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Abstract

A major goal of behavioural ecology is to explain how phenotypic and ecological fac-
tors shape the networks of social relationships that animals form with one another. This
inferential task is notoriously challenging. The social networks of interest are generally
not observed, but must be approximated from behavioural samples. Moreover, these
data are highly dependent: the observed network edges correlate with one another,

due to biological and sampling processes. Failing to account for the resulting uncer-
tainty and biases can lead to dysfunctional statistical procedures, and thus to incorrect
results. Here, we argue that these problems should be understood—and addressed—as
problems of causal inference. For this purpose, we introduce a Bayesian causal mod-
elling framework that explicitly defines the links between the target interaction network,
its causes, and the data. We illustrate the mechanics of our framework with simulation
studies and an empirical example. First, we encode causal effects of individual-, dyad-,
and group-level features on social interactions using Directed Acyclic Graphs and Struc-
tural Causal Models. These quantities are the objects of inquiry, our estimands. Second,
we develop estimators for these effects—namely, Bayesian multilevel extensions of the
Social Relations Model. Third, we recover the structural parameters of interest, map sta-
tistical estimates to the underlying causal structures, and compute causal estimates from
the joint posterior distribution. Throughout the manuscript, we develop models layer by
layer, thereby illustrating an iterative workflow for causal inference in social networks.
We conclude by summarising this workflow as a set of seven steps, and provide practical
recommendations.
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Author summary

Behavioural ecologists ask mechanistic questions about behaviour—causal questions.
When studying animal societies, these questions often concern the drivers of social net-
work structure. Addressing causal questions from observed social interactions, whether
in wild or captive settings, poses serious inferential challenges. Social network data are
often noisy and biased, and causal effects may be confounded. As a result, estimating
the effects of interest requires careful causal and probabilistic modelling—tools that
most empiricists in the field are not trained to use. By integrating techniques from causal
inference and Bayesian statistics, we introduce a practical framework for researchers to
conduct causal inference in their own study system. We start by distinguishing three
levels of abstractions for any social network under scrutiny. We then outline an itera-
tive workflow, built around a few key steps: (i) defining the causal effect of interest; (ii)
translating one’s domain expertise into qualitative, then quantitative causal assump-
tions; (iii) building a statistical model designed to estimate that effect. Throughout, we
emphasise the justification and validation of statistical models, while offering guidance
for readers who are unfamiliar with formal modelling. More broadly, our framework
lays the groundwork for a stronger and more transparent bridge between theoretical and
empirical research in behavioural ecology.

Introduction

A major goal of behavioural ecology is to explain how ecological and evolutionary processes
affect social structure [1]. Behavioural ecologists observe natural variation in social behaviour,
and ask: “why?” [2,3]. Why do certain individuals cooperate by supporting each other against
conspecifics, or by spending a substantial amount of time grooming? Why do other individ-
uals confront each other in agonistic fights, sometimes at the risk of their lives? Ecology and
evolution offer theoretical models to explain why individuals behave in certain ways [4-8].

Network Science provides valuable analytical tools to bridge theoretical predictions with
empirical data [9]. To make inferences about the determinants of social structure, it is useful
to first operationalise the system as a social network (see our Glossary in Table 1; [9-12]). Typ-
ically, a social network is composed of nodes that represent individual animals, and edges,
which represent the social interactions or relationships between them. We find it important
to distinguish three levels of abstraction for any social network under investigation (Fig 1).
These levels differ regarding what the edges represent. In the highest level of abstraction,
the network edges correspond to the theoretical construct that we most often wish to study
(first level in Fig 1). That is the social relationship between two individuals, or an aspect of
it like affiliation, dominance, agonistic support, tolerance, or friendship [7,13-16]. These
constructs cannot be observed directly [6,17]. They are abstractions, often assumed to be
composed of—or expressed as—a diverse range of behavioural interactions, and can only be
approximated.

In the second level of abstraction, the network edges correspond to one type of quantifi-
able social interaction. These interactions are generally used as a proxy for the theoretical
construct of interest [1,18] —though it can be the target network in some cases, e.g., when
studying disease spread. Hereafter, we refer to this level as the interaction network (Fig 1), and
assume that it is used as a proxy for a latent construct of interest. Researchers choose which
behavioural proxy to use based on knowledge of their study system (“How do I best approx-
imate what I want to capture?”). For instance, allogrooming (e.g., [19]), or spatial proximity
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Table 1. Glossary.

Term

Definition

Backdoor criterion

Graphical criterion providing a sufficient adjustment set (i.e. set of variables to include in a
statistical model) for causal identification. Given a treatment X and an outcome Y, a set of
variable Z satisfies the backdoor criterion if it does not include descendants of X (i.e. nodes
caused by X), and if it blocks all paths starting with an arrow pointing into X.

Bayesian model

Statistical model where inference is based on the posterior probability distribution, which
describes the plausibility of different parameter values for all parameters in the model. The
posterior probability is computed by combining the observed data with prior probability
distributions for the model parameters, using Bayes Theorem. Bayesian models are also
sometimes called probabilistic models.

Causal effect A variable X has a causal effect on a variable Y, if a (hypothetical) intervention on X results in
achange in Y: P(Y) # P(Y|do(X)), in do-calculus.

Causal inference Refers to both a discipline and a process. Discipline: field studying causal relationships among
variables. Process: inferring causal effects from data.

Cercopithecinae Sub-family of the African and Asian monkeys (sometimes referred to as “old world”

monkeys) which comprises the baboons, the vervet monkeys, and the macaques.

Conditioning on a
variable

Intuitively, conditioning on a variable amounts to saying “once we know its value” It is
equivalent to “stratifying by” or “controlling for” it. In the context of a regression model, for
example, adding covariates is a form of conditioning.

Confounder A confounder of a “treatment” X and “outcome” Y is a variable that makes the observed
statistical association between X and Y different than if X had been intervened upon—
for instance, using a randomised control experiment. That is, P(Y|do(X)) # P(Y|X), in
do-calculus. Note that confounding is a causal, and not a statistical, concept.

Directed Acyclic Graphical causal model showing which variables are assumed to affect each other in a given

Graphs study system. DAGs only encode qualitative knowledge.

Estimand Target quantity for a given data analysis, defined outside of a statistical model. For instance,

the total causal effect of a variable X on another variable Y in population Z.

Exogenous variable

Variables whose causes are not explicitly modelled.

Generative Statistical model that can be used to simulate data, as they are implied by the model’s

statistical model assumptions.

Network structuring | Variables shaping the network of social interaction. Features can be at the individual (e.g.,

features age), dyadic (e.g., genetic relatedness), or supra-dyadic level (e.g., predation pressure).

Identifiability A causal estimand is identifiable if it can be theoretically computed using observed data. For
instance, suppose that X causally affects Y, and that both X and Y are caused by an unob-
served variable U. Then, the effect of X on Y is not identifiable, because of the confounder
U.

Joint posteri- A multidimensional probability distribution describing the plausible values of a statistical

or probability model’s parameters, after it has been updated with data.

distribution

Licensing causal
assumptions

Assumptions expressed in a formal language (e.g., Directed Acyclic Graph, mathematical
equation) describing causal relationships among variables. These assumptions are licensing in
that they provide conditions under which the causal interpretation of statistical estimates is
justified from first principles.

Marginal posterior

Posterior probability of a parameter regardless of (i.e. unconditional on) the value of the

distribution other parameters.

Markov Chain Algorithm to draw samples from—and thus, approximate—the joint posterior probability

Monte Carlo distribution of a Bayesian model.

Model precision Refers to how variable posterior estimates are from one another across data samples (e.g.,
across iterations of a given SCM). More precise models are less variable across data samples.

Multilevel model Also sometimes called “hierarchical” or “mixed-effect” models, multilevel models learn about

the value of certain clusters using what they have learned in other clusters, when these clus-
ters are part of a so-called “varying-effect” (or “random effect”) structure. For instance, to
estimate an individual a’s propensity to give social interactions to others, a multilevel model
learns, naturally, from the interactions given from a to others, but also from the other indi-
viduals’ (e.g., b, ¢, d) propensities to give interactions to others. It does so through a process
called partial-pooling.

(Continued)
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Table 1. (Continued)
Term Definition

Open path On a DAG, a path is open if association flows through its components—i.e., two variables
connected by an open path are statistically associated. On the other hand, a path is closed
when the flow of association among its components is blocked.

Outcome scale Scale of the outcome variable. For instance, rate of behavioural events, for our Poisson
models.

Regularised Statistical estimates that tend to capture features of the target population (so called regular

estimates features), and not features of the specific sample (irregular features).

Simulation study Small, synthetic world created—in our case—to understand how a statistical model behaves

when confronted with a known structural causal model.

Social network Graph where nodes represent individuals, and edges represent either (i) an aspect of the
social relationship, (ii) the true interaction rates for a given behaviour, or (iii) the measured
interaction rates for a given behaviour, between individuals.

Social structure Pattern of social interactions and relationships among the members of a population.

Statistical parameter | Unobserved variable, whose value is estimated using a posterior probability distribution.
Note that statistical parameters only describe associations, but contain no causal information.

Structural Causal | Type of causal model where the functional relations among variables can be specified with
Model quantitative knowledge. For instance, certain causal effects (corresponding to arrows in the
DAG) can be defined as strong, weak, linear, non-linear, etc.

Structural Parameters of a structural causal model. Note that structural parameters do contain causal
parameters information.
Triadic closure In a triad composed of individuals a, b, and ¢, given that there is a connection between a-b,

and one between b-c, there often exists a connection between a—c.

(]
1. CONSTRUCTS
Social relationship
Example: affiliation
Observed: no P ) "X
) ]
2. INTERACTIONS
Behavioural proxy
Example: true rate of grooming
Observed: no a .ﬂL. b
3. DATA -
Sampled interactions
Example: observed number of grooming bouts
Observed: yes Yla,b]
ae————eb

Fig 1. Three levels of abstraction for an animal social network. On the three levels, the dark dots, or nodes, repre-
sent individual animals, two of which are named a4 and b. We show a network of only three individuals for simplicity
of representation. The lines connecting individuals, or edges, depict the relationships or interactions among them.
On all three levels, lines of different widths suggest variation in the strength of relationships, or in the number of
interactions.

https://doi.org/10.1371/journal.pcbi.1013370.g001

(e.g., [20]), may capture affiliative relationships in different species. Researchers also deter-
mine which proxy to use based on practical constraints (“What can I measure?”). Certain
behavioural interactions may be reliable indicators of affiliation, but occur too rarely to be

of practical use (e.g., “bridging” behaviour in macaques, see [21]). How the theoretical con-
struct of interest relates to the interaction network is of critical importance for future research
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(see [22-24]). It is, however, beyond the scope of the present manuscript. That is, we take
for granted that the interaction network is a reasonable proxy for the theoretical construct of
interest.

Third, it is typically impossible to observe every interaction event within the study system.
Instead, researchers sample the study population using standardised behavioural protocols
[25]. The data generated through the use of these protocols—e.g., 1% of all grooming bouts—
are then used to approximate the network of all interactions [1]. These data, which we also
further refer to as sample or observations, correspond to the third level of abstraction (Fig 1).

In the following sections, we use these concepts to describe common issues in animal
social network analysis, and argue that they should be understood as problems of causal infer-
ence. We then introduce a novel, relatively simple, framework that explicitly addresses these
issues.

Common problems in animal social network analysis

Establishing the connection between observations (third level) and unobserved interaction
network (second level) is a major inferential challenge in animal social network analysis [26].
A popular approach to approximate the interaction network is to aggregate the observed inter-
actions at the individual- or dyad-level. These approaches include the use of Simple Ratio
Index [27] and composite “Dyadic Sociality Index” [28], to quantify edge weight. The edge
weights can be aggregated at the node level to calculate, for instance, node degree or strength
[29]. These metrics are then commonly used as predictor or outcome variables in multivari-
able regression procedures [27].

However, using such network summary metrics in statistical models amounts to treat-
ing the unobserved interaction network (second level) as being observed. In practice, the
observed interactions are noisy samples of the interaction networks [30,31]. Suppose we are
interested in studying the rate at which two individuals groom. In one case, we observe these
two individuals for 1 hour, and record 1 grooming bout (i.e. a grooming “event”) between
them. In a second case, we observe the same two individuals groom 100 times over 100 hours
of observation. In both cases, the observed rate (i.e., the Simple Ratio Index) is equal to 1
grooming bout per hour. Yet, we are more uncertain about the real grooming rate in the first
case, where the individuals have been observed for a shorter period. The data-aggregating
procedures mentioned above would typically treat them as equivalent, and this invalidates
probability calculations—different amounts of evidence must be reflected in inferential uncer-
tainty. To deal with the uncertainty inherent to aggregating observations (hereafter referred
to as problem I), behavioural ecologists traditionally attempt to collect a large amount of data
to produce an accurate approximation of the unobserved interaction network [1,11,32]. But
whether a given amount of data is “sufficient” for an accurate approximation of the network is
hard to determine.

A related issue is that of “biases” introduced by the sampling process (problem II). The
sampling regime itself may make some individuals appear more or less sociable than they
actually are. Farine [33] provides an example where females are more gregarious than males
in a hypothetical population of animals. However, females are sampled less regularly than
the males (e.g., because the males are more visible). As a result, the two sexes appear equally
gregarious. Permutation methods have been proposed to solve these sorts of issues, some-
times framed as problems of “non-independence of social network data” [27,33,34]. However,
the utility of permutation methods for social network analysis has been challenged, as they
carry several, fundamental, flaws [35-38]. A rich literature in network science [39-43], and
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of noise and biases introduced by the sampling process, by defining the true interaction rates
as parameters in a Bayesian Model. We will return to this idea in detail, further below.

Social network data present yet another challenge—often framed as the “non indepen-
dence in social network data” as well—but here, due to structuring features of the network.

As opposed to the data dependencies caused to the sampling process, structural dependen-
cies among edges are already present in the interaction network (second level). Consider, for
instance, three edges from a hypothetical social network: the number of interactions given
from an individual a to another individual b, the interactions from a to ¢; and those from a to
d. The three edges will likely be more similar to each other than they are to the other edges in
the network, because the actor, in the three cases, is a [46-48]. Interactions from a to b, and
those in the opposite direction, from b to a, often covary as well. In the presence of dyadic
reciprocity, dyads with a high rate of interaction in one direction will have a high interaction
rate in the opposite direction too [49,50]. A third example regards triadic closure: it is often
possible to learn about the value of the edge between a-c, given knowledge about the value
of the edges a—b and b-c. This can be the case because 4, b, and c all belong to the same kin
group, where they engage in more interactions than with non-kin. The line between the two
types of dependencies we have introduced (i.e. due to sampling, and structural) is however
not strict. An individual’s features might affect how they behave—creating structural depen-
dency among its edges—and, in turn, its behaviour can affect the sampling process, e.g., if
more gregarious individuals are sampled more regularly.

Ignoring structuring features of the network can have deleterious consequences, when the
goal of a statistical analysis is to make inference about the effect of a given variable, like sex or
age, on social behaviour. First of all, the effect of interest might be confounded (problem III).
In this case, a statistical model describing the association between the predictor of interest
and social behaviour will not recover the effect of interest, even with infinite sample size. Sec-
ond, statistical models that ignore this structure can have low efficiency and low predictive
accuracy (problem IV'). That is, the models wont precisely recover generative parameters, and
won't accurately predict unobserved data from the inferred interaction network [37,51]. How
to build statistical models in light of structuring features of the network has received ample
attention in the field of (human) Social Network Analysis [50,52-56]. Statistical models in
behavioural ecology are rarely built in light of the structuring features of the social network,
and might greatly benefit from incorporating these approaches.

In summary, inference from animal social networks implies several difficulties. Samples
often look very different from the actual interaction network, because of noise (problem I)
and potential biases (problem II) introduced by the sampling process. Structuring features of
the social network further create associations between edges in the interaction network, and
should be considered when building statistical models (problems III and IV). In the remain-
ing sections of this manuscript, we argue that all of these issues are part of—and should be
addressed as—one larger kind of problem: a problem of causal inference.

Causal inference in animal behavioural ecology

Behavioural ecologists ask mechanistic questions about behaviour, causal questions. How-
ever, like other scientists, they face a dilemma. Many are taught that the only way to infer
causality from data is to run a randomised controlled experiment [57]. Arguing otherwise
can be perceived as endorsing the statement that “correlation implies causation” [58-60]. Yet,
researchers often cannot run such experiments in their study system, for ethical or practical
reasons. They must address causal questions using observational data, but under the idea that
causal inference from non-experimental data is impossible.
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As a result, many observational studies are causally ambiguous [61-63]. It is common
to see scientific papers reporting observational studies with causal claims in their titles and
abstracts—e.g., X drives Y in species Z. These papers begin with a largely causal reading of
the literature (e.g., authors J found an effect of X on Y in species W). The Methods section,
however, rarely contains transparent causal assumptions, even if statistical models are usu-
ally adjusted by “control” variables to avoid confounding biases—a clearly causal considera-
tion. The Results section is most of the time free of causal language as well [59]. For instance,
a variable, X, is said to be simply associated, or correlated, with the outcome of interest, Y.

But the discussions and conclusions often turn to explicitly causal vocabulary again: the
authors discuss causal explanations for the observed pattern of association, as well as their
implications.

In the end, statistical models from which causal evidence is assessed have generally not
been logically linked to licensing causal assumptions [64,65]. For this reason, it can be hard to
evaluate how strong the causal evidence actually is. It may be difficult to know what exactly
is the quantity a statistical model is supposed to estimate (what is the causal estimand), why is
a statistical model by certain variables and not others (under which assumptions is the effect
identifiable); or how to interpret the statistical parameters in terms of the causal structure of the
study system [66-68].

Instead, inappropriate, non-causal approaches are often used to decide which “control”
varijables to include in a statistical model when the aim of the analysis is causal inference.

A core problem is the use of predictive techniques that are given causal interpretation, for
instance by selecting the predictor variables of a multivariable regression based on Infor-
mation Criterion (e.g., AIC) or Cross-Validation procedures [69]. Another approach is to
select covariates based on their p-values, for example by dropping non-significant vari-

ables. Researchers may also be advised to include all predictors that are assumed to affect the
response variable. These approaches are insufficient to licence a statistical model designed to
estimate a causal effect, because their logic has nothing to do with control of confounding,
but other goals like forecasting or error control under random treatment assignment. In fact,
well-meaning use of covariates may introduce biases—e.g., collider bias or posttreatment bias
[37,58,60,63,67,70,711.

We propose an alternative to the approaches mentioned above, by integrating tools from
the field of formal Causal Inference with Bayesian statistical modelling. Causal inference
in experiments depends upon the logic of random treatment assignment for modifying a
causal model of the system under study. Causal inference in observational settings depends
upon the same logic, in the absence of random treatment assignment. Both settings, experi-
ments and observation, require in principle an explicit model of the data-generating process, a
causal model. The causal model, combined with one or more questions, can transparently and
objectively justify one or more statistical models.

In our case, what is needed is a model of the causal factors driving the observed social
interaction network, as well as a transparent workflow that links it to hypotheses and data
analysis. We describe this workflow in three parts. First, we show how to represent hypotheses
about social networks as formal causal models. For the sake of generality and communication,
we use Directed Acyclic Graphs, or DAGs [60,65,67,70], to describe the causal structures under-
lying animal social interaction networks. Second, we show how to explore the empirical impli-
cations of the DAG by building Structural Causal Models (SCM), which can be used for synthetic
data simulation. Third, we combine these two types of causal models with matched multilevel
extensions of the Social Relations Model, a generative statistical model [23,37,38,47,50,72], and

show that it can recover structural parameters from the simulations. This provides the grounds
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for the development and justification of an empirical workflow in which statistical models
have been developed and tested transparently under specific causal assumptions.

Our aim is not to provide a “one size fits all” model. Rather, the framework emphasises
on the basic causal structure of animal social interaction networks, and on how they can be
estimated with statistical models. Accordingly, empiricists interested in studying the drivers
of social network structure can build upon our models, by tailoring them to their specific
questions and study system.

Mechanics of the framework

We build the framework step by step, through four simulation studies that incrementally present
its elements in detail.

In simulation 1, we introduce the basic elements of our causal model. They define the link
between the observed network (third level of abstraction) and the interaction network (sec-
ond level), and specify assumptions about the factors shaping the interaction network. We
encode—i.e. translate to a formal language—these assumptions using two types of causal
models, a DAG and a SCM. We start by assuming that the structuring features are random.
We then introduce the Social Relations Model, and show that it can recover the parameters of
the SCM.

Next, we show how individual- (simulation 2) and dyad-level features (simulation 3)
can affect the interaction network. We highlight that well-specified statistical models can
accurately recover the causal effects encoded in the simulations. We also show how statisti-
cal models that are not adjusted by the structuring feature are affected by the causal effects,
through their varying-effects structure, and discuss the interpretation of these effects. The
aim of simulations 1-3 is not to be realistic. Instead, they reveal the internal mechanics of our
framework.

In simulation 4, we turn to a more realistic scenario. We build an estimator for the effect of
genetic relatedness on affiliation in females of a population of Assamese macaques, where this
effect is confounded by dominance rank. We first validate our statistical model using synthetic
data, and then fit it to empirical observations. Throughout the simulations, we show how our
framework naturally addresses the issues mentioned above (problems I to IV).

Simulation study 1: Random structuring features

Introduction to directed acyclic graphs. DAGs are a simple and powerful tool to
describe how variables in a system causally affect one another [67,70]. The mathematical
and applied literature on DAGs is large. We give here only a necessary conceptual introduc-
tion. DAGs are simple, but they are sufficient to describe the fundamental obstacles to, and
derive solutions for, causal inference—including the design of experiments and observational
studies.

DAGs are graphs. They are composed of nodes—here, representing variables—and directed
edges, encoding causal relationships among these variables. For instance, the following DAG:

X->Y

can be read as: “X influences Y”. There is no universal definition of what “influences” means
in science, but in a DAG it means that an intervention on X changes the distribution of Y. In
contrast, an intervention on Y would not change X, because of the direction of the arrow. It
is important to note that DAGs are qualitative: they do not say anything about the functional
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form of the causal effects. They simply posit the presence and absence of causal relationships
among a set of variables.

A path is a sequence of two or more adjacent nodes (i.e., nodes directly connected by an
arrow). For example, consider:

X—>7Z-Y.

Here, X transmits a causal effect to Y, through a mediator, Z. This specific structure (i.e.,
a path involving three nodes connected by two arrows pointing in the same direction) is
referred to as a chain. Chains are a type of causal paths, as the arrows connecting its two end-
ing points—here, X and Y—go in the same direction. Paths can also be non-causal, as in:

X«—Z->Y.

This particular path, where a variable Z is a common cause of two other variables X and Y,
is called a fork. It is non-causal because one of the arrows between X and Y goes “backwards”.
Although causal effects (consequences of interventions) only flow through causal paths,

statistical association can arise through non-causal paths too. This is a fundamental reason
that statistical association does not imply causal relationships. For instance, X and Y are asso-
ciated in a fork, because of their common cause Z. Their association arises from a common
cause, not the influence of one on the other.

A graph is acyclic if it is impossible to start at any node, and return to it by following causal
paths only, or in other words: a node never influences itself. If one were to model feedback
loops, they would need to represent time explicitly on a DAG (e.g., X; = Y; = X415 see [73]).
What makes DAGs directed is that causal arrows can only be single-headed. Double-headed
arrows can however be used as shortcuts, to indicate that an unspecified non-causal path con-
nects two variables. For instance, if an unobserved variable U affects both X and Y, it can be
represented as:

X «— Y, which is equivalent to: X « U— Y.

For a general introduction to causal graphs, see Pearl [67] and McElreath [37].

Directed acyclic graph for simulation study 1. In Table 2, we introduce the core ele-
ments of our causal framework. It links observed social interactions y in a dyad to the unob-
served true rate of interaction m in that dyad, which is caused by features of the individuals,
y and p, and of the dyad 7. Each individual is assigned a general tendency to perform a par-
ticular behaviour, across all dyads. We call this giving, and represent it with the parameter y
(“gamma”). Each individual is also assigned a general tendency to receive a behaviour, across
dyads. We call this parameter receiving, and represents it with o (“rho”). In addition to these
general tendencies to give and receive, each individual can have a specific tie with each other
individual. We denote these ties with 7 (“tau”). Ties, like m and y are directional—their values
in the two directions (from a to b, and from b to a) are not necessarily the same.

We illustrate how these parameters affect one another in Fig 2A. This DAG embod-
ies assumptions about which factors shape each observed edge y[, . It is the simplest data-
generating process in our framework: a system where y, o, and 7 share no common influ-
ences. More formally, we can say that they are only affected by exogenous, independent vari-
ables. The most common way to represent this scenario on a DAG is to draw no arrow point-
ing into these variables. Thus, the propensity of an individual, a, to give interactions to oth-
ers (y[4]), its propensity to receive interactions from others (o[4)), and the propensity it has
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Table 2. Core elements of the causal framework. Variables encode assumptions about individual- and dyad-level features on social interactions. See section I'in S1
Text for group-level effects. The parameters G, R, and T differ across models and are not defined here.

Parameter
y

¥y (giving)

© (receiving)

T (tie)

Indexed by

Directed dyad, i.e., one
value per dyad, and per
direction:

Y[a] (direction 1)
V[b.a (direction 2)
Directed dyad:

M) (direction 1)
Mp,q) (direction 2)

Individual:
Via]

Individual:

Pla]

Directed dyad:
T[4 (direction 1)
T[p,q) (direction 2)

Definition/Function Example Notes

Number of observed social interac-  |N. of observed grooming bouts from |y has the same meaning as in Fig 1,
tions given from an individual, a, to |a to b over 12 hours of combined except that here, the interactions are
another individual, b, over a sampling |focal follows of a or b. directed.

period.

True rate/number of social interac- | Average number of grooming bouts |m is unobserved (see Fig 1-2). It
tions given from an individual, a, to |given by a to b per period of 12 hours. has the same meaning as in Fig I,
another individual, b, over a sampling except that here, the interactions are
period. directed.

Encodes assumptions about the effect |Given that X[,] represents the age of |y can, for example, encode the

of individual-level features on the an individual a, X[ ,) = ¥[4) canbe  |assumption that older individuals

general tendency of an individual to |read as: “age affects how many social |spend less time engaging in social

give social interactions to others in  |interactions an individual, a, tends to |interactions (e.g., grooming), because

the group. give to others”. they may be constrained by their low
foraging efficiency.

Encodes assumptions about the effect | Given that X[,) represents the age of |0 may, for instance, describe that

of individual-level features on the an individual a, X[} — p[,) canbe |individuals of a certain age are more

general tendency of an individual to |read as: “age affects how many social |attractive interaction partners.

receive social interactions from others |interactions an individual, a, tends to

in the group. receive from others”.

Encodes assumptions about the effect |Given that X|, ; is the genetic related- |We index symmetric dyadic variables,

of dyad-level features on the tendency |ness between a and b, X|, 3| — T(4,5] |like genetic relatedness, using vertical

of an individual, 4, to give social encodes the following assumption:  |bars (X, 4| = X|p,4))- We index directed
interactions with a specific other “The relatedness between a and b dyadic variables using square brackets
individual, b. affects how many interactions a gives |(T[4,] is not necessarily equal to

tob”. T[b,a])-

to give interactions specifically to any other individual, b, in its group (z[4p)), are all inde-
pendent. These three parameters affect the true rate of interactions from a to b: m, ). Then,
m,p) affects the observed number of interactions, y[, ). This slightly contrasts with Fig 1,
where the link between y and m was not explicitly causal.

We now have a graphical representation of our causal model for simulation 1. How-
ever, what it exactly means for a variable to affect the “tendency” of an individual to give, or
receive, interactions, as well as the exact nature of the above-mentioned “exogenous vari-
ation”, depends on the mathematical function that we assign to it. This is why, in the next
section, we turn the qualitative assumptions of the DAG into quantitative assumptions.

Structural causal model. Structural Causal Models (SCM) are a type of causal model
where the functional relationship among variables is defined by a mathematical function
[70]. It means that they contain assumptions about whether the effects among variables—
corresponding to arrows on a causal graph—are positive, negative, strong, linear, etc. SCMs
are closely linked to causal graphs, such that there exists a causal graph for each SCM. As
SCMs encode quantitative causal assumptions, they can be used as generative models, to simu-
late observations.

Practically, we used SCMs for data simulations that “obey” the causal relations represented
on the DAGs, and implemented them in R, version 4.2.1 [74]. For each arrow on the DAGs,
we defined a function, with arbitrary parameter values. We did so with two main goals. First,
each SCM serves as a simple example of data-generating process encoded by its DAG. These
simulations can be more tangible than the abstract, non-parametric, knowledge encoded in
causal graphs. Second, and perhaps most importantly, SCMs can be used to derive and vali-
date statistical models. We will focus on the former goal in this section, before turning to the
latter, in the next section.
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Fig 2. Simulation study 1. A. DAG showing the core elements of our causal framework, and how they causally affect
one another, for two individuals, a and b. No arrows enter the structuring parameters ¥, 0 and 7. This means that
exogenous, independent, noise is the only factor affecting: (i) how many social interactions an individual, 4, gen-
erally gives to others (y[,); (ii) how many interactions a generally receives from others (o[,]); and (iii) how many
interactions a specifically gives to another individual, b (Tap])- These three structural parameters affect the true
rate of interactions given from a to b (m[,;)), which causes the number of observed interactions (y[,5]). We show
the two directions—i.e. from a to b, and from b to a, and represent unobserved variables with a dashed circle. B.
Mapping between structural parameters (Greek letters) and statistical parameters (Latin letters) of the non-adjusted
Social Relations Model (Eqs 1.2.1-1.2.4). The transparent arrows between the structural dyadic parameter 7 and the
statistical individual parameters G and R indicate that these effects are possible (e.g. simulation 3), but do not exist
here. C. Marginal posterior distributions, over a range of parameter values (x-axis) for the fixed-effects (y-axis) of
posterior model 1. Their respective target values are shown as red dots. These fixed effects—except for D which does
not appear on the DAG—capture the patterns of (co-)variation of G, R, and T, shown in panel b.

https://doi.org/10.1371/journal.pchi.1013370.g002
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Below, we provide a mathematical description of the SCM for simulation study 1—
hereafter SCM 1. We start by defining f,, the function determining y for each individual:

The function determining gamma is
defined as follows: ...is drawn from the following distribution:

A e
fr+ ¥Y[a) ~Normal(0,0.5)

e / N\

The value of gamma, for each individual, a... Mean SD

(1.1.1)

Where a € {1,..., N}. This notation with the € symbol implies that a represents an
arbitrary individual index that can take any value from 1 to N, where N is the number of
unique individuals in the sample. Accordingly, Eq 1.1.1 should be interpreted as follows:
Y[1]>Y[2]> > Y[N] are distributed as a normal (or Gaussian) distribution with mean 0 and
standard deviation 0.5.

fo:  Pra] ~Normal(0,0.5) (1.1.2)
fei Tlap) ~ Normal(0,0.5). (1.1.3)

b, like a, is an arbitrary individual index (where b € {1,..,N} and a # b). Thus, 7[,] repre-
sents the value of 7 for any combination of a and b:

T[ab] € {T[1.2]> T[2.1]> -+ > TIN-1.N]> T[N.N-1] } -

In Egs 1.1.1-1.1.3, we have defined what it meant for y, o, and 7 to be only affected by
exogenous, independent, variables. We can now turn to define how these structural parame-
ters affect m, the true interaction rate:

fm: Mgp] = exp(0.2 + Y[a] + P[b] + T[ab] ). (1.1.4)

The intercept value 0.2 is the logarithm of how many interactions individuals give to, and
receive from, others in the network for an average dyad. Here, this average rate is exp(0.2) =~
1.2 interactions. The exponential function of f,,, in combination with the additive (or “lin-
ear”) combination in terms, ensures that the interaction rate m is always positive. It also has
the following consequence: the effects of y, p and t on m are now multiplicative. It means, for
instance, that the effect of 7[, ) on m[,) is larger if y[,) and ppy) have large values themselves.
We will come back to this issue, because it is a fundamental and unavoidable aspect of mod-
elling behavioural count data with a Generalised Linear Model: causal effects are not simple
and additive on the outcome scale, even though we model them as additive on the link scale.

The rate of behaviour m[, ) is connected to the observable count y[, ) through a stochastic
process. The simplest choice is a Poisson process:

fyt Yiap) ~ Poisson(map). (1.1.5)

Eq 1.1.5 defines the relationship between the true interaction rate (second level of abstrac-
tion) and the observed number of interactions (third level), represented in Fig 1. The num-
ber of observed interactions y[, ;) is drawn from a Poisson distribution, characterised by one
parameter: its average rate of interaction, mj, ), specific to each directed dyad.
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In summary, SCM 1 mathematically defines one simple data-generating process compat-
ible with the DAG in Fig 2A. The generated data is represented in Fig A of S1 Text. Note that
the number of individuals in the network, the value of the intercept in f,, or the distribu-
tions we have chosen (normal, Poisson), are flexible. We might have, for instance, decided to
model binary social events (e.g., has a been seen grooming b during a focal-animal sampling
protocol?) instead of unbounded counts, which would make a Bernoulli distribution rather
than Poisson appropriate. The key idea in any case is that the target of inference, the rate m
and its components, is not observed but must be modelled as filtered by a stochastic sampling
process. This stands in contrast to aggregated indices of sociality (e.g., Simple Ratio Index)
which produce point estimates of rates, without properly characterizing uncertainty, before
decomposing them as functions of explanatory variables.

In the next section, using the simple simulation defined above, we build a statistical model
that aims to uncover—or, in this case, because we are dealing with synthetic data, recover—the
parameters of the data-generating process.

The social relations model. A non-parametric causal model, like a DAG, defines a qual-
itative hypothesis about how observations arise. A SCM makes this hypothesis into a data-
generating algorithm that can be used for planning, understanding, and validating projects.
Using data, whether simulated or real, requires a statistical model. Here, we explain how a sta-
tistical network model relates to a DAG and SCM, and how it can be developed and validated
together with the causal models.

Statistical models and causal models are similar but distinct. Causal models contain
directionality—they define the consequences of interventions—while statistical models do
not. Statistical models contain additional elements that are useful for estimation. Importantly,
they can include hierarchical distributions that function to estimates. These elements exist
in both Bayesian and non-Bayesian approaches, because they produce better, more produce
better, more efficient estimates [51].

The statistical models that we use in our framework are extensions of the “Social Relations
Model’, initially developed in the social sciences by Kenny & La Voie [47]. Compared to the
initial model, ours have a multilevel varying-effect structure, can include covariates [72], and
have non-Gaussian likelihoods [50]. They are further implemented in a Bayesian framework
(see [37]; chapter 14) and can incorporate flexible additive effects, such as a stochastic block-
model, i.e. a model capable of estimating causal effects of observable categorical variables, like
sex, on network structure [23,38]. We wrote the models presented in this manuscript in the
Stan probabilistic programming language [75], and ran them through R, using CmdStanR
[76]—note however that the Social Relations Model can be implemented using R packages
like Rethinking [37], STRAND [23,38], or BISON[31].

In practice, we use statistical models as estimators. Given (i) an estimand, and causal
assumptions encoded in (ii) a DAG and (iii) a SCM, we build a statistical model whose goal
is to estimate the estimand. In this section, we outline how such a model can learn, by fitting it
to known data: the data generated through the simulation above (SCM 1). We feed the statis-
tical model with the number of observed interactions y[, ] for each directed dyad in the net-
work. Given these data, the model has to recover the unobserved rates m(, ), as well as other
structural parameters. In this first simulation, we do not focus on one particular estimand, but
instead describe how the statistical model generally learns about the social network structure.

Below, we mathematically define the statistical model of simulation study 1 (hereafter
statistical model 1). We start by describing the observed data y—here, one data point per
directed dyad—using a conservative choice of probability distribution for unbounded count
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data: the Poisson distribution [37,77].

Vlap] ~ Poisson (1) (1.2.1)

This line can be read as such: “y(, ) is described using a Poisson distribution, whose aver-
age rate is my, ). Here, y[, ) is known, and m[,) is not: it has to be estimated. Recall that
as opposed to Eq 1.1.5, we are, here, describing a statistical model, which learns the value of
unobserved variables, like m. For this reason, the model will return a posterior probability
distribution for each parameter mj, ;). Statistical models and SCMs can be visually differen-
tiated in this manuscript, because each structural equation is defined by a function f. m,; is
further defined in terms of several parameters:

Miap] = exp(D + G[u] + R[b] + T[u,b]) (1.2.2)

As in the SCM, the exp (exponential) function ensures that m remains positive; it corre-
sponds to the so-called inverse-link function. D, G, R, and T are all unobserved. Like m, they
have to be estimated, and will be assigned a posterior probability distribution.

D, the intercept, is fixed across all dyads. It is equivalent to the intercept of 0.2 in SCM 1,
which it should recover. In this simulation study, G, R, and T can be thought of as the statis-
tical counterpart of the structural parameters y, p, and 7 (Fig 2B). G[,] captures the general
propensity (i.e. the average rate, on the link scale), of an individual, 4, to give social interac-
tions to other individuals in the network. It is only affected by y(,4], and hence, G[;j should,
for instance, recover y[1]. R[4], on the other hand, captures the propensity of an individual,

b, to generally receive social interactions from others. It is, analogously, affected by o, only.
Finally, T(,) represents the residual tendency of a to give interactions to b, conditional on
Gla) and R,). Here, it should recover the dyad-specific tendency effect 7[, . In later simula-
tion studies (e.g., in simulation study 3), we will see cases where the statistical and structural
parameters are not equivalent.

To efficiently estimate the components of the rate mj, ), it is useful to employ hierarchical
distributions that relate the components to one another and allow them to share information
through those statistical relationships. In practice, this means that Gp,) and R(,) are described
as varying-effects in a Multivariate Normal distribution.

The average individual giving and Variance in the dist. of G Covariance between G-R

receiving rates... /
_ [
i -

G 0 52 CGRSGS
(el ] ~ MVNormal , G GR ZG R (1.2.3)
R[u] ‘ 0 CGRSGSR SR
|
/ < Ay
...are described using a multivariate Mean Variance in the dist. of R

normal dist., whose parameters are:

The distribution, in this case, has two dimensions: G and R. Its mean of {0, 0} implies that
G[q) and Ry, are deviations from the average interaction rate in the network, D. Centring the
distribution on {0, 0} also ensures that G and R can be uniquely estimated from the data. sg
and sg describe the amount of variation in G[,} and R(,), respectively. If, for instance, indi-
viduals vary a lot in how many interactions they give to others, but do not vary much in how
many interactions they receive from others, then s will be large, and sz will be small. The pat-
tern of covariation between these two dimensions is then captured by cgr. Suppose a network
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where individuals who give a lot of interactions also receive a lot of interactions. This situation
would result in a positive estimate for cgg.

Similarly the directed ties in the network are modeled hierarchically, using parameters for
structure within and among dyads:

2 2
(T[“’h] ) ~ MVNormal [(0) , ( o 5 CTZST)] . (1.2.4)
T[b,a] 0 CrTST ST

Eq 1.2.4 is similar to Eq 1.2.3, with one exception. There is only one variance parame-
ter in the variance-covariance matrix: s7. Recall that a and b are only arbitrary labels. Thus,
there is no reason why the variation in T(, ;) should be different from that of T[;, 4. crr hence
describes the association between the number of interactions that a gives to b, and those that
b gives to a, conditional on their respective averages G[,) and Rp,). We will see further below
how this parameter may be interpreted biologically, in light of causal models. We provide
details about the prior probability distributions, as well as the exact parametrisation of our
statistical model, in the sections A.2—-A.3 of S1 Text.

In this section, we have defined the basic architecture of the Social Relations Model (which
we sometimes refer to as non-adjusted Social Relations Model). A feature of this model we
want to highlight is that it describes the true rate of interactions m as a statistical parameter,
for which a probability distribution is computed using Bayesian updating. This represents a
principled solution to deal with the uncertainty and noise inherent to sampling social inter-
actions (problem I). It notably contrasts with data-aggregation methods that we mentioned
above, which treat data y (third level of abstraction) as the known, true interaction rates (sec-
ond level). Moreover, the varying effects of the Social Relations Model explicitly describe sev-
eral patterns of (co)variations—i.e. structural “dependencies”— present in social networks,
like those mentioned in the introduction (problem IV). This results in more accurate and
efficient estimators [37,51].

Posterior model. In this section, we describe posterior model 1: the model fit obtained by
feeding the data generated by SCM 1 into statistical model 1. We ran 15 iterations of the SCM,
and fitted the data from each iteration into the statistical model. Thus, we obtained 15 marginal
posterior distributions per “fixed-effect”, or population level parameters (Fig 2C). We show each
parameter’s posterior distributions with its target value, i.e. the value it should recover, given
that we know the generative model. The pattern one would expect from an estimator that
accurately recovers structural parameters is the following: over several iterations, the high-
density regions of the marginal distributions should overlap with the target value. Accord-
ingly, we see that our estimator works, as the posterior distributions overlap well with the tar-
get values. This kind of model checking can be formalized as simulation based calibration [78],
but even a few simulations are often sufficient to spot problems in conceptualising and pro-
gramming the SCM, the statistical model, or both. The general idea is: until we are prepared
to interpret estimates from synthetic data, we are unprepared to interpret estimates from real
data.

The mapping between the structural and statistical parameters is, in the case of SCM 1,
rather straightforward. Starting with D, we expect the statistical parameter to recover the
intercept value of 0.2 (Eq 1.1.4). G, R, and T are only caused by, respectively, y, p, and 7
(Fig 2B and Fig 3). Furthermore, sg, s, and sr, should capture the variation in y, p, and 7,
respectively, and thus, be equal to 0.5 (see Eqs 1.1.1-1.1.3).

The correlation coefficient between G and R, cgg, does not have a counterpart in the SCM.
However, looking at the DAG in Fig 2B, we can see that there is no path connecting G,) and
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Fig 3. Marginal posterior distributions of a set of statistical model 1’s varying-effects. The probability density of these
parameters (y-axis) is shown for a range of parameter values (x-axis), for one iteration of the simulation. The red dots
indicate the parameters’ target values. For instance, y[;] is the target value of G|}, whose posterior probability distribution
is represented as a density curve on top of the red dot.

https://doi.org/10.1371/journal.pcbi.1013370.g003

Rp,) (or Gpp) and Ry;)). Hence, there should be no association between them (cgr = 0). The
same reasoning applies to cr7: there is no path between Tf, ) and T4}, and thus, we expect
crr = 0. The Multivariate Normal posterior distribution describing Gp,) and R(,], as well as the
posterior distributions for m, are shown in Figs C-D of S1 Text.

Conclusions. In simulation 1, we have modelled a simple data-generating process, which
describes the factors shaping the observed edges of a social network. We assumed that the
general tendencies of individuals to interact with conspecifics, as well as their propensity to
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engage in social interactions with specific partners, were random. We started by describing
the abstract causal structure of this system, using a DAG. Next, we implemented this DAG as
a SCM.: a type of data simulation, where we specified parametric features of the causal system.
We then fed the synthetic data into a statistical model, and showed that the statistical model
could recover the structural parameters of the SCM. In the following section, we will turn

to the following question: how can we use the models introduced in this section, to estimate
the causal effect of individual-level features on their general propensity to engage in social
interactions?

Simulation study 2: Individual-level features

Here, we build upon the tools presented in the previous section to add features of individuals
that may be targets of causal inference.

Causal model. Suppose that we wish to study the effect of an individual-level phenotypic
variable X[, (e.g., age) on the overall tendency of individuals to give and receive social inter-
actions (e.g., grooming), in a specific social system (e.g., a group of monkeys). We might, for
instance, hypothesise that increasing age causes individual monkeys to generally disengage
from their social group, and thus, to give and receive fewer grooming interactions [79,80].
Such a system may be represented as a DAG where X[, has a direct effect on y[,) and p,) (see
Fig 4A).

We wish to build an estimator that can estimate this effect. To do so, we specify quantita-
tive causal assumptions using SCM 2. This model is identical to SCM 1, except with regard to
the variable X[,) and its effects:

fxt X[a ~Normal(0,1). (2.1.1)

X[a)» an individual-level feature, is here defined as a standardised Gaussian distribution,
with mean 0 and SD 1. Then,

fri Y0~ Normal(=0.7" - X[4],0.5) (2.1.2)
fo:  pra) ~Normal(-0.7% - X[,,0.5). (2.1.3)

These two equations encode the key aspects of simulation study 2: the causal effects of
X[a] On ¥[4] and p[s)—and thus, on the rate m[, ;). These effects are, respectively, our two esti-
mands; we mark them with * and #, such that they can be tracked more easily. f, and f, imply
that y[,] and p[,4] are now sampled from distributions, whose means depend on the value of
X[a)- To illustrate how this effect works, imagine two individuals, a and b, with X[,) =1 (old
individual) and X[;; = -2 (young individual). Consequently, y[,] will be drawn from a dis-
tribution with mean -0.7 - 1 = 0.7, and y[;), from a distribution with mean -0.7 - (-2) = 1.4.
Thus, y[4) will most likely be lower than y;], which is consistent with our hypothesis. Note
that the effect of X[,) on y[4) need not be the same as its effect on p.

Finally, fz, f,» and f,, are the same as in SCM 1:

fri Tap) ~ Normal(0,0.5) (2.1.4)
St mpap) =exp(0.2 + Y[ + P[] + Tlab]) (2.1.5)
fyt Yiaw) ~ Poisson(mpyp). (2.1.6)
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Fig 4. Simulation study 2. A. DAG describing a causal system where an individual-level phenotypic trait X[}, like
age, affects their overall tendency to give interactions, ¥[,], and their general tendency to receive interactions, O[]
The * and tsymbols mark our estimands: the causal effects we wish to estimate. The rest of the DAG is similar to

Fig 2A. B. Mapping between structural parameters (SCM 2) and statistical parameters. As for Fig 2B, the transparent
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arrows indicate that these effects are possible (e.g., simulation 3), but do not exist in SCM 2. C. Fixed-effect estimates,
for two statistical models fitted to the data generated with SCM 2. Left: fixed effects of the social relations model
adjusted by X[4) (statistical model 2). Right: fixed effects of the non-adjusted social relations model (statistical model
1). The target values of the well-adjusted model are shown in grey. Deviations from them allow us to understand how
X[4) affects the varying effects of the model, when X, is not adjusted for.

https://doi.org/10.1371/journal.pchi.1013370.g004

The resulting network of (synthetic) observations y[, ] is shown in Fig E of S1 Text.

Statistical model. Next, we describe Statistical model 2, an estimator for the causal effects
of X on y and p. This estimator maintains the basic architecture statistical model 1, but is
slightly modified. Here, we define G[a] and R[b] as submodels of m[, ), where G[a] is stratified
by the variables causing y[,], and fl[b] is stratified by the variables causing p[;). Thus, both are

stratified by X:
Vlab] ~ Poisson(m[y)) (2.2.1)
Miap] = exp(D + G[a] + ﬁ[b] + T[a,b]) (2.2.2)
Gra1 = Gpay + b - X(a] (2.2.3)
Ry = Rppy + b Xo» (2.2.4)

Where Eqs 2.2.2-2.2.4 are, together, mathematically equivalent to:
M[a)b] = exp(D + G[u] + bé; 'X[a] + R[b] + b; 'X[h] + T[a,h])-

We usually use the former notation, which is easier to read, and whose link with the
non-adjusted Social Relations Model is more visible. Yet, these two sets of equations imply
the same thing: bg; is a slope estimating the association between X|,) and m, ;] —whether
directly, or through a sub-model G(,j—, conditional on the other parameters of the model.
Similarly, b}; estimates the conditional association between X[ and my, ;1. On the DAG, bg;
captures the path coefficient between X[, and mj,;); and bi the path between X;) and m4p).
Therefore, by, and bf{ should respectively recover the effect of X[,; on y[,) (marked by *), and
that of Xp;) on p[y) (marked by a $), and take a value of -0.7.

Finally, G[,}, R3], and TT, ) are varying effects. They are part of the exact same multivari-
ate adaptive priors described in statistical model 1:

2
(G[“]) ~ MVNormal [(0) , ( %G CGRSZGSR):I (2.2.5)
Riq) 0 CGRSGSR SR

2 2
(T[“’b]) ~ MVNormal [(O) ( 5T CTZST)] . (2.2.6)
T[b,a] 0 CTTST ST

The full model with hyperpriors can be found in Sect B.2 of S1 Text. We also wish to
describe how X[, would impact the varying effects of the statistical model if X[,) was not
observed. Thus, we also fitted the data generated with SCM 2 into statistical model 1.

Posterior model. Statistical model 2 successfully recovered the structural parameters
of the simulation (Fig 4C, left panel). Most importantly, we accurately estimated our esti-
mands: b; recovered the true causal effects of X[} on y[,, and b}g, the effect of X[,) on pr,).
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This means that our estimator is capable of producing valid causal inference under the
assumptions embodied by the DAG and the SCM.

On the right panel of Fig 4C, we observe important deviations between, on the one hand,
the target values of the adjusted estimator, and, on the other hand, the posterior distributions
of the non-adjusted statistical model. The posterior distributions of s; and sg—respectively
quantifying the variation in G[,) and R[,)—are now consistently higher than 0.5. This is
because G[,j and R[, are caused by y[,] and p[,], which are themselves caused by fwo kinds
of variables. They are affected by random noise, quantified by a Gaussian SD of 0.5, and by
X[a) (see Eq 2.1.2-2.1.3). Hence, s and sg are larger than 0.5 if we don't stratify by X[, (right
panel), but are equal to 0.5 once we do condition on—or “control for”—it (left panel).

Furthermore, the posterior distribution of cgr is positive in the non-adjusted model (Fig 4;
see Fig F in S1 Text for an additional visualisation). Recall that cgr captures the association
between G[,j and R[,]. Looking at the DAG, we see that these parameters are connected by
X[a]- X[a] creates an open path,

Gy« X->p—>R

Which lets the association flow between G,j and R,). Once we condition on X[}, how-
ever, we block this path, cancel the association between G,) and R(,, and we return to a cor-
relation coefficient cgr = 0 (left panel). Finally, notice that the dyadic parameters sy and ¢y,
were unaffected by X,). This can be deducted from the DAG, too, for there exist no open
paths connecting y[, or p[,) — carrying the effects of X[;j—and T[4

Conclusions. In simulation 2, we have modelled a data-generating process where an
individual-level trait X[, (e.g., age) affected the general tendency of individuals to give and
receive social interactions. Following the same workflow as in simulation 1, we showed that
a well-specified estimator—an adjusted version of the Social Relations Model—could accu-
rately recover the causal effect of X[,) on social network structure. Next, we highlighted how
the causal effect of X[, impacted the varying-effects structure of the statistical model, when
X[a] was not adjusted for. We refer the interested readers to the supplementary Sect C in S1
Text: there, we describe simulation study 2’, a variation of simulation study 2, where X[, is a
categorical variable (e.g., sex). In the next section, we turn to the following question: how can
we build a statistical model to estimate the effect of dyad-level features on the propensity of
two individuals to socially interact with one another?

Simulation study 3: Dyad-level features

Suppose that we wish to study how the genetic relatedness of individuals affects the way they
interact with one another. We may hypothesise that individuals belonging to the same kin
group engage in a greater number of affiliative interactions than non-kin. Furthermore, sam-
pling effort may vary across individuals and dyads, for behavioural observation is conducted
by following focal animals using standardised protocols. Individuals of some dyads might
have been observed for several hours of behavioural sampling, while others might have been
followed for very little time.

Causal model. We represent the causal structure of such a data-generating process on
a DAG (Fig 5A), where we specify these causal relationships, as well as the link between
individual- and dyad-level features. The combinations of two individuals’ kin groups, K[} and
K[p], determines how genetically related they are to one another (Rej, ), by definition. For
the dyad [a,b] to be observed, one has to observe either a or b; thus, the sampling effort for
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Fig 5. Simulation study 3. A. DAG representing a causal system where the kin group K, of individuals affect how they
preferentially interact with one another. Individuals belonging to the same kin group have a higher relatedness Rej, 5 than
non-kin. Rej, p, in turn, affects how the pair of individuals interact with one another, through 7, ;). This effect is our
estimand, and we mark it with *. The sampling effort of the two individuals, S} and Sf;), determine Sy, ), which in
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turn affects the unit of m[g ). The rest of the DAG is similar to Fig 2A. B. Mapping between structural parameters (SCM
3) statistical parameters. Compared to the simulation studies 1 and 2 where the only cause of 7[, ;] was exogenous noise,
T(a,] is here affected by Rey, p) and S|4, and it has an effect on G[4) and R). C. Left: fixed effects of the social relations
model adjusted by Rey, ;| and S|, ;| (statistical model 3). Right: fixed effects of the social relations model adjusted by S},
only. The target values of the well-adjusted model are shown in grey. Deviations from them allow us to understand how
Rey, p| affects varying effects, when Rey, | is not adjusted for.

https://doi.org/10.1371/journal.pcbhi.1013370.g005

each individual, Sf,), in combination with the sampling effort for its partner, Sy, determin-
istically cause the dyad-level sampling effort, S|, ;| —quantifying how long either a or b was
observed for—, which in turns affects m[, ;) through [, (for a discussion on deterministic
arrows, see [81,82]). Note that there is no path between Re, ;| and my, ;) that passes through
Sjap|- This means that Sy, ;| does not confound the effect of Rey, . Yet, we still want to include it
in our estimator (see next section), for doing so will increase the model’s precision.

Before building the estimator, we translate the assumptions of the DAG into SCM 3. We
simulate 20 individual animals, belonging to 11 different kin groups: 10 individuals belong
to one, large, kin group, and each of the 10 remaining individuals are alone in their kin group
(Fig Iin S1 Text). For simplicity, we dichotomise genetic relatedness, such that:

fre:  Repgp = , (3.1.1)
0 if K[a] * K[b]
We further assume that the variation in sampling effort is random:
fs[a] ¢ S[a] ~ Uniform(1,2.5). (3.1.2)

The observation effort per individual takes a value between 1 and 2.5 time units—e.g., the
number of full days of focal-follows. We then combine the sampling effort of the two interact-
ing individuals into their dyad-level sampling effort:

Ssan 't Siabl = Stay + Spey- (3.1.3)

Then, we define how different variables affect y, p, and 7:

fr+ 7[a] ~ Normal(0,0.5) (3.1.4)
fo:  Pra] ~ Normal(0,0.5) (3.1.5)
fei Trap) ~ Normal(log(Sa) + 0.8" - Rejq, 0.5), (3.1.6)

Where the ~ symbol on top of Rej, ;| means that we standardised it using a z-transformation.

m: M{ap] = exp(-1.2 + Yia] +P[o] + T[a,b]) (3.1.7)
fyt Yap) ~ Poisson(mpgp)). (3.1.8)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013370 September 8, 2025 22/ 42



https://doi.org/10.1371/journal.pcbi.1013370.g005
https://doi.org/10.1371/journal.pcbi.1013370

PLOS COMPUTATIONAL BIOLOGY A causal framework for social network structure

Compared to the SCMs above, the intercept is set to —1.2, to make the interaction rates
similar to those in the simulation studies above. In SCM 3, an unrelated average dyad
observed for 3.5 time units, would have an expected value of 1, ;) = exp(-1.2 +10g(3.5)) =~
1.1 interactions, compared to m, ] = exp(0.2) ~ 1.2 interactions in the previous simulation
studies. We show the resulting network of synthetic observations, where the effect of genetic
relatedness on social structure is visible by eye, in Fig I in SI Text.

To illustrate how the offset log(S, ) scales the rates m, ;,;—through its effect on 7,1 —,
imagine two average, directed dyads [1,2] and [12,9], each composed of non-kin. Assume
their respective rate of interaction per one time unit is identical, and is equal to: exp(-1.2 +
log(1)) = exp(-1.2) = 0.3. Let S}, ) = 4 and Sj;59 = 2. Consequently, the dyads’ interaction
rates will be scaled by their respective values of S|, such that: m[, ;) = exp(-1.2 +log(4)) =
1.2 and m15,0] = exp(-1.2 +log(2)) = 0.6. Their meaning, thus, slightly differs from one
another: my; 5] is now the average number of interactions per four times units, and mj;, 9] is
the average number of interactions per two time units. In Sect E of S1 Text, we show an alter-
native parameterisation of SCM 3 model where S, 5 affects y[, ) directly, instead of scaling
mqp) through 7(gp).

Statistical model. Below, we describe Statistical Model 3, an estimator for the effect of
genetic relatedness Rejqp) on My, p.

Vlab] ~ Poisson(map)) (3.2.1)
Miap) = exp(D + Gray + Rpp) + Tlap))- (3.2.2)

Like in statistical model 1, G[,} and R(, are part of a Multivariate adaptive prior distribu-

tion,
2
1) ~ MyNormal | (0], S¢  corsesk) | (3.2.3)
Rg) 0 CGRSGSR SR

T[a)b] is, however, described by a submodel, stratified by the causes of T[4

T[a,b] = log(S|u)h|) + T[a,b] + b; . R~€|a,b| (3.2.4)
2 2
(T[“J’]) ~ MVNormal [(0) ( 5, CTTZST)] . (3.2.5)
T[h)a] 0 CTTST ST

The submodel for T[a,b] is offsetted by log (S|4, ), which works like the offset of SCM 3.
By making dyads comparable to one another, this term naturally deals with the issue of sam-
pling biases that we introduced earlier (problem II). b7, accordingly, captures the association
between genetic relatedness and m[, ), conditional on the variation in S, ;] among dyads. This
parameter should recover our estimand by taking a value of 0.8. The full specification of sta-
tistical model 3 can be found in Sect D.2 of S1 Text. In addition to statistical model 3, we also
fitted the data generated by SCM 3 to a version of statistical model 3 that was not adjusted by
Reyqp- That is, Eq 3.2.4 was replaced by:

Tiap) =108(Sjap|) + Tap-
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Posterior model. Statistical model 3 successfully recovered the structural parameters of
the generative model, SCM 3 (Fig 5C, left panel). Most notably, b7, the statistical parameter
whose aim was to estimate our causal estimand, accurately recovered the value of 0.8. This
result validates our estimator, given the causal assumptions encoded in the DAG and SCM.

Below, we briefly explain how the effect of genetic relatedness, a dyadic variable, results in
variation in individual- and dyad-level varying effects, when relatedness is not included in the
statistical model (Fig 5C, right panel). In simulation study 1 and 2, the structural and statisti-
cal parameters were equivalent: y[,) was the only cause of G[,], p[4] the only cause of R}, and
T[ab] the only cause of T, (e.g., Fig 4). As a result, Gy, fully recovered y[,), T[4) recovered
T[ab]> €tc., such that the parameters capturing their patterns of (co)variation—sg, sg, cGr—
could be directly mapped onto the structural model. However, this is not the case here. We
see that the estimates for s¢, sg and cgr substantially deviate from the grey dots—i.e., the value
they wound take if none of the effect of 7[, ] “leaked” onto G[4) and Ry

Recall that G4}, R}, and T, are statistical parameters, meaning they only measure
(conditional) averages. They cannot “see” that the effect was encoded as a dyadic effect
through 7[, ). Instead, G|} and R[;) measure interindividual differences in average interac-
tion rates. Genetic relatedness, although it acts at the dyadic level, creates such differences.
Individuals belonging to the large kin group give, and receive, more frequent social interac-
tions, than those in the small kin groups (see Fig 5C, right panel, and Fig I in S1 Text). This
interindividual variation is visible as an increase in sg and s, and in covariation between
these two individual features, indicated by a positive value for cgg. This pattern can also
be explained with the DAG (Fig 5B): there is an open path between G, and R(,], pass-
ing through Re, ;. The effect of Rey, ;| that can be attributed to interindividual variation is
absorbed by G[,] and R}, and the residual variation is absorbed by T{, 1. This residual vari-
ation does not correspond to a process in the SCM, and therefore, sy and c¢yr do not have a
straightforward biological interpretation. Once we condition on Rej, |, we block the paths
between G, and R[,], and between Tf, ) and Tf4). Hence, the correlations captured by cgr
and cpr disappear (Fig 5C, left panel).

Conclusions. In simulation study 3, we modelled a data-generating process where two
dyad-level variables affected the observed social interactions among individuals. Genetic
relatedness, a biological variable, affected the rate at which individuals interacted with one
another; it was our estimand. Sampling effort, a variable describing the sampling process, fur-
ther impacted the scale of the interaction rates. We then built our estimator in combination
with a DAG and a SCM, and successfully recovered the true causal effect. Next, we showed
that dyad-level causal effects could impact individual- and dyad-level varying parameters,
when not accounted for. Once again, we refer the interested readers to simulation study 3} a
variation of simulation study 3, where we estimate the causal effect of a categorical dyad-level
varijable, like the combination of sexes, using a stochastic block model structure (Sect F in S1
Text). In the next section, building upon our previous models, we ask: how can we develop
a statistical model to estimate the effect of a dyad-level variable if this effect is confounded
(problem III)?

Empirical example

In this section, we showcase the use of our framework to address a causal question in a spe-
cific empirical system. Our aim is to estimate the effect of maternal relatedness on affiliative
behaviour in the females of a wild population of Assamese macaques (Macaca assamensis).
The causal assumptions that we will make about this social system are, although crude, rea-
sonably realistic. Thus we will conclude the section by fitting our estimator to an empirical
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dataset, and we will show how to compute causal estimates on the outcome scale from the joint
posterior probability distribution.

Simulation study 4: Kinship in female macaques

Verbal description. Kinship in female macaques, like in other Cercopithecinae species, is
thought to be a major driver of social network structure [14,83,84]. The kin group of a female
macaque not only determines who she is genetically related to, it also affects her position in
the group’s dominance hierarchy. Females (non-genetically) inherit their rank from their
mothers, such that individuals in the same kin group generally occupy adjacent ranks. Fur-
thermore, kinship affects the formation of the social groups themselves. When groups of
macaques permanently split, they usually divide along matrilines, and members of the same
matrilines stay together in the newly formed groups [85-87]. This phenomenon may result in
smaller social groups—often, newly formed ones—to contain fewer kin groups, and thus to
have a higher average degree of genetic relatedness.

The genetic relatedness between two individuals, as well as their respective positions in the
dominance hierarchy, might both affect the pattern of affiliative interactions they exchange
with one another [8]. As suggested earlier, genetically related individuals might exchange
more affiliative interactions because of a preference for their kin. Additionally, dominant
females may be attractive affiliation partners. Individuals might, accordingly, preferentially
target their dominants—rather than their subordinates—with affiliative interactions.

Directed acyclic graph. We represent this causal system as a DAG (Fig 6A), and assume
that the rate of grooming bouts m(, ) is a good proxy for affiliative relationships [15]. The
causal graph shares its basic structure with that of simulation study 3. We add an effect of kin
group K[, on individual rank Ra,. Raf,), in combination with Ra,) then determine the
rank difference between two individuals, ARaj, |, which in turn affects 7[, ). Finally, we rep-
resent group size GSg,  asa group-level feature (hence the “gr” index). The double-headed
arrow between K and GSg means that they are both connected by an open path. It simply
encodes that larger social groups tend to contain more kin groups while remaining agnostic
about the complex, underlying, causal mechanism (i.e. group fission).

An important insight provided by the DAG is that our estimand is confounded by dom-
inance rank (Fig 6A). There are now two paths connecting Rey, 4 and m[, ). There is, first, a
“frontdoor” path, transmitting the causal effect of interest:

Re—>1—->m,
Second, there is a “backdoor” path transmitting a spurious association between Re and m:
Re<~K—>Ra—>T1—>m.

If we were to regress m, ] on Rej, ;| to estimate our estimand without stratifying by rank
(as we did in simulation study 3), our effect would be biased by the backdoor path. Note that
this would happen even with an infinitely large data set: the causal graph informs us that,
because of the backdoor path, our effect simply cannot be estimated by looking at the raw
association between Rey, | and m[, ). To develop a better intuition for this issue, we first
translate this DAG into SCM 4.

Structural causal model. In SCM 4, we create three groups of 10, 15, and 20 individuals,
which vary in their maximum number of kin groups N; Ko 3, 5, 7, respectively. Each indi-

vidual’s kin group K[, is drawn with replacement from the vector {1,..., N Kerp }. Doing so
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Fig 6. Simulation study 4. A. DAG for the dual effect of kinship on grooming interactions in macaques. As in simu-
lation study 3, the kin groups of two individuals, K[,] and K[;], determine their degree of genetic relatedness Rej, 5|,
which in turn affects T[, . This effect is our estimand, which we mark with *. K[} and K[, affect the dominance ranks
Rap,) and Rapy) of the individuals, whose difference ARa, 5 affect [, ). Dyads further vary in their respective
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sampling effort S}, ;. Finally, the size of social groups GSg o) covaries with the number of kin groups K within in.
The rest of the DAG is similar to Fig 5A. B. Left: fixed effects of the social relations model adjusted by Rej, | Sjq5| and
ARay, | (statistical model 4). Right: fixed effects of the social relations model adjusted by Re, 5 and S,y only. The
target values of the well-adjusted model are shown in grey. Deviations from them allow us to understand how ARay,
counfounds our estimand, when ARy, is not adjusted for.

https://doi.org/10.1371/journal.pcbi.1013370.g006

leads to a higher degree of average genetic relatedness in smaller social groups than in larger
ones (double arrow in Fig 6). The kin groups are then assigned kin-group dominance rank
Rag,, (i.e. a rank for the whole matriline):

fRaK : RaK[a] = K[a]~ (4.1.1)

That is, kin groups are assigned a dominance rank at random. A lower Ray;,, imply a
higher rank. Thus, if Rag;,, < Rak,;, then the dominance rank of all of a’s kin is higher than
that of all of b’s kin. Finally, within each kin group, individuals receive ranks at random too.
Overall, these steps represent an implementation of the arrow from K to Ra, resulting in a
dominance hierarchy that is stratified by matrilines of various sizes.

Next, sampling effort varies across individuals and dyads:

fsy® Stay ~ Uniform(1,2.5) (4.1.2)
f9|a,b\ : S|a,b| = S[u] + S[b]. (4.1.3)

Sampling effort, genetic relatedness, and dominance rank difference all affect the interac-
tion rate through 7[,4):

Normal(log(S|a,b|) +0.6%- Reyqp)

+0.8 - (Rapy) - Rag,1), 0.5 if Ry, <R

fi T~ (Ragy) - Ragq)) *) [a] < Rpp] (4.1.4)
Normal(log(Sjs4) + 0.6 - Rejq)
+0- (Ra[b] - Rap, ),0.5) ifR[a] 2 Ry

The main novelty of f;, compared to SCM 3, regards the causal effect of rank; or rather,
the effect of the difference in ranks Rap;) - Ra,). Here, individuals increase their interaction
rate as a function of how much higher in the hierarchy their partner is: a larger increase for a
larger difference. The effect is asymmetrical, and individuals are not impacted by how much
lower in the hierarchy their partner is. The remaining structural equations are identical to

those in SCM 3:
fr+ ¥[a ~Normal(0,0.5) (4.1.5)
fo:  Pra] ~Normal(0,0.5) (4.1.6)
St mpapy = exp(=1.2+7[a] + P[] + T[ap]) (4.1.7)
fyt Yap) ~ Poisson(mpgp)). (4.1.8)

The network of simulated observations y[, ], as well as their distribution, are shown in Fig
Nin S1 Text.

Coming back to our backdoor problem, let us now imagine two directed dyads: [1,2] and
[3,4]. We assume that the exogenous (random) causes of m[; 5} and m[3 4] are set to zero.
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Suppose that the first dyad is composed of kin (Rey; 5 = 1) who occupy adjacent ranks in the
dominance hierarchy (ARay; 5 = 0). Thus,

mpp) =exp(-1.2+0.6"-1+0.8-0) ~0.5.

Suppose that the second dyad is composed of non-kin (Rejs 4 = 0), who are further apart in
the dominance hierarchy: ARaj; 4 = 0.7. Therefore,

Mz =exp(-1.2+0.6% -0 +0.8-0.7) ~0.5.

Despite the positive effect of relatedness on grooming rate, m[; 5] = mj3 4, because the two
dyads were not comparable to one another with respect to rank. The same applies in the rest
of the population, where kin dyads are closer in the dominance hierarchy on average com-
pared to non-kin dyads, thereby making the effect of relatedness unidentifiable by directly
comparing kin and non-kin. Instead, to identify the effect of interest, we need to block the
path created by rank by conditioning on it (we apply the backdoor criterion; see [67]). That is, to
estimate our estimand, we need to build an estimator that can address the following question:
“once we know the difference in rank between a and b, what association remains between genetic
relatedness and grooming rate?”.

Statistical model. Statistical model 4 is identical to statistical model 3, except that it
includes dominance rank.

Ylab] ~ Poisson(m,p)) (4.2.1)
Miqp) = exp(D + Gra) + Rppy + Tiap)) (4.2.2)
T(ap) =108(Sjapl) + Trab] + bre - Rejay)

. {bRal : (Ra[h] - Ra[a]) if Rpa) <Ry (4.2.3)
bra, - (Ray) — Rapg))  if Rpg) > Ry
The stratification by ARa|, | allows for asymmetrical effects. br,, should recover the effect
of 0.8, and bg,, should recover 0 (Eq 4.1.4). Conditioning on rank closes the backdoor path
mentioned earlier, and thus, by, should recover the unbiased effect of 0.6. Finally, G[,}, R4
and T[,p) are varying-effects, as in SCM 3:

2
Y1) <« MvNormal| (%), 6 Corsesk (4.2.4)
Rq) 0 CGRSGSR SR
Tias]) < mvNormal | (0). [ T, <rst)|. (4.2.5)
T[b,a] 0 ’ CTTS% S%

The full specification of the model, as well as prior predictive simulations, can be found
in Sects G.2 and G.3 of S1 Text. We also fitted the synthetic data to an estimator that was
not stratified by rank—i.e. without the second and third lines of Eq 4.2.3—, so that we could
visualise the confounding effect of the backdoor path.

Posterior model (simulated data). Statistical model 4 successfully recovered our esti-
mand by deconfounding the biasing effect of dominance rank (Fig 6B). Looking at the left
panel, we see that the marginal posterior distributions of by, are concentrated on the tar-
get value of 0.6. This is not the case for the panel on the right, where the model that was not
adjusted by rank gives a consistently biased estimate, close to 0. These results confirm that
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given our causal assumptions, a statistical model that correctly blocks the backdoor path
between Rey, ;| and m[, ) is necessary to accurately estimate our estimand. More generally,

the results validate our estimator for the effect of genetic relatedness in female Assamese
macaques; insofar, at least, as we believe that our causal assumptions are good approximations
of the data-generating process (we will come back to this issue in the discussion). We can thus
turn to updating this estimator with empirical data.

Empirical data

The empirical observations that we fit to statistical model 4 were collected as part of a long-
term research project on wild Assamese macaques at Phu Khieo Wildlife Sanctuary, in North-
eastern Thailand (Fig 7A). We focused on the adult females of three social groups. The data
collection took place between July 2017 and July 2018. The animals were fully habituated

to the presence of researchers. Observers recorded the monkeys’ behaviour using contin-
uous focal sampling protocols of 40 minutes, during which they recorded all instances of
dyadic interactions between adult females, including grooming and submissive behaviours,
from which dominance ranks were computed. Submissive behaviours were also recorded ad
libitum.

We defined S, as the number of 12 hours periods that each individual was observed for
(hereafter “days” of observations), summed over sampling protocols. The average sampling
effort was equal to 6+ 1.4 days per individual (Fig R in S1 Text). As in SCM 4, S},5| = S[a] + S[p]
(Fig S in S1 Text). Field workers recorded when a macaque would start, and when it would
stop, to groom another individual. We then defined a directed grooming bout as a groom-
ing “start” from a to b that took place at least 30 minutes following the previous grooming
“stop” from a to b. We obtained a total of 481 directed bouts across 700 directed dyads. We
counted bouts within each directed dyad to obtain y(, ;] —which we show in Fig 7B-7C (see
also Fig T in S1 Text). We established the pedigree from which kin groups K[,) were deter-
mined by combining observed birth events, with microsatellite data [87,88]. As in SCM 4,
we dichotomised maternal kinship: Re,; = 1 if a and b belonged to the same matriline, and
Rey,p = 0if a and b were born in different matrilines. We modeled each individual’s rank
Rap,) from submissive behaviours, using Elo-score point estimates (details in [80]; see also
[89,901).

Posterior model (empirical data). In this section, we describe the posterior model
obtained by fitting the empirical data to statistical model 4. To start, we show the marginal
posterior distributions for the estimator’s fixed effects (Fig 8A). This figure is similar to figures
we showed above (e.g., Fig 6B), but differs in two ways. First, the red dots (i.e. the target val-
ues) are absent. The “true” structural parameters of the world are, of course, unknown; they
are what we are trying to estimate. Second, there is only one posterior distribution per param-
eter. This is the case because we fitted the model to one empirical data set, instead of several
iterations of a simulation.

We observe that 96% of by,’s posterior distribution is concentrated above 0, with a mean
of 0.22 (Fig 8A). It means that the most plausible parameter values for b}, are positive, given
the data and the model. This marginal distribution cannot be intelligibly interpreted by itself
in terms of the causal effect of interest nor, therefore, in terms of the species’ biology. In fact,
the computation of causal effects often requires more than just a slope. They are function of
the whole statistical model—an issue we had so far ignored [37].

Generalised linear models (GLM), like statistical model 4, are built-in interaction devices.
Contrary to common beliefs, the effect of one parameter on the outcome typically depends
on (i.e. interacts with) the value of the other predictors in GLMs, even in the absence of an
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Fig 7. Empirical system used to illustrate our causal framework: female Assamese macaques. A. Two Assamese
macaques grooming. Photo credit: Kittisak Srithorn. B. The graphs show 45 individuals across three groups of respec-
tively 20, 10, and 15 females (we ignore the males). The edges represent the number of observed directed grooming bouts
Y[ab) @mong them. Their width indicates the number of observed interactions: from 0, for no edge, to 18, for the thickest
edges. The transparency gradient of the edges corresponds to the direction of the interaction (4] O y[4,4]): the white end
of an edge shows the giver, and its darker end shows the receiver. We highlight, as an example, the observed edge y[3932]

(1 interaction) from individual 39 to individual 32. The colour of the node depicts the individual dominance rank: lighter
for low ranks (subordinates), and darker for higher ranks (dominants). Kin group are further highlighted by dashed out-
lines. This network corresponds to the third level of abstraction, in Fig 1. C. Distribution of observed directed grooming
bouts y4,1-

https://doi.org/10.1371/journal.pchi.1013370.g007
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Fig 8. Posterior model obtained by updating statistical model 4 with empirical data from female macaques. A.
Marginal posterior distributions for the estimator’s fixed effects. B. Conditional average relatedness effect C; on inferred
grooming rate m[, ;] (posterior mean contrast). We show this effect for three hypothetical dyads, respectively varying in

their “baseline” level of grooming rate If)j (see main text)—from darkest to lightest: low-, medium-, and high-baseline.
C. Counterfactual rates mg and m; for a hypothetical average directed dyad, where the two individuals occupy the same
rank in the dominance hierarchy. The difference between the two distributions represents the causal effect of genetic
relatedness for that dyad.

https://doi.org/10.1371/journal.pcbi.1013370.g008

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013370 September 8, 2025

31/ 42


https://doi.org/10.1371/journal.pcbi.1013370.g008
https://doi.org/10.1371/journal.pcbi.1013370

PLOS COMPUTATIONAL BIOLOGY A causal framework for social network structure

interaction term [91,92]. Imagine a simple GLM with a slope of value 2 quantifying the causal
effect of a binary variable X € {0,1} on a rate y, for i observations:

wi=exp(a+2-X;)

Now suppose that the intercept @ can take two different values: 0 and 1. In the case where
a =0, the causal effect of X is the following: exp(0+2-1) ~ 7.4, minus exp(0+2-0) =1,
which is equal to 6.4. If, however, o = 1, then the average effect is exp(1+2 - 1) ~ 20, minus
exp(1+2-0) ~2.7, equal to ~ 17.4. So, the same slope implies two very different effects: 6.4
and 17.4. With an exponential “inverse-link” function, causal effects on the outcome scale are
multiplicative: they are larger when the baseline value—here, the value of a—increases.

The same principle applies to statistical model 4, where the effect of the slope by, on the
rate my, ) differs across dyads—i.e. a larger effect for dyads with a higher “baseline” level
of grooming interactions. We define these differences in baseline using a parameter ¥,

(“psi”):
Plab) =D+ Grap + Rpp) + Tlap)

Where the distribution of ¥, ) captures the variation across dyads that is caused by the
unobserved (or exogenous) network structuring features—like age, social group differences,
“personality”, or friendship—as captured by Eqs 4.2.2-4.2.3. We show the distribution of 1, )
in Fig Z in S1 Text. We roughly summarise it with three values: 9); € {-2.8,~1.9,-0.9}, which
respectively represent dyads with a low-, medium-, and high-baseline levels of grooming rate
Fig 8B. Equivalently, we can think of §,, §),, and 15 as standing for negative, null, and positive
deviations from the global intercept D. For instance, a directed dyad with baseline ¢, = -2.8
implies that unobserved factors are causing a to groom b at a low rate, compared to the other
dyads in the population. We then compute the causal effect of genetic relatedness C, for each
of these three levels 3; (Fig 8B):

C = exp(dy +1-53) - exp(dy + 0 b)),

That is, we obtained a posterior distribution for the contrasts of interest C; from manip-
ulating the Markov Chain Monte Carlo (MCMC) samples of the posterior model: each contrast
C; is composed of 8000 posterior samples #: Cj(l)
called Conditional Average Treatment effect (CATE), because its value depends on—is con-
ditional on—the value of the other predictors. Our model shows an expected increase of,
respectively, 0.01, 0.04 and 0.11 grooming bouts per day due to genetic relatedness, for low-,
medium-, and high-baseline interaction levels, respectively (that is, about an order of mag-
nitude change from low- to high-baseline). These values correspond to the posterior CATE
means. Note, however, that the estimates’ distributions are rather broad. Albeit unlikely, small
negative effects are still plausible from the estimator’s perspective.

On the last panel (Fig 8C), we show our causal estimate in a different way. We compare

Mpe=1 (m1) and mpe—q (), where:

8000 . . .
y s Cj( ) 'This causal effect is sometimes

m%") = exp(D(”) +1- bl({;))
m((,") =exp(D™ +0- b}(ez)).

Again, the n index indicates 8000 draws from the posterior distribution. These two esti-
mates represent two counterfactual outcomes for a hypothetical average dyad. That is, they
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correspond to estimated grooming rates of a dyad, if the two individuals were unrelated (left)
or if they were kin (right), given that everything else remains identical: Gp4},R[4), and Ty, )
and the difference in rank between them are set to zero. Comparing the two distributions
allows us to visualise the relative effect of genetic relatedness. The posterior estimates have a
mean of 0.16 and 0.20 grooming bouts per day, respectively. 0.20 is equal to 1.24 times 0.16;
so relatedness is estimated to cause a relative increase of about 24% in grooming rate. Note
that the difference between the two distributions roughly corresponds to C; in Fig 8B.

Summary and discussion. We do not wish to further discuss these results in terms of the
female Assamese macaques’s biology—it would go beyond the scope of the manuscript. We
also do not, in any way, argue that our estimator is optimal and that it captures all necessary
factors at play. Instead, we built this example to illustrate two general points. Our first point
regards the logical implications of causal assumptions for the development of an estimator.
By examining our DAG, we showed that it was necessary to block a backdoor path (by condi-
tioning on dominance rank) to identify our estimand. Not doing so resulted in a consistently
biased results. Furthermore, encoding the DAG as a SCM has made visible that we needed
to account for the dyadic difference in rank between individuals—not only for the individu-
als’ ranks—, and to allow for this effect to possibly change depending on whether the differ-
ence was positive or negative. These considerations arose from relatively consensual biological
knowledge about the social system (e.g., see [8,83]). Yet, they were not obvious from intuition
alone.

Translating domain expertise into formal assumptions allowed us to logically connect
causal assumptions and their implications for the estimator structure, thereby providing
a licence for this estimator. Failing to establish this connection places an analysis on loose
grounds, for it becomes impossible to know under which conditions it can work, even in the-
ory. For instance, most empirical studies of the effect of maternal kinship on affiliation in
Cercopithecinae have not considered the biasing path of rank (e.g., [93-95]). It is, however,
hard to know if the confounder was simply ignored, or if instead, the results hold under other
assumptions—in which case, we do not know which ones.

Secondly, we discussed why computing causal estimates on the outcome scale usually
involves not only a slope, but the rest of the posterior model too. We notably showed that
in the population under study, the effect substantially changed across dyads depending on
their baseline interaction level. These considerations are particularly important because they
determine how to interpret evidence for causal effects in light of the species’ biology.

We refer the interested readers to supplementary sections where we explore other aspects
of this study. We show MCMC diagnostics in Sect H.2 and posterior predictive checks in Sect
H.3 of S1 Text. We also compute the effect of rank—which, like that of relatedness, cannot be
interpreted from the marginal posterior distributions alone—in Sect H.5 of S1 Text. Finally,
we introduce simulation study 4, where group sizes also affects interaction rates through a
novel parameter d: a group-level counterpart of y, o, and 7 (Sect I in S1 Text).

General discussion

Behavioural ecologists study the phenotypic and ecological factors that affect the structure

of animal societies. This body of research is grounded in theoretical models, whether ver-

bal or formal, that provide potential causal explanations for patterns of behavioural varia-
tion. These models have highlighted the roles of processes at the individual level (e.g., age,
reproductive state; [8,79]), at the dyad level (e.g., dominance, kinship, homophily, friendship;
[8,15,96]), and at the supra-dyadic level that can shape the social relationships between indi-
viduals (first level of abstraction, Fig 1), and thus, the social network structure emerging from
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it. Apace with this, there has been growing interest in empirically studying these processes in
wild and captive populations. However, the connection between empirical results and theoret-
ical models is often unclear. Many empirical studies are causally ambiguous, and theoretical
assumptions specifying how variables cause one another in the system are rarely spelled out
[61,63,69]. In addition, social network data analyses rarely integrate the measurement pro-
cess, e.g., by assuming that the observed social interactions perfectly capture the underlying
interaction network (Fig 1). Statistical models that are not built in light of these biological and
sampling processes can produce noisy and biased estimates, yielding incorrect results—as we
outlined in problems I-IV.

Box 1

A simple workflow for causal inference in animal social networks

1. Define the estimand, i.e. the theoretical quantity that the analysis is designed to
estimate [66].

2. Draw a DAG, specifying qualitative assumptions about the biological and sam-
pling processes that generate the data. An adjustment set can be derived from
this DAG, for instance using the backdoor criterion (see [67]). Note that cer-
tain confounding paths might be automatically blocked by the varying-effects
of the Social Relations Model (e.g., Sect I in S1 Text).

3. Translate the DAG as a SCM, encoding plausible quantitative assumptions
about the data generating process [37,67]. The SCM should ideally encode
a target value for the estimand, which can be recovered by an estimator. We
recommend exploring the parameter space to better understand how the
simulation behaves.

4. Build an estimator based on the adjustment set derived from the DAG, and
following the functional assumptions encoded in the SCM. The basic archi-
tecture of the Social Relations Model is a reasonable starting point for many
animal social network models [23,38,72].

5. Validate that the estimator can recover the estimand, by fitting the synthetic
data generated by the SCM to the estimator. To better understand how the
estimator works, we recommend inspecting not only the marginal posterior
distribution of the parameter(s) of interest, but also, plotting other parameters
of the posterior distribution (e.g., sG, cr1> G[a]> M[ap])> as Well as computing
causal effects on the outcome scale.

6. Loop back to 1., adding one layer of complexity. The new layers may involve
any of the step above, like refining the estimand, adding a variable in the DAG,
or encoding a more realistic functional relationship. After repeating this cycle,
if you believe that you have translated your domain expertise into assump-
tions that reasonably approximate the data generating process, and that your
estimand is recoverable from the estimator, then go to the next step.

7. Fit the empirical data to the estimator, and compute causal effects from the
joint posterior distribution.

Here, we have advanced a general framework for studying the causes of animal social net-
work structure that allows empiricists to translate their theoretical domain expertise into an

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013370 September 8, 2025 34/ 42



https://doi.org/10.1371/journal.pcbi.1013370

PLOS COMPUTATIONAL BIOLOGY A causal framework for social network structure

analytical strategy. Within each simulation study, we showcased how researchers may;, first,
define causal assumptions at various levels (e.g., individual, dyad, group), and second, how
they can validate an estimator for the effect of interest given these assumptions. We high-
lighted how these models naturally deal with (I) the gap between the interaction network and
the observed network (discussed in simulation 1), (II) variation in sampling effort across indi-
viduals and dyads (sim. 3), (III) counfounders (sim. 4) and (IV) unobserved network causes
(sim. 1-3). Across the four studies, we built models layer by layer, and illustrated an iterative
workflow for causal inference in social networks, which we summarise in Box 1. In doing so,
we provided empiricists with reproducible analytical tools that they can build upon to specify
causal and statistical models for their own study system (see our GitHub repository).

Practical application

The steps in Box 1 represent the core components of a full workflow for causal inference in
animal social networks. Yet, they omit certain complexities. First of all, there often exist sev-
eral plausible causal models that are compatible with a researcher’s domain expertise. In this
case, it can be useful to run several analyses in parallel and to compare their outputs—that is,
the list of Box 1 bifurcates into forking paths. Fitting empirical data to estimators of interme-
diate complexity can also be insightful to check whether we observe the conditional depen-
dencies that are expected from the DAG [67]. Furthermore, predictive tools (e.g., Information
Criteria, Cross Validation) can be useful to compare causally consistent estimators that differ
in their parametric specifications (see [97]). Finally, we did not highlight common aspects of
a Bayesian workflow in the main text, like prior and posterior predictive checks, or MCMC
diagnostics (see [37,98]). These procedures are, however, important. We showed how they can
be conducted for social network models in S1 Text (e.g., Sects H.2-H.3).

Finally, although the framework presented in Box 1 applies to empirical research across
animal social network analysis, the modelling details may require substantial changes—this
is notably the case when modelling association data, as measured by spatio-temporal co-
occurrences. Association data are not truly dyadic, and much of the observed variation is
often unrelated to the underlying social relationships [18]. Thus, we believe that the models
presented in this manuscript may often be poor approximations of the processes generating
them. The literature on hypergraph models [99-102] represents a promising avenue for the
analysis of association data, though much work is still needed for accessible and principled
causal inference in this context.

Future research avenues

Measurement model. Conducting causal inference in social networks forces us to care-
fully examine the mapping between latent constructs of interest and data. In this manuscript,
we focused on two kinds of unobserved quantities: true interaction rates, and causal effects.
However, empirical research often involves additional latent variables, whose true values
are uncertain or unknown. Let us return to the macaque example. We notice that, in addi-
tion to the unobserved causal effect on the unobserved rate mi, ), the very variable whose
effect we studied—genetic relatedness—was not directly measured either. In the study, we
approximated it as a binary variable using pedigree and microsatellite data, thereby discard-
ing the continuous variation and uncertainty in the true genetic relatedness among individ-
uals. Furthermore, we were interested in studying its effect on affiliation, a theoretical con-
struct that we approximated with grooming rate (Fig 1). In doing so, we ignored the rich set
of behavioural interactions that compose affiliation in this species. Finally, by using Elo-rating
point estimates for dominance rank, we treated this variable as if it was directly measured.
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It is important to realise that whenever a variable is unobserved, its relationship with observed
variables depends on theoretical assumptions, whether explicit or implicit. In this case, we
implicitly assumed that the proxies captured the latent variables without any uncertainty or
error, thereby making a leap between levels of abstractions. This is far from optimal, for it can
lead to inefficient and inaccurate estimators.

Moving forward, we argue that such latent variables should be modelled explicitly when
possible, as part of a measurement model: i.e. a joint set of assumptions defining the connec-
tion between observed and unobserved variables. Doing this is natural with Bayesian models,
where latent variables are assigned a posterior distribution like any other parameter. In the
empirical study, genetic relatedness could for instance be estimated alongside the other com-
ponents of the model [82]. Similarly, dominance relationships and affiliation may be modelled
as latent variables in multiplex network models [22-24,45,103,104]. In this regard, statisti-
cal model 4 can be considered an intermediate step towards more realistic estimators. These
considerations further apply to traits like age, whose exact value is sometimes unknown, but
which can be modelled given a plausible interval; e.g., if an individual is known to be born
between two population surveys [37]. Furthermore, we believe that explicit measurement
models could clarify current debates in fields like animal personality research, where the link
between the latent objects of study (personality, behavioural syndrome) and the observed
variables (behavioural measures) is conceptually and analytically challenging [105-107].

Dynamical drivers of social network structure. Sometimes, the latent causes of net-
work structure cannot be modelled directly, but instead, can be inferred from the multilevel
structure of the statistical model. This is the case for dynamic processes like reciprocity, a
plausibly important driver of social network structure across social species. For instance, the
Social Relations Model’s crr parameter may be interpreted as quantifying the extent of dyadic
reciprocity after (i) positing a specific mechanism for reciprocity in a SCM or a more fine-
grained agent based model (e.g., [37,108]), (ii) under the assumption that all confounding
paths between T, ;) and T[] have been blocked, and (iii) after verifying that given (i) and
(ii), the pattern of interest could be detected with cyr. The same goes for cgr as a tool to quan-
tify generalised-reciprocity. These considerations not only apply to animal social network
analysis, but also to several disciplines in the Social and Behavioural Sciences—e.g., Psychol-
ogy or Anthropology—where the Social Relations Model’s parameters are interpreted in terms
of latent processes [23,46,109-111]. In any case, we wish to insist that such inferences require
extreme care. As we saw earlier, most causal paths flowing through 7, p, and v end up in crr
and/or cgg. Therefore, these paths would need to be all blocked for crr and cgg to be inter-
pret as meaningful signals of reciprocity. As always, the causal evidence will only be as strong
as the causal assumptions are plausible. But remember, imperfect causal assumptions are still
better than no explicit assumptions at all [112].

An area where the causal tools presented here may be particularly useful is to study the
drivers and consequences of social network structure in the context of longitudinal data anal-
ysis [73,113,114]. In our studies, we always assumed stationary systems, where time did not
matter. However, many network structuring processes are intrinsically dynamic. For instance,
an individual’s gregariousness might affect its health, reproductive success, and survival [115-
117]. These outcomes, in turn, can shape social relationships and the pool of individuals in
the social network, thereby forming potential loops of reciprocal causation between social
network structure and other phenotypic traits [118,119]. Another way for social network
structure to affect itself over time regards triadic closure [96,120]. Consider three individuals,
a, b, and c. If a and b are both connected to ¢ at time ¢, they might become more likely to form
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a connection a-b at time ¢ + 1, because of their shared relationship with ¢ (“friends of friends
become friends”).

Social network structuring processes, along with the measurement procedure to capture
them, are intrinsically causal. They all pose the inferential challenges that we have outlined
throughout the paper: when not integrated into an analysis, they can lead to inferences that
are simply wrong. In this context, we believe that establishing a logical connection between
theory and data, using transparently justified estimators, is crucial. We hope that our pro-
posed tools and workflow will inspire future empirical research in this effort.
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