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Abstract
Reducing reliance on pesticides is an important global challenge. With increasing con-
straints on their use, in recent years there has been a declining trend in pesticide use
for arable crops in the UK. But with increasing disease pressures and global demand for
food, there is a greater need for effective measures of pest and disease control. These
circumstances highlight the need for widespread adoption of sustainable alternative con-
trol measures. Integrated Pest Management (IPM) is one such solution, comprising a set
of management strategies which focus on the long-term prevention, detection and control
of pests, weeds and diseases. While many of these methods are acknowledged to offer
effective control, their implementation has thus far been limited in practice. As a case
study we considered Septoria tritici blotch (STB) (Zymoseptoria tritici), an economically
important disease of wheat. We used epidemiological modelling techniques to investi-
gate the potential of different IPM control strategies (crop residue burial, delayed sowing,
variety mixtures and biocontrols). Combining existing data with a deterministic, compart-
mental infectious disease model of STB transmission, we simulated the implementation
of an IPM regime into the STB disease system. We investigated the outcomes on dis-
ease prevalence and crop yield when comparing conventional and IPM control regimes.
In a single field, for the individual implementation of IPM measures we found the starkest
difference in potential yield outcomes between delayed sowing and biocontrols (greatest
yields), and crop residue burial and variety mixtures (lowest yields). We also found that
the collective use of IPM measures has the potential to offer individual growers compara-
ble control to a standard fungicide regime. For a multi-field setting, representing a com-
munity of crop growers, a high proportion of growers using IPM can reduce the level of
external infection incurred by the growers who maintain a fungicide regime.
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Author summary
With the UK Government seeking to reduce the environmental risk posed by pesticides,
the agricultural industry is under increasing pressure to explore alternative methods
of disease control. One such alternative method is Integrated Pest Management (IPM),
which consists of a variety of management strategies for long-term prevention, detec-
tion and control of crop diseases. In our study, we simulate the potential outcomes of
using IPM for the control of Septoria tritici blotch, a common disease of wheat. Our
results suggest that a regime of IPM control methods may offer growers comparable
yields and disease control to conventional fungicide treatments. Furthermore, in a
wider system of crop growers, a higher proportion using IPM can reduce the level of
infection incurred by all growers in the system, including those who do not use IPM.
These findings can offer insight to crop growers who are considering the use of IPM,
and to policy-makers who are interested in encouraging its uptake, by validating and
quantifying its effectiveness relative to current standard practices.
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1. Introduction
Global demand for food is widely projected to increase in the coming decades, with many
predicting a rise between 35% to 56% from 2010 and 2050 [65]. The agricultural industry
faces the need to increase its production, while also working against mounting pressure from
plant pests and diseases, which are currently estimated to be the cause of up to 40% yield
losses globally [24]. One such disease is Septoria tritici blotch (STB) (commonly called ‘sep-
toria’, ‘septoria leaf blotch’), a foliar disease that primarily affects wheat, whose causative agent
is Zymoseptoria tritici. The UK’s Agriculture and Horticulture Development Board (AHDB)
report STB as the most important and damaging foliar disease on winter wheat [2]. The
pathogen causes necrotic lesions to develop on the leaves, reducing the area of healthy green
tissue available for photosynthesis, resulting in yield loss and reduced grain quality. AHDB
state that crops severely affected by STB can suffer losses of up to 50% [2].

To combat these threats to crop health, chemical control remains a staple of conventional
crop protection. However, due to the negative ecological and environmental consequences
of their use [26], there have been increasing constraints on pesticide use for pest and dis-
ease management (e.g. removal of some chemical pesticides from UK markets). These con-
straints have resulted in a recent declining trend in pesticide use on arable crops in the UK.
The ‘Arable crops in the United Kingdom’ survey for 2022 reported, compared to 2018, a
decrease in area treated with pesticides of 6% and a decrease in weight of pesticide applied of
14% [52]. These circumstances bring to the fore the need for widespread adoption of sustain-
able alternative solutions for crop pest and disease management.

Much focus for a sustainable alternative has been put on Integrated Pest Manage-
ment (IPM). IPM is not a single control method, but a programme of coordinated,
environmentally-sensitive control measures that can be used to prevent, detect and control
crop pests or diseases [35]. It can comprise a wide range of potential strategies, such as the use
of resistant varieties, biological controls, modification of sowing practices, and the targetted
and controlled use of chemical pesticides. One of the main, generally agreed-upon, aims of
IPM is to reduce reliance on the use of synthetic pesticides [16]. Nevertheless, despite long-
term empirical evidence of the effectiveness of IPM, its adoption in practice has been limited.
Growers face barriers to uptake in the form of access to existing tools and knowledge, risk,
ease of implementation, and cost [1].
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There remain several unanswered questions regarding IPM and its use in the control of
STB. Previous modelling work on STB has investigated the rate of development of fungicide
resistance under the use of high- or low-risk fungicides [31], the use of fungicide mixtures
and alternation [25,30,63], and the timing of fungicide applications [64]. One study, by [62],
explored the use of resistant cultivars in combination with fungicide treatments, which would
be considered an IPM strategy commonly in use by growers in the UK. Previous modelling
work has not, however, investigated the use of IPM controls that are presently available to
farmers but not commonly deployed in practice. Examples of such IPM controls that have had
low uptake to date in the UK are variety mixtures, residue management, varied sowing dates,
and biocontrols [11].

A crucial benefit that modelling can offer is to complement other types of empirical study.
It would be ideal to test the effectiveness of IPM regimes and compare them to current stan-
dard fungicide practices by performing real-world, long-term trials. Such studies, however,
can be challenging to perform due to operational and economic barriers. Alternatively, mod-
elling can provide a means to gain initial insight into such questions, as has been done previ-
ously with a number of different diseases and management strategies [45,47,48]. Nevertheless,
at the time of writing we have not identified studies that have used modelling to contrast the
possible impacts on yields of an IPM control strategy versus a conventional fungicide strategy.
Moreover, such work can help identify where additional data to reduce parameter uncertainty
can improve the robustness of model predictions. In this paper, we use modelling to address
the following questions (with respect to yields):

• How does an individual IPM measure perform compared to either having no control
measures, or using conventional fungicide treatment?

• Can the collective use of multiple IPM measures outperform a conventional fungicide
regime?

• Considering a community of crop growers, is there an optimal balance of IPM farms
with conventional fungicide farms?

To provide insight into these questions, we present an infection transmission model for
STB whose novel contribution is its incorporation of IPM interventions. We initially acquired
from the available literature plausible value ranges for the model parameters. We then per-
formed model simulations to investigate the potential impact on yield of chemical control (i.e.
fungicide use) and four different IPM control strategies (crop residue burial, delayed sowing,
variety mixtures and biocontrols). From a single-field perspective, we found that collective
use of multiple IPM measures has the potential to offer individual crop growers compara-
ble control to a standard fungicide regime. For a multi-field system, we show circumstances
where the presence of IPM-using fields can benefit all growers by boosting yields. By high-
lighting the potential for a ‘free rider’ situation (those using a chemical control regime ben-
efitting from others using IPM), we anticipate our findings to be a starting point towards a
combined epidemiological-behavioural model for growers’ intentions towards disease control.
The framework we present is also adaptable to other plant pathogens, allowing researchers to
investigate the implications of IPM usage on infection burden and yield outcomes for other
crops.

2. Methods
To carry out our investigation, we first developed a mathematical model of STB infection
dynamics that included fungicide and different IPM strategies as possible controls. We sum-
marise here the core methodological components of our study. We begin with a description
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of our base STB model that had no controls (Sect 2.1), including how we sourced plausible
model parameter values from the literature, followed by how we computed yield from a sin-
gle growing season (Sect 2.2). We then explain how we incorporated fungicide control into
the model and its parameterisation (Sect 2.3). Similar details are provided for different IPM
control strategies (Sect 2.4). Finally, we outline the model simulations that we performed to
explore our stated research questions (Sect 2.5).

2.1. Base STB transmission model (with no controls)
We base the transmission dynamics of STB on the model framework presented by [31]
(Section A in S1 Text), while using the up-to-date parameter values found by [19] (Table 1).
This model is a system of ordinary differential equations (ODEs) describing the host-
pathogen system of Triticum aestivum (winter wheat) and Zymoseptoria tritici (the causal
organism of STB). The pathogen is not explicitly featured in the model, which instead
describes the relative area of leaf tissue in each disease state (Fig 1). Note that the model by
[31] deals with resistance to fungicide, which means that it features two strains of infectious
spores that are resistant and susceptible to fungicide, respectively. Our model assumes the
presence of only the strain that is susceptible to fungicide. The [31] model uses degree-day
time, fitting a sinusoidal function for degree-days per calendar day to average temperature
data recorded between 1984 and 2003 in Cambridgeshire, UK. In adapting this model to the
parameters and growth stage timings found by [19], we refitted the sinusoidal temperature
profile function so that the relevant wheat growth stage timings aligned with the conventional
calendar dates given by [29]. We define T[X] as the degree-day time when the plant reached
growth stage [X] (‘GS[X]’). Throughout our analysis we considered the system behaviour over
one growing season.

Our model has six disease states, each measured in m2 of leaf area per m2 of ground (the
leaf area index). Although this is by definition a density, for simplicity it is referred to here-
after as the ‘leaf area’ because the ground area is fixed. Five of the disease states are related
to the upper canopy leaves. Specifically, they describe the area of susceptible leaf tissue

Fig 1. Schematic for the base STB dynamics model presented by [31]. Circular nodes represent the states leaf area
in the upper canopy can occupy. The square node (P) represents infectious leaf area in the lower canopy. Solid black
lines represent the progression between states, labelled with the corresponding rates. The dotted black arrow shows
between-season dynamics: infectious lesions deposit inoculum which initiates infection in the lower canopy the
next year. Green nodes represent the states containing green leaf area: a healthy, uninfected state (S), and a latently
infected state (E). Leaf area in these states are capable of photosynthesis, and contribute towards the yield compu-
tation. Later in the season these states experience natural senescence (R). Yellow nodes represent states that do not
contribute to the yield computation. Infectious leaf area in the upper canopy (I) eventually dies due to infection
(D), and infectious leaf area in both the upper and the lower canopy (I and P) transmit infection to healthy tissue,
represented by yellow dashed arrows.

https://doi.org/10.1371/journal.pcbi.1013352.g001
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(labelled S), area occupied by latent (E) and infectious (I) disease lesions, the total leaf area
that has died due to infection (D) and the total leaf area that has naturally senesced (R). Only
tissue in the I class can transmit infection and only tissue in the S class can receive infection.
We define the total leaf area, denoted by A, as S + E + I + R +D.

The sixth (and last) disease state, labelled P, represents the area of infectious lesions on the
lower canopy of the plant. As disease in the upper canopy is typically initiated by infection
with spores from the lower canopy, we include this lower canopy infection compartment to
provide the initial infection to the plant. Infection in the lower canopy is initiated by inocu-
lum from the previous year [25]. As defined by [31] (with parameter values again taken from
[19]), we assumed infection in the lower canopy has an initial condition of Ψ, and a fixed rate
of exponential decay 𝜈.

The model includes time-dependent transition rates for natural growth (g(A,t)) and senes-
cence (𝜎(t)) of healthy leaf tissue, and constant rates of progression from latency to infec-
tiousness (𝛾) and death from infection (𝜇). The force of infection term is comprised of trans-
mission from both the I and P classes, in the form of 𝛽(I+P)

A .

2.2. Yield
We considered the yield to be proportional to the healthy area duration (HAD) over the
period of grain filling; defined to be between GS61 and GS87 [31]. Given our assumption
of latently infected tissue still being able to photosynthesise, we assumed the annual relative
yield in our system to be

Y(t) = ∫
T87
T61
(S + E)dt
YDF

,

where YDF is the yield obtained in the disease-free scenario (i.e. a fully healthy crop) [25,31].

2.3. Summary of fungicide control
In our main analyses, we assumed that growers who used fungicide did not use any additional
control methods. Although this is a simplifying assumption, it allows us to more distinctly
contrast the two types of control regime (fungicide versus IPM). The existing STB disease
dynamics model presented by [31] also included control with fungicide. To incorporate fungi-
cide control into our model, we used functions of an analogous form to [31], but re-fit the
product-dependant fungicide parameters to newer data on fungicide performance in win-
ter wheat. Specifically, we fit to the dose response curve from 2022-2024 data for the product
Revystar XE [3]; an SDHI and azole mixture that represents current standard practices for
STB of wheat in the UK. In alignment with both the fungicide trial design [3] and the [31]
model, we assumed that fungicide treatment was applied at GS32 and GS39. We modelled
fungicide concentration over time by

C(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if t < T32

e–𝛿(t–T32) if T32 ≤ t < T39

e–𝛿(t–T32) + e–𝛿(t–T39) if t≥ T39.
(1)

The parameters 𝜔, 𝜃 and 𝛿 represent the maximum effect of fungicide, fungicide dose
response curvature, and fungicide decay rate respectively. The values for these parameters
are listed in Table 1. As 𝜃 and 𝛿 are product-dependant, these parameters were refitted, while
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Table 1. STB transmission model and fungicide parameter values. For these parameters we used the same values
as used by [19]. We use the notation ‘dd’ to represent degree days.
Parameter Definition Value

Plant growth stages
Temerge Time of GS31 (emergence of leaf 3) 1396 dd
T32 Time of GS32 1495 dd
T39 Time of GS39 1653 dd
T61 Time of GS61 (senescence/harvesting begins) 1891 dd
T87 Time of GS87 (senescence/harvesting ends) 2567 dd

Plant growth parameters
G Host growth rate 8.2 ×10–3 dd–1

k Host carrying capacity 4.438
Disease system parameters

𝛽 Infection rate 2.11 ×10–2 dd–1

𝛾 Rate of becoming infectious 1/350 dd–1

𝜇 Rate of recovering from infection 1/600 dd–1

𝜈 Decay rate of primary inoculum 8.97 ×10–3 dd–1

Ψ Initial infected leaf area in lower canopy (P(0)) 1.44 ×10–2

Fungicide parameters
𝜔 Fungicide maximum effect 1
𝜃 Fungicide dose response curvature 7.68
𝛿 Fungicide decay rate 1.86 ×10–2 dd–1

https://doi.org/10.1371/journal.pcbi.1013352.t001

𝜔 = 1 was chosen to reflect the default dose used being the full label dose. The effect of this
fungicide on both transmission, and on infection period, depends upon its concentration in
the form of

𝜖(C) =𝜔(1 – e–𝜃C). (2)

Therefore, the system of equations that govern STB infection in a field under a fungicide
regime (denoted with the subscript F) is

dSF
dt
= gF(AF, t) – 𝜎(t)SF – SF𝜆F(t)

dEF
dt
= SF𝜆F(t) – 𝜎(t)EF – 𝛾EF(1 – 𝜖(C))

dIF
dt
= 𝛾EF(1 – 𝜖(C)) – 𝜇IF (3)

dRF

dt
= 𝜎(t)(SF + EF)

dDF

dt
= 𝜇IF

dPF
dt
= –𝜈PF,

where 𝜆F(t) = 𝛽(1 – 𝜖(C)) IF+PFAF
, and gF is identical to the function g in the base sys-

tem [31] (Section A in S1 Text). Parameter values, 𝜎(t), and initial conditions are the same as
in the base system (Table 1 and Section A in S1 Text).

2.4. Summary of considered IPM controls
We considered the IPM measures described in the 2021 AHDB Research Review on Enabling
the uptake of integrated pest management (IPM) in UK arable rotations, which identifies
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nine IPM measures applicable for the prevention of STB in wheat [11]. Based on the exist-
ing research literature, the review assigned scores on a scale of 1-5 to each measure, across
a number of qualities (Fig 2). These qualities include the effectiveness of control, strength of
evidence, economic factors, implementation factors, and current and potential use.

Of the IPM measures identified in the AHDB review, we restricted our examination to
those that could be reasonably studied by our mechanistic system model (we expand on the
selection of IPM measures for analysis in Sect 4). As such, we define the ‘IPM regime’ in
this study to be the use of crop residue burial, delayed sowing, variety mixtures, and biocon-
trols. We implemented each of these IPM measures into the STB model based on a biological
understanding of how the control acts and experimental data of their impacts.

2.4.1. Residue burial Debris and stubble from the previous year’s plants are commonly
left in place between seasons. As a consequence, subsequent years’ crops are planted among
the residue from previous years. This practice offers certain benefits to growers, such as con-
serving soil moisture and reducing costs associated with clearing or tilling the field between
seasons [7,11]. However, if infection was present in the previous season, infected tissue can
remain on the debris and contribute to the initial infection of the lower canopy in the next
season [7,14,53,58]. Ensuring that the previous season’s residue is buried before new crops
are sown therefore has the potential to reduce the amount of inoculum at the beginning of the
season, which could subsequently reduce the size or severity of the outbreak.

Our implementation of residue burial into the model system assumed that this practice
would reduce the amount of inoculum initiating STB infection in the lower canopy, thereby
reducing the level of initial infection in the P class. With Ψ being the base initial value of P

Fig 2. IPM data for Septoria leaf blotch of wheat from the 2021 AHDB Research Review. [11] identified and
scored IPM measures applicable for this disease by expert opinion on eight qualities, concerning effectiveness of the
control, economic factors, and ease/speed of implementation. As in the original review, we display the effectiveness
of fungicide for comparison (NB: The other qualities were specific to IPM measures, not fungicide use. As a conse-
quence, there are no data given for these qualities for fungicide in the source). Control measures explicitly included in
our study are indicated by a * preceding the control strategy name.

https://doi.org/10.1371/journal.pcbi.1013352.g002
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(Table 1), we assumed that after residue burial is implemented, the new initial value is Ψ̂ =
pqΨ+ (1 – p)Ψ, where p is the proportion of initial infection from debris in the field (rather
than from other sources, such as other fields’ debris or crops), and q is the contribution to
inoculum which remains after debris is buried. Inspecting the two terms in Ψ̂ (the initial
infected leaf area in the lower canopy), the first term pqΨ corresponds to the contribution of
initial infection from debris in the field post-residue burial and the second term (1 – p)Ψ cor-
responds to the contribution of initial infection from sources outside the field (assumed to
not be impacted by the residue burial intervention implemented in the index field of interest).
[14] found that pycnidiospores on unburied debris had a survival rate of 65% after 50 days,
while pycnidiospores on buried debris had a survival rate of less than 10% [57]. Based on
these empirical data, we considered a range of values for q from 0 to 0.1

0.65 = 0.154 (to 3 signifi-
cant figures).

The highest reduction in infected leaf area seen in the lower canopy due to debris removal
is 75%, seen by [58] in the initial stages. However, this reduction is quickly overcome as exter-
nal sources of infection become more important than debris in contributing to infection in
the lower canopy, suggesting that the impact of debris removal could be transient in terms of
long-term dynamics [58]. As such, we considered values of p that resulted in a disease reduc-
tion between 0 and 75%. Each resulting range for p depended on the choice of q (Fig B in S1
Text). The smallest possible range of p was (0,0.775), corresponding to q = 0 (when the burial
of debris prevents all of its contribution to initial inoculum). The upper limit of this range
increased as q increased, with the widest possible range for p being (0,0.918) when q = 0.154.
With no clear choice for the average or ‘most likely’ value of p, we chose a default value of
p = 0.1 (Table 2) based on the strength of evidence that debris removal has a transient impact,
and the AHDB review that scored its effectiveness as low (Fig 2, [11]). We examine in the Dis-
cussion the implications of the uncertainty and wide parameter ranges computed here (see
Sect 4).

2.4.2. Sowing date Sowing date has been shown to have an effect on the severity of STB
outbreaks [6], with current AHDB guidance suggesting that later sowing increases a crop’s
level of potential resistance to STB infection [4]. In many cases, while late sowing results in

Table 2. IPM parameter values.
Parameter Definition Default Possible range Ref
r𝛽 Scalar for transmission and sus-

ceptibility when using variety
mixtures

0.985 (0.972,0.998) [37]

rΨ Scalar for initial ascospore exposure 0.797 (0.635,1) [46]
p Debris contribution to initial

infection
0.1 (0,0.918) [58]

q Infection remaining after debris burial 0.154 (0,0.154) [14]
𝜔̂ Maximum reduction in disease from

biocontrol
0.729 (-) [34]

̂𝜃 Shape parameter of the dose response
curve

11.0 (-) [34]

̂𝛿 Biocontrol decay rate 0.0228 (-) [34]
IPM regime* Low Medium High

- (p,q) (0, N/A) (0.1, 0.154) (0.777, 0) -
- Days delayed 0 7 3 B
- r𝛽 0.998 0.985 0.972 -
- Time(s) of biocontrol application T39 T31 T31, T39 -
* Parameter sets used for the low, medium, high-intensity IPM regimes.

https://doi.org/10.1371/journal.pcbi.1013352.t002
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some level of yield penalty, it also allows the crop to avoid the peak level of inoculum that
occurs earlier in the season. As a consequence, the severity of the outbreak can be reduced [4].
We do not account explicitly for reduced crop establishment due to late sowing, which is
elaborated on in the Discussion (Sect 4).

We implemented late sowing into the model system by introducing a scalar rΨ in [0,1].
The scalar rΨ allowed us to adjust the magnitude of the initial value of infection in the lower
canopy (state P), reflecting a reduced exposure to inoculum. We also shifted the initial time
of leaf emergence in the model by the appropriate number of degree-days. Late sowing is
described in terms of (calendar) days delay after 20th September, matching the assumed
sowing date in the [31] model.

To compute the reduction in inoculum exposure over time, we fit an exponential decay
function to ascospore data collected by [46] (Fig C in S1 Text). The data estimates the poten-
tial amount of ascospores per m2 which is produced in a plot with wheat debris. Note that in
applying this ascospore decay curve to our model, we do not directly use the calendar dates
from the [46] experimental data, but shift this data back by 26 calendar days so that the exper-
imental sowing date aligns with the sowing date in our model. Late sown crops will therefore
evade the early period of inoculum release, reducing their relative exposure (Fig D in S1 Text).
We assumed that the level of inoculum exposure rΨ on the first possible sowing date (i.e. 0
days delay) was 1.

We assumed that the maximum number of days a grower would delay sowing by is the
latest sowing date such that yield is increased compared to the previous day. In other words,
even if sowing an additional day later results in reduced disease prevalence, growers will not
do this if the delay to crop growth results in an overall reduction in yield. Under this assump-
tion, the maximum delay a grower would be willing to implement (in the absence of any other
controls) is 14 days (corresponding to rΨ = 0.635), as this is the delay that maximises yield. We
then assumed that the minimum delay a grower would implement was 0 days, and a median
delay of 7 days, which gave values of rΨ = 1 and 0.797 respectively. Under the assumption that
growers would like to gain the potential benefits from late sowing, but be reserved due to the
risk of uncertain weather conditions when sowing later, we assumed the default value to be
the median of a 7-day delay (Table 2).

2.4.3. Variety mixtures Monoculture farming is a very widely used practice, offering
greater uniformity of product for consumers and often simplifying the large-scale growing
and harvesting process. However, the genetic uniformity in a varietal monoculture puts crops
at greater vulnerability for disease [11,12,37]. Increasing genetic diversity within a crop has
been shown to reduce both the spread and severity of a disease outbreak [37]; these outcomes
are achieved because of a reduction in the probability that infection is successfully transmitted
from one plant to its neighbour [12].

Varietal diversity affects both the ability to receive infection (in the S state) and transmit
infection (from the I and P state). Existing examples of models of plant disease within vari-
ety mixtures include multi-host models that explicitly model the different varieties and have
individual parameters for different host-pathogen interactions [15,44]. We instead sought
to implement variety mixtures within our existing transmission model framework in a parsi-
monious manner that could be parameterised by empirical data. Retaining a single-host type
model structure, we assumed a reduction in STB infection that can be achieved under variety
mixtures. To further limit parameter dimensionality in our model, we assumed the same value
for the scaling parameter acting on susceptibility and transmissibility, r𝛽 in [0,1]. Incorporat-
ing both the scaling on susceptibility and transmissibility resulted in a force of infection term
𝛽r𝛽Sr𝛽(I+P)

A (note the repetition of the term r𝛽).
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To quantify the reduction in STB infection that can be achieved under variety mixtures,
we used the results from [37]. In their meta-analysis of 406 trials that used varietal mixtures
(of which the results from 221 trials were ultimately used), they found that the ‘mixing effect’
reduced disease severity by a mean of 9.0%, with lower and upper bounds of 1.0% and 16.3%,
compared to the most-grown varieties. For our base model representing an untreated out-
break, we selected the results for untreated trials. Under the assumption that the model pre-
sented by [31] and the parameters found by [19] represent behaviour of a typically grown
variety, we selected the results that compared the varietal mixture outcomes to those of the
‘most-grown varieties’. Given that the use of resistant varieties is already widespread along-
side the use of fungicides [5,11] (Fig 2), these ‘most-grown varieties’ are typically chosen for
their resistant properties. As such, it would be unrealistic to contrast an IPM regime that uses
resistant varieties with a fungicide regime that does not use resistant varieties. Accordingly, in
our model we implicitly assumed the following two conditions: (i) that varieties planted by the
fungicide-using growers were chosen for their resistance, and (ii) variety mixtures used in the
IPM regime were a mixture of commonly-used resistant varieties.

We assessed disease severity in our model by integrating between GS69 and GS75, as this is
when [37] state that the majority of trials carry out their disease assessment. Fitting r𝛽 to the
1.0%, 9.0% and 16.3% disease reductions resulted in values of 0.998, 0.985 and 0.972, respec-
tively. As the result corresponding to the mean of the original data, we took r𝛽 = 0.985 as our
default parameter value for cultivar mixtures (Table 2).

2.4.4. Biocontrols A number of biofungicide and bioprotectant products are either com-
mercially available, or identified as potentially effective in research studies [34,42,49]. Many of
these products use either bacteria, lower-risk chemical compounds, or other biological agents,
to enact either an actively fungicidal effect, or a protectant effect.

These are often applied using the similar methods as chemical fungicides, at similar growth
stages, and act through similar mechanisms, though offer a lower level of control. As such,
we implemented biocontrol in the model with an analogous form to fungicide (Eqs (1) and
(2)). We used experimental results from 2004 and 2006 reported by [34]. The authors found
that Bacillus megaterium was capable of inhibiting the development of STB in small-scale
field trials. Treatments were applied at GS31 and GS39, to align with conventional fungicide
treatment procedures. We used the function

̂𝜖(B) = 𝜔̂(1 – e– ̂𝜃B), (4)

with Bacillus megaterium treatment solution concentration

B(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if t < T31

e– ̂𝛿(t–T31) if T31 ≤ t < T39

e– ̂𝛿(t–T31) + e– ̂𝛿(t–T39) if t≥ T39,

where we fit for the parameters 𝜔̂ (maximum reduction in disease), ̂𝜃 (dose response param-
eter) and ̂𝛿 (decay rate) by minimising the distance between the function and the data from
[34]. After fitting to both the 2004 and 2006 experimental data, we chose to use the fitting
result from the 2004 data, as the 2006 simulation had a visibly worse fit to the no control
data (Fig E in S1 Text). Our resultant parameter set was (𝜔̂, ̂𝜃, ̂𝛿) = (0.729, 11.0, 0.0228). We
acknowledge that for this IPM control we have a set of fixed parameter values only, without a
potential range. Furthermore, the experimental data only looks at infection prevalence on the
flag leaf (the top leaf), while our model would ideally be fit to prevalence in the whole upper
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canopy. Data limitations prohibited the acquisition of a potential range for these parame-
ters, with further comment on these challenges given within the Discussion (Sect 4). As such,
unlike the three other control measures, the variation in scenarios explored here is not the
range of plausible values, but instead three different application scenarios (as is commonly
done experimentally and in practice [42]): one application at T39, one application at T31, and
one application at both T31 and T39. We defined these as the lower bounding, median/default,
and upper bounding scenarios respectively (Table 2), based on their comparative outcomes in
terms of yield and infection prevalence.

2.5. Simulation outline
We produced all model simulation scripts and figures in Python 3.9.12. Code and data for this
study are available at https://github.com/emrvincent/IPM_s_tritici_modelling.

2.5.1. Individual IPMmeasures To allow us to assess the relative effectiveness of each
IPM measure, as well as the potential variability in outcomes between IPM measures and due
to parameter uncertainty, we first ran simulations with each IPM measure implemented indi-
vidually, in an isolated field. We performed model simulations for each of the four IPM mea-
sures using the base ODE system (given in Eq (7) in S1 Text) with modifications relevant to
that IPM measure, as described in Sect 2.4.1 to Sect 2.4.4.

For each control measure we output both the infection prevalence over time (defined as the
percentage of infectious leaf area; 100 × IM

AM
) and the relative yield. For comparative purposes,

we also generated the same metrics for a ‘no control regime’ and a ‘fungicide regime’. Note
that although the no control regime is not typically used in practice, we considered it here for
comparative purposes. We implemented the fungicide regime as described in Sect 2.3.

2.5.2. Full IPM regime We next ran simulations to compare three possible field regimes,
each employed in an isolated field: the ‘no control regime’, a ‘fungicide regime’ (implemented
as described in Sect 2.3) and a full ‘IPM regime’. The IPM regime corresponded to the simul-
taneous implementation of all four of our IPM control measures; residue burial, sowing delay,
variety mixtures, and biocontrols.

For each regime we output the infection prevalence over time and the relative yield. The
system of ODEs describing the model under the IPM regime is

dSM
dt
= gM(AM, t) – 𝜎(t)SM – r𝛽SM𝜆M(t)

dEM
dt
= r𝛽SM𝜆M(t) – 𝜎(t)EM – 𝛾EM(1 – ̂𝜖(B))

dIM
dt
= 𝛾EM(1 – ̂𝜖(B)) – 𝜇IM (5)

dRM

dt
= 𝜎(t)(SM + EM)

dDM

dt
= 𝜇IM

dPM
dt
= –𝜈PM,

where 𝜆M(t) = 𝛽(1 – ̂𝜖(B)) r𝛽(IM+PM)AM
. As in the single field fungicide model, gM is identical

to the function g in the base system, whilst parameter values and 𝜎(t) are also the same as in
our base system [19] (Table 1 and Section A). In this case, the initial conditions at the begin-
ning of a year’s growing season were (S,E, I,R,D,P) = (0.05, 0, 0, 0, 0, rΨΨ̂), with the initial
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condition for P modified by the control measures and where Ψ̂ = pqΨ + (1 – p)Ψ). All IPM
parameters that were derived in Sect 2.4.1 to Sect 2.4.4 are listed in Table 2.

We ran the IPM regime under three possible scenarios, informed by the range of poten-
tial values that our fitting produced for each intervention (selected parameter values for each
regime are given in Table 2). Our assumptions for the parameter values selected for each
regime intensity were as follows. For variety mixtures, the medium intensity regime used the
default value (0.985), and the low and high intensity regimes used the boundary values (0.998
and 0.972, respectively). For delayed sowing, in the low intensity regime we assumed no sow-
ing delay, in the medium intensity regime used the default value of a 7 day delay, and for the
high intensity regime we used the value that optimised yield (3 days delay) (Section B in S1
Text). For residue burial, implementation of the low intensity regime assumed that residue
contributed negligibly (p = 0) to the initial inoculum, the medium intensity regime used the
default values (p = 0.1, q = 0.154), and the high intensity regime assumed that residual burial
contributed the maximal value our fitting allowed (p = 0.777, q = 0). Finally, the implemen-
tation of biocontrol in each regime corresponded directly to the definitions in Sect 2.4.4;
the low intensity regime had one application at T39, the medium intensity regime had one
application at T31 and the high intensity regime had both experimental application times.

2.5.3. Multi-field setting In the multi-field setting, we explored the scenario in which
fields are not isolated, but receive infection from all other fields in the system (Fig 3). In each
simulation, we assumed a fixed proportion 𝜌 of fields were treated using the IPM regime,
while the remaining proportion (1–𝜌) of fields were treated using the fungicide regime. Fields
of each type were pooled into classes with the subscript M and subscript F respectively. To
model this, we used the system of equations

dSF
dt
= gF(AF, t) – 𝜎(t)SF – SF𝜆F(t)

dEF
dt
= SF𝜆F(t) – 𝜎(t)EF – 𝛾EF(1 – 𝜖(C))

dIF
dt
= 𝛾EF(1 – 𝜖(C)) – 𝜇IF (6)

dRF

dt
= 𝜎(t)(SF + EF)

dDF

dt
= 𝜇IF

dPF
dt
= –𝜈PF,

dSM
dt
= gM(AM, t) – 𝜎(t)SM – r𝛽SM𝜆M(t)

dEM
dt
= r𝛽SM𝜆M(t) – 𝜎(t)EM – 𝛾EM(1 – ̂𝜖(B))

dIM
dt
= 𝛾EM(1 – ̂𝜖(B)) – 𝜇IM

dRM

dt
= 𝜎(t)(SM + EM)

dDM

dt
= 𝜇IM

dPM
dt
= –𝜈PM,
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Fig 3. Schematic for the multi-field STB dynamics model. States are divided into fields under the fungicide regime (F sub-
script) and those under the IPM regime (M subscript). As a result of the control strategies, compared to the base model the
two regimes have different rates on the solid transition arrows and on the dotted between-season arrows. We also introduce
transmission between the two field groups.

https://doi.org/10.1371/journal.pcbi.1013352.g003

where 𝜆F(t) = 𝛽(1 – 𝜖(C)) r𝛽(IM+PM)+(IF+PF)AM+AF
and 𝜆M(t) = 𝛽(1 – ̂𝜖(B)) r𝛽(IM+PM)+(IF+PF)AM+AF

. These
definitions of the per-capita force of infection on the fungicide and IPM fields respectively
account for between-field transmission, with the inclusion of IF and PF, and IM and PM in
both transmission terms reflecting the assumption that contact was well-mixed between all
fields in the system.

To account for the proportion of fields of each regime type, the growth terms gF and gM
must be re-defined so that the maximum leaf area in each field type was scaled by (1 – 𝜌) and
𝜌 respectively;

gF(A, t) =
⎧⎪⎪⎨⎪⎪⎩

0 if A = 0
G((1 – 𝜌)Amax –A) otherwise,
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and

gM(A, t) =
⎧⎪⎪⎨⎪⎪⎩

0 if A = 0
G(𝜌Amax –A) otherwise.

We also applied the same scaling to the initial conditions of each field type, so that the
initial condition for this system was

(SF,EF, IF,RF,DF,PF, = ((1 – 𝜌)0.05, 0, 0, 0, 0, (1 – 𝜌)Ψ,
SM,EM, IM,RM,DM,PM) 𝜌0.05, 0, 0, 0, 0,𝜌rΨΨ̂),

where Ψ̂ = (pqΨ + (1 – p)Ψ), as previously.
We compared the relative yields of each field type for 𝜌 ranging between 0.02 and 0.98,

with an increment of 0.02. We output the results for the default IPM parameter set (and under
the base values for the fungicide parameters), as well as exploring the system behaviour as
we varied the intensity of both regimes (fungicide and IPM). Specifically, we considered all
combinations of three different fungicide regime intensities (𝜔 = 0.5, 𝜔 = 0.75, 𝜔 = 1) and
three different IPM regime intensities (low, medium, high), giving a total of nine fungicide-
IPM intensity combinations. The three different IPM regime intensities are defined as in the
previous, single-field scenario.

2.5.4. Environmental sensitivity and reactive fungicide treatments (DSS) To account
for the real-world variation in environmental conditions, we lastly considered outbreaks of
varying severity. We explored this in the single field scenario, implementing this change in
outbreak severity by scaling the transmission rate 𝛽 by a constant [31]. We considered three
sets of environmental conditions: the standard outbreak severity (𝛽 scaled by 1), an outbreak
that produced infection prevalence aligned with typical high-severity years (𝛽 scaled by 1.5)
[22], and an outbreak that produced infection prevalence aligned with typical low-severity
years (𝛽 scaled by 0.8) [22].

In our main analysis we used our model to consider a strict binary of growers who used
fungicide and grower who used IPM without fungicide. Yet, common definitions of IPM
regimes do not fully exclude the use of fungicide. Many of them aim to minimise the use of
fungicide, but recommend its use in the case of spot treatments, or when a particular disease
prevalence is reached. To gain insights on epidemiological and yield outcomes for circum-
stances where chemical (fungicide) and non-chemical (IPM) measures are used together,
we also used our three epidemic severity scenarios to consider the use of reactive fungicide
treatment. Real-world implementations of such a strategy are commonly done using Deci-
sion Support Systems (DSS). One model used in the IPM Decisions Platform [33] recom-
mends the application of fungicide for STB when a prevalence of 10% is reached. We there-
fore explored a range of scenarios including that recommendation; the application of fungi-
cide at 10%, 5% and 1% prevalence, along with a scenario that applied fungicide as part of the
IPM regime at T32 by default. In each of these scenarios, we examined the effect of applying
different doses of fungicide; a full fungicide application (𝜔 = 1), a reduced fungicide appli-
cation (𝜔 = 0.5), and the case of no fungicide treatment (𝜔 = 0, equivalent to the IPM regime
simulations in Sect 2.5.2).

We explored the sensitivity of outcomes to the described environmental and regime
changes for all three of our IPM regime scenarios; low-, medium- and high-intensity.
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3. Results
3.1. Individual IPMmeasures: Sowing date and biocontrol have the

greatest impact on yield
In our initial analysis we modelled four different IPM control measures (residue burial,
delayed sowing, variety mixtures, biocontrol) applied to an isolated field. We were particularly
interested in how their use may impact expected yield and variability in yield (resulting from
parameter uncertainty) over a single growing season.

Residue burial
When implementing residue burial as the sole control measure, under our default param-

eter set (p = 0.1, q = 0.154) it offered little improvement in relative yield or curbing infection
compared to having no infection controls (p = 0). We observed a relative yield of 0.907 versus
0.900 in the no control scenario (Fig 4(a)). We observed a peak infection prevalence of 13.2%
when using the default parameterisation for residue burial versus a peak infection prevalence
of 14.0% in the no control scenario (Fig 4(b)). Under the best-case parameters (p = 0.777, q =
0), our model returned a relative yield of 0.973 and the peak infection prevalence was reduced
to 4.5%.

Delayed sowing
The second IPM control strategy we considered was delayed sowing. A sowing delay of

14 days resulted in the highest possible relative yield of 0.960, and a peak of infection of
4.2% (Fig 4(c)). Although sowing delays of more than 14 days result in a lower peak infec-
tion prevalence, the yield produced by these scenarios was less than that achieved at 14 days.
The lower yield and low is a consequence of the extreme delays to sowing, meaning the plants
do not spend enough time experiencing growth before senescence to reach their maximum
(healthy) tissue area.

The minimum sowing delay of 0 days (equivalent to the no control scenario) gave the low-
est yield from this set of scenarios (0.900). At the intermediate value of a 7-day sowing delay,
the relative yield was 0.946 and the peak infection prevalence was 7.9%.

Variety mixtures
For the variety mixture control measure, the default parameterisation resulted in a

relative yield of 0.908. The best- and worse-case parameterisation increased the relative
yield by 0.007 to 0.915, and decreased the relative yield by 0.007 to 0.901 respectively
(Fig 4(a)).Furthermore, the default parameterisation had a peak infection prevalence of
12.9%. The best-case scenario had a 0.9% lower peak prevalence of 12.0%, while the worst-
case scenario had a 0.9% higher prevalence at its peak of 13.8% (Fig 4(d)).

Biocontrols
The last IPM control strategy we considered was biocontrol. The functional outputs of

Eq (4) compared to Eq (2) indicate that biocontrol has a weaker effect in terms of suppressing
infection than fungicide (Fig F in S1 Text).

We note that since biocontrol could not be parameterised on a range of plausible values
(as discussed in Sect 2.4.4), this was the only IPM measure in our analysis that had discrete
options. A The relative yields for one spray at GS31 and GS39 were 0.943 and 0.925, respec-
tively. The relative yield was higher given two spray treatments at 0.958 (Fig 4(a)). Applying
the biocontrol at only GS31 gave a peak infection prevalence of 8.9%. This contrasted with
applying the biocontrol at only GS39, which gave a peak prevalence of 11.2%. A two spray
application lowered the peak infection prevalence to 6.8% (Fig 4(e)).

Comparison across individual IPM measures
Our considered range for the variety mixture parameter gave less variability in possible

outcomes compared to the variation across the potential scenarios using residue burial or
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Fig 4. Single season outcomes for each IPMmeasure implemented individually. For each control, we show the results for the default parameter set by a dark
green solid line, the boundary or alternative-implementation results in medium green dashed and dotted lines and, where applicable, the continuous range of
possible outcomes the shaded pale green ribbons (we list parameter values and ranges in Table 2). We also show results for the ‘no control’ regime and ‘fungi-
cide’ regime (implemented as described in Sect 2.3). Panel (a) displays the yield at the end of a season under each of the individual IPM control measures. The
legend outside panel (a) contains information relevant to all subfigures (a-e), while the legends contained within panels (b-e) contain information applicable to
each particular IPM measure. Panels (b-e) show the infection prevalence (% infectious leaf area, 100× IM

AM
) with the following sole IPM control measure applied:

(b) residual burial; (c) delayed sowing; (d) variety mixtures; (e) biocontrol.

https://doi.org/10.1371/journal.pcbi.1013352.g004
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delayed sowing. In the default implementation of each of the four IPM control strategies, sow-
ing date and biocontrol were relatively higher (yields of 0.946 and 0.943) whilst variety mix-
ture and residue burial were relatively lower (yields of 0.908 and 0.907). Across all consid-
ered scenarios, we found a maximum relative yield of 0.973 when assuming residue burial was
100% effective at removing inoculum produced on debris and debris being responsible for the
majority of the early-season inoculum.

Comparison with no-control and fungicide regimes
We initially note that the worst-case implementations of residue burial and sowing date

were identical to the no control scenario (Table 2); they therefore produced the same mod-
elled relative yield outcomes. Outside of these two IPM measure parameterisations, all yield
values attained by all individual IPM measures were greater than the yield with no control,
but less than the yield attained under a fungicide regime (Fig 4(a)). In terms of infection
prevalence, all IPM control scenarios resulted in lower infection prevalence than the no con-
trol case, but consistently higher infection prevalence compared to the fungicide control
regime (Fig 4(b) to 4(e)).

3.2. Single field setting: Full IPM regime offers comparable control to a
fungicide regime

We next considered the implications for infection prevalence and yield for three different con-
trol regimes (as if implemented in an isolated field): a ‘no control regime’, a ‘fungicide regime’
(implemented as described in Sect 2.3) and an ‘IPM regime’ (with simultaneous implemen-
tation of four IPM control measures; residue burial, sowing delay, variety mixtures, and bio-
controls). To account for varied grower implementation and variation in parameter results, we
also considered three different intensities of IPM regime (Table 2).

For relative yield, the estimate under a fungicide regime of 0.980 was higher than the
relative yield estimates using either the low- or medium-intensity IPM regimes (relative
yields of 0.925 and 0.972), while both outperformed the no control regime (relative yield of
0.900) (Fig 5(a)). The high-intensity IPM regime, however, produced a higher yield (0.992)
than the fungicide regime.

In terms of infection burden, the medium-intensity IPM regime returned a slightly higher
peak infection prevalence (3.81%) than the fungicide regime (3.43%). The low- and high-
intensity regimes had peak infection prevalences of 11.1% and 1.0%, respectively. All four
control regimes (the three different IPM regimes, and one fungicide regime) outperformed
the no control scenario, which had a peak infection prevalence of 14.0% (Fig 5(b) and Fig G
in S1 Text).

3.3. Multi-field setting: Presence of IPM users can improve yield outcomes
for all growers

The final component of our analysis involved looking at the outcomes in a system with mul-
tiple fields. The multi-field setup allowed for transmission of infection between fields. We
examined the effects on the system dynamics of having a varied proportion of fields use an
IPM control regime (𝜌) and the remainder (1 – 𝜌) adopting a fungicide control regime.

We first explore the ‘default’ scenario (medium-intensity IPM regimes and fungicide
regimes with 𝜔 = 1) (top centre panel of Fig 6). For all values of 𝜌, the IPM regime had a lower
relative yield than the fungicide regime. The marginal advantage of fungicide over IPM also
increased as 𝜌 increased, although the difference between the two never exceeded 0.005.

At our initial value of 𝜌 = 0.02, the IPM and fungicide fields had approximate relative yields
of 0.980 and 0.976 respectively. As 𝜌 increases from 0.02 to 0.42, increasing the proportion
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Fig 5. Single season outcomes under three different control regimes. Our three control regimes were ‘no control’,
‘fungicide’, and ‘IPM’ (as described in Sect 2.4). (a) Relative yield at the end of a season under each regime; (b) Infection
prevalence (% leaf area infected) over time under each regime.

https://doi.org/10.1371/journal.pcbi.1013352.g005

of farms using IPM increased the relative yield for both field types, though this increase is
extremely small (below the third significant figure in both groups). In contrast, relative yields
decreased from 𝜌 = 0.44 onward for the IPM fields and from 𝜌 = 0.48 onward for the fungicide
fields (Fig 6). This decrease was more substantial at 𝜌 = 0.98 (though we note that this is still a
difference of less than 0.01 of relative yield), with the final yields dropping to 0.973 and 0.978
for the IPM and fungicide fields, respectively.

We next inspect the relative yield obtained with different intensities of the two control
regimes. At a low level of IPM intensity, and for all three levels of fungicide performance (𝜔
= 0.5, 0.75, 1), increasing 𝜌 decreased relative yields under either form of control (Fig 6, left
column). However, a higher intensity fungicide regime improved relative yields for both field
types, particularly at lower values of 𝜌. Increasing 𝜔 from 0.5 to 1 gave estimated ranges of rel-
ative yield from the IPM fields between 0.926-0.950 (when 𝜔 = 0.5) and 0.927-0.975 (when
𝜔 = 1), and estimated ranges of relative yield from the fungicide fields between 0.930-0.953
(when 𝜔 = 0.5) to 0.937-0.979 (when 𝜔 = 1).

For the medium-intensity IPM regime, outcomes depended greatly on the fungicide treat-
ment intensity. In most of these scenarios the fungicide fields saw higher relative yields than
the IPM fields. The only exception was in the case of 𝜔 = 0.5 (Fig 6, middle column, bottom
row), where increasing 𝜌 resulted in improved relative yields for both field types, with the
relative yield for IPM fields surpassing that of fungicide fields at 𝜌 = 0.8. In the 𝜔 = 0.75 sce-
nario (Fig 6, middle column, middle row), increasing rho generally increased relative yield
for both field types, with the exception of 𝜌 ≥ 0.94 when fungicide fields saw a decline in rel-
ative yields. This had a similar drop-off behaviour as the 𝜔 = 1 scenario (the ‘default’ scenario
explored earlier; Fig 6, middle column, top row) , though in that case the decline began at
lower values of 𝜌.

With a high IPM regime intensity, relative yields increased as 𝜌 increased (Fig 6, right col-
umn). However, as fungicide intensity (𝜔) increased, the outcomes changed from IPM fields
consistently outperforming fungicide fields (𝜔 = 0.5, Fig 6, right column, bottom panel), to
almost identical relative yields for both farm types (𝜔 = 0.75, Fig 6, right column, middle
panel), to higher relative yields in the fungicide fields for all values of 𝜌 ≤ 0.76.
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Fig 6. Single season yield outcomes in the multi-field setting. We display end-of-season relative yield for an individual field, within a
multi-field system. The parameter 𝜌 corresponds to the proportion of fields using the IPM control regime, with the remaining proportion
of fields (1 – 𝜌) using a fungicide control regime. We present relative yield outcomes versus 𝜌 for three different intensities of IPM control
regime and three different intensities of fungicide control regime. Low, medium, and high intensity IPM regimes are defined in Table 2.
Low, medium, and high intensity fungicide regimes are defined by𝜔 = 0.5,𝜔 = 0.75 and𝜔 = 1.

https://doi.org/10.1371/journal.pcbi.1013352.g006

3.4. Environmental sensitivity and reactive fungicide treatments (DSS):
Reactive use of fungicide offers little improvement in
high-effectiveness IPM regimes, even under high-severity outbreaks

We explored the environmental sensitivity of outcomes by considering simulations with three
different outbreak severities; scaling 𝛽 by 0.8, 1 and 1.5. In these simulations we also explored
the controlled use of fungicide alongside an IPM regime, with fungicide being applied when
certain conditions are met: 10%, 5% and 1% infection prevalence, and application at T32.
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As expected, more severe outbreaks result in worse relative yield outcomes overall, with
values ranging from 0.797-0.993 (Fig H in S1 Text). Less severe outbreaks returned better rel-
ative yield outcomes, with values ranging from 0.960-0.997. The early application of fungicide
(at a lower prevalence threshold) always produced higher estimated relative yields than a later
application of fungicide (at a higher prevalence threshold). Under all three outbreak severi-
ties, having fungicide applied at T32 gave the highest relative yield outcomes and lowest peak
prevalence. Fungicide application at 10% gave the lowest overall relative yields and highest
peak prevalences.

In a low-severity outbreak scenario, some of the fungicide application thresholds were not
met (10% prevalence was never achieved, while 5% prevalence was never achieved for the
medium-intensity IPM regime, and 1% prevalence was never achieved for the high-intensity
IPM regime) (Fig H in S1 Text). However, even in the cases where the fungicide application
threshold was met and fungicide was applied, the application of greater quantities of fungi-
cide (𝜔 = 1 compared to 𝜔 = 0, 0.5) resulted in little improvement in relative yield. By contrast,
in the high-severity outbreak the fungicide application thresholds were often met. When the
fungicide treatment was applied it led to substantial improvements in relative yield. For all
three outbreak severity conditions, we found the largest improvement in relative yield gained
by the use of reactive fungicide treatment under the low-intensity IPM regime and with appli-
cation of fungicide at T32. In the low-severity outbreak this maximal improvement corre-
sponded to an increase from a relative yield of 0.960 when 𝜔 = 0, to a relative yield of 0.982
when 𝜔 = 1. In the high-severity outbreak this maximal improvement in relative yield was an
increase from 0.797 to 0.9043 (Fig H in S1 Text).

4. Discussion
4.1. Findings
With greater constraints on the use of fungicide, the effectiveness of IPM as a control for
arable diseases has become increasingly relevant. Previous work has identified IPM mea-
sures that are effective at controlling STB and explored their implementation in practice [6,34,
36,42]. By incorporating these existing data into an epidemiological model, we explored the
potential outcomes of these IPM measures on the overall disease system. We found that indi-
vidual IPM measures offered differing levels of control, but that an ‘IPM regime’ consisting
of the simultaneous implementation of multiple methods offered comparable disease con-
trol and yield to a standard fungicide regime. Furthermore, when IPM was implemented at a
reasonable level of effectiveness (default/medium-intensity or better), or when fungicide was
below its optimal effectiveness (𝜔 ≤ 0.75) the presence of IPM-using fields benefitted all grow-
ers in a multi-field system. An additional finding was that, in general, improved data on dif-
ferent IPM measures is critical to the ability to judge its effectiveness as a regime, and which
measures to deploy concurrently.

For the use of single IPM controls, there was a striking difference between the potentially
high effectiveness of sowing date and biocontrols, and the potentially lower effectiveness of
residue burial and variety mixtures. Our results suggest that when implemented indepen-
dently of other IPM measures, delayed sowing has the potential to reduce the severity of STB
outbreaks, with similar levels of control offered by biocontrols. These findings are corrob-
orated by the AHDB review (Fig 2, [11]) that assigned both of these measures an effective-
ness score of 3/5 (with 4/5 being the maximum effectiveness score given to any IPM control
of STB). In addition, while there is no field data to corroborate these results for biocontrol,
our findings for delayed sowing corroborate experimental studies [9]. On the other hand,
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whereas the study by [9] found that the decrease in disease severity had no effect on yield, our
modelling results found an increased yield with decreasing disease severity.

Our model findings for delayed sowing and biocontrol contrast with those for the imple-
mentation of residue burial and variety mixtures, which offered little control over the size of
the final outbreak. This finding for variety mixtures is in contrast to the AHDB review (Fig 2,
[11]), which assigns variety mixtures the maximum effectiveness given to a non-fungicide
control measure of 4/5. We note that variety mixtures had the most extensive source of
parameterisation data, meaning the parameter value considered was the narrowest of the four
individual control measures [37]. However, our findings for residue burial are in agreement
with the findings of [46], [58] and the AHDB review data (Fig 2, [11]). Residue burial pro-
viding little control on the amount of infection during an outbreak appears to result from the
fact that even when the burial of debris is very effective at eliminating inoculum from this
source (q = 0.154 in our default parameter set), larger-scale sources of primary inoculum are
likely to play a bigger role in initiating an outbreak [58]. Furthermore, the amount of local
initial inoculum is unlikely to meaningfully limit infection development, as the presence of
larger-scale sources of inoculum during the emergence of the first leaf mean that its infection
is likely to occur almost immediately upon its emergence, regardless of the presence of early
within-field inoculum [46]. It is important to note that the effectiveness of residue removal
varies a lot depending on how important debris is as a contributor of inoculum. Although
its contribution is believed to be low [46,55,58], it is known to be extant [14,32], and has not
been well-quantified. We therefore encourage the collection of additional empirical data to
help quantify this process.

In the single field setting, we found that IPM was able to serve as an effective measure of
control against STB, in agreement with previous theoretical and experimental findings about
STB [9,23,37] and other diseases [23,39,61].

When considering the multi-field setting, we found that increasing the presence of IPM
regimes within the system can offer increased yields to all growers. This was the case if the
IPM regimes are sufficiently effective; that is, our definitions of medium or high inten-
sity (Fig 6). We hypothesise these yield benefits arise when more growers use IPM control
because, while the fungicide regime offers protection only to the target field, the IPM regime
offers control to other fields in the system by several mechanisms: (i) reducing the force of
infection it emits due to the use of variety mixtures (r𝛽); (ii) reducing the initial infection due
to debris removal; (iii) reduced overall ascospore exposure, and; (iv) the asynchronous timing
of initial infections between the two farm types.

We also identified circumstances (the medium-intensity IPM regime, with 𝜔 = 0.75 or 1)
where if the proportion of fields using IPM was already at a high level, then further increas-
ing the proportion of farms who use IPM could result in a decrease in yield. This appears to
occur due to the fact that under these circumstances, the proportion of farms using fungi-
cide becomes too small to realise the benefits that the fungicide control provides; that is, to
reduce infection in those fields, which occurs just prior to the emergence of the IPM fields.
In other words, having few farms using fungicide in the scenarios where fungicide is very
effective by comparison to IPM reduces the possible benefit this control offers to the system,
while also disrupting the ‘asynchronicity’ effect, as the majority of infection emerges with the
delayed-sown IPM fields.

Our modelling approach is similar to that taken in several other studies in considering
a mechanistic, S-I system of equations where multiple strategies are present, and infection
is spread between all fields in the system [43,47]. Although we were not able to identify any
studies that have previously implemented this type of method to compare an IPM-only strat-
egy with a fungicide-only strategy, [47] investigated the choice between resistant and tolerant
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varieties, [43] considered the use of clean planting material in the growing of cassava, and [51]
considered the optimisation of fungicide deployment to reduce their use to prioritised scenar-
ios, without compromising disease control. All of these would be considered to be IPM mea-
sures. [47] found that increasing the proportion of growers using resistant varieties decreased
the infection level in both users and non-users of the control. We observed a similar phe-
nomenon in our system; an increasing proportion of IPM growers offers increased benefits to
other farmers in the system, in addition to the users themselves. However, the opposite trend
was present in their results for the use of tolerant varieties; in this case, the increased presence
of tolerant varieties resulted in higher overall infection presence for control users. This was
because tolerant varieties still harbour the pathogen, in contrast to resistant varieties which do
not.

The previously mentioned studies focus primarily on grower behaviour dynamics in the
system. We were able to identify few similar studies that have studied purely epidemiologi-
cal modelling outcomes in the context of IPM. The system on which our model was based has
been used to investigate the epidemiological outcomes of different control strategies for STB.
While much of this work investigates the development of resistant strains of infection under
various regimes of fungicide control [25,30,31,63], one study by [62] does consider the imple-
mentation of an IPM strategy. They found that disease resistant cultivars were able to decrease
infection and increase yield, and we found improvements in the same outputs under the use
of an IPM regime; although our IPM regime did not include resistant varieties, the IPM mea-
sure considered in this study. Nonetheless, our approach differs to theirs in that we found
IPM to be an effective control in the absence of fungicide, while [62] showed that an IPM
measure can be used to reduce the quantity of fungicide which is needed for control. Other
notable studies that take a modelling approach to the use of IPM are those by Tang et al. [59–
61]. Similarly to our work, they found that sufficiently effective or well-implemented IPM
regimes were capable of effectively suppressing pest population. These studies differ from
ours in methodology in a number of ways however: in their consideration of pests and ours of
infectious disease; their approach being that of dynamical system analysis and ours of numer-
ical solutions; and theirs of considering an IPM regime which includes the use of chemical
pesticide, while we primarily consider the use of IPM and fungicide in the absence of one
another.

4.2. Limitations
The model we have presented is necessarily a simplified representation of reality. It is there-
fore important that we consider the modelling assumptions made and their potential limi-
tations. We elaborate here on four items. These are the implications of considering IPM and
fungicide to be two completely distinct regimes, the exclusion of certain IPM measures from
our modelling framework, the potential compounding effect of concurrent implementation
of multiple IPM controls, and the variability in IPM parameter ranges used in our model
construction.

First, to make the comparison between the fungicide and IPM regimes more straightfor-
ward, we excluded any use of fungicide from our IPM regime, and vice versa. Although we
recognise this as a simplifying assumption, it allowed us to more clearly contrast different
IPM options with a common control method that did not use IPM. We did however explore
the use of reactive fungicide treatment, as employed in Decision Support Systems (DSS) in
Sect 3.4. To further limit the overlap between these two regimes, as addressed in Sect 2.4.3, we
also omit the explicit consideration of resistant varieties.
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Second, we chose to include only a subset of the IPM measures identified in the AHDB
review (Fig 2, [11]) as having the potential to control STB of wheat, in our model. This was
done due to the unsuitability of including certain measures in our model. The omitted IPM
measures were field rotation, seed rate, and nutrient management. We omitted field rotation
because our model contains a population-average for growers using IPM or fungicide, rather
than characterising individual fields that would be better suited for studying field rotation.
We omitted seed rate and nutrient management as these measures would affect plant popula-
tion/leaf density in a way that cannot be readily implemented into our current model. Given
that each of these measures (field rotation, seed rate, and nutrient management) have been
identified as reducing overall infection in the system (at varying levels of effectiveness), it
seems likely that were these additional control methods included in the system, they would
offer at least as much suppression of infection as our present model.

For our implementation of delayed sowing we also did not explicitly account for a reduced
yield due to failures in establishment. Although it is acknowledged that later sowing reduces
the rate of successful seed establishment, this is typically accounted for by increasing the
seed rate sown [21,29,38]. That being said, delayed sowing can still implicitly result in yield
reductions within our model. Based on the date the crop is sown, some degree-day penalty
is incurred to upper canopy emergence, ultimately reducing the growth period of the plant
before senescence (Fig D in S1 Text).

Third, we did not have sufficient data to account for any compounding effect that these
IPM measures would have when acting in combination. Nonetheless, we made subjective
considerations for the implementation of each IPM measure when used in conjunction with
other IPM measures. For example, we assumed that when sowing was delayed, the time at
which biocontrol was applied shifted by the corresponding number of degree days. We also
assumed that the reduction in inoculum due to sowing delay would act on both the pqΨ com-
ponent, and the (1 – p)Ψ component of the initial condition. In other words, we assumed that
late sowing would affect exposure to inoculum from both debris and other sources.

Lastly, we note that there is a high amount of variability in the certainty of some IPM
parameters in our model construction. In the case of debris burial, although the relative con-
tribution of local debris to the initial pool of inoculum has been qualitatively noted [57,58],
it has not been quantified in a way that allowed it to be integrated into our model. [58] do
numerically compute the reduction in disease severity early in an outbreak, attributable to
chopping or removing debris. However, we deemed these data as not suitable for our pur-
poses as these methods of debris control may have different impacts compared to burial.
Additionally, the experimental data in [58] was taken only in the lower canopy and at time-
points outside of our model timeframe. We encourage the collection of further data to
improve our understanding of the relative contributions of sources of inoculum over time
during the initial stages of an STB outbreak. In the case of biocontrols, there was almost no
experimental literature that we could identify that quantified the reduction in disease sever-
ity due to the use of biocontrol on STB on a field-scale, at multiple timepoints, although many
have done this in-vitro [10,23], or in-vivo on an individual plant level [23,40,41], at a small
number of timepoints. [49] and [42] are the only studies we have identified at the time of
writing that have quantified the field-level impact of a biocontrol on STB severity. These stud-
ies are themselves limited as both assessed disease severity at only one timepoint, which made
them unsuitable for fitting the three necessary parameters in our model. To accurately pre-
dict their ability to control disease when employed by growers in practice, we advocate for
the need for collection of experimental data on the effectiveness of biocontrol measures on a
field-scale.
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We also acknowledge that the scope of our study has focused on biological and epidemi-
ological outcomes. We recognise that reducing the outcomes only to yield excludes several
key factors that can affect growers’ decisions in practice. Though a more extensive consid-
eration of human and market factors is beyond the scope of this study, exploration of these
factors warrants attention in future work. Such factors include the cost of the IPM and fungi-
cide control strategies (both direct and indirect), and the market price of the different yields
(non-fungicide treated wheat may be sold as organic and thus for a higher price).

4.3. Further work
In the present work we considered a purely epidemiological model of the disease system. We
have yet to account for any social or behavioural factors that would influence the choice of
control adopted. Across the literature, it is acknowledged that profitability (of which one may
consider cost, yield, time, and ease of implementation) is a major factor in growers’ choice of
control using IPM, or other methods [11,20,56]. The AHDB review data used in the present
study (Fig 2, [11]) also acknowledges the varying ease of implementation and cost that char-
acterises different IPM measures. Deepening our understanding of adoption of plant disease
controls and grower behaviour towards disease management is an inherently interdisciplinary
challenge. There is consequently an urgent need to pursue interdisciplinary approaches to
understand the epidemiological and behavioural factors behind such decision making.

In light of this, future work will focus on combining this epidemiological model with a
behavioural model for growers intentions towards disease control. Development of a con-
joined epidemiological-behavioural model will enable us to extend the analysis beyond a sin-
gle growing season, as the initial conditions for subsequent seasons will be defined by both
infection prevalence and the perceived success of each control strategy by growers in the pre-
vious season. This work would be in line with previous literature considering the interactions
between grower behaviour and the control of a disease system [43,45,47].

Moreover, considering scenarios over multiple growing seasons will enable assessment
of the potential implications on estimated yield under the different IPM measures of other
important processes occurring over multiple years (such as pathogen resistance to chemical
interventions and climate change).

For many crops, chemical control is likely to be a necessary part of crop protection for the
foreseeable future [50]. However, the intensive use of chemical control measures has led to
challenges in the resistance of pathogens to chemical controls. The implementation of resis-
tance management strategies has become paramount in prolonging the effectiveness and use-
fulness of chemical controls to growers [17,27]. IPM can contribute to chemical control resis-
tance management by limiting the exposure time of the pathogen population to the chemical
treatment and by keeping to a minimum the chemical treatment input required for disease
control. For example, experimental observations are corroborated by modelling studies sug-
gesting that cultural control measures that delay inoculum arrival can contribute to resistance
management [13,18]. With our model framework, considering time horizons spanning mul-
tiple growing seasons offers scope for explicitly modelling how the joint use of chemical con-
trols and multiple IPM measures can impact the evolutionary processes associated with Z.
tritici resistance to chemical controls.

With sowing date decisions having the biggest impact on estimated yield in our single
growing season scenarios, a notable area for further analysis will be the implications of cli-
mate change on the trade-off between late sowing to avoid disease and early sowing to max-
imise yield. Changes in climate are likely to affect the timing of certain life stages, which
would in turn affect considerations around optimal sowing date [54]. High temperatures and
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drought are likely to be two key climactic factors that would affect the development of wheat
and the transmission of pathogens [8]. [28] note that climate change is likely to increase the
pathogen load of diseases that are residue-borne; shifts in residue-borne pathogen load may
affect the control strategy of residue burial, either by increasing its importance or reducing its
effectiveness. Those authors also summarise several impacts of climate change on other foliar
diseases of wheat, which may also prove to be applicable to STB, including an expanded over-
wintering area of wheat stem rust. Finally, although DSS is not considered as a part of the core
IPM regimes in the present study, it is noted by [66] that DSS, including forecasting and early
warning systems, are likely to become more crucial for growers and decision-makers as the
frequency of climate phenomena increases.

4.4. Conclusion
In this study, we have parameterised a novel model of STB transmission, fungicide control
and IPM measures to investigate the potential impact on yield of different control strategies.
We found that the presence of fields using IPM may offer indirect control to all growers in the
system. We also identified where detailed empirical studies will help reduce uncertainty in
model parameterisation and improve the robustness of model projections; specifically, quan-
tifying contribution of crop debris to inoculum and the collection of experimental data on the
effectiveness of biocontrol measures on a field-scale. Overall, the results suggest that wheat
growers can consider IPM as a viable alternative to a conventional fungicide regime whilst
maintaining yield, particularly as the use of chemical fungicides comes under increasingly
tighter constraints. As growers not participating in IPM control could indirectly benefit from
its presence, this has interesting implications for incentivisation of IPM uptake, as we see a
free-rider effect that has been observed in other cases of crop disease management [45,47,48].
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