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Abstract
R-loops are transient three-stranded nucleic acids that form during transcription when the
nascent RNA hybridizes with the template DNA, freeing the non-template strand of the
DNA. There is growing evidence that R-loops play important roles in physiological pro-
cesses such as the regulation of gene expression, and that they contribute to chromo-
somal instability and disease. It is known that R-loop formation is influenced by both the
sequence and the topology of the DNA substrate, but many questions remain about how
R-loops form and the three-dimensional structures that they adopt. Here we represent an
R-loop as a word in a formal grammar, the R-loop grammar. We use the R-loop grammar
to predict R-loop formation. We train the R-loop grammar on experimental data obtained
by single-molecule R-loop footprinting and sequencing (SMRF-seq). Despite not explicitly
encoding topological information, the R-loop grammar accurately predicts R-loop forma-
tion on plasmids with varying starting topologies and outperforms previous methods in
R-loop prediction.

Author summary
R-loops are transient three-stranded helical structures that form when newly synthe-
sized RNA binds back to the DNA template strand during transcription, displacing the
non-template strand. R-loops play important roles in regulating gene expression and
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are associated with genome instability linked to various diseases. While it is known that
both the DNA sequence and topological state of the substrate affect R-loop formation,
the precise rules behind how and where they form remain poorly understood. In our
work, we develop a new mathematical model based on formal language theory to model
R-loops. We define a predictive formal grammar model of R-loop formation, called the
R-loop grammar, by first creating a symbolic language with specific production rules. We
represent each R-loop as a word in this language. We train the R-loop grammar using
high-resolution experimental data obtained by a single-molecule technique that maps
R-loops formed during transcription. These data include a large set of R-loops formed
on two different plasmids of varying DNA topologies. Despite not directly encoding
topology, the R-loop grammar distills its effects, accurately predicts R-loop formation,
and outperforms prior methods. This approach offers new insights into the relationship
between DNA sequence, topology, R-loop formation and structure.
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Introduction
R-loops are three-stranded structures composed of an RNA:DNA duplex and a single-strand
of DNA. Initially discovered in bacteria, R-loops constitute 3-5% of the genome of yeasts,
plants, and mammals [1–6] and are at least one order of magnitude longer than other non-B
DNA multi-stranded nucleic acid structures [7,8].

R-loops form co-transcriptionally when the nascent RNA invades the DNA duplex and
the RNA hybridizes with the template DNA strand [9]. The unpaired non-template DNA
strand is free to wrap around the hybrid duplex (Fig 1) or to fold upon itself into a secondary
structure. R-loops arise through a dynamic process that begins with DNA duplex invasion by
the nascent RNA behind the advancing RNA polymerase (initiation phase). Once an R-loop
has been seeded, it can extend dynamically during transcription (elongation phase). Having
reached a point where the structure can no longer grow, the R-loop terminates (termination
phase). Termination is followed by an equilibration process, where the exact boundaries of the
structure may shift through branch migration [10]. Eventually, the R-loop dissociates and the
B-form DNA duplex is restored. Fig 2 illustrates the different stages of R-loop formation.

Organisms have evolved complex pathways that regulate R-loop levels [11]. Genome map-
ping studies indicate that R-loops do not form randomly [9,12]. DNA sequence analysis,
biochemical experiments and statistical mechanical modeling suggest that both the DNA
sequence and the topology play key roles in promoting and controlling R-loop formation

Fig 1. Co-transcriptional R-loops.The RNA polymerase mediates transcription of DNA into RNA. A co-transcriptional R-loop
forms behind the polymerase when the RNA transcript invades the double-stranded DNA (dsDNA) and hybridizes with the tem-
plate DNA strand. The template and non-template DNA strands are shown in blue and black, respectively. The red strand represents
the RNA transcript. In the R-loop, the non-template DNA strand is unpaired and free to wrap around the RNA:DNA duplex. The
3′-ends are indicated by an arrowhead.

https://doi.org/10.1371/journal.pcbi.1013376.g001
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Fig 2. Stages of R-loop formation. (1) The RNA polymerase binds to the promoter sequence (purple arrow). (2) Transcrip-
tion starts. The polymerase moves from left to right and generates the RNA transcript (in red) in the 5′ to 3′ direction. (3)
R-loop initiation: the nascent RNA invades the dsDNA and hybridizes to the DNA template strand (in blue). (4-5) R-loop
elongation and eventual termination.

https://doi.org/10.1371/journal.pcbi.1013376.g002

[9,13]. The fundamental forces that drive R-loop initiation, elongation and termination are
poorly understood.

In this work we develop a new mathematical model based on formal language theory to
model R-loops. In formal language theory, a grammar is a set of production rules that gen-
erate strings in a formal language. Applications of formal grammars can be found in a wide
range of areas such as theoretical computer science, theoretical linguistics, and molecu-
lar biology. In molecular biology, applications include modeling regulation of gene expres-
sion [14], gene structure prediction [15], sequence analysis [16] and RNA secondary structure
prediction [17].

We introduce the R-loop grammar, a predictive formal grammar model of R-loops that
advances our understanding of the structure, formation and biological function of R-loops.
We train and test the R-loop grammar on experimental data obtained by single-molecule
RNA footprinting and sequencing (SMRF-seq) [8,18]. We use the data to define the syntax of
the R-loop language and to obtain the probabilities of the production rules, thus allowing us
to write each R-loop as a word in this language. The grammar model predicts the probability
that an R-loop will form along a given DNA segment, the location of the R-loop and its basic
3-dimensional (3D) structure.

We took advantage of a SMRF-seq R-loop mapping dataset generated after in vitro tran-
scription of two plasmids, pFC53 and pFC8 [8,13,18]. In contrast with other methods that
output population averages, SMRF-seq provides high coverage, strand-specific information
about R-loops at nucleotide resolution on individual DNA molecules. Thus, SMRF-seq allows
researchers to capture the positions and lengths of single R-loops. The data include detailed
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information on R-loop formation under three topological conditions: linear, negatively super-
coiled and hyper-negatively supercoiled. See Fig 3 for a description of the different DNA
topologies.

Our experimental data consist of a total of 2,363 single-molecule reads with one R-loop
each (see Fig 4, S1 Fig and Materials and methods section). Fig 4 illustrates the data for
pFC53 and the influence of the plasmid topology on R-loop formation; the corresponding
figure for pFC8 is S1 Fig in the Supporting Information. Note that R-loops cluster in two
regions for all substrate topologies and that R-loop initiation shifts to the left as the supercoil-
ing levels increase. As observed in [13], the majority of the R-loops in the hyper-negatively
supercoiled plasmid appear closer to the transcription start; this is not the case for the other
two topologies (Fig 4).

Fig 3. Plasmid topologies considered in this study. (a) Open circle. The open circle represents a relaxed plasmid; (b)
Linear. The curve with two free ends represents the linearized version of the plasmid. (c) and (d) Supercoiled. B-DNA has
a helical pitch of 10.5 base pairs (bp) per turn. In living organisms DNA is slightly underwound. In order to preserve a
constant helical pitch, underwound DNA coils upon itself in a right-handed fashion, thus producing negative supercoils. We
assign the sign of the coiling based on a standard sign convention. (c) Negatively supercoiled plasmid. (d) Hyper-negatively
supercoiled plasmid, where the level of supercoiling is twice that of the supercoiled plasmid. The supercoiled plasmids
in this study have the native supercoiling from Escherichia coli (supercoiling density ∼ –0.07) and the hyper-negatively
supercoiled plasmids (supercoiling density ∼ –0.14) are produced by gyrase, a bacterial type II topoisomerase. Further
information on DNA topology can be found in [19].

https://doi.org/10.1371/journal.pcbi.1013376.g003

Fig 4. Experimental data for pFC53. R-loop locations with starting topology: linear (black); supercoiled (blue); and
hyper-negatively supercoiled (orange). The x-axis indicates the nucleotide position of the gene starting at 0 rounded
to the nearest 20th nucleotide. Each horizontal line segment corresponds to one experimentally detected R-loop. The
R-loops have been sorted by the starting nucleotide (x-axis). Each data set is uniformly spread vertically (79 R-loops
for linear, 612 for supercoiled and 408 for hyper-negatively supercoiled), so that proportional differences in R-loop
initiation under the three conditions can be observed independent of the number of experimental R-loops observed.

https://doi.org/10.1371/journal.pcbi.1013376.g004
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Here we show that the R-loop grammar model distills the effect of DNA topology on R-
loop formation. Unlike the R-looper prediction method [13], our model does not explicitly
include parameters to specify the topology of the substrate. Instead, the R-loop grammar
learns about these topological constraints from the data. A key finding is that the substrate
topology affects the probability of the production rules. Consequently, the R-loop grammar
accurately predicts the probability of R-loop formation.

The R-loop grammar: A model for R-loop formation
Formal grammars and R-loops
A formal grammar consists of a finite set of symbols partitioned into variables V and termi-
nals Σ, and a finite set of production rules {u→ v}. When applying the rule u→ v on a word
xuy, the subword u is substituted by the subword v yielding a word xvy. A word derived by
the grammar is obtained by a consecutive application of rules starting from S, a non-terminal
symbol designated as a starting symbol. The language generated by the grammar consists
of all words comprised of terminal symbols that can be derived by the rules starting from S
[20–22].

We define the R-loop grammar as a formal grammar whose terminal symbols corre-
spond to the basic structures of an R-loop. The three-strand sections 𝛼 and 𝜔 correspond
to those regions of branch migration that mark the initiation (RNA invasion) and termina-
tion (RNA dissociation) of the R-loop, respectively. The symbols 𝜎 and ̂𝜎 represent short
DNA:DNA hybrids with a free RNA strand (the RNA transcript). The symbols 𝜏 and ̂𝜏 repre-
sent RNA:DNA hybrids with a free DNA strand (the non-template strand). The ‘ ̂ ’ indicates
a more stable configuration, i.e. a configuration that is not prone to changing state. There-
fore, ̂𝜎 denotes a structure unlikely to transition from a DNA duplex to an RNA:DNA hybrid,
and ̂𝜏 denotes a structure unlikely to transition from an RNA:DNA hybrid back into the DNA
duplex. Fig 5 illustrates the main terminal symbols in the R-loop grammar. Fig 6 shows a
word generated by the R-loop grammar and its corresponding R-loop structure. Note that if
the sequence stability weakens within an R-loop, a less stable RNA:DNA duplex (indicated by
𝜏) may follow after an initial string of one or more ̂𝜏’s. Intuitively, one or more consecutive 𝜏’s
may lead to an R-loop termination region.

Fig 5. R-loop symbols. Basic 3-strand structures found in an R-loop and their associated symbols in the R-loop grammar.
We indicate less stable configurations 𝜎 and 𝜏 by breakage in the hydrogen bonds. This representation should not be taken
as literal breakage of all bonds in that vicinity, but rather as an indication that this region is unstable and prone to opening of
the helix. The color coding is as in Fig 1.

https://doi.org/10.1371/journal.pcbi.1013376.g005
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Fig 6. An example of an R-loop grammar word.The figure illustrates an R-loop associated with the word
𝜎̂𝜎̂𝜎𝛼 ̂𝜏𝜏 ̂𝜏 ̂𝜏 ̂𝜏 ̂𝜏𝜏𝜔𝜎̂𝜎. The colors are as in Fig 1. For simplicity, we omit the broken hydrogen bonds for 𝜎 and 𝜏. We
indicate stability with the symbols under the diagram.

https://doi.org/10.1371/journal.pcbi.1013376.g006

To determine probability assignments of the terminal symbols in the R-loop grammar
and the application of each production rule, we first extract a training set from two thirds of
the experimental data. We use the remaining third of the data for testing the method. The
application of each production rule depends on a probability distribution generated from the
data.

We apply this approach to the SMRF-seq data for plasmids pFC53 and pFC8 with three
different plasmid topologies. The reader can find details of the method in section General
approach and in section Materials and methods.

Symbol assignment and R-loop production rules
We use SMRF-seq data to determine the probabilities for the R-loop grammar production
rules (all the experimental data are available on GitHub [23] and Zenodo [24]). To each
block of k consecutive nucleotides (k-mer) in the gene sequence, we assign a terminal sym-
bol according to the probability that it is contained in an R-loop. The words generated by the
grammar correspond to R-loops (Fig 6).

Occasionally the basic terminal symbols cannot be unequivocally assigned to a k-mer
based on the available experimental data. In those instances, we expand the set of termi-
nal symbols to accommodate the corresponding k-mers. The symbol 𝛿 (respectively, 𝛽)
represents ambiguous k-mers that, according to the statistical analysis of the training data,
could be associated with both 𝜎 and ̂𝜎 (respectively, 𝜏 and ̂𝜏). The k-mers outside (respec-
tively, within) an R-loop for which the statistical analysis does not provide enough informa-
tion are indicated with 𝛾 (respectively, 𝜌). Moreover, to account for the fact that the exper-
imental assignment of initiation and termination of each R-loop is not precise [8], the ter-
minals 𝛼 and 𝜔 corresponds to a segment of length 0,… , k–1. Hence, the R-loop grammar
alphabet consists of 10 letters (𝛼,𝜔,𝜎, ̂𝜎, 𝜏, ̂𝜏,𝛾,𝜌,𝛽,𝛿) and is independent of the k-mer
size k.

As is common in formal grammars, the non-terminal symbols are written with capital
symbols, and rules X→ Y and X→ Z with the same left side are written as X→ Y ∣ Z. We
define the following rules:

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013376 August 29, 2025 6/ 19

https://doi.org/10.1371/journal.pcbi.1013376.g006
https://doi.org/10.1371/journal.pcbi.1013376


ID: pcbi.1013376 — 2025/8/28 — page 7 — #7

PLOS COMPUTATIONAL BIOLOGY R-loops under different topological constraints

A. start rule
S→𝜎S | ̂𝜎S | 𝛾S | 𝛿S |𝜎𝛼R | ̂𝜎𝛼R | 𝛾𝛼R | 𝛿𝛼R

B. RNA:DNA duplex
R→𝜏R | ̂𝜏R | 𝜌R | 𝛽R | 𝜏𝜔Q | ̂𝜏𝜔Q | 𝜌𝜔Q | 𝛽𝜔Q

C. DNA:DNA duplex
Q→𝜎Q | ̂𝜎Q | 𝛾Q | 𝛿Q | 𝜎 | ̂𝜎 | 𝛾 | 𝛿

The sequence analysis in the Materials and methods section describes a way to map each
k-mer to a terminal symbol. Such assignments allow each R-loop to be represented as a word
over the symbols in this grammar. The word can be obtained by starting with the symbol S
and applying a unique sequence of rules. For example, by applying the rules S→ 𝜎𝛼R, R→
̂𝜏𝜔Q, and Q→ 𝜎 in succession one obtains the word 𝜎𝛼 ̂𝜏𝜔𝜎. We explain the probability

assignments for each production rule in the Obtaining a model section and S1 Text. The prob-
ability assigned to each R-loop is computed as the product of the probabilities of the corre-
sponding production rules. For example, the probability ℙ(𝜎𝛼 ̂𝜏𝜔𝜎) of the R-loop described
by the word 𝜎𝛼 ̂𝜏𝜔𝜎 is defined as

ℙ(𝜎𝛼 ̂𝜏𝜔𝜎) =ℙ(S→ 𝜎𝛼R)ℙ(R→ ̂𝜏𝜔Q)ℙ(Q→ 𝜎). (1)

General approach
One goal when analyzing experimental R-loop data on a given gene sequence is to identify
genomic patterns specific to the initiation, elongation, and termination of R-loops. For each
R-loop in the training set, we identify four regions of interest, r1 and r2 immediately upstream
and downstream of the R-loop initiation, as well as r3 and r4 immediately upstream and
downstream of the R-loop termination (Fig 6). For each i, we consider all of the k-mers that
appear in region ri and assign weights according to the relative frequency of the respective k-
mer (see section Selecting the most relevant k-mers). We compile a list of k-mers (across all
R-loops) in each region, and use the weights to associate a terminal grammar symbol to each
k-mer, thus forming a dictionary that is then used to generate a grammar model.

To generate a grammar model–a probability assignment for each grammar rule–we trans-
late the R-loops from a training set into words over the grammar symbols. Then we reverse-
engineer the sequences of production rules that generate the words and assign probabilities
to the rules according to the frequencies of each rule application (see section S1 Text). To
make predictions, we first use the grammar to generate all possible R-loop words for a given
dataset. The probability ℙ̄(w) of a word w is proportional to the product of the probabili-
ties of the sequence of rules that generate w (e.g. Eq 1). We compute the probability of each
nucleotide being in an R-loop by summing the probabilities of the words where this event
occurs. For example, let qi(w) be 1 if the i-th nucleotide is in the R-loop represented by w, and
0 otherwise. The probability ̄qi that the i-th nucleotide is in an R-loop is

̄qi =∑
w
qi(w)ℙ̄(w), (2)

where the sum is taken over all possible R-loop words in the the dataset.
For each plasmid and each starting topology, we take a portion of the experimental data as

a holdout set. We take a random 10% of the remaining data, use it for training and to gener-
ate a grammar model. We repeat this process 30 times to generate an ensemble of 30 grammar
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models (see sections Results, Materials and methods and S2 Fig). In the Results section, we
show the average probability that each nucleotide is in an R-loop obtained from the ensemble
of models.

Results
For each plasmid, we analyze three datasets that differ in the DNA topology before transcrip-
tion: linear, where circular plasmids are linearized before transcription; supercoiled, where the
plasmids have the native supercoiling from bacteria, i.e., a supercoiling density of ∼ –0.07;
and hyper-negatively supercoiled, where the plasmids are treated with gyrase before transcrip-
tion to double the supercoiling density to ∼ –0.14 [19] (see Fig 3).

We generate predictions using R-loop grammars obtained using a stochastic and a deter-
ministic method. In this section we discuss results from the stochastic method (Figs 7 and 8,
see also S3 Fig). The predictions with the deterministic method showed negligible differences
(S4 Fig).

Plasmid topology drives the probability of the production rules
Fig 7 shows the probability assignments for the production rules associated with symbols
𝜎, ̂𝜎, 𝜏, ̂𝜏 averaged over an ensemble of 30 grammar models. The probabilities of the other pro-
ductions rules are included in S5 Fig, panel (a). A higher probability for a given rule implies
that the training set contains a larger number of k-mers associated with that symbol. When
a k-mer repeats, its multiplicity is taken into account. Note that the production rule prob-
abilities change significantly with plasmid topology, which is consistent with the premise
in [13].

As the supercoiling level increases towards hyper-negatively supercoiled, the probability of
a stable DNA duplex ( ̂𝜎) outside the R-loop also increases (rules S→ ̂𝜎S and Q→ ̂𝜎Q). This
suggests that the k-mers outside the R-loop are well determined. Once an R-loop starts, the
pattern is reversed and the probability of elongating a stable R-loop decreases as supercoiling

Fig 7. Production rule probabilities.The boxplots illustrate the changes in the probabilities for the six main production rules that relate to
the stability of the structure before, within, and after an R-loop, as the topology from the substrate changes from linear to hyper-negatively
supercoiled. The probabilities are obtained for grammar models defined for the union of training sets, with parameters k = 4 and p = 13.
The mid-line of each box is the median, with the first and third quartiles indicated by the box frames. The whiskers represent the largest
point not more than 1.5 interquartile range (IQR) beyond the box frame. An asterisk (*) indicates that the difference is significant against
the results from the other two topologies (p≤ 0.006). The significance of these probability changes are obtained with Bonferroni adjusted
p-values ≤ 0.006 according to the pairwise T-test. See S1 Table for precise values.

https://doi.org/10.1371/journal.pcbi.1013376.g007
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levels increase (rule R→ ̂𝜏R). We validated these observations using Kendall’s Tau correla-
tion coefficient (S2 Table). Recall that when compared with linear and supercoiled plasmids,
a significantly higher number of R-loops in hyper-negatively supercoiled plasmids appear
closer to the transcription start (Fig 4). Because our dictionary assignment is focused on the
regions at the start and the end of the R-loops, in hyper-negatively supercoiled plasmids a
larger number of k-mers are spread throughout the R-loop containing regions (e.g., region
between ∼ 250nt and ∼ 1250nt for pFC53, see Fig 4). This spread of the R-loop starting points
in hyper-negatively supercoiled cases implies that k-mers within those R-loops have a some-
what weaker association with R-loops. Hence, rule R→𝜏R occurs with a much higher prob-
ability than R→ ̂𝜏R. If we instead focus on linear and supercoiled plasmids, we observe that
k-mers are mostly concentrated around the peak of the R-loop clusters (∼ 650nt to ∼ 1250nt).
Accordingly, the difference between probabilities R→𝜏R and R→ ̂𝜏R is much smaller.

After an R-loop terminates, the probability of transitioning to a stable DNA duplex is high
for all topologies. We observe the same trends in probabilities upon training the grammar on
the data from each plasmid separately (S5 Fig(b) and S5 Fig(c)), as well as for the determinis-
tic symbol assignment (S5 Fig(d)).

The R-loop grammar accurately predicts R-loop formation for different
topologies
The R-loop grammar model has two adjustable parameters, the tuple size k that is used for
the dictionary and for the terminal symbol assignments, and the padding length p that is
used to determine the size of regions r1,… , r4 (see section k-mer extraction). Due to exper-
imental sensitivity, the initiation of the R-loop may vary up to 15 nucleotides from the loca-
tion observed through SMRF-seq [8]. To account for this, we focused on padding parameters
p = 7, 13 (see S3 Table). The k-mer plus the padding correspond approximately to one (p = 7),
or one and a half (p = 13) turns of an A-DNA double-helix (∼ 11bp). RNA:DNA hybrids are
believed to have the same helical pitch as A-DNA. Furthermore, we assume that the k-mers in
the vicinity of the experimental R-loop start/end locations are critical for accurate prediction.
We add the padding (nucleotide segments) before/after the R-loop start/end, thus defining the
k-mers in regions r1 to r4 (see Fig 9).

In order to rigorously assess the best choice of parameters (k, p), for each topology we
use the R-loop grammar to predict the probability of R-loop formation on each plasmid as
detailed below (Fig 8). We then use 3-fold cross-validation to evaluate the model predictions
for all (k, p) with k = 3, 4, 5 and p = 7, 13 (find details in section Dictionary: Grammar sym-
bol assignment for the set T). For each topology, we select the pair (k, p) that produces the
lowest average root mean square deviation (RMSD) and the highest average Pearson correla-
tion coefficient computed from the three validation sets. We found k = 4 and p = 13 to be the
optimal parameters (see S3 Table).

It is worth noting that when k = 3, the symbol assignment in the regions r1 to r4 (see Fig 6
and section Materials and methods) exhausts all 64 possible 3-mers and the probabilities for
production rules going to 𝛾 or 𝜌 are 0, resulting in an oversimplified grammar model. When
k = 5, the sequences of the two plasmids provide insufficient information, leaving between
39.1% and 58.1% of the 5-mers (p = 7, 13) assigned to an indeterminate symbol 𝛾 or 𝜌 (S4
Table and S5 Table). The choice k = 4 and p = 13 is optimal as it provides information for
86.6% to 95.2% of all possible k-mers.

We generate the model predictions as follows. First, for each plasmid and topology, we
randomly select one-third of the experimental data to serve as a holdout set for testing. The
remaining two-thirds constitute the full training dataset. We produce an ensemble of 30
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Fig 8. R-loop grammar predictions compared to experiments and to R-looper. The figure shows the R-loop grammar predictions obtained with dictionaries for
k = 4, p = 13. The dotted blue line indicates the experimental probability that a nucleotide in the plasmid with the respective topology is in an R-loop. In pink (resp.
orange) we show the R-loop probabilities computed using the R-loop grammar model (resp. R-looper). The pink shaded area represents the standard error of the mean.
For each plasmid, we compute the experimental probabilities by taking the number of R-loops that contain a particular nucleotide (x-axis), divided by the total number
of R-loops in the holdout set. The black arrow along the x-axis indicates the start of transcription; nucleotides are enumerated from that position. The substrate topology
is indicated in each graph: linear (top row); supercoiled (middle row); hyper-negatively supercoiled (bottom row).

https://doi.org/10.1371/journal.pcbi.1013376.g008

grammar models by training each model on a distinct 10% subsample (without replacement)
drawn from the full training dataset (see section S1 Text). Hereafter we refer to this 10% of
the data as the training set for the corresponding grammar model (see section Training and
holdout set). Next we use the union of training sets for the two plasmids to create a k-mer dic-
tionary. We reverse engineer the rules used from the R-loop grammar to define a probability
of a given R-loop (as in Eq 1). Finally, we compute the probability that each nucleotide in the
gene region is inside an R-loop using (Eq 2).

The final predictions assigning the probability that each nucleotide is within an R-loop are
the average probabilities taken over the ensemble of 30 models (Fig 8) [25]. We tested the sta-
bility of the ensemble of predictions using 3-fold cross-validation [26] (see section Materials
and methods and S3 Fig).

The R-loop grammar shows overall better prediction capabilities than the existing
thermodynamics-based model R-looper [13] for both plasmids and all topologies. When
compared to R-looper, our approach reduces the Root Mean Square Deviation (RMSD) by
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up to 55% and, in most cases it improves the Pearson correlation coefficient by at least 2-fold.
Note that the thermodynamics model R-looper [13] is not trained on data. Besides the prob-
ability prediction, R-looper also provides an energy landscape for the sequence, which may
need to be taken into consideration together with the probability landscape. We refer the
reader to the SI Appendix for details. See S6 Table for a comparison against the holdout set
and S7 Table for comparison against the full dataset. S8 Table compares the holdout set with
the full dataset, and S9 Table gives the same information as S6 Table but for the deterministic
symbol assignments.

The grammar rule probabilities vary depending on the plasmid topologies, and thus pro-
duce different predictions (Fig 8). Overall the fit to the data is outstanding, with Pearson cor-
relation values from 0.68952 to 0.95165 when compared to the holdout set (S6 Table). The
R-loop grammar accurately identifies R-loop clusters along the gene regions in both plasmids
and predicts the shift to the left as the supercoiling density increases. As noted in [13], experi-
mental data for hyper-negatively supercoiled pFC8 plasmids present with a much larger num-
ber of R-loops near the promoter region as compared with the supercoiled or linear plasmids,
where they are largely absent.

Discussion
The experimental data for hyper-negatively supercoiled pFC8 plasmids show two clus-
ters near the promoter region (Fig 8, blue dotted line, bottom right). The fact that the R-
loop grammar predicts one wider cluster near the promoter region can be an artifact of the
model.

When processing the experimental data for training, the R-loop grammar assumes that
each molecule contains a single R-loop. A small percentage of SMRF-seq reads (9.6%
of the data) contains more than one R-loop. In those instances we treat each read as if
it were a separate molecule. One could update the grammar to include more than one
R-loop per molecule by allowing part C. of the grammar rules to have production rules
with non-terminal R’s on the right-hand side. Such extension is beyond the scope of this
paper.

While plasmid topology is an inherent part of the R-looper model [13], the R-looper
predictions for hyper-negatively supercoiled plasmids significantly underperform in the
detection of R-loops near the transcription start site observed experimentally. Although
plasmid topology is not encoded in the R-loop grammar, the model learns the effect of
supercoiling from the data and generates predictions that distinguish between plasmid
topologies.

In this work we trained the R-loop grammar on a restrictive set of plasmids and topologies,
where it performs very well. However, while this is the only SMRF-seq R-loop data available
to date, the plasmid sequences for pFC53 and pFC8 are not representative of the much larger
set of gene sequences. As more experimental data with a larger array of genomic sequences
become available for training, we anticipate that our approach will be an effective universal
tool to analyze R-loop formation.

In [27] we showed that the R-loop grammar produces a set of sequences that is regu-
lar [21]. Therefore a probabilistic version of this grammar can be described by a Markov
chain. This opens the door to a variety of well established techniques (e.g. [28]).

All the code, and the data are available with complete documentation at [23,24].
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Materials and methods
It is known that the initiation of an R-loop is influenced by favorable G-rich DNA
sequences [29,30], while sequences spanning the lengths of the R-loops may be less favor-
able [8,30]. However, any patterns defining possible R-loop termination sequences are cur-
rently unknown. To identify preferable DNA sequence patterns that are specific to the initi-
ation, elongation, and termination of R-loops, we carry out an analysis of the experimental
results from [13].

Experimental data
We use experimental R-loop data detected in [13] by SMRF-seq, a method that profiles indi-
vidual R-loops at ultra-deep coverage [8,18]. The nucleotide sequences of the plasmids pFC53
and pFC8 (previously reported in [13]) share the same backbone and incorporate specific
regions known to be prone to R-loop formation [4]. More specifically, pFC53 contains a
1.3-kb portion of the murine Airn CpG island, and pFC8 contains a 942-bp portion of the
human SNRPN CpG island. We make the complete SMRF-seq experimental data and soft-
ware available on GitHub [23] and Zenodo [24]. The template strand 5′ –3′ of each plasmid
is in FASTA format. The corresponding R-loop locations for each of the three starting plasmid
topologies are included in BED files. The data consist of the following: for pFC53 there are 79
co-transcriptional R-loops within the linear, 612 within the supercoiled and 408 within the
hyper-negatively supercoiled datasets; for pFC8 there are 116 R-loops within the linear, 104
within the supercoiled and 1044 within the hyper-negatively supercoiled datasets. In total, the
data contain 2363 R-loops. Since the gene region in pFC53 is 1749nt long, and that of pFC8 is
1432nt long, the experimental per nucleotide probability of R-loop formation is reported for a
total of 3,784,504 nucleotides.

Training set, holdout set and parameter choice
Training and holdout set. For each topology and each plasmid P, we randomly select

one-third of the experimental R-loop data as a holdout set for later testing. The P-full training
dataset consists of the remaining two-thirds of the data for P. To obtain amodel, we draw a
10% subsample (without replacement) from each P-full training dataset. Hereafter, we refer
to this 10% subset as the P-training set TP for the corresponding model. For two plasmids P1
and P2 we take the union TP1 ∪ TP2 of the 10% subsamples to obtain the union training set T,
or simply, the training set, for a given topology. We assign R-loop grammar symbols to the k-
mers identified in T. This assignment is the dictionary for T (see sections Grammar symbol
assignments to the k-mers, S2 Text and S2 Fig(a)). We generate a model using the dictionary
for T, i.e. we obtain probabilities for each grammar rule. Next we select distinct training sets
to generate an ensemble of models. Finally, we use the average of the ensemble to predict the
probability that a given nucleotide falls within an R-loop for any given choice of plasmid and
topology (see sections Obtaining a model, S1 Text, and S2 Fig(b)). Figs 7, 8, S4 Fig, S3 Fig
and S3 Fig contain the results under various assumptions.

Choosing parameters k and p. To select the optimal k and p parameters, we use a nested
3-fold cross-validation on one of the three full training datasets. We reserve one-third of the
full training dataset for validation and use the rest of the data for training. We repeat this pro-
cess for all three non-overlapping validation sets and generate predictions for all pairs (k, p)
where k = 3, 4, 5 and p = 7, 13. When comparing the model predictions with the experimen-
tal validation datasets, the parameters k = 4 and p = 13 produce the lowest average (over the
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three validation sets) root mean square deviation (RMSD) and the highest average Pearson
correlation coefficient. The results of this analysis are in S3 Table.

k-mer extraction
We consider each plasmid P in the 5′ –3′ direction of the non-template strand. R-loop loca-
tions are specified by their initiation i and termination j indices, with j>i. We denote the R-
loop segment as the interval of nucleotides [i,j], i.e. the sequence of nucleotides i,… , j. In
order to have each R-loop length as a multiple of k, we modify the termination indices of each
R-loop as needed (see section S3 Text). The k-mer extraction for the dictionary takes place
around the initiation and termination sites of an R-loop (Fig 9). This is done separately for
each plasmid’s training subset.

Given a P-training set TP for a given plasmid P, we employ a sliding-window approach to
extract the k-mers specific to the initiation, elongation, and termination of R-loops. Let p∈
ℤ+ be a given padding parameter and let [i,j] be an R-loop in TP. The regions of interest are
given by r1 = [i – k – p, i – 1], r2 = [i, i + k + p – 1], r3 = [j – k – p + 1, j] and r4 = [j + 1, j + k + p].
We take the k-mer [i–k,i–1] containing the k nucleotides i – k,… , i – 1 before the beginning
of the R-loop and shift this window to the left, one nucleotide at a time, for a total of p shifts.
We perform the shifting as long as the k-mer remains in the gene sequence. We discard any
extracted k-mers that are not fully contained within the gene sequence. The collection of k-
mers obtained in this way is the set of k-mers within region r1 and is denoted R1. Similarly,
we construct the remaining three collections R2, R3, and R4 that correspond to k-mers within
regions r2, r3 and r4, respectively. The set R1 consists of the k-mers preceding the beginning
of an R-loop in TP, while R2 (respectively, R3 and R4) consists of the k-mers at the beginning
(respectively, before and after the end) of an R-loop in TP. Fig 9 illustrates the sliding-window
approach.

Selecting the most relevant k-mers
We select the k-mers used for the dictionary from the collections Ri, i = 1, 2, 3, 4. To each
k-mer s in Ri we associate a weight wi(s) with respect to the region ri as follows:

wi(s) =
ni(s)
N ⋅ms

,

where N is the number of R-loops in the training set TP, ni(s) is the number of occurrences
of s in the region ri across all the R-loops in TP (counted with multiplicities), andms is the
number of occurrences (counted with multiplicity) of s within the gene region of the given
plasmid. The weight wi(s) quantifies the prevalence of s in region ri, across all the R-loops
in TP.

Fig 9. k-mer parsing. Sliding-window approach for extracting k-mers around the initiation and termination sites of an
R-loop [i,j] in a training set TP.

https://doi.org/10.1371/journal.pcbi.1013376.g009
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The k-mers in Ri are ordered in decreasing order by weight wi(s1) >wi(s2) >… so that si
has the ith highest weight. Table 1 shows a portion of all 115 4-mers in R4 from the hyper-
negatively supercoiled pFC53 R-loop data set.

In order to identify the most relevant k-mers, for each Ri we determine a cutoff point for
thresholding the ordered list using a procedure that relies on entropy reduction [31]. We
rescale all k-mer weights in Ri by normalizing with respect to the highest weight (i.e., s1) with
w′
i(sℓ) =wi(sℓ)/wi(s1). We define the entropy of the k-mer sℓ as Hℓ = –w′

i(sℓ) ⋅ log (w′
i(sℓ))

and compute the average entropy of s1,… , sn as hn = 1
n ∑

n
ℓ=1Hℓ. The (global) maxi-

mum of {h1,h2,…} is set to be the threshold for Ri [31]. The threshold is achieved when
(n – 1)hn ≤ h1 + ⋯ + hn–1, i.e. when adding a new value hn is ‘not significant’ with respect to
the sum of the already added values.

The threshold reduced list of k-mers R∗
i , called highly weighted, comprises of all k-mers sℓ

in Ri such that hℓ is greater than or equal to the threshold value of Ri. Note that there may be
several k-mers corresponding to the threshold cutoff. In this case, all such k-mers are included
in the highly weighted list R∗

i .

Grammar symbol assignments to the k-mers
For each plasmid and each set of experimental conditions, we use the list of k-mers and their
associated weights to assign grammar symbols. This assignment enables us to represent each
R-loop with an R-loop grammar word.

Table 1. Selection of the most relevant 4-mers. Sample in R4 from the hyper-negatively supercoiled pFC53 R-
loop data set. The first column is the ranking n of the 4-mers in R4 after ordering them by weight. The second
column lists all the 4-mers where 4-mers with the same ranking are listed in the same field. In this sample the
total number of 4-mers in R4 is 115.The third column indicates the weight w4(sn) of sn. The last three columns
illustrate the steps of the selection procedure for determining the cutoff point: weight rescaling, entropy calcu-
lation, and average entropy computation.The cutoff point–highlighted–is the maximum of the average entropy
values.
n sn w4(sn) w′4(sn) Hn hn
1 CAAT 0.03571 1.00000 0.00000 0.00000
2 GGAT 0.03214 0.90000 0.04118 0.02059
3 AGGT 0.02976 0.83333 0.06598 0.03572
⋮
29 GAAG, CCGT,

CGCA, ACCA
0.00893 0.25000 0.15051 0.14094

30 CAAG, AAGC,
GGTT

0.00824 0.23077 0.14696 0.14147

31 CCCG 0.00794 0.22222 0.14516 0.14168
32 CTCT, TTCA,

CGGA, ATTT,
TACA, GTGC,
GAGT, GCGT,
CGTG, GGTA,
GTAG, GCCA,
AGCC

0.00714 0.20000 0.13979 0.14165

33 AAGG 0.00630 0.17647 0.13294 0.14128
⋮
40 GCCC 0.00298 0.08333 0.08993 0.13399
41 AAAG 0.00275 0.07692 0.08569 0.13357
42 GCAC 0.00255 0.07143 0.08187 0.13312
Total number of 4-mers = 115

https://doi.org/10.1371/journal.pcbi.1013376.t001
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Given an R-loop [i,j] in TP within the gene region [b,e] of P, we focus on three segments
[b,i–1], [i,j], and [j+ 1, e] which comprise the sequences preceding, within, and following
the R-loop. We subdivide each of the three segments into consecutive and non-overlapping
parsing blocks. These blocks are k-mers, except possibly for the block that ends with i–1 and
the one that starts with j+ 1, which could be shorter (i.e., of length <k). By construction, the
R-loop segment [i,j] is always a multiple of k (see Fig 10 and section S3 Text).

We represent each R-loop in the training set as a word in the R-loop grammar by estab-
lishing a correspondence between the parsing blocks within [b,i–1], [i,j], and [j+ 1, e] and
the grammar symbols. The correspondence between parsing blocks and grammar symbols is
obtained through a symbol assignment function C(ℓ, s) depending on the location ℓ of the
first nucleotide of the k-mer s.

The grammar symbol assignment depends on the parsing block weights generated by
the P-training set TP. A parsing block can be highly weighted in a region ri (for some i =
1– 4; Fig 6), it can appear in two or more regions but not be highly weighted in any, or
not appear in any of the regions. For example, highly weighted parsing blocks in region r4
are treated as stable DNA:DNA duplexes, and those within region r2 are treated as stable
RNA:DNA duplexes. However, the weighted values can result in ambiguous assignments thus
requiring more complex symbol assignment maps. We define the symbol assignment map
C(ℓ, s) for highly weighted k-mers below and that for not highly weighted blocks in section
S2 Text.

Highly weighted parsing block assignments. Let s be a k-mer in one of the threshold
reduced lists R∗

i . We set w∗
i (s) = 0 if s∉R∗

i . Let w∗(s) =max{w∗
1(s),w∗

2(s),w∗
3(s),w∗

4(s)}.
Then the assignment map C(ℓ, s) is defined as follows.

• If w∗(s) =w∗
i (s) =w∗

j (s) with i∈ {1, 2} and j∈ {3, 4} then s is highly weighted as it
appears at both the start and the end of an R-loop. Then

C(ℓ, s) =
⎧⎪⎪⎨⎪⎪⎩

𝛿 if ℓ ∈ [b, i – 1] ∪ [j + 1, e]
𝛽 if ℓ ∈ [i, j]

treating s as both a stable and an unstable DNA:DNA (resp. RNA:DNA) hybrid when
the k-mer is outside (resp. inside) the R-loop.

Otherwise,

• If w∗(s)∈ {w∗
1(s),w∗

2(s)} then C(ℓ, s) = 𝜎 for ℓ ∈ [b, i – 1]∪ [j+ 1, e] and C(ℓ, s) = ̂𝜏 for
ℓ ∈ [i, j]. This treats k-mers at the beginning of the R-loop as stable RNA:DNA hybrids
and unstable DNA:DNA duplexes.

Fig 10. Parsing blocks. Subdivision of the gene region into parsing blocks. We indicate initiation and termination of the R-
loop with i and j, respectively. Each parsing block is a k-mer, with the possible exception of the block immediately preceding
the R-loop (labeled 𝛼, in purple) and the block immediately after the R-loop (labeled𝜔, in purple), which could be shorter.

https://doi.org/10.1371/journal.pcbi.1013376.g010
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• If w∗(s)∈ {w∗
3(s),w∗

4(s)} then C(ℓ, s) = ̂𝜎 for ℓ ∈ [b, i – 1]∪ [j+ 1, e] and C(ℓ, s) = 𝜏 for
ℓ ∈ [i, j]. This treats k-mers at the end of the R-loop as unstable RNA:DNA hybrids and
stable DNA:DNA duplexes.

Dictionary: Grammar symbol assignment for the set T
Let C(ℓ, s) (respectively, C(1)(ℓ, s), C(2)(ℓ, s)) denote the symbol assignments for the union
training set T (respectively, plasmid training sets TP1 , TP2). The symbol assignment C(ℓ, s)
for T is based on the symbol assignments C(1)(ℓ, s) and C(2)(ℓ, s). If the symbol assignment
for both C(1)(ℓ, s) and C(2)(ℓ, s) is the same, then C(ℓ, s) = C(1)(ℓ, s). If the symbol assign-
ments by C(1)(ℓ, s) and C(2)(ℓ, s) differ, then we apply two approaches to resolve the conflict
- a deterministic one and a stochastic one (see section S2 Text for details).

R-loop grammar words for T to generate a model
To obtain a model for the R-loop grammar, i.e., to specify the probabilities of each of the
grammar production rules, we write all R-loops in the union training set T as words over the
alphabet {𝜎, ̂𝜎,𝛿,𝛾, 𝜏, ̂𝜎,𝛽,𝜌,𝛼,𝜔}.

This is done by using the splitting of the gene region into parsing blocks according to the
R-loop initiation and termination indices [i,j] as discussed above, see Fig 10. All but two of
the blocks are k-mers. To a given k-mer, a grammar symbol is assigned according to func-
tion C(ℓ, s) for the union training set T, depending on whether the block precedes, is within,
or follows the positions [i,j]. The lengths of the blocks 𝛼 and 𝜔 for the transitions can vary
between 0 and k–1 depending on the values i,j,k. Note that this means that each R-loop word
contains exactly one 𝛼 and 𝜔 even when their corresponding lengths are 0.

Obtaining a model
A grammar model for the union training set T is obtained by assigning probabilities to each
of the production rules. Detailed formulas are included in section S1 Text. Using Eq 1 for
all words in union training set T, and then Eq 2, we obtain the final probability for a given
nucleotide of a plasmid to be within an R-loop. We produce an ensemble of (in our case 30)
models and take the average over all models (S2 Fig).

Assessing model stability
We use 3-fold cross-validation to assess the stability of model predictions. To do so, we repeat
a total of three times the process described under the Training and holdout set subsection,
each time selecting a different non-overlapping holdout set and creating an ensemble of mod-
els from the respective full training dataset (see S3 Fig).
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