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Abstract

Atomic Force Microscopy (AFM) can create images of biomolecules under near-
native conditions but suffers from limited lateral resolution due to the finite AFM tip
size and recording frequency. The recently developed Localization Atomic Force
Microscopy or LAFM (Heath et al., Nature 594, 385 (2021)) enhances lateral res-
olution by reconstructing peak positions in AFM image stacks, but it is less effec-
tive for flexible proteins with multiple conformations. Here we introduce an unsuper-
vised deep learning algorithm that simultaneously registers and clusters images by
protein conformation, thus making LAFM applicable to more flexible proteins. Using
simulated AFM images from molecular dynamics simulations of the SecYEG translo-
con as a model membrane protein system, we demonstrate improved resolution

for individual protein conformations. This work represents a step towards a more
general LAFM algorithm that can handle biological macromolecules with multiple
distinct conformational states such as SecYEG.

Author summary

Atomic Force Microscopy (AFM) enables high-resolution imaging of biomolecules
under near-native conditions but faces lateral resolution limits due to the finite
AFM tip size and recording frequency. The recently developed Localization Atomic
Force Microscopy (LAFM) method addresses this by reconstructing peak positions
from AFM image stacks, achieving almost atomic resolution for membrane pro-
teins like Annexin-V or aquaporin-Z that adopt a single predominant conformation
(Heath et al., Nature 594, 385 (2021)). While these proteins exhibit intrinsic flexi-
bility — including conformational adaptation upon membrane binding for Annexin-V
and flexible extracellular loops in aquaporin-Z — their protruding regions consis-
tently display a well-defined structural state in AFM images, similar to what would
be observed for truly rigid proteins. However, flexible membrane proteins with
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multiple dynamic conformations, such as the SecYEG translocon, which exhibits
large and highly mobile cytoplasmic loops that sample distinct conformational
states, lead to non-physical smearing in standard LAFM reconstructions. Here,
we present a computational framework combining unsupervised deep clustering
and LAFM to enhance the lateral resolution of AFM images of flexible membrane
proteins. Our neural network algorithm (i) groups AFM images into conformation-
ally homogeneous clusters and (ii) registers images within each cluster. Applying
LAFM separately to these clusters minimizes smearing artifacts, yielding high-
resolution reconstructions for distinct conformations. We validate this approach
using synthetic AFM images generated from all-atom molecular dynamics simu-
lations of SecYEG in a solvated POPE lipid bilayer. This advancement extends
LAFM’s utility to encompass conformationally diverse proteins.

Introduction

Atomic Force Microscopy (AFM) is a widely used imaging technique for study-

ing membrane protein systems at the single-molecule level in near-native condi-
tions. AFM images are topographic maps generated by scanning surfaces with a
sharp probe, achieving near-atomic resolution in the vertical (Z) direction on many
biomolecular systems [1,2]. However, the lateral resolution (in the X-Y plane) of these
images is constrained by the AFM tip geometry and size as well as the sampling dis-
cretization (recording frequency). To address these limitations, Localization Atomic
Force Microscopy (LAFM) [3] has emerged as a promising post-acquisition image
reconstruction method that enhances in-plane resolution.

LAFM enhances the lateral resolution of conventional AFM images by computa-
tionally reconstructing molecular details from a stack of multiple AFM images. In stan-
dard AFM imaging, lateral resolution is limited by the finite size of the scanning tip,
causing structural details smaller than several nanometers to appear blurred. LAFM
overcomes this limitation by exploiting subtle positional fluctuations of surface fea-
tures across multiple registered AFM images. Specifically, it identifies and precisely
localizes peaks corresponding to protein substructures in each individual image
within the stack. By statistically combining these localized positions, LAFM recon-
structs a higher-resolution image that reveals structural details previously obscured
by tip geometry and sampling constraints. This approach significantly improves lat-
eral resolution, enabling visualization of molecular conformations and sub-nanometer
features that are inaccessible with traditional AFM analysis.

While effective for protein systems with a single predominant conformation [3], the
direct application of LAFM to flexible proteins that undergo significant conformational
changes is problematic. Indeed, in spite of its enhanced lateral resolution, the LAFM
image obtained from a stack of AFM images corresponding to different protein con-
formations can be misleading as it blends distinct conformational states together. To
mitigate this issue and generalize LAFM to more flexible membrane proteins, here we
employ a two-pronged approach consisting of: (i) clustering AFM images based on
conformational states, by employing deep learning (DL) algorithms, and (ii) applying
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LAFM selectively within clusters. Given a stack of AFM images of membrane protein extracellular domains, our approach
effectively discriminates between different proteins, their membrane sidedness, and their distinct conformations. Similar
techniques have demonstrated success in the conformational clustering and classification of biomolecular complexes.
For instance, CryoDRGN [4] employs an unsupervised DL algorithm to assist in reconstructing 3D density maps from
cryo-EM data, effectively capturing and partitioning a continuous conformational landscape. Likewise, HORNET [5] lever-
ages DL to resolve structures of flexible RNA molecules from AFM images. These approaches highlight the versatility and
effectiveness of unsupervised DL algorithms, proving them a powerful tool within nanoscale imaging workflows.

Synthetic AFM images generated through molecular dynamics (MD) simulations offer a powerful approach to study
flexible proteins under controlled conditions and enable direct registration and benchmarking [6]. Furthermore, the rapid
innovation of GPU-accelerated computing allows for the calculation of synthetic AFM images at remarkable speeds [7].
The present study employs all-atom MD simulations of translocon SecYEG embedded in a POPE lipid bilayer. We show
how LAFM can be extended to resolve structural details of this flexible membrane protein by combining LAFM methodol-
ogy with clustering techniques.

Methods
Molecular modeling and MD simulation

To generate a large stack of synthetic AFM images, we performed ~ 1us all-atom MD simulation of the protein-conduction
channel SecYEG, embedded in a fully solvated 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) lipid bilayer. The
universally conserved SecYEG translocon is a heterotrimeric complex (composed of subunits SecY, SecE, and SecG)
that plays a crucial role in mediating the transport of newly synthesized proteins either into or across the bacterial cyto-
plasmic membrane. The translocon SecYEG was chosen as a model membrane protein for this study because it exhibits
large membrane-external loops on the cytoplasmic side of the membrane that are highly dynamic and give rise to distinct
conformational states [2,8,9].

The crystal structure of SecYEG (PDB code 3DIN [10]), along with its orientation in the lipid bilayer, was obtained from
the OPM database [11]. This structure originally contained both SecYEG and SecA, but we removed all SecA atoms
to focus solely on the SecYEG complex. The CHARMM-GUI membrane builder [12—14] was employed to assemble a
protein-lipid system. ACE (N-acetyl) and CT2/NME terminal caps were applied to neutralize the peptide termini in the
simulation, preventing spurious electrostatic interactions at the membrane—water interface. A homogeneous POPE lipid
bilayer, representing about 75% of the native E. coli membrane [15], was selected to embed SecYEG while avoiding
the complexity of modeling a heterogeneous bilayer. The system was subsequently solvated in a 0.03 M NaCl aqueous
solution with 3 nm water padding above and below the membrane.

Next, the SecYEG-POPE system was subjected to all-atom MD simulation using NAMD2 [16], employing the
CHARMM36(m) force field [17,18]. Energy minimization and equilibration were carried out in multiple stages, gradually
relaxing the restraints on the system in accordance with standard protocols [19]. A production run of unbiased MD simu-
lation was performed at constant pressure (1 atm) and temperature (300 K), regulated by a Langevin piston barostat [20]
and a Langevin thermostat [21], respectively. Atomic coordinates were saved every 0.1 ns over 1.2 us simulation, gener-
ating 12,000 frames. To ensure the system was well equilibrated, the first 2,000 frames were discarded, leaving 1 us of
data (10,000 frames) for analysis.

During the simulation, SecYEG displayed translational and rotational drift along the membrane surface. To facilitate
analysis, we created two trajectory versions: an unaligned (original) trajectory and an aligned trajectory. For the aligned
version, using VMD [22], we minimized the root mean squared displacement (RMSD) of transmembrane helix backbone
atoms relative to their initial positions. This alignment was essential since subsequent analyses rely on consistent protein
positioning, with the aligned trajectory serving as our reference standard for comparisons.
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Simulated AFM images

Simulated AFM (SimAFM) images were generated from all-atom MD trajectories (see Fig 1) using our open-source
Python package, AFMpy [23]. The SimAFM implementation in AFMpy employs the MDAnalysis [24,25] library for trajec-
tory processing, NumPYy [26] for efficient vectorized calculation of tip contacts, and CuPy [27] for GPU acceleration.

Each frame from the MD trajectory is loaded and rotated so that the membrane side of interest faces the +Z direction.
The membrane plane is defined by the average Z-coordinate of the phosphorus atoms in the upper leaflet, which serves
as the background. Protein atoms located above this background are represented as solid spheres with their van der
Waals radii, as specified by the CHARMM force field [28]. The X-Y plane is then divided into a uniform two-dimensional
grid according to the chosen scan boundaries and pixel resolution.

The simulated AFM tip is modeled as a cone with a spherical apex, characterized by its radius (R) and a half-angle
6 = 18°, matching the typical value for experimental AFM tips. To generate the SimAFM image, the tip is virtually scanned
across each point of the grid, and the height at which it contacts the protein surface is recorded. This procedure is
repeated for every frame in the trajectory, resulting in a stack of SimAFM images.

Stacks of SimAFM images were generated to visualize the protruding regions of SecYEG on both the cytoplasmic and
periplasmic sides of the membrane, using both aligned and unaligned MD trajectories of the SecYEG-POPE system. To
mimic a range of experimentally available AFM tips, the simulated tip radius was varied, including an idealized tip with

Height (&)

Inm

0

Fig 1. Simulated Atomic Force Microscopy (SimAFM) of SecYEG. A. Van der Waals representation of SecYEG rendered in VMD [22]. Average lipid
head group positions and transmembrane protein regions are shown in gray, while only the cytoplasmic (blue) and periplasmic (red) protrusions of the
protein are accessible to the AFM tip during scanning. B. Simulated AFM tip (blue) contacting the cytoplasmic side of SecYEG, with tip contact calcu-
lated at each grid point across the X-Y plane. C. Surface representation of the SimAFM scan, showing how molecular details are blurred by the finite
geometry of the AFM tip. D. Top-down view of the SimAFM scan of the cytoplasmic side of SecYEG.

https://doi.org/10.1371/journal.pcbi.1013277.g001
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R = 2A. Scan resolution was also systematically adjusted, producing SimAFM stacks across a broad spectrum of resolu-
tions. Specifically, tip radii from 2A to 80A and scan resolutions from 2A/px to 10A/px were used.

Stacks were assigned a code reflecting their alignment status (Aligned: A; Unaligned: U), membrane side (Cytoplasmic:
C; Periplasmic: P), tip radius (in A), and scan resolution (in A/px). For instance, a stack of aligned cytoplasmic images
simulated with a 20A tip and a 2A/px scan resolution is labeled as AC—20-2 for easy identification. Notable stacks include
those generated with tip radii of 2A (approximating the width of a carbon atom), 20A (representing the PeakForce-HIRS-F-
B tip), and 80A (representing the BioLever Mini AC40 tip).

Localization Atomic Force Microscopy (LAFM)

Each stack of images was processed to generate an enhanced lateral resolution image using our Python implementa-
tion of the LAFM algorithm [3]. The workflow consists of several steps: First, using OpenCV [29], the input image stack is
enhanced to a higher, user-defined resolution by applying bicubic interpolation to expand each image. Next, peak detec-
tion is performed on each interpolated image to identify local maxima, which are then broadened using a Gaussian kernel
of user-specified width, producing images where each peak is represented by a 2D Gaussian. The height of each Gaus-
sian is scaled between 0 and 1 according to the detected real-space height relative to the maximum in the stack. These
Gaussian images are then averaged pixel-wise across the entire stack to create a cumulative peaking probability image.
Finally, this probability image is multiplied by the per-pixel averaged real-space height image to produce the final LAFM
image.

Structural Similarity Index Measure (SSIM)

The quality of LAFM images relative to the benchmark (i.e., the LAFM images AP—2-2 and AC-2-2, respectively) was
evaluated using the Structural Similarity Index Measure (SSIM) [30], which offers several advantages over simpler metrics
such as mean squared error [31]. SSIM is particularly well-suited for this application because its focus on local structural
similarity more closely reflects perceived visual quality. However, when applying SSIM to protein AFM images, special
care is required: the uniform 0-height background in LAFM images creates large areas of perfect similarity, which can bias
the SSIM calculation. To address this, a masked SSIM approach was used. A mask was generated by selecting pixels
above a threshold set at 5% of the maximum height in the compared image pair, effectively isolating the protein features
from the background. SSIM was then computed over the entire image, and the mask was applied to exclude background
pixels. The mean value of the masked SSIM image was reported as the final similarity score.

LAFM images generated from each aligned simulation stack were compared to the benchmark using the masked SSIM
score, with the results recorded in 2D arrays called LAFM quality profiles. These profiles are visualized as topographic
maps (see Fig 5), illustrating LAFM quality as a function of tip radius (R) and scanning resolution (P).

Deep Spectral Clustering (DSC)

Given an aligned stack of images of a flexible protein exhibiting distinct structural conformations, it is necessary to first
identify and separate (i.e., cluster) these conformations before applying the LAFM algorithm. In AFMpy, this conforma-
tional clustering is performed using a deep spectral clustering (DSC) algorithm, as illustrated in Fig 2. Our DSC imple-
mentation uses the Spectral Clustering module from scikit-learn [32] and employs the Keras API in TensorFlow [33,34] for
constructing, training, and validating the deep learning models.

DSC assigns n conformational cluster labels to a stack of images by applying spectral clustering to latent feature
vectors (LFVs) extracted by a convolutional autoencoder (CAE) [35]. The CAE is first trained end-to-end to minimize a
reconstruction loss, defined as 1 — SSIM, where SSIM is used as the similarity metric due to its effectiveness in capturing
protein structural features. To properly account for both protein and background pixels, a weighted SSIM loss is employed

L(x,x")=a - SSIM(x,x") + 8 - SSIMaskeq(X; X'),
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Fig 2. Deep Spectral Clustering (DSC) Algorithm: A convolutional autoencoder (CAE) is trained on input image stack (S) to extract latent fea-
ture vectors (LFV). LFV pairs are compared by a given distance metric (DM) to construct an affinity matrix (A). Spectral clustering (SC) is applied to A,
returning n cluster labels for the input stack. Images are grouped by label into clusters (C) which make up the set of n clusters (C, = {C4, Co, ..., C,}).

https://doi.org/10.1371/journal.pcbi.1013277.9g002

combining standard SSIM (to address background) and masked SSIM (to focus on protein features). The relative weights
of each SSIM component can be tuned to balance the contribution of background versus foreground pixels to reconstruc-
tion quality. Empirical testing showed that equal weighting performed well for our dataset.

After training, LFVs are extracted from the images, and an affinity matrix (A) is constructed by pairwise comparison of
these LFVs using locally scaled affinity [36]. Spectral clustering is then performed on this matrix to assign cluster labels to
the images.

Because the SimAFM stack captures a continuous range of motion, it contains both images of stable conformations
and transient states during transitions. To separate these conformations, DSC was applied in a hierarchical manner. First,
n =2 DSC is applied to the stack, and LAFM images are then generated separately for each resulting cluster, henceforth
referred to as clustered LAFM images. If the clustered LAFM images have high similarity, i.e., the masked SSIM exceeds
a set threshold, the clusters are combined, and the process halts. If the two LAFM images differ, however, the affinity
matrix is reclustered for n = 3, and new clustered LAFM images are generated. These n = 3 clustered LAFM images are
cross-compared with the n = 2 LAFM images. Images with high similarity represent stable conformations, and the n=3
labeled images are removed from the stack. This process iterates, using the reduced stack and affinity matrix as input,
until no stable clusters are found, or the number of remaining unclustered images falls below a set minimum cluster size.
We refer to this process as Hierarchical DSC (HDSC).
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Registration and Clustering (REC)

Given an unaligned image stack, conformational clustering can be performed using the registration and clustering (REC)
algorithm as outlined in Fig 3. The REC algorithm operates in two modes depending on the number of provided registra-
tion references. With a single reference and a specified number of clusters n, the algorithm registers all images to the ref-
erence and applies DSC to identify n registered clusters. Image registration was performed using the pystackreg Python
package [37], applying rigid body transformations (translation and rotation only). This ensured alignment of images with-
out scaling or shearing. If n registration references are provided, the stack is registered separately to each reference,
generating n registered stacks. Each stack is then clustered independently using DSC, resulting in a superset of regis-
tered clusters. Clusters containing their respective registration reference images are considered well-registered and are
retained for the final output. Additionally, within each cluster, the image with the highest silhouette score [38] is selected
as an improved registration reference, yielding a refined set of registration references.

: REG
Input '
.: DSC
REC
!/ !/
C,; R,
Output C, = (ngn) > R,

Fig 3. Registration and Clustering (REC) Algorithm: The input image stack (S) is registered (REG) using each image in the reference set
R, = {R1, Ry, ..., R}, resulting in n registered stacks (S("). Each registered stack is then subjected to DSC clustering, producing a set of clusters (C,)

for each reference. These cluster sets are combined into a registered cluster superset (CE,") = C4,Cy, ..., C,), which contains the clusters generated for

each registration reference. From this superset, only the clusters corresponding to their respective registration references (Cf,") 3 R,) are retained to
form the refined cluster set (C},). Additionally, for each cluster, the image with the maximum silhouette score (MSS) is chosen to create a set of refined
registration references (R},).

https://doi.org/10.1371/journal.pcbi.1013277.9g003
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Iterative Registration and Clustering (IREC)

Selecting appropriate registration references and determining the optimal number of clusters are challenging tasks. To
address this, we developed an iterative registration and clustering (IREC) algorithm. As outlined in Fig 4, IREC iteratively
refines both cluster assignments and registration references to simultaneously optimize the registration references and
the number of clusters present in a conformationally diverse AFM image stack. The IREC implementation leverages reg-
istration methods from the Python module pyStackReg [39] and clustering metrics from scikit-learn [32].

For a given n, the input image stack (S) is first processed by REC using an initial reference (Ry), producing n clusters
(C,) and their corresponding references (R,). These clusters and references are then refined through iterative cycles:
in each iteration, the stack is re-registered and re-clustered according to the refined references from the previous step,
yielding new clusters and references. The newly generated references are compared to those from the preceding iter-
ation; if discrepancies are found, the mismatched references are updated and the process repeats. Iteration continues
until all references match, cyclic behavior is detected, or a maximum number of iterations is reached, at which point the
clusters are considered optimal (C}). Finally, LAFM is applied to each optimal cluster to generate the set of enhanced
images.

Although IREC determines the optimal conformational clusters for a given n, it remains uncertain whether n is the
optimal number of clusters required to partition the image stack. To assess the appropriate cluster count, the clustered
LAFM images are compared as n increases. First, IREC is applied to the image stack to generate the corresponding
LAFM images. Since these LAFM images are generated using different registration references, they may not be mutually

Input

REC
Cn; R,
C, —C],
IREC
R, — R},

Fig 4. Iterative Registration and Clustering (IREC) Algorithm: The input image stack (S) is first aligned and grouped using registration and
clustering (REC) based on an initial reference image (R). This yields an initial set of clusters (C,,) and corresponding registration references (R,),
which are then iteratively refined. In each iteration, every reference image in R,, is used to re-register and re-cluster S via REC, producing updated
clusters (C},) and new references (R}). The new references are compared to those from the previous iteration. If they differ (R}, # R,,), the references
are updated (R, — R},) and the process repeats. Iteration continues until the references converge (R}, = R,), a cyclic pattern is detected, or a maximum
number of iterations is reached, at which point the algorithm outputs the final, optimized cluster set (C};).

https://doi.org/10.1371/journal.pcbi.1013277.9004
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aligned. To evaluate their similarity, the LAFM images are registered to one another and compared using masked SSIM.

If all SSIM scores fall below a predefined similarity threshold (e.g., 0.8), the enhanced images are considered to represent
distinct conformations, indicating that at least n clusters are necessary. However, this test does not exclude the possibility
that more clusters may be required, so IREC is reapplied with n incremented by one. This process is repeated for increas-
ing values of n until any SSIM score between clustered LAFM images exceeds the similarity threshold, indicating that the

optimal number of clusters for the image stack is n—1.

Computational performance

Benchmark computations were performed to assess the acceleration and scalability of AFMpy functions across CPU and
GPU processing. All benchmarks ran on a Linux workstation with an Intel Xeon CPU (w9-3495X, with 56 cores) and two
NVIDIA RTX A5500 GPUs (connected via NVLink). Table 1 summarizes execution times for SimAFM, DSC, Hierarchical
DSC, and IREC in both CPU-only and GPU-enabled modes.

The 10,000-frame stacks of 32x32 simulated AFM images for periplasmic (110 protruding atoms) and cytoplasmic
SecYEG (~2000 protruding atoms) were generated using SImAFM from the 1 us MD trajectory. Simulation time increased
with system size; GPU acceleration provided greater speedup for the larger cytoplasmic SecYEG.

Benchmarking of DSC, Hierarchical DSC, and IREC functions on the cytoplasmic SecYEG stack showed that GPU
acceleration substantially reduced computation times for all deep learning-based analyses, with speedups of 7.9-11.5.
These functions employ TensorFlow (GPU-accelerated) and scikit-learn (CPU-based) components. Based on the obtained
results, we recommend prioritizing GPU resources for AFMpy workflows, especially for deep learning components and
SimAFM simulations of large systems or long trajectories.

Results and discussion
LAFM quality assessment

To quantify the influence of the AFM tip radius (R) and pixel resolution (P) on the quality of LAFM images, we compared
images derived from the aligned cytoplasmic and periplasmic SecYEG SimAFM stacks to their respective benchmark
LAFMs (from the AC-2-2 and AP—2-2 stacks) using masked SSIM. The results are shown as density plots in the left
panel of Fig 5. These LAFM quality profiles, for both periplasmic and cytoplasmic SecYEG, show that the LAFM image
quality increases nonlinearly with decreasing R and P. In both cases an R~ 2 nm tip scanningat P=4

A/px provide a good quality LAFM image (with SSIM~0.7). While R ~ 2 nm represents a practical lower bound for cur-
rent AFM tips, reducing P below 4 A/px is achievable with state-of-the-art HS-AFM. As shown in Fig 5, for P < 4 A/px,
good quality periplasmic LAFM image can be obtained with R > 2 nm tips, whereas a good cytoplasmic LAFM image
requires R ~ 2 nm tips regardless of further reductions in P. This indicates that for the cytoplasmic side, minimizing tip
radius is essential and cannot be compensated by increased pixel resolution alone. Conversely, for the periplasmic
side, comparable image quality can be achieved with larger tip radii by improving pixel resolution (reducing P), providing
greater experimental flexibility. Thus, optimizing R is crucial for cytoplasmic imaging, while periplasmic imaging benefits
from balancing both R and P.

Table 1. CPU vs. GPU runtime and speedup.

Process CPU Time (s) GPU Time (s) GPU Speedup
Periplasmic SimAFM 43 31 1.4
Cytoplasmic SimAFM 344 68 5.1

DSC 376 33 11.5
Hierarchical DSC 392 50 7.9

IREC 4598 493 9.3

https://doi.org/10.1371/journal.pcbi.1013277.t001

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1013277 December 1, 2025 9/ 19



https://doi.org/10.1371/journal.pcbi.1013277.t001
https://doi.org/10.1371/journal.pcbi.1013277

. Computational
PLOR’ Biology

A:{R=40; P=4} B:{R=20; P=4} BM:{R=2; P=2}

80 T B T Bide‘ l 1.0

O 6
]
><3 i
% 5
2 ] 4=
Ay ARV Brar 3
© ] LAFM LAFM 38
=8 5
=
—~ \ i
&). Y b Peakforce-HIRS . 2
— 1
ol N ) — — - o
Biolever Mini : . 30
@) Y
K 4 25
> | \ | .
8 60 \‘
9p] ‘\‘? 20
= W ] 2
é 0340 - K 1 15%
,_.g & \‘\ _ Brarm 2
‘E, 10
0.7 i
O ool . $}3 Peakfog::e HIRS
N \\\ ~~~~~~~~ 5
10F R -
L L N I L
) 4 6 8 10 0
P (Alpx)

Fig 5. Left: Quality profile of LAFM images for 1) periplasmic (top) and 2) cytoplasmic (bottom) SecYEG. Color-coded density plots display
masked SSIM scores of simulated LAFM images as functions of AFM tip radius (R) and pixel resolution (P), benchmarked against reference LAFM
images acquired with R = 2 and P = 2. The dotted horizontal lines indicate the nominal radii of a commercial AFM tip (PeakForce-HIRS tip, R = 20).
The radius of another common tip (Biolever Mini, R = 80), coincides with the top axes of the plots. Dashed contour lines at SSIM values of 0.9, 0.7, and
0.5 delineate the boundaries between “very good”, “good”, and “acceptable” LAFM quality regions. Right: Per-pixel averaged (AVG) AFM and LAFM
images of 1) periplasmic (top) and 2) cytoplasmic (bottom) SecYEG for A:{R = 40; P = 4}, B{R = 20; P = 4} and benchmark BM:{R = 2; P = 2} image
stacks.

https://doi.org/10.1371/journal.pcbi.1013277.9005

As shown in the right panel of Fig 5, LAFM effectively resolves five distinct domains in periplasmic SecYEG using
the AP—40—4 dataset (SSIM = 0.670) and further enhances feature accuracy in the AP-20—4 stack (SSIM = 0.748). For
cytoplasmic SecYEG, the average AFM image appears as a featureless blob, whereas the corresponding LAFM image
reveals distinct domains. However, this improvement is modest: the AC—40—4 image yields a relatively low SSIM of 0.632,
and reducing the tip radius to 2 nm (AC-20—4) results in only a marginal increase to 0.662.

A notable challenge in the cytoplasmic case arises from conformational changes in the approximately 35-amino acid
loops connecting transmembrane helices 6-7 and 8-9 within the SecYEG structure. These dynamic regions cause the
bottom domain to appear smeared upward and to the left in the LAFM image, which inherently blends multiple struc-
tural states into a single composite representation. To address this limitation, deep spectral clustering approaches will
be essential for distinguishing and separating the distinct conformational states present within the image stack, thereby
enabling more precise structural characterization of dynamic membrane protein complexes.
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Hierarchical deep spectral clustering results

Hierarchical DSC was applied to the cytoplasmic side images (AC—-20—4), identifying four conformational clusters. The
corresponding LAFM images are shown in Fig 6. Compared to the unclustered LAFM image, where different conforma-
tions are blended together, clustering clearly separates these states, with each cluster producing a unique LAFM image

BBcnch

Height (A)

CBench

Population

0.2 0.4 0.6
Time (us)

Fig 6. Top: Hierarchical deep spectral clustering results for AC—20—-4. Each row shows the average, LAFM, and benchmark LAFM images for the
detected conformational clusters. Bottom: Cluster occupancy over the trajectory, shown in discrete t = 0.025us bins. Despite the input frames being
shuffled during clustering, the reconstructed time series displays a clear progression between states. The cytoplasmic side of SecYEG starts in con-
formation A. Clusters C and D, whose populations fall below the minimum stable cluster size, are considered transient states that the protein passes

through before settling into the stable conformation B.

https://doi.org/10.1371/journal.pcbi.1013277.9g006
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representing a specific conformation. The clusters are shown in order of decreasing population. The stack is dominated by
clusters A and B, which together account for 86.5% of the total, indicating that these conformations represent metastable
states. In contrast, clusters C and D are less populated (collectively 13.5%), and most likely represent short-lived transition
states. Furthermore, since we know the true sequence of frames, the temporal progression of cluster occupancy indicates
that AC—20—4 starts in conformation A and transitions to conformation B, briefly passing through conformations C and D.
However, it is important to emphasize that our DSC algorithm produces consistent results regardless of image sequence,
yielding the same outcome when applied to the AFM image stack even after randomizing the order of frames.

For completeness, we also applied hierarchical DSC to periplasmic side images (AP—40—4) and identified two distinct
conformational clusters, as shown in Fig 7. The resulting LAFM images display similar features in the top and leftmost
regions, but the right domain is noticeably taller in conformation B, suggesting that the protruding loop extends outward,
perpendicular to the membrane surface. Overall, the periplasmic side of SecYEG exhibits minimal large-scale conforma-
tional changes. Cluster A is predominant, representing 97.9% of the stack, while cluster B appears only briefly, account-
ing for 2.1%. Although the transition between these states is subtle, DSC reliably distinguishes them, demonstrating the
algorithm’s sensitivity to minor conformational differences.

The pixel size of ~ 1.3 A in the LAFM images (Fig 7) suggests that individual amino acid residues should be resolvable.
However, only residues at prominent peak positions can be reliably identified due to the large AFM tip radius of R =2 nm,
which is comparable in size to the region of interest (ROI) shown as a green box in Fig 8. This observation captures both

10
8
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g
BBench 4 é
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Population

0.2 0.4 0.6 0.8 1.0
Time (us)

Fig 7. Top: Hierarchical deep spectral clustering results for AP-20-4. Each row shows the average, LAFM, and benchmark LAFM images for the
detected conformational clusters. Bottom: Cluster distribution over the trajectory (binned in 0.025us intervals). The periplasmic side of SecYEG pre-
dominantly adopts the stable conformation represented by cluster A throughout most of the simulation. Around 0.7us, SecYEG briefly transitions to the
conformation of cluster B, with subsequent intermittent switching between clusters A and B. Since cluster B contains fewer frames than the minimum
threshold for a stable cluster, it is classified as a transient conformation.

https://doi.org/10.1371/journal.pcbi.1013277.9g007
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the strength and the fundamental limitation of LAFM: while the method can localize structural features with sub-nanometer
lateral precision, tip convolution effects restrict this capability to topographically prominent residues that protrude suffi-
ciently above their neighbors. The Hierarchical DSC results for AC-20-4 is shown in Fig 8 with each row displaying (left
to right) the average AFM image, the corresponding LAFM reconstruction, the VMD surface representation of the atomic
structure from the MD trajectory frame with maximum silhouette score, and zoomed views highlighting prominent residues
within the ROI. The upper right domain exhibits small lateral fluctuations and contains five prominent residues: 1307,
K309, L317, R318, and P319. LAFM accurately tracks the peak positions of these residues in clusters A and B, where
more than 2000 images provide sufficient statistics, but becomes less reliable in clusters C and D due to fewer available
images and obstruction by nearby tall features that prevent the AFM tip from sampling these residues effectively. The
bottom left domain contains the long flexible arm of SecYEG that undergoes large-scale conformational changes, which
are accurately detected by hierarchical DSC. The prominent residues consistently contributing to peak detections in this
region are Q215, W216, R218 (R¢), R219 (R,), R223 (R3), and R224 (R,). Absolute heights of the highlighted residues in
structures A-D, measured in A from the membrane surface, are provided in S1 Table.

Finally, we point out that the hierarchical DSC method demonstrates robust noise tolerance against imperfections in
experimentally acquired AFM images that persist despite careful filtering. To quantify this robustness, Gaussian noise
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Fig 8. Hierarchical Deep Spectral Clustering results for AC-20-4. Left to right: average AFM image, LAFM image, VMD surface representation of
atomic structure with maximum silhouette score in each cluster, including zoomed views of ROI (green boxes) outlining prominent residues. LAFM
accurately tracks the peak position of these residues in clusters A and B but is less reliable in clusters C and D.

https://doi.org/10.1371/journal.pcbi.1013277.9g008
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(1-5%) was added to the AC-20-4 AFM image stack, and the Jaccard index (JI) was computed and plotted in S1 Fig for
the four clusters (A-D) identified by hierarchical DSC (Fig 6). The two principal clusters (A and B) maintained high consis-
tency with JI values exceeding 0.9 even at 5% noise. Furthermore, S2 Fig shows that clear cluster separation persists up
to at least 10% noise, confirming the strong noise tolerance and stability of the hierarchical DSC clustering procedure.

Iterative Registration and Clustering (IREC) results

We applied IREC to the UC—20—4 stack, generating cytoplasmic LAFM images for increasing numbers of clusters. The
results are presented in Fig 9. The unclustered LAFM image (first row) alone cannot establish whether a single stable
conformation exists; therefore, we applied IREC with n =2 clusters. The resulting two-cluster LAFM images (second row)
were compared using SSIM, yielding scores below the 0.9 threshold, thereby confirming that these images represent dis-
tinct conformations and that at least two clusters are required. Subsequently, we applied IREC with n = 3 clusters. The
three resulting LAFM images (third row) again exhibited SSIM scores below 0.9, validating the presence of distinct con-
formations and indicating that three clusters are necessary. Finally, we tested n = 4 clusters. Cross-comparison of the
four-cluster LAFM images (fourth row) revealed that clusters D, and D5 shared an SSIM score of 1.0, indicating they
represent identical conformations and that one clusters is redundant; hence, n = 3 is the optimal clustering solution for this
system.

Visual comparison of the three IREC-derived clusters with those obtained from hierarchical DSC analysis of the aligned
cytoplasmic stack (Fig 6) reveals strong correspondence: IREC cluster C; corresponds to DSC cluster B, C, to cluster C,
and Cj; to cluster A. Notably, all three major conformational states are successfully resolved despite the use of unaligned

1 Cluster

SSIM Scores:
(B1,B2)=0.73

2 Clusters

SSIM Scores:
(Cy,C2)=0.60
(C1,C3)=0.66
(Ca,C3)=0.70

3 Clusters

SSIM Scores:
(Dy,D,)=0.70
(D1,D3)=0.72
(D1,D4)=0.66
(D>,D3)=1.00
(D»,D4)=0.67
(D3,D4)=0.69

4 Clusters

Fig 9. IREC applied to UC—-20-4. LAFM images for each detected conformational cluster are shown, with rows corresponding to increasing numbers

of clusters. For n = 3, the clustered LAFM images have SSIM scores below the 0.9 threshold and closely resemble those obtained from hierarchical
DSC on the aligned stack. With n = 4, two of the clustered LAFMs (D, and D3) exhibit a similarity score of 1.0, indicating redundancy and confirming that
n = 3 is the optimal clustering solution.

https://doi.org/10.1371/journal.pcbi.1013277.9009
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input data. The absence of DSC cluster D in the IREC analysis suggests that frames originally assigned to this cluster are
redistributed among neighboring clusters during processing of the unaligned stack.

We also applied IREC to the UP—40—4 stack (Fig 10). The first row displays the unclustered LAFM image, which lacks
definitive evidence for a single, stable conformation. Consequently, we applied IREC with n = 2, yielding two LAFM
images with an SSIM score of 0.50, indicating distinct conformational states and validating the requirement for at least two
clusters. Upon increasing to n = 3, cross-comparison analysis revealed that clusters C, and C; exhibited an SSIM score
of 1.0, demonstrating they represent identical conformations. Therefore, n = 2 constitutes the optimal clustering solution.

Visual comparison between these two IREC-derived clusters and the two-cluster solution obtained from hierarchical
DSC (aligned stack) demonstrates that IREC cluster B, corresponds to DSC cluster B, while B, corresponds to cluster
A. This correspondence confirms comprehensive capture of all conformational states without missing clusters, thereby
validating IREC’s accuracy for the periplasmic dataset.

To further evaluate IREC, we combined the UP-20—4 and UC-20—4 stacks and applied IREC to this merged dataset
(Fig 11). With n = 2, IREC successfully separated cytoplasmic and periplasmic images into distinct clusters. Since the
SSIM between these clusters was substantially below the 0.9 similarity threshold, we systematically increased the number
of clusters to n = 3, which preserved the compartmental separation while subdividing the cytoplasmic images into two dis-
tinct conformational clusters. All pairwise SSIM scores remained below the established cutoff, confirming the identification
of genuinely distinct conformations.

We extended this analysis to n =4 and n =5 clusters. At n =5, two clusters exhibited an SSIM of 0.96, exceed-
ing our similarity threshold and indicating they likely represent the same conformational state. Therefore, n = 4 was

1 Cluster

SSIM Scores:
(B1,B2)=0.50

2 Clusters

SSIM Scores:
(C1,C2)=0.58
(C1,C3)=0.59
(Ca,C3)=1.00

3 Clusters

Fig 10. IREC applied to UP-40-4. LAFM images for each detected conformational cluster are shown, with rows corresponding to increasing numbers
of clusters. For n = 2, the clustered LAFM images exhibit SSIM scores below the 0.9 threshold and closely resemble those obtained from hierarchical
DSC on the aligned stack. With n = 3, two clustered LAFMs show a 0.99 SSIM score, indicating redundancy and confirming that n = 2 is the optimal
clustering solution.

https://doi.org/10.1371/journal.pcbi.1013277.9010
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1 Cluster
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SSIM Scores:
(C1,C2)=0.07
(C1,C3)=0.07
(C2,C3)=0.73

3 Clusters

SSIM Scores:
(D1,D2)=0.58
(D1, D3)=0.07
(D1,D4)=0.03

Dy
L
. (D, D3)=0.06
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»
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Fig 11. IREC applied to combined UP-20-4 and UC-20-4. LAFM images for detected conformational clusters are shown, with rows correspond-
ing to increasing cluster numbers. At n = 2, clusters perfectly separate cytoplasmic and periplasmic sides, generating distinct LAFM images for each
orientation. n = 3 retains side separation while resolving two cytoplasmic conformational clusters. n = 4 further splits both cytoplasmic and periplas-
mic orientations into two clusters each. n = 5 reproduces existing clusters but duplicates a periplasmic conformation, confirming n = 4 as the optimal
clustering solution.

https://doi.org/10.1371/journal.pcbi.1013277.9011

determined to be the optimal clustering solution, providing the maximum resolution of distinct conformational states with-
out over-partitioning the data.

This approach successfully identified two periplasmic and two cytoplasmic clusters. However, the third cytoplasmic
conformation observed in the UC—20—4 dataset was not detected. Analysis of the initial references employed by REC
revealed an inherent bias: the algorithm utilized two cytoplasmic and three periplasmic references, which during itera-
tive refinement failed to converge on the missing cytoplasmic conformation. These findings indicate that when analyzing
datasets containing structurally distinct morphologies (e.g., periplasmic versus cytoplasmic conformations), IREC should
be applied hierarchically — first partitioning the data by major structural class, then performing separate clustering within
each subset to resolve finer conformational distinctions.

Conclusion

The full power of the atomic force microscope — directly visualizing individual atoms — is typically realized only when imag-
ing extremely flat and inert solid-state surfaces such as silicon or mica. The development of LAFM, which enables the dis-
tinction of individual amino acid residues in hydrated protein specimens, marks a significant advance for force microscopy
in biophysical research. However, the application of LAFM has thus far been largely restricted to conformationally stable
proteins with relatively rigid structures.
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This work represents a significant step toward extending LAFM to a broader class of biological macromolecules that
exhibit greater conformational flexibility and populate multiple structural states. Leveraging the AFMpy Python package
[23] developed here, we combined LAFM with deep learning algorithms to both identify and enhance the lateral resolu-
tion of individual protein conformations. Given a stack of AFM images of membrane protein protrusions, our software is
highly effective in discriminating autonomously between different proteins, their conformational states, and the respective
membrane sides of their protrusions. Using the core component of the general secretory system of E. coli, the translocon
SecYEG, as a model system, we demonstrated the feasibility of this approach on simulated AFM image stacks.

While our results are based on simulated AFM images over computationally accessible timescales, this work lays the
foundation for future studies employing experimental data, such as high-speed AFM (HS-AFM) images, to probe protein
conformational landscapes over biologically relevant timescales. Ultimately, these advances may enable the routine appli-
cation of LAFM to a wider array of dynamic biomolecular systems.

Supporting information

S1 Table. Heights (measured in A from the membrane surface) of prominent residues for representative all-atom
protein structures from each of the four clusters, as shown in S1 Fig.
(XLSX)

S$1 Fig. Jaccard index (JI) values for four clusters identified by HDSC analysis of the AC-20-4 image stack under
varying levels of Gaussian noise (1-5%). The consistently high JI values, particularly for clusters A and B, demonstrate
the robustness of the DSC clustering method against noise perturbations.

(PDF)

S2 Fig. Stability of conformational clusters from Hierarchical Deep Spectral Clustering (HDSC) of AC-20-4 image
stacks under added Gaussian noise. Structural similarity (SSIM) values between LAFM image pairs within each
cluster (A-D) are shown versus the noise level. Clusters above the 0.65 SSIM threshold (horizontal dashed line) were
indistinguishable to HDSC (x marker). All clusters remained distinct below 3 % noise; at 3 %, clusters A—D merged, and at
4 %, clusters C—D merged, leaving two clusters (A, B) stable up to ~10 % noise.

(PDF)

S3 Fig. Tilt angle () fluctuations of the transmembrane axis of SecYEG during a 1 us MD trajectory. Top panels:
aligned [A] trajectory; bottom panels: unaligned [U] trajectory. Left: time series 6(f); right: distributions P(8). The mean and
standard deviation of 6 are slightly larger for [U] than for [A], with both distributions being nearly normal.

(PDF)
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