among the genes
in a given signature). For each tumor sample, one signature score can be generated for each
predictive signature. The signature scores for each drug are then compared to each other to
determine the rank order of predicted sensitivity, as depicted by Fig 2.

Using the gene expression data associated with each cell line provided by GDSC, we
applied the chemogram to 616 untreated cell lines, 394 of which are of epithelial origin. First,
raw gene expression values were normalized within samples by converting each value to a
z-score. Normalization can also be performed by comparing to GAPDH expression, where
each gene’s expression value is divided by GAPDH expression for a given cell line. Either nor-
malization method yields near-identical results downstream (S3 Fig). Using the normalized
values, we then calculated the signature scores for each cell line-gene signature pair. The pre-
dicted sensitivity for the three drugs in each cell line was then ranked by descending signa-
ture score. The signature that yielded the highest score identified the drug predicted to cause
the most cell death relative to the other two drugs. Likewise, the signature yielding the lowest
score identified the drug predicted to cause the least cell death compared to the other drugs
(Fig 2). Because each cell line’s gene expression can vary, even within the same cancer type,
each cell line can have a different prediction ranking among the three drugs. The signature
scores for these cell lines are depicted in S4 Fig A. The ranking generated does not guaran-
tee that the drug predicted to be the most effective will truly be effective, only that it will be
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Fig 1. Performance of all individual signatures exceeds the null distribution.The performance of each signature was measured by calculating a hazard ratio using
the cell line persistence curve method described by Scarborough et al., where GDSC cell lines are grouped by predicted sensitivity, and IC50 is used in place of survival
time. This generates results that resemble Kaplan-Meier data so that a hazard ratio can be calculated, but in this context is used to quantify in vitro survival differences.
The hazard ratio for the extracted signature is denoted by the blue line. Hazard ratios were also calculated for 1000 randomly generated signatures of the same length,
and these resulting values are depicted by the gray histogram. The dotted red lines mark the 95% confidence intervals for each null distribution, and the solid red line
indicates the mean of the null signatures’ hazard ratios.

https://doi.org/10.1371/journal.pcbi.1013417.g001

Fig 2. Gene signatures predict the rank order of sensitivity for individual cell lines. Signature scores for each drug were calculated to
predict sensitivity in each cell line. Relative sensitivity rankings were determined by ordering the signature scores from highest to lowest
value, where the highest value indicates the greatest predicted sensitivity.

https://doi.org/10.1371/journal.pcbi.1013417.g002

relatively more effective than the other drugs included in the chemogram. Some drugs are
frequently predicted to be more effective than others, and vice versa (Fig 4A).

Prediction rankings are assessed for accuracy by comparing to observed
survival against each drug
To assess the accuracy of the chemogram’s predictions, we compared the predicted rank order
of sensitivity (derived in Fig 2) to the rank order of observed survival against each of the
three drugs (calculated in Fig 3). To measure observed survival in each cell line, we calculated
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Fig 3. Quantifying relative predictive accuracy of response signatures. To determine the true sensitivity ranking, observed drug
response was measured by calculating the surviving fraction of cells at a standardized dose for each cancer type. Standard doses were
calculated by finding the median EC50 of all cell lines in a cancer subtype.

https://doi.org/10.1371/journal.pcbi.1013417.g003

Fig 4. Distributions of sensitivity ranking and survival per drug. A.Histograms for each drug depict the frequency of a drug being placed in each of 10 possible
sensitivity rankings. A rank of 1 indicates highest predicted sensitivity and rank 10 indicates lowest predicted sensitivity. Across epithelial-origin cell lines, cytarabine
and vinblastine are often predicted to be more effective than the other drugs. Conversely, topotecan and irinotecan are often predicted to be less effective than the other
drugs. The values marked underneath each bar specify the number of cell lines included in each ranking. B. Boxplots for each drug depict the distribution of survival at
a standard dose. Within each drug’s subpanel, distributions are stratified by sensitivity ranking. For instance, within the cisplatin panel, the leftmost boxplot shows the
survival fractions against cisplatin for cell lines where cisplatin was predicted to be the most effective drug.

https://doi.org/10.1371/journal.pcbi.1013417.g004

survival at a standard dose for each cancer type. We defined the standard dose per drug as
the median EC50 of all cell lines within a cancer type. For instance, to determine a standard
dose for gemcitabine in all lung cancer cell lines, we find the median EC50 against gemc-
itabine across all lung cancer cell lines. This is repeated for cisplatin and 5-fluorouracil. At
these median EC50s, we then calculated the fraction of surviving cells for individual cell lines
using the raw dose-response data from GDSC fitted with the gdscIC50 package [20].

Because cell lines of the same disease type can differ in their drug response, the measured
survival can differ on an individual basis, similar to how different patients with the same type
of cancer can have variable drug responses. This process was applied to all GDSC cell lines
that had drug response data for all three drugs of interest, and the rank order of observed sen-
sitivity was determined from this analysis. The fraction of surviving cells against the standard-
ized doses for the three drugs across all of these cell lines is shown in S4 Fig B. Distribution of
these survival values relative to sensitivity rankings per drug are shown in Fig 4B.

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013417 September 10, 2025 6/ 19

https://doi.org/10.1371/journal.pcbi.1013417.g003
https://doi.org/10.1371/journal.pcbi.1013417.g004
https://doi.org/10.1371/journal.pcbi.1013417


ID: pcbi.1013417 — 2025/9/17 — page 7 — #7

PLOS COMPUTATIONAL BIOLOGY Personalizing chemotherapy using a transcriptomic chemogram

Fig 5. Quantifying relative predictive accuracy of response signatures. Accuracy was scored by comparing the predicted rank order of
sensitivity to the observed rank order of sensitivity measured at a standard dose per cancer type. Accuracy is scored higher when a drug
predicted to be more effective is shown to be so. This is done to more clearly reflect partially correct predictions.

https://doi.org/10.1371/journal.pcbi.1013417.g005

Using multiple signatures allows for the prediction of sensitivity rank
order
To quantify the accuracy of the chemogram’s predictions, the rank order of predicted sensi-
tivity was compared with the rank order of observed survival per cell line. The accuracy of the
predictions, relative to the observed survival, was scored from 0 to 1. With this scoring met-
ric, 1 represents a perfectly accurate prediction of the survival rank order and 0 represents a
prediction that was the opposite of the survival rank order. The remaining accuracy scores
will be determined based on how close the drugs with greater predicted efficacy are to truly
being more effective. The closer the drugs with greater predicted sensitivity are to truly show-
ing more efficacy, the closer to 1 the accuracy score will be. Each increment of the accuracy
score increases linearly, and the number of possible scores increases with the number of drugs
used. An example of the scoring metric and its usage for 3 drugs is shown in Fig 5. The num-
ber of possible accuracy scores dramatically increases with the number of drugs included in
the analysis. For further details on the scaling of the accuracy scoring system, the code used
can be accessed through the GitHub repository. This method of scoring accuracy was pre-
ferred over other previously defined methods of comparing rank order (such as Kendall’s Tau)
for two primary reasons. Kendall’s tau is more limited in the number of possible scores, mak-
ing the resulting metric less descriptive. Using Kendall’s tau to compare ranked lists of 3 drugs
can only yield 4 possible values (number of possible outcomes = ((n(n-1))/2)+1), whereas our
method can produce 6 possible scores (number of possible outcomes = n!). When compar-
ing ranked lists of 10 drugs, as we do later in the study, Kendall’s tau can take only 46 distinct
values, while our approach can yield 3,628,800. Our method is also more clinically relevant
because we assign specific scores to every possible permutation of predicted order, allowing
us to assign a higher score when drugs predicted to be more effective are actually observed
to be. This could have important clinical implications if a clinician were to give these drugs
sequentially based on the predicted ranking. For instance, following the example shown in
Fig 5, if the predicted sensitivity ranking is drug A, B, then C, it would be more beneficial for
the patient if the actual sensitivity ranking was drug B, A, then C, as opposed to B, C, then A.
Other established statistical methods for comparing rank order would not be able to quantify
these subtle distinctions.

We first demonstrated the chemogram using only three predictive signatures for cisplatin,
gemcitabine, and 5-fluorouracil. Using these signatures, we performed the prediction, val-
idation, and accuracy scoring as outlined in Figs 2, 3, and 5. Among the majority of cancer
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cell lines in the GDSC dataset, the chemogram predicted sensitivity rank order with over
50% accuracy. Comparing these results to a null bootstrap, we found that the accuracy of the
chemogram-generated predictions were consistently higher than the null distribution. To per-
form the null bootstrap, three randomly generated gene signatures (each the same length as
one of the three evolutionary gene signatures) were used to predict and rank chemosensitiv-
ity in the same manner as before, as depicted by Fig 2. The accuracy of the random signatures’
prediction would then be scored using the same method as described in Figs 3 and 5. This
process was repeated for every cell line 1000 times, and the accuracy scores for each cell line
in every iteration are represented by the blue boxplots in Fig 6A. The mean accuracy scores
from each iteration of the null bootstrap, as well as the average scores from the chemogram,
are shown in Fig 6B. Across all cancer types, the random signatures were only accurate about
50% of the time on average. The chemogram provides accurate predictions that exceed the
null distribution in head and neck squamous cell carcinoma and prostate adenocarcinoma,
but for other epithelial-origin cancers, it does not predict rank order of sensitivity better than
random gene signatures. This result suggests that our framework does not have universal
applicability and would be best utilized for specific disease sites.

Signature-based chemograms are scalable for any number of drugs
To demonstrate the scalability of the chemogram, we repeated this analysis in its entirety
with 10 signatures, all extracted using the same method as before [17]. The signatures used
were associated with sensitivity to paclitaxel, vinblastine, vorinostat, 5-fluorouracil, topote-
can, gemcitabine, luminespib, cytarabine, cisplatin, and irinotecan. The performance of each
signature is represented in Fig 1. The process of prediction, validation, and scoring for accu-
racy is the same as depicted in Figs 2, 3, and 5, but with a greater number of drugs and asso-
ciated signatures. Fewer cell lines were included in this analysis because several cell lines did
not have associated drug response data for all 10 drugs. This portion of the analysis included
539 cell lines, whereas the 3-signature chemogram included 616. 351 of these cell lines were of
epithelial origin for the 10-drug chemogram.

The accuracy of the chemogram was somewhat improved after it was scaled to use 10
drugs instead of 3. In most cancer types, the 10-signature chemogram consistently produced
accuracy scores above 0.5, and the scores were distributed higher than that of the random pre-
dictions (Figs 6C and 6D). The null distributions were generated in the same way as described
previously, but the bootstrap was performed with 10 random signatures rather than 3. The
predictive accuracy of the 10-signature chemogram in head and neck squamous cell carci-
noma is similar to that of the 3-signature chemogram, while the accuracy of the 10-signature
chemogram in prostate adenocarcinoma is somewhat lower. The 10-signature chemogram
accurately predicts the rank order of drug sensitivity in esophageal carcinoma and colorectal
adenocarcinoma, yielding accuracy scores that are statistically significantly higher than those
observed in the null distribution. This suggests that the chemogram’s predictive utility may
be enhanced with a broader drug set and could be particularly valuable in these two disease
contexts.

Comparison of other predictive models in a chemogram format
In addition to the null bootstrap, we compared the performance of other predictive mod-
els in a chemogram context, using these alternative methods to predict response among the
same 10 drugs, across GDSC cell lines. We then ranked these individual predictions among
drugs, compared them to the rank order of observed survival, and scored accuracy in the
same manner outlined in Figs 3 and 5.
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Fig 6. Relative response predicted by the chemogram is more accurate than a null distribution. Cancer subtypes are abbreviated using TCGA study abbreviations.
The boxed numbers above the x-axis indicate the number of cell lines included in each cancer type. The lines in the center of the boxplots represent the mean accuracy,
rather than the median. Asterisks indicate p ≤ 0.05 via unpaired Wilcoxon rank sum test. Green asterisks indicate FDR-adjusted p ≤ 0.05. In panels A & C, predictive
accuracy scores for each cell line are shown, and each point represents the prediction accuracy in a single cell line. Each point in panels B & D reflects the mean accuracy
score for all cell lines within a given cancer type for one iteration of the null bootstrap. Since the null bootstrap was iterated 1,000 times, each blue violin plot shows the
distribution of 1,000 average scores. The red points correspond to the mean accuracy scores of the chemogram using our evolutionary signatures.

https://doi.org/10.1371/journal.pcbi.1013417.g006

The first comparison we made was against signatures extracted from differential expression
analysis using limma in GDSC cell lines, and maintaining the genes that were up-regulated
in sensitive cell lines [21]. In contrast, the signatures used in our primary analysis involved
5-fold cross-validation, differential expression analysis with three different methods (includ-
ing limma, sam, andmulttest), and filtering through a co-expression network based on patient
samples from TCGA [17]. In the same manner as for the original signatures, the simple sig-
natures’ predicted sensitivity per cell line was summarized by finding the median expres-
sion z-score of the signature genes. The accuracy of the predictions made with these simple
signatures (Fig 7A in orange) was only slightly better than the randomly generated signatures.

The next model we tested was the oncoPredict package, which uses cell line gene expres-
sion, cell line drug response, and patient gene expression from the Cancer Therapeutics
Response Portal (CTRP) and GDSC to predict cell line IC50s [22]. We adapted the output of
this model to rank predicted sensitivity among drugs by first applying the model to GDSC
cell lines and predicting IC50 for the 10 drugs of interest, then converting the IC50s to z-scores
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Fig 7. Performance of various predictive models in a 10-drug chemogram setting. A. Predictive accuracy of different models used to rank
predictive sensitivity among 10 chemotherapies. As before, predictions were compared to observed survival at standardized doses and scored
the same way as shown in Figs 3 and 5. The mean accuracy scores of each method are shown in the boxes above the x-axis. Using two-sided
Wilcoxon rank-sum tests and a Bonferroni corrected significance threshold (alpha = 0.05/539 cell lines) to make all pairwise comparisons
between methods, we found that updownSigs, upSigs (our original model), and oncoPredict were each significantly different from the
null distribution. B. Performance between models is generally not correlated. Accuracy scores for each cell line are shown as individual
points. Spearman’s rho for each comparison is shown at the top of each plot. Most models are completely uncorrelated, while the original
(up-regulated signatures only) and the up-/down-regulated signatures have a slight positive correlation. The lack of correlation between
methods indicates that specific cancer subtypes do not drive overall performance improvements. This is also supported by S7 Fig.

https://doi.org/10.1371/journal.pcbi.1013417.g007

per drug and across all cell lines. For each cell line, predicted sensitivity was then ranked
from lowest z-score (most sensitive) to highest z-score (most resistant). The ranking was then
scored as described previously, and the accuracy scores of all cell lines are shown in Fig 7A in
the purple boxplot. Using oncoPredict and adapting its output to generate ranked sensitivity
prediction yields very similar results to our original chemogram in terms of overall predictive
accuracy, although its average accuracy score is somewhat lower than our method’s.

The final alternative method we tested was using our original up-regulated sensitivity
signatures along with down-regulated sensitivity signatures that were also extracted using
the Scarborough et al. pipeline [17]. Originally, we focused on demonstrating our method
only using genes that were up-regulated in sensitive samples because gene up-regulation, as
opposed to down-regulation, is more reliably detectable and tends to be more statistically
robust [23,24]. In this approach, we summarized predicted drug sensitivities by subtracting
the median expression z-score of the down-regulated gene signature from the median expres-
sion z-score of the up-regulated signature. Overall, the accuracy of this approach was notice-
ably higher than that of our original approach using only up-regulated gene signatures, but
the difference was not statistically significant (Fig 7A in pink). Additionally, the accuracy
scores for each cell line between this method and the original were only somewhat correlated
(Spearman’s rho = 0.325, Fig 7B), indicating that this alternative method was not consistently
better than up-regulated signatures alone. In observing these results stratified by cancer types,
it is evident that using both up- and down-regulated signatures can be more effective in cer-
tain cancer types than others, but not necessarily all cancer types (S6 Fig and S7 Fig). Moving
forward, different combinations of signature types (up-regulated only, or combining up- and
down-regulated) could be optimized on a cancer type-specific basis.
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In the future, in vitro validation of our method can be accomplished using patient-derived
xenografts and surgical samples, preferably with esophageal carcinoma or colorectal ade-
nocarcinoma samples, where the chemogram was shown to have significant predictive
power. This would be done by measuring gene expression of the samples and applying the
chemogram, and then assaying the samples’ dose response against each of the drugs included
in the chemogram. To find the rank order of observed sensitivity that we can compare the
predictions against, we can observe the fraction of surviving cells at the same standardized
doses we calculated in this study, where we used the median EC50 across cells within the same
disease type.

Discussion
Standard chemotherapy generally takes a one-size-fits-all approach, where patients without
targetable mutations will receive some combination of drugs that work for most patients, or
improve outcomes to some degree compared to previous regimens, based on clinical trials.
However, every cancer patient has a unique chemosensitivity profile, and what may be opti-
mal for a population is not guaranteed to work for an individual. Further, increased benefits
from combination chemotherapy may largely be attributed to at least one, but not necessar-
ily all, of the drugs being effective [3,25–27]. In this scenario, patients are receiving more than
what is necessary for effective treatment and experiencing excessive toxicity as a result. Preci-
sion medicine, particularly targeted therapy, improves on the issues imposed by the one-size-
fits-all approach to chemotherapy and interpatient tumor heterogeneity by targeting driver
mutations present in a tumor, and such therapies are only available to patients who harbor
such mutations. However, few patients are eligible for targeted therapy and efficacy can be
limited even for those who harbor actionable mutations [2]. Even patients who respond to
treatment initially are not immune to disease recurrence due to the evolution of resistance
[28,29]. Personalizing chemotherapy using predictive gene signatures would make precision
medicine much more accessible to patients, regardless of mutation status, while also aiding
the treatment of patients with chemoresistant tumors.

The chemogram can be easily adapted for any number of drugs that a predictive signature
exists for and does not require a plethora of time-consuming assays to be performed. While
this framework is still in its early stages, future implementation of this method would be sim-
ilar to that of an antibiogram, which is used to determine which antibiotics a patient is sensi-
tive to for maximized treatment efficacy [4]. To use a chemogram, gene expression of a tumor
biopsy would be measured, predictive signatures would be compared against the gene expres-
sion profile, sensitivity scores would be calculated, and the best drugs to give a patient can be
determined. Once the results are generated, clinicians would receive a ranked list of drugs,
avoiding confusion and leaving little room for subjective interpretation. Since the chemogram
is based on gene expression, its application is not limited to patients with actionable muta-
tions the way targeted therapy is. Because of this, the chemogram has the potential to help
many more patients via treatment personalization.

The chemogram would be an ideal tool for guiding evolution-informed therapy. Evolution-
informed therapy is an approach to treatment where a drug regimen is continuously adjusted
according to the phenotypic changes in the disease. This method has been explored in theo-
retical models and bacteria, but has yet to be tested in the context of cancer [30–33]. Tumors
are constantly evolving and adapting to selective pressures, so this dynamic approach to treat-
ment would be highly relevant for use with chemotherapeutics. The simplicity and flexibility
of the chemogram makes it a promising device to guide an evolution-informed chemotherapy
regimen. Depending on the physical accessibility of the tumor, regular biopsies could be taken
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and assessed using the chemogram to adjust treatment as a tumor continues to evolve so that
the patient is continuously treated as effectively as possible. Alternatively, the chemogram
and the signatures used with it might be adapted for use with liquid biopsies and measure
circulating tumor DNA.

Across cancer types, clinicians usually treat patients with combination therapy because
these regimens generally yield more favorable responses compared to single agents [3]. Sev-
eral hypotheses for this benefit exist. Traditionally, drug combinations have been assembled
based on the idea that the probability of resistance arising against multiple drugs with dis-
tinct mechanisms at once is less probable than resistance arising against a single agent [34].
Interactions among drugs in a combination can also exist, and there are multiple models
for these interactions. One is the Bliss independence model, where drugs in a combination
act independently of each other, and the combined effect of the combination is equal to the
sum of its parts [35]. Similarly, the Loewe model of drug additivity assumes that the effect of
a drug combination is equal to the sum of its components, but this model does not require
the assumption that each drug acts independently of one another [36]. From these models,
synergistic and antagonistic interactions can also be defined, where the effect of one drug
enhances or impedes the effect of another drug, respectively. Synergistic combinations pro-
duce a therapeutic effect greater than the sum of its parts, while antagonistic combinations
produce an effect less than the sum of its parts. Retrospective studies on clinical trial data have
revealed that the benefit of using combination chemotherapy is conferred primarily by the
independent drug action model, where one treatment does not change the activity of another
[25,26]. Thus, treating a tumor with multiple drugs increases the probability that a patient will
respond to at least one of the drugs being used [27,37]. This means that if a patient is resistant
to one or more drugs in the combination, this approach risks increased toxicity with limited
clinical benefit. With this understanding, patients should ideally receive drugs with known
efficacy against their tumor, minimizing unnecessary toxicity from agents that are ineffective
against their tumor [38].

The chemogram, as presented in our study, was limited to monotherapy because the
predictive signatures were only extracted for one drug at a time. To better synergize the
chemogram with standard practices, signatures that are predictive of drug combinations
could be included in the screen. For instance, a chemogram could include a signature for drug
A, drug B, and drugs A and B together. This would help clinicians determine if all drugs in
a standard combination are appropriate for use on a case-by-case basis, thereby preventing
excessive toxicity. Alternatively, potential drug interactions among different combinations
could be assessed after the ranked list is generated. This might be accounted for by calculating
an interaction score of some kind among the drugs predicted to be most effective. For exam-
ple, if drugs A, B, and C are the top 3 drugs, one could determine whether the combination is
appropriate by calculating a score for the combinations AB, AC, BC, and ABC, then treating
the patient with the combination that yields the highest synergy score. Several ongoing efforts
are being made to create a method for predicting and quantifying drug interactions, but many
of them are based on different definitions of synergy and do not agree with each other as a
result [39–41]. However, the potential problem of adverse drug interactions in patients may
not be a serious concern based on recent findings. A vast majority of approved drug combina-
tions only seem to exhibit additivity—true synergy appears to be rare, as is antagonism [3,25].
However, rarity does not eliminate all potential, and drug interactions should be kept in mind
as more research continues to be done on drug interactions at a patient level.

One hurdle for future clinical implementation of the chemogram is the need to define a
sensitivity score threshold for individual signatures that is relevant across patients. With the
current approach, the ranked list of drugs generated by the chemogram is relative to each
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individual patient. For instance, if a patient is resistant to all of the drugs screened in the
chemogram, their caregiver would still receive a ranked list even if the top-ranked drugs are
unlikely to be effective. Defining a threshold for individual sensitivity scores would allow
clinicians to make clear distinctions about what drugs would be effective for treatment and
should be considered a valid option for treatment. If many drugs exceed the threshold, the
chemogram would aid in determining the best options among those choices. Signatures that
score below the threshold would indicate which drugs might do little to reduce tumor burden
and should be avoided. Given that different agents will have different overall clinical efficacy,
the probability distributions of efficacy per cancer type could be included in the calculation
of a sensitivity score threshold. Since our demonstration of the chemogram was done using
cell line data, we could not define such a threshold. A dataset similar to The Cancer Genome
Atlas (TCGA) that contains gene expression data for thousands of tumors would be optimal,
but TCGA itself does not contain treatment history. Furthermore, finding a well-annotated
clinical dataset that is racially diverse is also incredibly important for building any robust clin-
ical decision-making tool. GDSC, which we used to extract the signatures and demonstrate
the chemogram, does not report information on the race of the individuals whose cells were
derived to make the cell lines included in the repository. The Cancer Genome Atlas, a large
clinical dataset that we used alongside GDSC to extract the signatures, consists of data pre-
dominantly gathered from Caucasian patients (73.3%) [42]. Numerous studies have found
differences in drug response among racial/ethnic groups [43–46]. If most biomarkers are
extracted from datasets that are not as racially diverse as the populations they will be applied
to, the applicability of such biomarkers would likely be much lower than pre-clinical stud-
ies may indicate. Any further extrapolation or validation of this work should be more racially
inclusive so that the chemogram is robust and effective for all cancer patients.

Although the chemogram we present here is still in its early stages of development, there
is much promise it holds for the future of treatment planning. The use of evolution-inspired
gene signatures allows the framework to be accessible for patients with and without targetable
mutations, thereby greatly extending the reach of precision medicine. Because the chemogram
can be used multiple times throughout treatment, it can also be an effective aid for combat-
ing drug resistance. The simplicity of our method makes clinical translation quite straightfor-
ward to perform at scale and easy for clinicians to interpret. Ultimately, chemotherapy could
be effectively optimized for every cancer patient.

Methods
Data collection and pre-processing
All data cleaning, analysis, and plotting were performed using R (Version 4.3.0) with RStudio
[47]. Associated code for the following subsections can be found on Github (seeData & Code
Availability) under the Scripts/setup.Rmd.

GDSC gene expression data. Microarray mRNA expression data for 1018 cell lines
was downloaded from GDSC, which can be accessed from https://www.cancerrxgene.
org/www.cancerrxgene.org/ [48]. The expression data was collected using the Human
Genome U219 96-Array Plate with the Gene Titan MC instrument (Affymetrix). This
data was normalized using the robust multi-array analysis (RMA) algorithm [49,50].
For signature extraction, expression data was then converted to z-scores per gene within
samples. The chemogram was used with both z-score normalized expression as well as
GAPDH-normalized expression, and the results for each were nearly identical (S3 Fig
B). GAPDH was selected as the housekeeping gene to normalize the data to because of
its consistently high expression level among all cell lines (S3 Fig A). Cancer cell lines of
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epithelial origin were defined based on these GDSC tissue descriptors: head_and_neck,
oesophagus, breast, biliary_tract, large_intestine, liver, adrenal_gland, stomach, kidney,
lung_NSCLC_adenocarcinoma, lung_NSCLC_squamous-_cell_carcinoma, mesothelioma,
pancreas, skin_other, thyroid, Bladder, cervix, endometrium, ovary, prostate, testis, urogeni-
tal_system_other, uterus.

GDSC drug response data. Both raw drug response data and reported IC50 values for
809 cell lines were downloaded from GDSC. Reported IC50s were used for signature extrac-
tion and raw drug response data was used for chemogram validation presented by Fig 3. The
raw dose-response data was cleaned and normalized using the gdscIC50 package in R [20].
Normalization involved converting raw fluorescence values to percent viability, relative to the
negative and positive controls. Dose-response curves for each cell line-drug pair were fitted
using a non-linear mixed effects model with the fitModelNlmeData function defined in the
gdscIC50 package. The fitted equations generated from this were used to calculate EC50s and
observed survivals per cell line.

Not all cell lines had associated drug responses for all of the drugs used in our demon-
stration, which reduced the number of cell lines we could include in our analysis. Exclud-
ing cell lines with an unclassified cancer subtype, we were left with 763 cell lines for the 3-
signature chemogram and 546 cell lines for the 10-signature chemogram. From these respec-
tive cohorts, there were 398 epithelial-origin cell lines for the 3-signature chemogram and 356
epithelial-origin cell lines for the 10-signature chemogram.

TCGA gene expression data. The Cancer Genome Atlas (TCGA) gene expression data
was used for signature extraction. The RNA-Seq by Expectation Maximization (RSEM) nor-
malized gene expression was downloaded using the RTCGAToolbox package (version 2.30.0)
[51]. Expression values were measured via Illumina HiSeq RNAseq V2 and were log2 trans-
formed.

Sensitivity signature extraction
Predictive signatures were extracted using the pipeline described by Scarborough et al. [17].
This work made use of the High Performance Computing Resource in the Core Facility for
Advanced Research Computing at Case Western Reserve University. The GDSC data was
partitioned into 5 folds, where each fold contained a randomized 80% of all cell lines in
the dataset. For each signature, GDSC cell lines (within each fold) were ordered from most
resistant to most sensitive. Cell lines in the top 20-30% (20% for all signatures except 5-
fluorouracil, which used 30%) of each extreme were identified, and differential expression was
measured between the groups using limma, sam, and multtest [21,52,53]. The genes found to
be differentially expressed by all 3 methods were used as seed genes for a co-expression net-
work that was built using TCGA expression data. Seed genes found to be highly co-expressed
in at least 3 of the 5 folds were included in the final signature.

We sought to extract predictive signatures for many commonly used cancer drugs, but ulti-
mately narrowed down the number of signatures to 10 for demonstration in this study. Firstly,
many of the drugs in GDSC were not able to produce gene signatures using our pipeline. We
filtered our signature list to only include those that predicted response to chemotherapies,
leaving us with 26 signatures. For these remaining 26 signatures, we assessed the accuracy of
each using the hazard ratio metric described by Scarborough et al. (see Supplemental File 1).
The performance of each signature was assessed by calculating the signature score (median
z-score expression of the signature genes) for all GDSC cell lines, then comparing the distri-
bution of IC50 between cell lines in the highest and lowest quintiles of the signature scores.
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From this, we then calculated a hazard ratio, and this metric was used to rank all 26 signa-
tures from best to worst accuracy. The top 10 performing signatures were used in this study.
The hazard ratio of these 10 signatures compared to a null distribution is shown in Fig 1. The
null distribution was generated by using 1000 randomly generated gene signatures to strat-
ify cell lines and calculate hazard ratios (per drug, all 1000 random signatures were the same
length as the original signature). Based on the hazard ratio, we selected the top 10 signa-
tures to demonstrate the chemogram. All but the irinotecan signature outperformed the cis-
platin signature, which is the same as CisSig derived by Scarborough et al. All the signatures
were extracted using the same parameters as the cisplatin signature, with the exception of the
irinotecan, topotecan, and vorinostat signatures, which used a differential expression cutoff of
0.15 instead of 0.2.

Statistics
All statistics were performed in R. Wilcoxon rank sum tests were run for the data shown in
Fig 6 and S5 Fig.

Supporting information
S1 File. Full list of genes included per drug.
(XLSX)

S2 File. Full table of signature genes.
(PDF)

S1 Fig. Genes included per signature. Genes that appear in more than one of the 10 signa-
tures used are listed. Out of 160 unique genes across 10 signatures, 44 are present in multiple
signatures. For the full table including genes that appear in only 1 signature, see Supplemen-
tal File 2. To see entire signatures listed out per drug, see Supplemental File 1.
(TIFF)

S2 Fig. Gene expression normalization. A. Among all cell lines in GDSC, GAPDH con-
sistently exhibits high expression levels. As such, gene expression (for use within the
chemogram) can be normalized to GAPDH expression within each cell line rather than nor-
malizing by converting expression values to z-scores. B. Signature scores derived for all drugs
and cell lines are compared when calculated using GAPDH-normalized expression or expres-
sion z-scores. Signature scores derived from either normalization method are highly corre-
lated for all signatures. Spearman’s rho is indicated at the top of each subpanel.
(TIFF)

S3 Fig. Distributions of IC50s per drug.The natural log of IC50s calculated using the
gdscIC50 package are shown in the histograms. Vertical black lines denote the standard doses
used for validation as described in Fig 3.
(TIFF)

S4 Fig. Heatmaps of signature scores and survivals at standard doses per cell line. A. Sig-
nature scores for all cell lines are calculated for all 10 gene signatures. Each column depicts
the signature scores generated from one signature, and each row represents a single cell line.
The higher the score, the greater the predicted sensitivity. Signature scores across cell lines
tend to be similar within drugs. B.The fraction of surviving cells was measured at standard-
ized doses against each of the 10 drugs. Each column represents survival against one drug,
and each row represents a single cell line in the same order as shown in panel B. A higher

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013417 September 10, 2025 15/ 19

https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013417.s001
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013417.s002
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013417.s003
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013417.s004
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013417.s005
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013417.s006
https://doi.org/10.1371/journal.pcbi.1013417


ID: pcbi.1013417 — 2025/9/17 — page 16 — #16

PLOS COMPUTATIONAL BIOLOGY Personalizing chemotherapy using a transcriptomic chemogram

survival indicates greater resistance against a drug, and a lower survival indicates greater
sensitivity against a drug.
(TIFF)

S5 Fig. Relative response predicted by the chemogram across all cancer types.This figure is
formatted the same as Fig 6, but includes both epithelial and non-epithelial cancer cell lines.
Cancer subtypes are abbreviated using TCGA study abbreviations. The boxed numbers above
the x-axis indicate the number of cell lines included in each cancer type. The lines in the cen-
ter of the boxplots represent the mean accuracy, rather than the median. Asterisks indicate
p ≤ 0.05 via unpaired Wilcoxon rank sum test. Green asterisks indicate FDR-adjusted p ≤
0.05. The results are very similar to that of only the epithelial cancers for both the 3-drug and
10-drug chemograms.
(TIFF)

S6 Fig. Accuracy scores by cancer type between up-regulated signatures only or up-
and down-regulated signatures in a chemogram setting. Cancer subtypes are abbrevi-
ated using TCGA study abbreviations. Both epithelial-origin and non-epithelial-origin can-
cers are included. The boxed numbers above the x-axis indicate the number of cell lines
included in each cancer type. The lines in the center of the boxplots represent the mean accu-
racy, rather than the median. Each point represents the predictive accuracy scores for a cell
line. The red boxplots correspond to the accuracy scores of the chemogram using our up-
regulated signatures only, while the pink boxplots correspond to the accuracy scores of the
chemogram using both up- and down-regulated signatures. With 𝛼 = 0.05, only skin cuta-
neous melanoma (SKCM) had significant differences between method performance based on
a two-tailed Wilcoxon rank-sum test with either a Bonferroni-corrected threshold or with an
FDR-corrected p-value.
(TIFF)

S7 Fig. Correlation of accuracy scores between methods by cancer disease site.The same
plot as Fig 7B is shown here, but with each point colored by the cancer subtype associated
with the cell line being presented. No major trends are apparent among any particular can-
cer subtype, although accuracy scores for SKCM from the up- and down-regulated signatures
together are noticeably higher than the up-regulated signatures alone.
(TIFF)

S8 Fig. Statistical differences between methods. Pairwise comparisons among all methods
per cell line were made using two-tailed Wilcoxon rank-sum tests. P-values for each compar-
ison are shown as individual points, with color corresponding to the comparison being made.
Log10(p-value) is shown on the x-axis of the left panel, while log10(false discovery rate-
adjusted p-value) is shown on the x-axis of the right panel. The y-axis denotes cancer type,
and the boxed number to the right of the y-axis shows the number of cell lines included in
the associated cancer type. In the left panel, Bonferroni-corrected significance thresholds are
marked with a vertical black line at 𝛼 = 0.05 divided by the number of cell lines in the cohort.
In the right panel, a black line marks the significance threshold of 𝛼 = 0.05.
(TIFF)
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