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Abstract

We derive and simulate a mathematical model for mechanotransduction related to

the Rho GTPase signalling pathway. The model addresses the bidirectional coupling
between signalling processes and cell mechanics. A numerical method based on bulk-
surface finite elements is proposed for the approximation of the coupled system of non-
linear reaction-diffusion equations, defined inside the cell and on the cell membrane,
and the equations of elasticity. Our simulation results illustrate novel emergent features
such as the strong dependence of the dynamics on cell shape, a threshold-like response
to changes in substrate stiffness, and the fact that coupling mechanics and signalling
can lead to the robustness of cell deformation to larger changes in substrate stiffness,
ensuring mechanical homeostasis in agreement with experiments.

Author summary

Mechanotransduction, a process by which cells convert mechanical stimuli into chemical
signals, plays a crucial role in cell functions. To better understand this phenomenon, we
need to analyse how signalling processes and cell mechanics work together. For this pur-
pose we derive and simulate a mathematical model of mechanotransduction related to
the Rho GTPase signalling pathways, central to almost all fundamental cellular processes
including cell polarity, movement, division, and cytoskeleton reorganization. The model
introduces a two-way coupling between the signalling processes and cell mechanics. We
use a numerical method based on bulk-surface finite elements to solve model equations
numerically. Our simulation results illustrate novel emergent features such as a strong
dependence of the dynamics on cell shape, a threshold-like response to changes in sub-
strate stiffness, and the fact that the two-way coupling between mechanics and signalling
can lead to the robustness of cell deformation to larger changes in substrate stiffness,
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ensuring mechanical homeostasis in agreement with experiments. These interesting
insights help us unravel the underlying mechanisms in mechanotransduction.

Introduction

Intercellular signalling processes constitute the mechanisms through which cells communi-
cate with and respond to their environment. Hence, signalling pathways are important in all
physiological activities of the cell, such as cell division, cell movement, the immune response,
and tissue development [1]. Aberrant cell signalling can often result in the development of
diseases [2]. It is therefore important to understand signalling phenomena. Recent studies
have found that alongside biochemical reactions, mechanics plays an important role in many
signalling pathways [3,4]. This phenomena is referred to as mechanotransduction which,
broadly speaking, is any process by which cells convert mechanical stimuli into chemical
signals [5,6].

A large number of recent works study the role of Rho GTPases, primarily RhoA, in
mechanotransduction in relation to different mechanical cues: extracellular matrix (ECM)
stiffness and viscoelasticity, tensile stress (stretching), compressive stress (compression), and
shear stress (fluid flow shear), see e.g. [7,8] for a review. Moreover, the coupling between bio-
chemistry and mechanics is bidirectional, i.e., chemical signals can also affect the mechani-
cal properties of the cell, such as molecules like focal adhesion kinases (FAKs) that influence
F-actin dynamics and therefore the stiffness of the cell [6,9-11].

The formidable complexity of the phenomena involved in mechanotransduction means
that much about how the mechanics and the chemical processes of the cell communicate is
not yet understood and mathematical modelling is crucial in this regard. Whilst the mathe-
matical modelling of biochemical cell signalling processes is fairly well developed, e.g., [12-
14], the study of mechanotransduction is comparatively more recent, see [15] for a review.
Typically the modelling involves solving coupled systems of partial differential equations
(PDEs) with reaction-diffusion equations modelling the biochemistry coupled to equations
based on (visco)elastic constitutive laws for the mechanics. The progress of such efforts has
been rapid, ranging from early models employing simplifications such as one-dimensional
geometries [16,17] to full three-dimensional simulations [18] using advanced computational
techniques. Alongside continuum models, a number of recent works have employed dis-
crete approaches such as spring-based models [19], or models that employ a Potts formal-
ism [20-22]. Despite this rapid progress, the existing models typically make major simplifying
assumptions such as assuming a constant stiffness of the ECM [18,23,24], as well as neglecting
the two-way coupling in which signalling pathways affect the mechanics alongside mechanical
cues inducing signalling processes.

In the present work, we seek to develop, analyse and simulate a model for mechanotrans-
duction through the Rho GTPase signalling pathway which allows for a two-way coupling
between the mechanics and the biochemistry. The dynamics of the signalling molecules FAK
and RhoA are modelled using reaction-diffusion equations, where the ECM stiffness and elas-
tic stresses of the cell activate FAK. Under simplifying assumptions, i.e., assuming no depen-
dence on the cell elastic stresses, the biochemical component of the model is derived as a
reduction of the model proposed in [18]. For the cell's mechanical properties, we assume an
elastic constitutive relationship [25] and allow the material properties to depend on the con-
centrations of the signalling molecules. We propose a numerical method based on bulk and
surface finite elements [26] for the approximation of the model equations.
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The results presented here show that our model can reproduce the qualitative results
of [18], i.e., the mass of activated FAK and RhoA depend on ECM stiftness, with the depen-
dence captured by a Hill function. On the inclusion of the two-way coupling between sig-
nalling processes and cell mechanics, we observe novel dynamics, such as the conservation
of cell deformation under different values of the ECM stiffness, which underlines the impor-
tance of including these more complex models of the mechanics. The role of mechanotrans-
duction in homeostasis in biological processes has been discussed in a number of biological
help elucidate potential mechanisms that underlay the mechanical homeostasis. Homeosta-
sis of cell deformation, as observed in simulations of our model, has been observed experi-
mentally [28]. Our focus is on elastic constitutive assumptions for the mechanics of the cell
to enhance clarity of exposition and to avoid unnecessary technical complexities. This can be
extended to allow for other constitutive laws such as viscoelasticity of the cell and/or of the
ECM as has been done elsewhere in the literature in simpler settings in 1D [16,29]. This work
thus serves as a starting point in modelling and analysis of the two-way coupling between
mechanics and chemistry.

The paper is organised as follows. We first derive the reduced model for the Rho GTPase
signalling pathway, based on the model proposed in [18]. Next, the mathematical model for
the mechanotransduction related to the Rho GTPase signalling pathway is derived. Simula-
tions of the model are presented in the section after. We conclude the paper with a discussion
of the results. Details on the numerical method applied to simulate the model equations are
given in S1 Appendix, Sect A.3.

Methods
A mathematical model for the Rho GTPase signalling pathway

One of the main signaling pathways involved in mechanostranduction is the Rho GTPase
pathway, responsible for many important cellular processes, e.g. motility, cell adhesion, polar-
isation, differentiation, remodelling of the exoskeleton, and the ECM [8]. The RhoA signalling
pathway is activated through the activation of FAK in response to tension on integrins, which
depends on ECM stiffness [1,11], see Fig 1 for an overview.

Our model for mechanotransduction related to the RhoA-mediated intercellular signalling
pathway is based on models developed in [18] and [23,24]. To incorporate the interactions
between mechanics and signalling processes, we extend the model proposed in [18] by con-
sidering elastic deformations of the cell. Activated FAK is downstream in the RhoA GTPase
signalling pathway and hence the activation of RhoA is a function of activated FAK. The acti-
vation of RhoA results in ECM remodelling and deposition of new fibres, increasing ECM
stiffness and hence activation of FAK [30]. FAK is expressed in the cytoplasm of the cell and is
activated on the cell membrane. To simplify the model and focus only on the most significant
aspects from the perspective of qualitative behaviour, we reduce the model for the RhoA sig-
nalling pathway of [18] that includes the dynamics of FAK, RhoA, ROCK, Myo, LIMK, mDia,
Cofilin, F-actin and YAP/TAZ by considering only the dynamics of FAK and activated RhoA.
Such a reduction is possible since other molecules considered in the full model of [18] do
not influence the dynamics of FAK and RhoA. Our rationale behind considering a simplified
model is to more clearly elucidate the emergent features that arise when mechanics is cou-
pled with signalling. It is not challenging to incorporate other biochemical species or different
reaction kinetics within the framework we propose.

We let Y C R? denote the cytoplasm and I = Y the cell membrane. We denote by ¢, and
@, the concentrations of inactive and active FAK, and by p, the concentration of active RhoA.
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Cytoplasmic elastic stress

Cytoplasmic stiffness

ECM stiffness

Fig 1. A sketch of the model interactions. The diagram shows a simplified overview of the interactions in the mod-
els presented in this paper, where the blue ellipses represent the signalling molecules and the green rectangles the
mechanical signals. The black arrows represent the reactions of the biochemical model in Eq (1) based on [18], i.e.
ECM stiffness activates FAK on the cell membrane which activates RhoA. The grey arrows represent the coupling
between chemistry and mechanics introduced in this work and described by Egs (3)-(6), i.e. activated RhoA affects
the cytoplasmic elastic stress which activates FAK and the cytoplasmic stiffness is a function of activated FAK.

https://doi.org/10.1371/journal.pchi.1013305.9g001

We recall that FAK, both active and inactive, is assumed to be cytoplasm resident and acti-
vated RhoA membrane resident. Our reduced model for the biochemistry consists of the
following system of reaction-diffusion equations

Oipa - D1Apa = kipa inY, t>0,
01pa — Dy AP, = k1 inY, t>0,
E
DV, -v=-nkypg - nk;—— I, t>0,
1Va v =-nkyps ”3C+E¢d on
1
D2v¢u V= nrk2¢d + nrk?a C+ E¢d onI, t>0, ( )
M
010a — D3Arpa = —kapa + nrks ((ya)" + 1) (TYT - %) onl, t>0,

$(0.0)=$0(x), $u(0.X)=$(x) inY,  p.(0.x)=pl(x) onT,

where Ar is the Laplace Beltrami operator modelling diffusion on the surface T}, see e.g. [26],
n, = |Y|/|T| is the ratio between the volume of the cytoplasm and the area of the cell mem-
brane, k;, k4 are deactivation and k;, ks, ks are activation constants, E is the substrate stiffness,
Dy, Dy, D; are the diffusion constants, C, n and y are positive constants, ¢J(x), ¢2(x) and
02 (x) are bounded nonnegative functions, and % - %
RhoA () on the surface with M, = [, pidx + .. p9ds the total mass of RhoA, a quantity con-
served in the full model of [18] and assumed to be conserved here. Simulations illustrating
the agreement between results obtained using the reduced model (1) with those of [18] for the

full model are presented in S1 Appendix, Sect A.1.

is an approximation for deactivated

Mathematical model for mechanotransduction

As a starting point for the mechanics, we consider small deformations and hence, assume a
linear elastic constitutive law for the mechanics of the cell. Although viscoelastic or poroe-
lastic behaviour of cells is proposed in many works [31,32], linear elasticity is often chosen
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for modelling simplicity and it can yield results consistent with experimental observations
[33-35]. Our focus is modelling a bidirectional coupling between cell stiffness and signalling
processes, a minimal model assuming a linear elastic law for the cell mechanics is therefore
sufficient for this work, as it avoids unnecessary complications that arise from the consider-
ation of viscous stresses. To demonstrate that our results remain relevant under more com-
plex assumptions, a linear viscoelastic model is presented and simulated in Sect A.7 in S1
Appendix. We note that for the corresponding simulation results, the qualitative behaviour in
both cases, linear elastic and linear viscoelastic, is the same.

An important simplification that arises under the small deformations assumption inherent
in this work is that the dynamics of the signalling molecules may be effectively considered on
the reference configuration with no additional terms arising due to the deformation. Models
where the assumption of small deformations is relaxed will be addressed in future studies.

The cell nucleus plays an important role in governing the mechanical properties of the
cell [36,37], whilst we predominantly neglect this in the present work, in S1 Appendix, Sect
A.5, we have included simulations of the model with a ‘passive’ nucleus that is considered to
be more rigid than the cytoplasm.

It has been shown that the stiffness of the cell increases as F-actin increases [18]. F-actin
is downstream from activated FAK and, as apparent from the results in [18], we can use acti-
vated FAK as a proxy for F-actin. Therefore, we assume that the Young’s modulus E, of the cell
is a function of the activated FAK concentration. Based on experimental observations [38]
and numerical simulations [18], we propose

Ec=Ec(¢a) =k7(1+ (kspa)’) )
where k7, kg and p are non-negative constants. Then for elastic deformations of the cell, we
have

-V-o(u)=0 inY, (3)
with

o(u) = A(¢a) (V- )] +2u(¢a) (Vu + (Vu)")
and the Lame constants A and u are given by

_ Ec(¢a)vc _
Aa) = m u(pa) =

Ec(¢a)
2(1+v,.)’

where v, is the Poisson ratio of the cell.

Activated RhoA regulates remodellling of stress fibres inside the cell and stabilisation of
actin filaments [39-41,43]. This mechanism is modelled by the stress on the boundary being
dependent on activated RhoA concentration

o(u)v=ksP(p,v) onT, (4)

where kg is a positive constant, [ is a projection on the space orthogonal to the space of rigid
deformations, i.e. rotations and translations. Alongside models where the cell is allowed to
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deform freely, to model a typical experimental set-up where cells are placed on a rigid sub-
strate, we consider

u-v=0, I (o(u)v)=0 on Iy, (5)

together with condition Eq (4) on I' \ Ty, where IT; (w) = w — (w - v)v denotes the tangential
projection of vector w, and hence I (o (u)v) is the shear stress and Eq (5) specifies a shear
stress free condition. In this work, we choose Ty =T' N {x € R*|x; = 0} to simulate a rigid
substrate.

It has been shown that an increased contractility is associated with increased activated
FAK, see e.g. [39]. Thus we assume that FAK is activated by the stress of the cell and as a proxy
for the cytosolic stress we use the positive part of trace of the Cauchy stress tensor tr(o).,
where tr(o) is the first stress invariant and the positive part reflects the fact that extension
rather than compression causes the activation of FAK. This modifies the system in Eq (1) to

at¢d - D1A¢d = k1¢u - Cltr(0)+¢d inY, t>0,
at¢a - D2A¢a = —k1¢u + Cltr(a)+¢d inY, t>0,
E
D\V¢y-v=-nkypg-nks CiE E¢d onT, >0,
E (6)
D2V¢a V= I’lrk2¢d + l’lrk3 m¢d onl, t>0,
M
8:pa ~ DsArpa = ~kspa + nks((ya)" + 1)(ﬁ - %) onT, t>0,

$i(0.0)=¢0(x), $u(0.X)=$(x) inY,  p.(0.x)=pl(x) onT,

where v, = max{v, 0}. We can prove existence, uniqueness and boundedness of solutions to
the system in Eqs (3)-(6) which we intend to report on elsewhere.

Initial and boundary conditions and parametrization

Using the model in Eqs (3)-(6) we investigate different scenarios demonstrating the interac-
tions between mechanics and signalling processes. First, we consider the impact of the cell
Young’s modulus E. and compare the dynamics when considering a constant E. versus the
case where E. depends on activated FAK as defined in Eq (2). We also model the effect of the
stress on the signalling molecules FAK and simulate equations Eq (6) for C; =0 (kPa's)™' and
C; =0.1 (kPas)!, respectively. Additionally we consider two experimental scenarios: (i) the
cell is placed on a rigid substrate, modelled by the boundary conditions Eq (4) on '\ T’y and
Eq (5) on T or (ii) the cell is embedded in an agar substrate and we apply the force boundary
condition Eq (4) on the entire cell membrane. We also distinguish between two different stim-
uli, similar to [18], (i) the so called 2xD stimulus, where the substrate stiffness is only applied
to the bottom of the cell, i.e. E is nonzero only on I'y, and (ii) the 3D stimulus’ where the cell
is embedded in an agar (substrate) and the impact of the substrate stiffness on the signalling
processes is considered on the whole cell membrane. To analyse the impact of the cell shape
on the dynamics of signalling molecules and mechanical deformations we consider both
axisymmetric cells and polarised cells with a lamellipodium like shape. The diameter of the
cell is larger for the lamellipodium cells such that the volume is similar to the axisymmetric
cells.

The parameters are chosen as in Table 1. For numerical simulations, we use a Finite Ele-
ment Method to discretize in space and a semi-implicit Euler method to discretize in time,
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Table 1. Parameter values for simulations of the model in Eqs (3)-(6).

(a) Parameters inherited from the model in Eq (1) that are identical to [18]. Because the goal is to compare and
extend upon the model of [18], we choose the values to be the same as [18], which are based on literature and
fitting to data. The exception are D; and D;, which is discussed in S1 Appendix, Sect A.1.

Parameters Value
Y 0.7 umol/dm’
M 0.3 umol/dm’
o0 6- 1077 umol/dm?
oY 1 umol/dm’
D, 4 pum?/s
D; 4 pum?/s
D; 0.3 um?/s
ki 0.03557!
k 0.01557!
ks 0.379s7!
ks 0.625 57!
ks 0.0168 57!
E 0.1,5.7,7 - 10° kPa
C 3.25 kPa
n 5
y 8.8068 dm”/umol
axisymmetric shape Y] 1193 um?
T 1020 fm?
lamellipodium shape Y| 1099 pum?
T| 1115 pum?
(b) Parameter values for parameters introduced in this paper. A brief robustness analysis is performed on all
parameters introduced in the coupled model in Egs (3)-(6), see S1 Appendix, Sect A.6.
Parameters Value Reference/Justification
C 0.1 (kPas)™! range 0-2 (kPas)~! is explored in results
ke 0.1s7! fitted to yield magnitude of deformation range 0 — 10 ptm [18]
k7 0.2 kPa fitted to results for ¢, in [18]
ks 2.4245 dm’/ umol fitted to results for ¢, in [18]
p 2.6 fitted to results for ¢, and F-actin in [18] and [38]
Ve 0.3 estimated 0.17-0.66 [42]

https://doi.org/10.1371/journal.pchi.1013305.t001

with the mesh size h =2.94 um and time step At = 0.5 s. Details on the numerical scheme and
benchmark computations demonstrating the accuracy of the approach for a problem with a
known solution are given in S1 Appendix, Sect A.3.

Results
Numerical simulations with 2xD stimulus

First we look at the results that would most reflect a cell on a substrate in vitro. Here, the sub-
strate stiffness appears as a stimulus only on the bottom boundary of the cell, i.e. E is nonzero
only on Iy, and deformation is restricted in the vertical direction at the bottom boundary of
the cell. The results for the axisymmetric shape of the cell are found in Fig 2, whereas results
for the lamellipodium shape are presented in Fig 3. Note that results for ¢, and p, when E, =
0.6 kPa and C; =0 (kPa s)™! are identical to the one without mechanics in S1 Appendix, Sect
A.1. In this case, we see that the magnitude of the deformation |u] is largest at the edge of

the cell. The cell expands axisymmetrically at the base. As expected, the expansion is larger
for higher concentrations of ¢,. For a lower substrate stiftness, E = 0.1 kPa, the cell barely
expands. When C; =0.1 (kPa s)!, the concentrations of ¢, and p, and the magnitude of the
deformation |u| increase, with a bigger increase for lower substrate stiffness and a smaller
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Fig 2. Numerical simulation results showing 0., ¢4, ¢4 and |u| for the model in Egs (3)-(6) for the axisymmetric shape and in the case of 2xD stimulus at a
steady state at T = 100 s. Four different scenarios are considered: (A) C; = 0 (kPas)™ (o +» ¢,) and E; = 0.6 kPa (¢, » Ec); (B) C; =0 (kPas)™ (o » ¢,) and

Ec = f(¢a) ($a = Ec); (C) C1 = 0.1 (kPas)™!

(0 = ¢a) and E; = 0.6 kPa (¢a » E.); (D) C1 = 0.1 (kPas)™! (0 — ¢pa) and Ec = f(Pa) (¢Pa — Ec). Within each

subfigure, the rows represent P, $4, $o and |u| on a cross-section of the plane x; = 0 of the axisymmetric cell, and the columns represent E = 0.1,5.7,7 - 10° kPa.

Parameter values as in Table 1.

https://doi.org/10.1371/journal.pcbi.1013305.9002

increase for larger substrate stiffness. When comparing E, = 0.6 kPa and E, = f(¢, ), the defor-
mations show similar patterns, expanding at the base of the cell, however, the magnitude of
the deformation is much lower in the case E. = f(¢$,). This is probably because E, = f(¢,) =
0.6 kPa for a small substrate stiftness E, but is doubled in magnitude for larger substrate stiff-
ness, see Fig 4. The larger cell Young’s modulus E, means it is harder for the cell to deform,
resulting in a lower magnitude of deformation. This difference illustrates that, unlike the con-
stant Young’s modulus case, a concentration-dependent Young’s modulus allows for potential
homeostasis and adaptation of cell mechanics to different values of the substrate stiffness [28].
For the two-way couplings between the mechanics and chemistry, i.e. E, = f(¢,) and
C, =0.1 (kPas)™!, we see similar results for the deformation as when E, = f(¢,) and
C, = 0 (kPas)™'. The main difference is that the deformation for E = 0.1 kPa is now at a sim-
ilar magnitude as for the larger substrate stiffnesses, demonstrating the importance of the sig-
nalling processes in the adaptation of cell mechanics to changing environmental conditions.
Comparing the simulation results for the two different shapes in Figs 2 and 3, the concen-
tration of activated RhoA, p,, is slightly lower for the lamellipodium shape. For the lamel-
lipodium shape, we observe the largest deformations at the corners furthest from the nucleus.
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Fig 3. Numerical simulation results showing 04, ¢4, ¢ and |u| for the model in Egs (3)-(6) for the lamellipodium shape and in the case of 2xD stimulus at a
steady state at T = 100 s. Four different scenarios are considered: (A) C; = 0 (kPas)™ (o » ¢,) and E = 0.6 kPa (¢, » Ec); (B) C1 =0 (kPas)™! (o » ¢,) and
E.=f(¢a) (¢a = Ec); (C) C1 =0.1 (kPas)™! (0 = ¢pa) and E; = 0.6 kPa (¢, +» E;); (D) C1 = 0.1 (kPas)™ (0 — ¢a) and Ec = f($a) (Pa = Ec). Within each
subfigure, the rows represent 04, ¢4, Pa and |u| on the surface of the cell, and the columns represent E = 0.1,5.7,7 - 10° kPa. Parameter values as in Table 1.

https://doi.org/10.1371/journal.pchi.1013305.9003

Fig 4 summarises the results at time T = 100 s by plotting the mean, ﬁ Jq -dx, of E. =
f($a), the volume change div(u), ¢,, and p, as functions of the substrate stiffness E, with the
bars being the range of these variables, for different values of the constant C, in the activation
of FAK by the cell stress. As expected, an increase in C; results in an increase in the concen-
tration of activated FAK, ¢,. The dependence of ¢, on the substrate stiffness E, especially for
C, =0 (kPas)™ and C; =0.5 (kPas)™', resembles a Hill function representing a threshold
response. This agrees with simulations in [18] which themselves fit experimental observations
presented in [44]. For most of the cases, the results for the lamellipodium shape are very sim-
ilar to the results for the axisymmetric shape. However, for C; = 0.1 (kPa s)~!, the magnitude
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Fig 4. Simulation results showing the mean, |ﬁl\ /¢ -dx, min and max values of f(¢,), div(u), ¢, and p, as functions of substrate stiffness E. We consider
different couplings with four different values for C; and two different shapes at T = 100 s by which time the results are at a steady state. All other parameter values

as in Table 1.

https://doi.org/10.1371/journal.pcbhi.1013305.9004

of the threshold-like response in all variables is bigger in the lamellipodium case. In terms of
the Young’s modulus, when E. = 0.6 kPa we observe much larger volume changes than when

E.=f(¢,) in all the numerical experiments.

Numerical simulations for the 3D stimulus case on a rigid substrate

In numerical simulations for a 3D stimulus on a rigid substrate, the substrate stiffness affects
the whole cell membrane and we consider the boundary conditions Eq (4) on I'\ 'y and

Eq (5) on Ty. The results for numerical experiments can be found in Figs 5 and 6. Overall,
the concentrations ¢, and p, are larger than in the case of the 2xD stimulus, which is in line
with the results in [18]. The higher concentrations of p, results in larger deformations, where
the maximum magnitude of the deformation in the case of the 2xD stimulus was 7 ym, see
Fig 2, while the maximum magnitude of the deformation in the case of the 3D stimulus is
7.5 pum, see Fig 2. Similar behaviour is observed for the lamellipodium shape, see Figs 3 and
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Fig 5. Numerical simulation results showing 0., ¢4, ¢4 and |u| for the model in Egs (3)-(6) for the axisymmetric shape and in the case of the 3D stimulus at a
steady state at T = 100 s. Four different scenarios are considered: (A) C; = 0 (kPas)™ (o +» ¢,) and E; = 0.6 kPa (¢, » Ec); (B) C; =0 (kPas)™ (o » ¢,) and
E:=f(¢a) (¢a = Ec); (C) C1 =0.1 (kPas)™! (0 — ¢pa) and Ec = 0.6 kPa (¢4 » Ec); (D) C; = 0.1 (kPas)™ (0 — ¢,) and Ec = f($a) (pa — Ec). Within each
subfigure, the rows represent P, $4, $o and |u| on a cross-section of the plane x; = 0 of the axisymmetric cell, and the columns represent E = 0.1,5.7,7 - 10° kPa.
Parameter values as in Table 1.

https://doi.org/10.1371/journal.pchi.1013305.9005

S1. Another difference between two cases are larger variations in concentration and a larger
difference between maximal and minimal values in the case of the 2xD stimulus than in the
case of 3D stimulus, see Figs 4 and 6. Similar behaviour is observed also in the model for the
signalling processes without mechanics, see S1 Appendix, Sect A.1.

Numerical simulations for the model in Eqs (3), (4), and (6).

To investigate a setting more close to a cell in vivo, we consider the coupled model in Egs (3),
(4), (6) with force boundary conditions on the whole cell membrane, without restricting the
deformation on the bottom of the cell.

Numerical simulations in the case of 3D stimulus. Simulation results for a 3D stimu-
lus that models a cell surrounded by the extracellular matrix are presented in Figs 7 and 8.
Corresponding results of the evolution of the mean of f(¢,), div(u), ¢, and p, can be found
in S1 Appendix, Sect A.2. The results show the same differences between the different cou-
plings as in Figs 5 and 6. Comparing Figs 5 and 7, the results for the concentrations ¢, and
pPa are indistinguishable, however there is a clear difference in deformation of the bottom
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Fig 6. Simulation results showing the mean, |ﬁl\ /¢ -dx, min and max values of f(¢,), div(u), ¢, and p, as functions of substrate stiffness E. We consider

different couplings with four different values for C; and two different shapes at T = 100 s by which time the results are at a steady state. All other parameter values

as in Table 1.

https://doi.org/10.1371/journal.pcbhi.1013305.9006

of the cell and in the case of the fixed vertical deformations the magnitude of the deforma-
tion at the base of the cell is slightly lower than in the case of force boundary conditions. The
same differences are observed for the lamellipodium shape case, see S1 and S2 Figs. The con-
centrations of the signalling molecules are also less sensitive to parameter changes than the
volume change, as can be seen from the parameter analysis in S1 Appendix, Sect A.6. Com-
paring Figs 6 and 8, the main difference is in the behaviour of div(u) as a function of E. Even
though the average volume change is the same, we see differences in the maximum and mini-
mum values of the local volume change across the domain. In particular, the maximum local
volume change when considering the model with a partially fixed boundary is larger and is
located on the base of the cell, while the maximum local volume change when considering the
model with the force boundary conditions is smaller, but the cell deforms more evenly in all

directions.
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Fig 7. Numerical simulation results showing 0., ¢4, ¢4 and |u| for the model in Egs (3), (4), and (6) for the axisymmetric shape and in the case of the 3D
stimulus at a steady state at T = 100 s. Four different scenarios are considered: (A) C; =0 (kPas)™ (o » ¢,) and E = 0.6 kPa (¢, = Ec); (B) C; = 0 (kPas)™
(0 » ¢a) and E; = f(pa) (Pa — Ec); (C) C1 = 0.1 (kPas)™! (0 — ¢,) and Ec = 0.6 kPa (¢, » Ec); (D) C; = 0.1 (kPas)™ (0 — ¢,) and Ec = f($a)

(¢a = Ec). Within each subfigure, the rows represent 0,4, ¢4, P and |u| on a cross-section of the plane x; = 0 of the axisymmetric cell, and the columns represent
E=0.1,5.7,7 - 10° kPa. Parameter values as in Table 1.

https://doi.org/10.1371/journal.pcbi.1013305.9007

Numerical simulations in the case of 2xD stimulus. In Figs 9, S3 and S4 we report on
simulation results in the case of 2xD stimulus and force boundary conditions applied to the
entire boundary. For the concentrations, the results are similar to the results in the case of
2xD stimulus and no vertical deformation on the bottom of the cell, see Figs 2 and 9. How-
ever, the results for the deformation are different compared to the previous results. In Fig 9,
the cell does not just expand but changes shape as the edges of the cell deform upwards, which
is not possible in the case of the partially fixed boundary as we assume no vertical deforma-
tion at the base. The deformation of the cell upwards can also be observed in the case of the
3D stimulus, but it is smaller due to the impact of the ECM surrounding the cell, see Fig 7.
We observe that for C; = 0 (kPa s)™! the cell deforms upwards a little more than for C; =
0.1 (kPa s)™". This is due to the larger variation in the concentration p, for C; =0 (kPas)™!
compared to C; = 0.1 (kPa s)~!. The same features are observed for the lamellipodium shape,
see Figs 3, 52, S3 and $4.

Discussion and conclusion

We have derived a model for mechanotransduction via the RhoA signalling pathway with
ECM stiffness and intracellular mechanical properties serving as the mechanical cues. The
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Fig 8. Simulation results showing the mean, |ﬁl\ /¢ -dx, min and max values of f(¢,), div(u), ¢, and p, as functions of substrate stiffness E, in the case of
the model in Egs (3), (4) and (6) and 3D stimulus. We consider different couplings, four different values for C;, and two different shapes at T'= 100 s by which
time the results are at a steady state. All other parameter values as in Table 1.

https://doi.org/10.1371/journal.pchi.1013305.9008

modelling extends the work of [18] incorporating the explicit modelling of cell deformation
based on an elastic constitutive assumption. We have extended on [18,23,24] and introduced
a two-way coupling between the mechanics of the cell and biochemical signalling processes.
This two-way coupling appears to be central to mechanical homeostasis observed in biologi-
cal experiments [28]. We propose a robust numerical method, based on the bulk-surface finite
element method (FEM), see e.g. [26], for the approximation of the model and report on sim-
ulation results for different scenarios, validating the results by comparison with simulations
presented in [18] and experimental observations in [44]. Namely, we considered different lev-
els of substrate stiftness for cells of different shapes that either sit on a rigid flat substrate or
are embedded in a three-dimensional substrate.

Our broad conclusions are that cell shape strongly influences the dynamics of the sig-
nalling molecules and the deformation of the cell, as seen in all figures comparing the axisym-
metric and lamellipodium shape, where the emergent patterns differ, which is in line with
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Fig 9. Numerical simulation results showing 04, ¢4, ¢, and |u| simulation results showing ¢, and o, for the model in Egs (3), (4), and (6) for the axisymmet-
ric shape and in the case of 2xD stimulus at a steady state at T = 100 s. Four different scenarios are considered: (A) C; = 0 (kPas)™! (o » ¢,) and E, = 0.6 kPa
(¢a+» Ec); (B) C1 =0 (kPas)™! (0 » ¢pa) and Ec = f(pa) (Pa = E¢); (C) C1 = 0.1 (kPas)™ (0 — ¢,) and Ec = 0.6 kPa (¢ » Ec); (D) C; = 0.1 (kPas)!

(0 > ¢a) and E; = f(¢a) (¢pa — Ec). Within each subfigure, the rows represent 04, ¢4, Pa and |u| on a cross-section of the plane x; = 0 of the axisymmetric cell,
and the columns represent E = 0.1,5.7,7 - 10 kPa. Parameter values as in Table 1.

https://doi.org/10.1371/journal.pcbi.1013305.9009

experimental observations [45,46]. Cell shape also affects experimentally observed features
such as the threshold-like response to changes in substrate stiffness [44] which is reproduced
by the model. In Figs 4, 6, 8 and S4, we see that for certain parameters (C; = 0.1 (kPas)™
and low substrate stiffness), the cell shape affects the mean concentrations of the signalling
molecules and the mean volume change of the cell, and thus changes the threshold-like
response.

Our simulations exhibit novel emergent features, that are inaccessible without the frame-
work we propose, such as the bidirectional coupling between mechanics and signalling pro-
cesses through allowing the Young’s modulus of the cell to depend on protein concentration
that can allow for robustness in terms of the magnitude of deformation in response to differ-
ences in substrate stiffness. This is an example of a mechanical homeostasis mechanism that
emerges only at this level of modelling complexity which is of relevance to biology [28]. Other
instances of mechanical homeostasis are the stress being maintained in the cardiovascular
system under mechanical perturbations [47] and the tensional homeostasis by the RhoA sig-
nalling pathway at the level of multiple cells [48,49], which is known to be governed by cellu-
lar stiffness sensing [50]. Another mechanism that experiences homeostatic response to sub-
strate stiffness is that of the mechanical memory of the cell, describing the phenomenon of a
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cell responding less to substrates with lower stiffness if they have been cultured on stiff sub-
strates [49,51]. Due to the bidirectional coupling between the mechanics and the chemistry in
our modelling framework, an extension of this work by changing the chosen couplings could
be used to model these other mechanical homeostasis phenomena.

Based on previous biological studies [18,38], we considered cases in which the mechani-
cal properties of the cell (cell stiffness) depend on the concentration of signalling molecules.
This coupling yields less sensitivity of total deformation to substrate stiffness whilst leaving
the dynamics of the signalling molecules themselves broadly unchanged, see Figs 4, 6, 8 and
S4. The insensitivity of the dynamics of the signalling molecules to deformation levels arises
since in the model proposed here they are influenced by the local stress rather than defor-
mation. We note that the above constitutes another emergent homeostasis mechanism that
the modelling framework allows us to explore. We stress that our work serves as an exam-
ple of how mechanotransduction may be modelled and more complicated models for the
mechanics, biochemistry and couplings therefore are warranted based on the remarkable
emergent features we observe even in our relatively simple setting. We expect such models to
be particularly fruitful avenues for future work.

One such example of more complicated models for the mechanics could include a vis-
coelastic or poroelastic constitutive law. As presented in Sect A.7 in S1 Appendix, the assump-
tion of a (linear) viscoelastic constitutive law leads to qualitatively similar results to those
presented in this work for a purely (linear) elastic constitutive law. Our current assumption
of a linear elastic constitutive law for the mechanics of the cell is limiting as it assumes small
deformations. This framework needs to be extended to study the effect of large deformations
and shape changes, which would include the effect these deformations have on the signalling
molecules. This would be especially interesting, as this study shows that cell shape is one of
the determinants affecting the mean concentrations of the signalling molecules.

The boundary conditions for the deformation we consider correspond to simple models of
a cell in vitro (flat 2D substrate) or in vivo (homogeneous 3D matrix). We see that the cell on
a 2D substrate appears to spread radially with minimal deformation orthogonal to the sub-
strate while the latter exhibits a more uniform although smaller in total magnitude 3D defor-
mation. Differences in deformation for different environments are in line with the literature
as the effect of the substrate stiffness on cells is known to vary in 2D and 3D substrates [52].
An interesting extension that could be included in the above framework would be spatial vari-
ations in substrate stiffness or more complicated models for the substrate mechanics both of
which are of much biological relevance [53-55].

This work shows how mechanistic modelling of mechanotransduction can reveal remark-
able emergent properties. It lays the groundwork for future studies where further complexity
can be added as required to model specific signalling pathways or to reflect other mechan-
ical models derived from different constitutive assumptions. We anticipate that choosing a
viscoelastic or poroelastic constitutive law for the mechanics of the cell is an interesting direc-
tion for future studies, as this is in line with recent experimental observations [31,32]. Given
the fact that cell shape greatly influences the dynamics of the cell, as shown in this work, other
reference geometries are also of interest as a subject for future work. Extending the signalling
model of [18] further, we intend to couple the model of this work with a similar biome-
chanical model for the deformation of the nucleus coupled with the dynamics of signalling
molecules within the nucleus, such as the YAP/TAZ pathway [56].
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Supporting information

S1 Appendix. Numerical scheme and simulations. The appendix contains a comparison

of the reduced model and the full model of [18] in Sect A.1, temporal statistics in Sect A.2,
the numerical scheme in Sect A.3, the conversion from pM to #/um? in Sect A.4, simula-
tions for the model with nucleus in Sect A.5, a parameter sensitivity analysis in Sect A.6, and
simulations for viscoelastic model in Sect A.7.

(PDF)

S1 Fig. Numerical simulation results showing p,, ¢4, ¢, and |u| for the model in Eqs (3)-
(6) for the lamellipodium shape and in the case of the 3D stimulus at a steady state at T'=
100 s. Four different scenarios are considered: (A) C; =0 (kPas)™ (o » ¢,) and E, = 0.6 kPa
(¢a» E.); (B) C; =0 (kPas)™ (o » ¢,) and E. = f(¢,) (¢, = E.); (C) C; =0.1 (kPas)™*

(0 = ¢,) and E. = 0.6 kPa (¢, » E,); (D) C; = 0.1 (kPas)™ (o = ¢,) and E. = f(¢,) (s —
E.). Within each subfigure, the rows represent p,, ¢4, $, and |u| on the surface of the cell, and
the columns represent E=0.1,5.7,7 - 10° kPa. Parameter values as in Table 1.

(TIF)

S2 Fig. Numerical simulation results showing p,, ¢4, ¢, and |u| for the model in Egs (3),
(4), and (6) for the lamellipodium shape and in the case of the 3D stimulus at a steady
state at T = 100 s. Four different scenarios are considered: (A) C, =0 (kPas)™! (o » ¢,) and
E.=0.6kPa (¢, » E.); (B) C; =0 (kPas)™! (o » ¢,) and E, = f(¢,) (¢s = E.); (C) C; =

0.1 (kPas)™ (o = ¢,) and E. = 0.6 kPa (¢, » E.); (D) C; =0.1 (kPas)™ (o — ¢,) and E, =
f($2) (¢o — E.). Within each subfigure, the rows represent p,, ¢4, ¢, and |u| on the surface of
the cell, and the columns represent E = 0.1,5.7,7 - 10° kPa. Parameter values as in Table 1.
(TIF)

S$3 Fig. Numerical simulation results showing p,, ¢4, ¢, and |u| for the model in Egs (3),
(4), and (6) for the lamellipodium shape and in the case of 2xD stimulus at a steady state
at T =100 s. Four different scenarios are considered: (A) C, =0 (kPas)™! (o » ¢,) and

E =0.6kPa (¢, » E.); (B) C; =0 (kPas)™ (o » ¢,) and E. = f(¢,) (¢a — E.); (C) C; =

0.1 (kPas)™ (o — ¢,) and E, = 0.6 kPa (¢, » E.); (D) C; =0.1 (kPas)™ (o = ¢,) and E, =
f(#2) (¢o — E.). Within each subfigure, the rows represent p,, ¢4, ¢, and |u| on the surface of
the cell, and the columns represent E = 0.1,5.7,7 - 10° kPa. Parameter values as in Table 1.
(TIF)

S4 Fig. Simulation results showing the mean, ﬁ /g -dx, min and max values of f(¢,),
div(u), ¢, and p, as functions of substrate stiffness E, in the case of the model in Eqs (3),
(4) and (6) and 2xD stimulus. We consider different couplings, four different values for C,
and two different shapes at T = 100 s by which time the results are at a steady state. All other
parameter values as in Table 1.

(TIF)
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