PLO§- Computational

Biology

Check for
updates

E OPEN ACCESS

Citation: Telle A, Kassar A, Chamoun N,
Haykal R, Gonzalo A, Hensley T, et al.
(2025) Systematic computational
assessment of atrial function impairment
due to fibrotic remodeling in
electromechanical properties. PLoS
Comput Biol 21(12): e1013265. https://
doi.org/10.1371/journal.pchi.1013265

Editor: Anna Grosberg, UCI BME:
University of California Irvine Department
of Biomedical Engineering, UNITED
STATES OF AMERICA

Received: June 23, 2025
Accepted: November 3, 2025
Published: December 5, 2025

Peer Review History: PLOS recognizes
the benefits of transparency in the peer
review process; therefore, we enable the
publication of all of the content of peer
review and author responses alongside
final, published articles. The editorial
history of this article is available here:
https://doi.org/10.1371/journal.pcbi.
1013265

Copyright: © 2025 Telle et al. This is an
open access article distributed under the

RESEARCH ARTICLE

Systematic computational assessment of atrial
function impairment due to fibrotic remodeling in
electromechanical properties

Ashild Telle®"2, Ahmad Kassar®?, Nadia Chamoun?, Romanos Haykal?, Alejandro
Gonzalo*, Tori Hensley?, Yaacoub Chahine3, Oscar Flores(®®, Juan C. del Alamo™3¥¢,
Nazem Akoum?3, Christoph M. Augustin®”8**, Patrick M. Boyle)"236:9%*

1 Department of Bioengineering, University of Washington, Seattle, Washington, United States of
America, 2 eScience Institute, University of Washington, Seattle, Washington, United States of America,

3 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, United
States of America, 4 Department of Mechanical Engineering, University of Washington, Seattle,
Washington, United States of America, 5 Department of Aerospace Engineering, Universidad Carlos Ill de
Madrid, Leganés, Spain, 6 Center for Cardiovascular Biology, University of Washington, Seattle,
Washington, United States of America, 7 Gottfried Schatz Research Center for Cell Signaling, Metabolism
and Aging — Division of Medical Physics and Biophysics, Medical University of Graz, Graz, Austria,

8 BioTechMed-Graz, Graz, Austria, 9 Institute for Stem Cell and Regenerative Medicine, University of
Washington, Seattle, Washington, United States of America

1 Joint senior authors.
* christoph.augustin@medunigraz.at (CMA); pmjboyle@uw.edu (PMB)

Abstract

Cardiac fibrosis is a pathological condition associated with many cardiovascular
diseases. Atrial fibrosis leads to reduced atrial function, resulting in diminished

blood flow and an increased risk of stroke. This reduced function arises from altered
myocardial electrophysiological and mechanical properties. Identifying the relative
importance of these fibrosis-associated properties can reveal the most significant
determinants of left atrial function impairment. In this study, we used a computational
framework to investigate the relative importance of various fibrosis-associated prop-
erties. Our model, a 3D electromechanical framework coupled with a 0D circulatory
model, incorporated patient-specific geometries and fibrosis distributions from clini-
cal imaging data. Nine parameters related to fibrotic remodeling (conduction veloc-
ity, ion channel expression levels, cell- and tissue-scale contractility, and stiffness)
were analyzed using two sensitivity analysis schemes: a one-factor-at-a-time setup,
allowing for analysis of isolated effects, and a fractional factorial design, enabling
examination of combined effects. As output, we tracked various metrics derived from
model-predicted pressure-volume loops. Impairment of L-type calcium current (Ic4 )
was most detrimental (up to 64% reduction in A-loop area of the left atrial pressure-
volume relationship, quantifying work performed during atrial contraction). Con-
versely, reduced inward rectifier current (lx¢) led to improved atrial function (up to
27% increase in A-loop area). Detailed analysis of spatiotemporal distributions linked
these effects to changes in intracellular calcium handling. Fractional factorial design
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analysis revealed that combination with other parameter changes blunted the impact
of reduced I, but amplified the impact of reduced ly4. Future research focusing on
Ik1 and I, could be highly significant for clinical and scientific advances. Modeling
work can help evaluate left atrial function among larger patient cohorts, focusing on
strain analysis. Our work could also be extended to spatiotemporal simulations of
blood flow and thrombosis, shedding light onto the mechanisms underlying atriogenic
stroke.

Author summary

Cardiac fibrosis is a process where healthy heart muscle is replaced with non-
conductive, non-contractile tissue. This change disrupts how the heart beats and
contracts. In the left atrium, fibrosis is linked to atrial fibrillation and a higher risk
of stroke, the latter due to impaired pumping and altered blood flow. In this study,
we used a detailed computer model of the heart, based on real patient-specific left
atrial geometries and fibrosis patterns, to understand how different fibrosis-related
changes affect atrial function. We tested nine features of the heart’s electrical and
mechanical behavior that are known to change during fibrosis, aiming to identify
which ones have the most impact on the atrial function. We found that reducing
the L-type calcium current — an important signal for muscle contraction — caused
the greatest decrease in atrial performance. Surprisingly, reducing the inward rec-
tifier potassium current improved it. These effects were tied to changes in calcium
handling inside heart cells. Our findings highlight promising directions for future
heart disease research and treatment.

1 Introduction

Cardiac fibrosis is prevalent in cardiovascular disease and contributes to left atrial
(LA) dysfunction. LA fibrosis is strongly associated with atrial fibrillation (AF) and
ischemic stroke [1-3]. Fibrotic remodeling encompasses a series of complex patho-
logical events involving myocyte death, expansion of the extracellular matrix, and
subcellular electromechanical changes [4,5]. These alterations reduces LA func-
tion, in which relative reduction can be quantified to support mechanistic insight and
clinical risk stratification.

Fibrotic remodeling profoundly impacts myocardial electrophysiological (EP) and
mechanical properties. Structural tissue-level changes (myocyte necrosis) lead
to decreased conduction velocity (CV) [6] and reduced myocardial force genera-
tion. Subcellular remodeling reduces ion channel conductances [1,5], also leading
to reduced contractility. LA fibrosis is furthermore linked to increased atrial stiff-
ness [7], often attributed to up-regulated collagen crosslinking [8] and changes in
collagen composition [9], likely combined with myocyte stiffening [10—12]. These
changes affect the cardiac function, but our understanding of their relative contribu-
tions remains limited.
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Computational modeling offers a powerful approach to elucidate the consequences of fibrosis-related alterations. By
tuning parameters in physiologically informed models, one can predict consequences of specific pathological changes.
Computational EP models of fibrotic LA have been used to study the connection between fibrosis and AF [13—16], reveal-
ing how altered CV and ion channel expression in fibrotic regions influence arrhythmia inducibility and spatial character-
istics. Multi-physics, multi-scale modeling frameworks have been used to assess the impact of LA remodeling (includ-

ing fibrosis) [17] and AF (without fibrosis) [18,19] on pressure-volume (PV) relationships. Hemodynamic effects of fibrotic
remodeling have also been explored via computational fluid dynamics analyses [20,21]. All of these studies have shown
utility in quantifying clinically relevant variables and enabling targeted investigations.

There are several approaches to make use of computational models to investigate individual impact of various parame-
ters. One-factor-at-a-time (OFAT) analysis provides a systematic and straight-forward way to assess the isolated impact of
each parameter [22,23], however, this does not account for combined or cooperative effects. Fractional factorial designs
(FFD) setups offer a powerful method for reducing the parameter space by examining key combinations in a balanced
and efficient manner [24,25]. It allows for investigating individual and interactive parameter effects, while minimizing the
number of required experiments. FFDs and design of experiment protocols have previously been used to study parame-
ter sensitivity in ionic EP models [26,27] and computational fluid dynamics analysis [28,29]. While FFD have been used
only sparingly in cardiac computational modeling, the methodology hold potential for exploring large parameter spaces in
detailed models of cardiac function [30]. To our knowledge, FFD has not yet been applied to multi-physics, organ-scale
cardiac models.

This study combines computational modeling with OFAT and FFD analyses to disentangle the effects of various
fibrosis-associated properties on atrial function. We performed simulations using three patient-specific LA geometries with
corresponding fibrosis distributions, perturbing nine electromechanical parameters in fibrotic regions. First, we conducted
an OFAT sensitivity analysis to assess the isolated effect of each parameter. Next, we explored spatiotemporal distribu-
tions of membrane potential, intracellular calcium, and active tension from the simulations in which these parameters were
changed to elucidate the mechanisms driving their importance. To gain deeper understanding of combined interactive
effects, we performed a more detailed sensitivity analysis using a 2%® FFD scheme. We then repeated both analyses with
50% synthetically elevated fibrosis in the same three geometries to assess the effect of an increasing fibrosis burden. As
metrics, we tracked A-loop area, booster function, reservoir function, conduit function, and upstroke pressure difference
during contraction, all derived from model-predicted PV loops. Sensitivity analyses based on these output values were
used to identify the most influential parameters.

2 Methods
2.1 Ethics statement

The study was approved by the Institutional Review Board of the University of Washington (STUDY00015081). A written
statement of consent was obtained from each patient.

2.2 Patient recruitment

We obtained three patient-specific LA geometries with corresponding spatial fibrosis and electroanatomical mapping
(EAM) data. Participants were recruited at the University of Washington Medical Center, all of whom had AF and were
scheduled for ablation. Patient demographics, LA clinical measurements, and modeling parameters are reported in
Table 1.

Patients were directly recruited for this and subsequent studies, and not part of earlier cohorts. We included AF patients
undergoing ablation procedures, with availability of LGE-MRI suitable for LA wall segmentation and fibrosis quantification,
and indicated high-density EAM of the LA performed within a 1-month time-frame of the MRI scan. Exclusion criteria
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Table 1. Patient-specific demographics, clinical measurements, and derived parameters.

Patient 1 Patient 2 Patient 3
Age 81 63 70
Sex F M F
LA end-diastolic volume (mL) 110.0 112.5 60.0
Body surface area (m?) 1.98 2.33 1.73
LA volume index (mL/m?) 55.5 48.3 34.7
LA emptying fraction (LAEF; %) 39.24 51.56 58.20
LA fibrosis burden (%)* 15.6 23.9 17.9
Synthetically increased fibrosis burden (%)* 234 35.85 26.85
LA wall thickness (min—max; mm) 1.4-24 2.3-3.0 1.6-2.4
Total LA activation time (ms) 82.0 56.0 116.8
CV longitudinal direction (CV|; m/s) 1.1500 1.5730 0.835
CV ftransverse direction (CVt; m/s) 0.5142 0.7035 0.373

*of main LA body and appendage (excluding pulmonary veins)

https://doi.org/10.1371/journal.pcbi.1013265.t001

were prior atrial ablation, prior cardiac surgery, contraindications to MRI or gadolinium contrast (e.g., device incompati-
bility, severe renal dysfunction, pregnancy, gadolinium sensitivity), and inability to obtain diagnostic-quality images due

to arrhythmia or habitus constraints. The recruited patients included in this study all satisfied pre-specified data-quality
requirements (diagnostic LGE-MRI enabling fibrosis segmentation and EAM with adequate LA surface coverage and point
density).

2.3 Patient geometries and fibrosis distributions

LA geometries with corresponding fibrosis distributions were obtained from pre-ablation LGE-MRI images. MRI scans
were taken at the end of atrial diastole (just prior to contraction). Segmentation, processing, and analysis of raw MRI
scans were performed by Merisight (Marrek Inc., Salt Lake City, UT), as previously described [31] and applied [15,16,32].
Fibrosis burdens are reported in Table 1 and annotated in Fig 1. The geometries were represented as 3D triangulated sur-
faces with fibrosis distributions (LGE maps), which we extruded by 2 mm [33,34] outward to create volumetric geometries
using CARPentry Studio (NumeriCor GmbH, Graz, Austria) [35]. We used a uniform thickness following literature rather
than personalized values (with ranges reported in Table 1), as we did not have spatial thickness values co-registered with
the geometries.

Fibrosis distributions in the volumetric geometries were interpolated from LGE maps. We used a priority-based proto-
col ensuring that the total fibrotic burdens matched those reported by Merisight. Volumetric mesh elements were sorted
and given a priority value according to the interpolated normalized LGE value. Following this order, we assigned ele-
ments one by one as fibrotic until the volumetric fibrotic ratio matched the clinically reported fibrosis burden. Fibrotic
tissue was assumed to be uniformly distributed from the epicardium to the endocardium, with no transmural variation.
Fibrosis burden was calculated as a percentage of mesh elements excluding the pulmonary veins (i.e., only the LA body
and appendage), for original LGE maps and our volumetric geometries alike. To explore the effects of extended fibrosis,
we applied the same method but with a target fibrosis burden increased by 50% (x1.5). Effectively, this amounted to the
identification of a lower cutoff value for normalized LGE in order for a element to be included. In practice, this generally
resulted in expansion of fibrotic areas, although not necessarily uniformly since the approach was based on normalized
intensity as opposed to geometric region growing. Fig 1A illustrates how fibrotic regions were mapped from LGE maps to
volumetric geometries for both levels of fibrosis. Fig 1B displays the resulting volumetric geometries with corresponding
fibrosis distributions.

Volumetric geometries were further augmented as needed for our electromechanical simulations. Pulmonary veins
are clinically assumed passive post-ablation and were hence not included as LGE map distributions. However, they were
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Fig 1. Patient-specific geometries with fibrosis distributions. (A) Workflow for mesh generation and fibrosis mapping: Starting with the original
triangulated surfaces (left), we generated volumetric geometries. Fibrosis distributions were mapped via interpolation to preserve the original fibrosis
burden (middle) and to reach a 50% synthetically elevated fibrosis burden (right). (B) Original shell geometries (top row), volumetric geometries with
original fibrosis distributions (middle row), and volumetric geometries with increased fibrosis distributions (bottom row) for the three patient geometries
considered in this study. Mesh resolutions (average tetrahedral edge length) and fibrotic burdens are included as annotations.

https://doi.org/10.1371/journal.pcbi.1013265.9g001
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included in our modeling geometries without corresponding fibrosis distributions. Artificial pulmonary vein caps and a
mitral valve representation were added to the geometry to define boundary conditions and preserve anatomical orifice
shape even under large deformations. Fiber direction maps (delineating the longitudinal myocyte directions) were gener-
ated for each geometry using a rule-based method defined by LA landmarks, similar to those described in previous pub-
lications [35,36]. The same fiber architecture was used in both baseline and fibrotic simulations. Volumetric meshes are
publicly available in a Dryad Repository [37].

2.4 CV calibration and identification of earliest activation locations

EAM was performed and recorded for all patients during the ablation procedure, yielding LA activation maps in sinus
rhythm. A CARTO (J&J MedTech) system was used to obtain the values during the procedure, and the open-source
OpenEP package [38] was used to extract local activation maps post-procedure. EAM data was analyzed to identify each
patient’s earliest LA activation sites (first 5 ms) and total activation time.

Total activation times were used to personalize organ-scale CV values through an iterative inversion procedure. In this
procedure, we fixed the anisotropy ratio for longitudinal CV (CV,) versus transverse CV (CV¢) at 1 : 1/\/3 [14,15], limit-
ing the optimization to a single varying parameter (CV| ). The optimization was performed by running EP simulations with
our computational model, comparing the simulated to the recorded total activation time, and then adjusting the model’s
CV values accordingly. This process was repeated until the difference between model-predicted and recorded activation
times was less than 1 ms.

Activation times, electrical stimulus locations, and resulting simulated activation are displayed in Fig 2, while resulting
CV values are listed in Table 1. Reported values were representative for the whole tissue, without any adjustments for
fibrotic regions. Additional details are provided as supplementary material, including detailed descriptions of the proce-
dure (Sect A in S1 Text) and extended figures showing activation and electrical stimulus locations from multiple angles
(Figs A-C in S1 Text).

2.5 Multi-scale, multi-physics LA modeling framework

To predict changes in atrial function under different conditions, we employed a multi-scale, multi-physics LA modeling
framework. Electrical activation and mechanical contraction were modeled using a weakly coupled 3D electromechanical
framework [21,39,40], with deformation strongly coupled to a 0D circulatory model [41]. Pulmonary veins were assumed to
share the properties as non-fibrotic myocardium, exhibiting relative shortening within literature ranges [42].

Electrical activation was first modeled through a multiscale EP model, coupling cell- and tissue-scale dynamics. The
cell-scale model was based on the human atrial action potential by Courtemanche et al. [43] with modifications accord-
ing to Bayer et al. [44]. We simulated tissue-level electrical propagation using a reaction-eikonal model [45] with diffusion.
Personalized CV values derived from EAM data (as described in Sect 2.4) were prescribed, for which baseline values are
listed in Table 1. Pulmonary vein caps and the mitral valve were modeled as an in-excitable and non-conductive material.

The intracellular calcium distributions predicted by the EP framework was used as input to the biomechanical model.
Active tension generation caused by intracellular calcium were computed using the cell-level contraction model by Land
et al. [46,47]. Maximum active tension (T,) was scaled with 50 kPa at baseline, calibrated to give approximately a 30%
active LA emptying fraction (LAEF) [17,48-50]. Passive tension was modeled using a reduced Holzapfel-Ogden formula-
tion with dispersion, with default material parameters a = 2.92 kPa, b = 5.6, a;= 11.84 kPa, b;=17.95, and §;= 0.09 [21,
40]. Pulmonary caps and the mitral valve were modeled as a passive, stiff Demiray material [51], with material parameters
a= 10000 kPa, b = 5.6. Both materials were modeled as nearly incompressible, with bulk modulus x = 650 kPa [21].

To account for the impact of blood flow pressure and load from ventricular contraction, the 3D mechanical model of
the LA was strongly coupled [41] with the OD circulatory model CircAdapt [52,53]. Coupling between the 3D and 0D
models was achieved by simulating 0D blood flow through the pulmonary veins into the LA and through the mitral valve
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Fig 2. Electroanatomical mapping (EAM) activation time, electrical stimulation locations, and model activation times. Activation times estimated
from EAM data (left), electrical stimulus locations corresponding to areas with the earliest activation times (first 5 ms, middle), and resulting activation
times predicted by our EP model (right). All activation times are displayed relative to first LA activation.

https://doi.org/10.1371/journal.pcbi.1013265.9g002

into the left ventricle, thereby modulating the pressure applied to the endocardial surface of the 3D LA model. Active
tension generated in the 0D left ventricle was used to model atrioventricular plane displacement by applying a traction
boundary condition on the mitral valve annulus of the 3D model. Additional mechanical constraints not captured in the
0D CircAdapt framework were imposed using Robin-type boundary conditions: spatially varying, normal spring boundary
conditions were applied to the epicardial surface [54], while omnidirectional spring boundary conditions were imposed at
the pulmonary vein inlets.

2.6 Simulation details

Simulations were performed using the software Carpentry (Numericor GmbH, Graz, Austria) [39], which is built on
extensions of the open-source EP platform openCARP [55]. All simulations were carried out on Hyak, the University of
Washington’s high-performance computing cluster (on nodes with a Intel(R) Xeon(R) Gold 6230 CPU processor), in par-
allel using 40 processes. The steps taken to perform a full integrated simulation workflow are described below. All scripts
used for the CARPentry simulations are publicly available [37].

We initially performed an unloading-reloading procedure to establish a physiologically accurate end-diastolic pressure
configuration. This process ensured that the reinflated, pressurized geometry point-wise matched the initial mesh gener-
ated from image data. Specifically, we applied a backward displacement algorithm [56] to determine the unloaded refer-
ence configuration using a prescribed diastolic pressure of 10 mmHg [17,40], and reloaded this reference geometry with
the same diastolic pressure.
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To ensure physiologically reasonable initial states, we next performed electromechanical simulations at the cellular
level using openCARP’s single-cell tool bench. These simulations were run for 50 cardiac cycles with a fine temporal res-
olution of 0.025 ms. Leveraging the substantially lower computational cost of cell-level simulations compared to full organ-
scale models, this approach allowed efficient approximation of steady-state conditions. The resulting cellular states were
then used to initialize the full organ-scale simulations.

Organ-scale simulations were then performed for ten cardiac cycles with the full 3D framework. The ten cycles were
simulated to reach a convergent state (convergence plots for baseline simulations displayed in Fig 3; in the 10th cycle
there was less than 2% difference for both pressure and volume), balanced with a reasonable running time (16—20 hours
per simulation).

The simulated end-diastolic volumes were slightly higher than the corresponding clinical measurements (Table 1; Fig 3,
middle row). This was expected given that the volume computations in the simulations were performed on a closed atrial
cavity that included the pulmonary vein remnants, see Fig 1. Specifically, the simulations yielded end-diastolic LA volumes
of 124.2 mL, 130.9 mL, and 63.4 mL, compared to clinically measured volumes of 110.0 mL, 112.5 mL, and 60.0 mL. This
systematic offset was consistent with the modeling approach and demonstrated an overall agreement between simulated
and clinical data.

For each cycle, activation was initiated by applying an electrical stimulus in earliest activation regions, determined by
EAM data (as described in Sect 2.4). The remaining myocardial tissue was then activated through the propagation of
the electrical signal, leading to atrial contraction as simulated by our modeling pipeline. We imposed a 1 Hz frequency to
mimic sinus rhythm. Time steps were discretized at 0.025 ms for the EP model and 0.5 ms for the coupled biomechanical-
0D circulatory model. The PV loops predicted by the final cycle simulated were used for our subsequent analysis.

2.7 Parameter changes in fibrotic regions

In our investigation of consequences of various fibrosis-related properties, we focused on five EP parameters (CV values
and ion channel currents) and four mechanical parameters (contractile and passive properties), summarized in Table 2.
Each parameter was re-scaled in the fibrotic regions by the corresponding factor (second column). Baseline or fibrotic
parameter values were assigned in various combinations following the sensitivity analyses described in Sect 2.8. An
overview of all parameter absolute values across all combinations is publicly available [37].

For CV values, we independently explored reductions in the longitudinal and transverse directions. CV, was scaled a
factor of 0.657, based on values reported by Macheret et al. [16]. For CV, we used a scaling factor of 0.520 (relative to
baseline CVy values), corresponding to a fibrotic anisotropy ratio of 1 : ‘I/\/g. This imposed higher anisotropy compared

to the non-fibrotic ratio 1 : 1/\/5, consistent with previous studies [14,15].
Changes in ionic currents were imposed by scaling the inward rectifier potassium (lx4), L-type calcium (Ic4 ), and fast
sodium (ly,) currents by factors of 0.5, 0.5, and 0.6, respectively [14,15,57-59]. These changes in ionic current levels

Table 2. Fibrotic remodeling parameter changes.

Parameter Scaling factor(s) Notes References
CV longitudinal direction (CV) 0.657 [16]
CV ftransverse direction (CV7) 0.520 Anisotropy ratio 1 : 118 [14,15]
Inward rectifier potassium current (Ix4) 0.5 Also alters CV values [14,15,57-59]
L-type calcium current (Ica) 0.5 Also alters CV values [14,15,57-59]
Fast sodium current (Ina) 0.6 Also alters CV values [14,15,57-59]
Myofilament binding rate (u) 0.5 [60,61]
Active tension scaling factor (T,) 0.5 [21,62]
Increased longitudinal stiffness (ST ) ax0.963, arx 2.293 2 x load upon 5% stretch longitudinal direction [7,62]
Increased transverse stiffness (STt) ax2157, arx0.675 2 x load upon 5% stretch transverse direction [7,62]
=8T, and STt in combination ax 2.009, ar x 2.000
https://doi.org/10.1371/journal.pcbi.1013265.t002
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Fig 3. Convergence plots for baseline simulations. LA pressure (top), volume (middle) over time for ten cardiac cycles, and maximum differences in
respective values between subsequent cardiac cycles, normalized by the maximum value of the last cycle (bottom). Values shown are shown for Patient
1-3, at baseline.

https://doi.org/10.1371/journal.pcbi.1013265.9g003

are known to alter CV values locally [63,64]. In traditional tissue- and organ-scale EP models, these alterations would be
captured indirectly through changes in membrane potential. However, the reaction-eikonal formulation we used in our
study does not inherently account for the direct effects of ionic current changes. CV values are here prescribed and not
emergent properties of the underlying cell- and tissue-scale EP dynamics. To prescribe accurate CV values, we ran sup-
plement simulations using OpenCarp’s tuneCV functionality [65]. These simulations were performed considering a sim-
plified 1D rod to predict appropriate CV scaling factors for all combinations of ionic scaling factors. These are described
in Sect B of S1 Text, and the corresponding scripts are published [37]. The resulting CV values for all possible parameter
combinations, including in combination with reduced CV| and CV+, are listed in Table A in S1 Text.

For contractile properties, we considered the active tension scaling factor (T,) and the myofilament binding rate (u).
Modifications to T, affect the magnitude of the active transient. We applied a fibrotic scaling factor of 50% for T, [21,62]
(relative to the baseline value of 50 kPa). The myofilament binding rate depends on the ratio of « and 8 myosin isoforms.
This ratio shifts to a higher proportion of 3 myosins in AF [60,61], resulting in a slower contraction rate. We here imposed
a fibrotic scaling factor of 50% (relative to the baseline value p =9 [47]).

To account for increased myocardial stiffness, we altered passive material parameters imposing changes in longitudi-
nal (ST, ) and transverse (ST+) stiffness. Specifically, we altered parameters a, which affects isotropic stiffness, and a,
which alters additional fiber direction stiffness. To consider stiffness independently for each direction, we performed virtual
stretch experiments. Through these experiments we estimated values of a and a; needed to achieve a two-fold change
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in the load (i.e., force per area) in one direction while keeping the load in the other direction unchanged. In these exper-
iments, we stretched a tissue block (a unit cube) by 5% in either direction while tracking the corresponding load values,
following the setup described in a previous publication [66]. Through an iterative procedure, we then stretched the tissue
block, compared new load values with previous values, then altered the values of a and a;. We repeated the process until
the load value doubled upon stretching in one direction while remaining unchanged in the other direction (within 1% pre-
cision). For the combined effect, having both ST, and ST+ set to fibrotic levels, we found values of a and ar such that load
values doubled when stretched 5% in either direction. Resulting a and a; values are listed in Table 2. Unloading-reloading
procedures were performed for each geometry at both levels of fibrosis and for all four stiffness configurations (without
any changes, with increased ST, with increased ST+, and both combined). The code for material parameter estimation is
publicly available on Zenodo [67].

2.8 Sensitivity analysis — experimental setup

We investigated the impact of the nine identified fibrosis-associated parameters using two approaches. First, we used an
OFAT analysis to analyze each parameter’s isolated effect. Next, we used a FFD analysis to evaluate combined effects.
We employed a 2°-° design [68] as displayed in Table 3, resulting in 32 distinct parameter combinations. In this setup,

B denotes the baseline factor level, while F represents the fibrosis-associated factor level, incorporating the relevant
scaling factors (listed in Table 2). The code for performing the post-simulation sensitivity analysis is publicly available on
Zenodo [69], and the pressure and volume data from all simulations are available on Dryad [37].

2.9 Metrics reported

For all simulations, we reported five PV-loop-based metrics capturing different aspects of atrial function. These included
A-loop area [70-72], booster function, reservoir function, conduit function [73,74], and upstroke pressure difference during
contraction. The metrics are defined in the equations given below. Here, LAV,,;4 and LAP,,4 refer to the LA volume and
pressure at the time point for initial electrical stimulus (LA pre-systolic/LA end-diastolic volume), LAV,,;, and LAV,,., refer
to the minimal (LA end-systole) and maximal volumes, and LAP,,,,4 refers to the maximal pressure during the A-loop (i.e.,
maximum value of booster phase pressure). We performed statistical analysis on values normalized by the corresponding
baseline values for the same patient.

The five metrics considered were:

1. A-loop area (work performed during the active contraction), calculated by Gauss'’s area formula:

1 n 1 n n
A= EZP:‘(VIH — Vi) = E(prvi“ — D PistV) (1)
i=1 i=1 i=1
Table 3. FFD setup; B = baseline value; F = fibrotic value.
Combination number
112|13|4|5(6|7|8|9(|10|11 (1213 (14|15|{16 |17 |18 19|20 (21|22 |23 |24 |25|26 |27 |28 |29|30|31]32
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https://doi.org/10.1371/journal.pcbi.1013265.t003
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where p and v correspond to A-loop volume and pressure values.
2. Booster function (LA pumping function, active contraction volume change):

LA VpreA —LA Vmin
LA VpreA

3. Reservoir function (elastic ability to stretch and recoil, passive stretching):

LAV yax — LAV i
LAV in

4. Conduit function (passive transfer of blood to the LV):

LA Vmax —LA VpreA
LAV ax

5. Upstroke pressure difference (LA pumping function, active contraction pressure change):

LAP, maxA — LAP, preA
LAP,ren

2.10 Spatiotemporal analysis

We examined spatiotemporal distributions of electromechanical simulations to better understand the effects of the
parameters identified as most influential. Specifically, we compared the baseline simulation, those in which I, and g4
were impaired (from the OFAT analysis), and FFD Combination 32, in which all parameters were set to fibrotic levels. For
conciseness, we refer to this combination as “Fully fibrotic” throughout the paper. We compared spatiotemporal distribu-
tions of membrane voltage, intracellular calcium, active tension, and fiber direction strain. This analysis was limited to the
original fibrosis burden, with Patient 1 as a representative example.

2.11 FFD analysis

To analyze the FFD main effect (isolated impact of a single parameter, but in combination with other parameter changes),
we compared the baseline (B) and fibrotic (F) groups. For a given parameter, the B group included all combinations in
which that parameter was set to baseline value, while the F group includes combinations where it was set to the fibrotic
value (as defined in Table 2). Other parameters were set to either baseline or fibrotic levels according to the design. Sta-
tistical comparisons between the two groups were performed using Student’s t-test (with group-wise distributions found
to be normal, as assessed by an Anderson-Darling test). The analysis was conducted and annotated using the software
Statannotations [75].

To characterize FFD interaction effects (confounded effects with other parameters), the subdivision was extended to
pairwise combinations. This resulted in four groups for each parameter pair (x;, x;) — all combinations of baseline/fibrotic
levels (B;B;, F;B;, BiF;, and F;F;). We defined an interaction coefficient as a cross-product between these:

[FiB;, FiFj1 x [B;B;, BiF;]

| 6
[FiB;, FFI1I1B;B;, BFI ;

I;; = arcsin( i

The coefficient relates the angle between two lines in an interaction plot. It is symmetric, meaning /;; = /;;. Positive val-
ues indicate a synergistic effect, where the impact of having both variables at fibrotic levels leads to a greater reduction in
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atrial function than the sum of the effects of individual factors. Negative values indicate mitigating effect, where the impact
of having both variables at fibrotic levels leads to a smaller reduction in atrial function compared to the sum of the effects
of individual factors.

3 Results

In this section, we present findings from individual patient-specific simulations, using Patient 1 as a representative exam-
ple, and statistical analysis of aggregated data. We begin by presenting an overview of the simulation pipeline, PV loops
with derived metrics for all three patients, followed by OFAT analysis results. We next present results from the spatiotem-
poral analysis focusing on parameter changes emerging as most important from the OFAT analysis, followed by FFD
analysis results. Finally, we examine the impact of increased fibrosis. Unless otherwise noted, the results are representa-
tive of all three patients and reflect the original fibrosis burden.

3.1 Electromechanical simulations and PV loop-based metrics

Our modeling pipeline is demonstrated in Fig 4, for Patient 1 at baseline (no fibrotic changes). The model-predicted pres-
sure and volume transients were extracted, resulting in characteristic LA PV loops. The A-loop was larger than the V-loop
in area, indicating higher changes in volume and pressure. Prior to atrial contraction (when we were close to an equilib-
rium between atrial and ventricular pressure), we observed small oscillations in both volume and pressure, also are visible
in the lower part of the V-loop.

Baseline PV loops for all three patients are displayed in Fig 5, with derived metric values annotated. Patient 1 had
the smallest booster and reservoir function. Patient 2 had the largest A-loop area and upstroke pressure difference, and
the lowest conduit function (although only marginally lower than Patient 1). Patient 3 had the smallest A-loop area and
upstroke pressure difference, but the highest booster, conduit, and reservoir function. No patient consistently showed
higher metric values than the others.

Based on volumetric measurements at different stages, we also computed model-predicted LAEF for comparison
with clinical values (reported in Table 1). Total LAEFs at baseline were 33.70% for Patient 1, 38.13% for Patient 2, and
37.52%; consistently lower than corresponding clinical estimates. Simulation-predicted active LAEFs were 23.99%,
29.37%, and 33.97%, while passive LAEFs were 12.78%, 12.16%, and 16.61% for Patients 1-3.

3.2 OFAT analysis predicted fibrosis-associated decreases in Ig,_ and lx; as main determinants of LA function

Results of our OFAT analysis are presented in Fig 6, highlighting the isolated effect of each parameter change. Fig 6A
shows the impact on PV loops using Patient 1 as a representative example. Impaired lx, enlarged the A-loop, while
impaired I, (substantially) and reduced T, (marginally) decreased it. Increased stiffness (i.e., higher ST and STy)
shifted the PV loop, increasing volume while preserving pressure and loop shape. Modifying CV, CV7, Iya, or u did not
noticeably alter PV loop size or shape.

Relative changes in PV-loop-derived metrics are plotted in Fig 6B. There were consistent trends across all three
patients, with comparable magnitude changes. The largest changes were observed for Patient 2 (who had the highest
fibrosis burden). A-loop area was the most sensitive metric (at maximum leading to a 74% reduction for impaired I, for
Patient 2).

Fig 6C displays output metrics and fibrosis-associated input parameters averaged across all three patients. Reducing
IcaL substantially decreased atrial function (with the largest decrease in A-loop area, 64%), while reducing Iy, increased
function (with the largest increase in A-loop area, 20%). Reducing T, also had an effect (17% decrease in A-loop area).
The impact of the other factors was otherwise modest. Notably, reduced CV and increased stiffness did not alter any
metric by more than 5%.
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Fig 4. Model pipeline: EP, biomechanical, and circulatory models. Electrical propagation, including the release of intracellular calcium, was modeled
with the EP model. The intracellular calcium resulted in active tension generation in our biomechanical model, leading to tissue deformation. Tissue
deformation was strongly coupled to the 0D circulatory model, from which we extracted LA volume and pressure transients. 3D maps (left) show the
spatial distribution of model outputs at the 130 ms time point, and transient plots (right) display values over time at a representative node. Output data
are shown for Patient 1, baseline simulation (no fibrotic changes). Movies displaying spatiotemporal distributions for all three patients are included as
supplementary material (S1 Movie, S2 Movie, and S3 Movie).

https://doi.org/10.1371/journal.pcbi.1013265.g004

3.3 Impact of impaired I, and lx, was related to changes in intracellular calcium transient amplitude

Motivated by the results from the OFAT analysis, we next compared key spatiotemporal distributions across baseline,
impaired I, , impaired lx4, and fully fibrotic simulations. Spatiotemporal distributions for all three patients under these
conditions are also included as supplementary material (S1 Movie, S2 Movie, and S3 Movie).

Fig 7 shows membrane potential, intracellular calcium, and active tension for each condition, using Patient 1 as a
representative example. In the simulation with impaired I, , membrane potential was lower in fibrotic areas, while
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intracellular calcium was intermediate, and active tension was close to zero. A dispersive effect was also observed for cal-
cium and active tension, lower in non-fibrotic areas than in the baseline simulation (compare, e.g., the lower left region).
In contrast, impaired I, abolished the differences between fibrotic and non-fibrotic regions producing a slight increase in
intracellular calcium and a marked rise in active tension relative to baseline (see also transients in Fig 8). The fully fibrotic
simulation exhibited pronounced heterogeneity in the intracellular calcium distribution, with near-zero values centrally and
intermediate closer to non-fibrotic areas. Active tension was close to zero in all fibrotic regions, but higher in non-fibrotic
areas compared to the impaired I, simulation.

Fig 8 shows membrane potential, intracellular calcium, and active tension transients for three representative locations
in Patient 1°’s geometry. The fibrotic site and its immediate vicinity (Points A and B) exhibited an elevated resting mem-
brane potential (approximately 5 mV increase) and a prolonged action potential duration (approximately 75 ms longer) in
the impaired lx4 and fully fibrotic simulations. No differences were observed at the distant site (Point C) for the membrane
potential. Intracellular calcium transient amplitude was reduced for the impaired I, simulation and slightly increased
for the impaired I, simulation across all points, with gradual effect from Point A to Point B to Point C. In the fully fibrotic
simulation, intracellular calcium was close to zero in Point A (see also corresponding spatial plots in Fig 7, bottom mid-
dle) while being reduced in Point B (14% decrease in amplitude, relative to baseline) and Point C (7% decrease). These
calcium variations were magnified in active tension, with attenuated responses at lower calcium levels and enhanced
responses at higher calcium levels. For the fully fibrotic simulation, active tension was zero in Point A, while reduced in
Point B (44% decrease, relative to baseline) and Point C (19% decrease).

In Fig 9A, we show LA deformation comparing baseline to the other configurations. Deformation is displayed at the time
of minimum volume (i.e., LA systole, see Fig 9B, top subplot). In the impaired Ic,_ simulation (top row), the LA remained
more dilated, indicating reduced contraction. Conversely, for impaired I, (middle row), the deformed geometry was
slightly more contracted than the baseline simulation. The fully fibrotic simulation (bottom row) also resulted in a less
contracted geometry.

Fig 9B displays corresponding differences in volume and pressure over time. The systolic volumes were similar
between impaired I, and fully fibrotic simulations, while the fully fibrotic simulation exhibited a larger maximum
volume. Pressure displayed highest differences during contraction, with the impaired I, and fully fibrotic simulations
having less variation than the baseline and impaired I, ones. The PV loop in the fully fibrotic simulation was shifted in
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Fig 6. Results from OFAT analysis, original fibrosis burden. (A) PV loops with one parameter changed (red) compared to baseline (gray, dotted),
for Patient 1. (B) Impact of each parameter on A-loop area, booster function, conduit function, reservoir function, and upstroke pressure difference
for Patients 1-3 (P41—P3). Values reported relative to baseline. (C) Average change (across all three patients) in each metric for each parameter, with
implied percent-wise changes in parentheses.

https://doi.org/10.1371/journal.pcbi.1013265.9006
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Fig 7. Spatial distributions of membrane potential, intracellular calcium, and active tension; baseline, impaired Ic,., impaired lk4, and fully
fibrotic simulations. Spatial distributions of membrane potential (left), intracellular calcium (middle), and active tension (right) at time step 130 ms
for baseline (top), impaired I, (second row), impaired lg4 (third row), and fully fibrotic (bottom row) simulations for Patient 1. See also corresponding
point-wise plots displayed in Fig 8 and movies attached as supplementary material (S1 Movie, S2 Movie, and S3 Movie).

https://doi.org/10.1371/journal.pcbi.1013265.g007

-80

volume compared to all the other cases, and the A-loop was smaller than baseline and impaired I, but larger than in the
IcaL Simulation.

3.4 FFD analysis predicted I¢,., Ik1, longitudinal, and transverse stiffness as significant factors

To gain deeper understanding of the interactions between model parameters, we next performed a detailed FFD anal-
ysis. The PV loops obtained from simulations for all FFD combinations are shown in Fig 10, in which most combina-
tions reduced the A-loop. Patient-averaged metric values for all combinations are included in Fig D in S1 Text, and
further described in Sect C in S1 Text. For Combination 32 (fully fibrotic), the relative change in A-loop area was 0.474
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(i.e., =53%), in booster function 0.673 (-33%), in reservoir function 0.695 (-30%), in conduit function 1.0 (no change), and
in upstroke pressure difference 0.721 (-28%).

Main effect plots for all patients and combinations are displayed in Fig 11A, with the relative change of each factor
shown in Fig 11B. Reduced I, and lx4 had a statistically significant impact on four of five metrics when comparing B and
F groups, the impact in line with the OFAT analysis. The effect of impaired I, was slightly attenuated (e.g., 54% reduc-
tion in A-loop area vs. 64% reduction in the OFAT analysis), whereas the impact of Iy, impairment was amplified (e.g.,
27% increase in A-loop area vs. 20% increase in the OFAT analysis). Consistent with our OFAT analysis, changes in CV
and stiffness had a modest impact (less than 2%).

Increasing stiffness had a statistically significant, albeit modest impact on conduit function, with decreases of 1% and
2% for increases in longitudinal and transverse stiffness, respectively. The impact was small in magnitude relative to the
effects observed for the other metrics, with little variation (all standard deviations less than 0.03, and all observations were
within the range [0.95,1.06]).

Interaction effects presented in Fig 12 were generally small. All interaction coefficients (Fig 12A) were less than 0.1
radians, and interaction lines nearly parallel (Fig 12B—12C). Most combinations were found to be mitigating (having
negative interaction values, see again Fig 12A). For A-loop area, booster function, reservoir function, and upstroke
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Fig 9. Geometry deformation and changes in volume and pressure — comparison of baseline with impaired I, _, impaired lx4, and fully fibrotic
simulations. (A) Deformed geometries for impaired Ic,, vs. baseline (top), impaired I vs. baseline (middle), and fully fibrotic vs. baseline (bottom)
simulations, Patient 1. Deformation is displayed from two angles, with partial transparency. (B) Volume over time, pressure over time, and PV loops for
the same simulations.

https://doi.org/10.1371/journal.pcbi.1013265.9g009

pressure difference, the greatest mitigating effect consistently was for reduced CV; combined with increased ST+. There
was also a mitigating effect for I, combined with I, — strongest for A-loop area, followed by booster function.

3.5 Increased fibrosis led to moderate further reduction in LA function

Results of our analysis with a 50% synthetically elevated fibrosis burden are presented in Fig 13. Increased fibrosis bur-
den led to a further reduction across all metrics in the OFAT analysis (Fig 13A), however, the decrease was moderate.
Factors identified as statistically significant for FFD main effect subject to original fibrosis burden remained significant with
elevated fibrosis (Fig 13B). Considering average values (Fig 13C), the largest increase in absolute effect was observed
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for impaired I, . For A-loop area, we observed a 74% decrease with elevated fibrosis (compared to 64% with the origi-
nal fibrosis burden) in the OFAT analysis, and a 62% decrease (compared to 54%) in the FFD analysis. Patient-averaged
metric values for all FFD combinations are included in Fig E in S1 Text, and described in Sect C in S1 Text. For Combi-
nation 32 (fully fibrotic), the relative change in A-loop area was 0.366 (i.e., -63%), booster function 0.584 (-42%), reser-
voir function 0.622 (-38%), conduit function 0.995 (+0.5%, more precisely +0.462 rounded down to 0 in the heatmap), and
upstroke pressure difference 0.657 (—34%).

In Fig 14 we display how absolute values of all metrics vary between no fibrosis, original fibrosis, and increased fibrosis
burden, considering the fully fibrotic simulations. The decrease in all but the conduit function was steeper going from no
fibrosis to original fibrosis burden compared to going from original to elevated fibrosis burden. Patient-specific trends cor-
related well between A-loop area and upstroke pressure difference, and between booster function and reservoir function,
while conduit function differed from all other metrics.

4 Discussion
4.1 Impact of fibrotic-associated parameter changes on the atrial function

In the present study, we combined a multi-scale, multiphysics modeling framework with patient-specific LA geometries
and fibrosis maps to investigate the impact of fibrotic remodeling. We investigated the influence of nine electromechan-
ical parameters altered in fibrosis, and assessed LA function using five volume- and pressure-based metrics. We found
these metrics to be sensitive to variations in I, and Ixq, with opposite effects, while stiffness exerted a small but statis-
tically significant impact on conduit function. Spatiotemporal analysis revealed that changes in intracellular calcium tran-
sient amplitude had pronounced effects on active tension impairment, reflecting the nonlinear relationship between these
variables. In simulations with impaired lx4, we observed an elevated membrane potential and an increase in intracellular
calcium transient amplitude (Fig 8), leading to enhanced active tension and improved LA function. This effect mitigated
the impairing impact of fibrosis from other factors.

The effect of I, on atrial function is consistent with its central role in regulating intracellular calcium release [76], driv-
ing cardiac contraction [77]. Atrial function remains impaired after sinus rhythm restoration in AF patients, primarily due
to reduced I, [78]. Less intuitive was the improved atrial function following impaired Ix4. Experimental studies show that
increased intracellular calcium reduces I, [79-81], making it plausible that impaired I¢4 raises intracellular calcium. To our
knowledge, this is the first study delineating the impact of individual fibrosis-associated changes on atrial function through
electromechanical simulations on patient-specific geometries. However, our results align with those of Hurtado et al. [82],
who found L-type calcium channel conductance, followed by potassium delayed rectifier conductances, to be the most
sensitive parameters in ventricular electromechanical model representations. They also found L-type calcium channel
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Fig 13. Impact of 50% synthetically elevated fibrosis: OFAT analysis and FFD analysis, main effect. (A) Results from the OFAT analysis for Patient
1-3 (P1-P3) patient. Original fibrosis levels are indicated by gray points on the left (the same as displayed in Fig 10) and extended fibrosis on the right.

(B) FFD main effect: Error bars indicate standard deviation, and gray plots represent original fibrosis levels (based on the same underlying data as

Fig 11). Comparisons for significant differences were performed for elevated fibrosis simulations. Only significant factors are displayed here, while plots
for all are included in Fig F in S1 Text as described in Sect D in S1 Text. (C) Percentage impact of each parameter, averaged across all three patient

cases, for OFAT (left) and the FFD (right) analyses.

https://doi.org/10.1371/journal.pcbi.1013265.9g013
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conductance raise intracellular calcium amplitude, whereas increasing potassium delayed rectifier conductances reduced
it, consistent with our results and experimental work.

Strocchi et al. [83] performed an extensive sensitivity analysis encompassing all four cardiac chambers. Transverse
atrial stiffness (b; 4) had a stronger effect than L-type calcium channel conductance on end-systolic and end-diastolic LA
volumes, whereas potassium channel conductances had little to no impact. The apparent discrepancy with our results
may reflect differences in sensitivity analysis output metrics and parameterization. We observed increased stiffness to
shift end-systolic and end-diastolic LA volumes but not their relative difference (i.e., booster function). Additionally, the
stiffness parameter in Strocchi et al. [83] was an exponent with implied higher sensitivity. They also imposed increased
stiffness throughout the atrium, whereas we applied it only to fibrotic regions.

Stiffness has also been explored in other models. Moyer et al. [17] found that fibrosis-associated increases in global
stiffness reduced both systolic and diastolic function, with increased pressure and reduced volume for the latter. Meskin
et al. [72] reported that higher compliance (lower stiffness) decreased pressure and increased A-loop area. Both studies
advanced understanding of LA biomechanics but applied uniform stiffness changes, ignoring heterogeneity introduced
by fibrotic remodeling. They also differed in material representation: our model used a reduced Holzapfel-Ogden law with
a conditional term (combined with detailed fiber orientations), while the formulation used by Moyer et al. increased fiber-
direction stiffness under both contraction and stretch, and Meskin et al. used silicone rubber, which is isotropic. Pericar-
dial boundary conditions in our model may further dampen stiffness effects. We found that increased stiffness in fibrotic
regions minimally reduced A-loop area, likely because changes were confined to fibrotic regions, while slightly lower-
ing diastolic pressure, probably due to altered mitral valve flow. Gonzalo et al. [21] observed a larger systolic volume
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reduction ( 5% vs. 2%), likely reflecting the fivefold stiffness increase in fibrotic regions, while diastolic volume remained
unchanged. Physiologically, non-fibrotic regions are also probably stiffened due to interstitial fibrosis, though substan-
tial stiffness heterogeneity remains. It seems plausible that changes in stiffness governing the largest part of the atrial
body — perhaps better assessed via a median rather than mean value — will govern the relative impact on

LA function.

A shift in LA volume combined with increased stiffness has been observed in clinical studies [84], although this likely
included volumetric expansion. LA stiffness indices derived from clinical flow and strain measurements show predictive
power [84—-86], but not independently of volumetric indices. Lamy et al. [7] used invasive measurements of pressure to
calculate the stiffness index and correlated it with fibrotic burden assessed by LGE. They found significant differences
in LA strain metrics, but notably not in pressure. Further clinical, experimental, and computational studies are needed to
better understand the relationships between LA stiffness, volume, and pressure changes.

4.2 Sensitivity analysis takeaways

We performed two types of sensitivity analysis: a simpler OFAT scheme, exploring the isolated impact of each factor, and
a detailed FFD scheme, also accounting for interactive effects. We found that most of the effects could be predicted by the
OFAT analysis. However, FFD analysis revealed that the impact of I, was partially mitigated when combined with other
parameter changes, while the impact of Ix; was amplified. In the model, these changes can be linked to shifts in equilib-
rium values altering action potential and calcium transient morphology (Fig 7). Physiologically, they might be considered
compensatory feedback mechanisms.

Sensitivity analysis can be performed in various ways, involving many methodological choices. Advanced techniques
like the Morris elementary effects method [82,87,88], Sobol indices [83,89-91], and Bayesian history matching [92,93]
involve finer interval sampling, capturing non-linear behavior, interaction effects, and sensitivity regions. However, these
benefits come at the cost of running more simulations. These can feasibly be carried out through model simplifications,
computational optimization strategies, or surrogate models like Gaussian process emulators [54,90-93].

In our study, we sampled all relevant parameters at two levels: baseline and fibrotic. The FFD scheme presented an
efficient methodology allowing us to perform our sensitivity analysis with a detailed multi-scale, multi-physics compu-
tational model, based on a manageable number of simulations. It enables direct quantification and assessment of the
directionality of parameter effects, which is not provided directly through Sobol analysis nor Bayesian history matching,
and only statistically approximated in the Morris elementary effects method. Finally, while OFAT is a rudimentary method
that (by definition) misses all interactive effects, this attribute makes it an eminently interpretable approach.

4.3 Clinical implications

We found that fibrotic remodeling substantially impaired the cardiac function, mostly explained by impaired I, With
fibrotic area constituting between 15.6% and 23.9% (for original fibrosis burden), for the fully fibrotic simulation (with all
factors set to fibrotic levels), A-loop area, booster function, reservoir function, and the difference in upstroke pressure
decreased by 53%, 33%, 30%, and 28%, on average. However, with 50% increased fibrosis burden, we only saw a mod-
erate further impairment. Our spatial analysis revealed substantial dispersive impact from the fibrotic to the non-fibrotic
regions. The moderate effect could be explained by the fact that synthetically elevated fibrosis mostly covered larger
areas by expansion rather than emerging in new locations. As such, these denser areas would have a less dispersive
impact into non-fibrotic myocardium. This might suggest the hypothesis that scattered fibrosis distributions, as opposed to
dense distributions, are more consequential for atrial dysfunction.

Two of our three patients (Patients 1 and 2, with LA volume indices 55.5 and 48.3) had enlarged LAs, with end-diastolic
volumes and volume indices above normal ranges [94]. Using the Utah classification standard, Patients 1 and 3 had fibro-
sis burden at level Il (5-20%), while Patient 2 was at level Ill (20-35%). Among AF patients, males have larger atria (but
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not higher LA volume indices), whereas females have higher fibrosis burden [95] and larger low-voltage areas [96]. This
is the opposite of what we observe for Patient 1 (female, largest LA) and Patient 2 (male, highest fibrosis burden), but not
unexpected given inter-individual variability.

Several clinical studies have performed statistical analysis assessing LA strain metrics derived from clinical images.
Hopman et al. [97] and Chahine et al. [98] found that reservoir, booster (contractile), and conduit strain were reduced in
AF patients compared to healthy controls. In our study, we observed a decrease in booster and reservoir function, but
not substantially in conduit function. Our model may not accurately capture changes in conduit function, potentially due to
the use of a simplified 0D circulatory model or underestimation of traction force during LV contraction. Moreover, we only
imposed changes in fibrotic regions. In reality, interstitial fibrosis in AF patients [5] raises myocardial stiffness everywhere
and not only in fibrotic regions. Fibrosis levels have been found to be similar for embolic stroke of undetermined source
(ESUS) and AF patients [2,99]. Bashir et al. [100] compared atrial strain metrics for ESUS patients to patients with non-
cardioembolic stroke. They found that the same metrics (contractile, reservoir, and conduit) were associated with a higher
risk of ESUS occurrence, and a higher risk of later AF detection.

4.4 Limitations

Most model parameter values were not patient-specific, and those that were had constraints. In calibrating patient-specific
CV, we assumed healthy baseline simulation values not considering regional fibrotic changes. However, CV had low
impact among the metrics considered, making this simplification reasonable. With mostly generic parameters, the models
reflect general atrial characteristics, and varying patient geometries or fibrosis distributions would likely yield similar func-
tional outcomes. The model could further be improved by personalizing parameters in the 0D circulatory model to match
clinical volume and pressure-related measurements [101,102].

Beyond parameter assumptions, the model also lack several dynamic feedback mechanisms that could impact atrial
function. It omits electromechanical feedback [103—106], and uses a simplified OD circulatory model for hemodynamic
feedback, which cannot fully capture fluid-structure interactions [107—109]. Fluid-structure interaction models that resolve
spatial variations in endocardial pressure might be necessary to resolve secondary interactions involving regional fibrotic
changes in myocardial properties. Similarly, the use of a lumped 0D model representing the impact of the other chambers,
rather than a full 4-chamber model, might not accurately capture interaction between the different chambers [110]. Includ-
ing at least the left ventricle could better represent the passive phase of atrial function and ventricular remodeling. How-
ever, this would greatly increase computational costs and model complexity. A potential future compromise would be to
estimate patient-specific values for the CircAdapt parameters corresponding volumes of each cardiac chamber, whereas
our present study used default settings for the sake of simplicity.

LAEF values in our simulations (33.70%, 38.13%, and 44.94% at baseline) were consistently lower than correspond-
ing clinical estimates (39.24%, 51.56%, 58.2%; see Table 1). The discrepancy can be attributed to the passive part
of the LAEF, which was underestimated in our model (12.78%, 12.16%, 16.61% vs. reference values of 35—-40% [49,

50]), whereas active LAEFs agreed with typical normal values (23.99%, 29.57%, 33.97% vs. 30%). In the future, model
improvements can be made to better represent passive function. Such improvements might also increase the sensitivity of
the conduit function, which we generally found to be low.

The geometrical assumptions introduce additional limitations. We used a uniform myocardial thickness of 2 mm,
although atrial wall thickness varies regionally and between patients [34], see also reported ranges in Table 1. Changes
in LA volume, fibrosis burden, and wall thickness are all components of LA remodeling. Relationships between these
components remain active research areas, with implications for atrial pump function and AF substrate development
[34,111-113]. Additionally, myofiber architecture was specified using a rule-based algorithm. Cardiac computed tomogra-
phy offers the ability to quantify regional wall thickness and patient-specific myofiber orientation [114]. Incorporating such
data could enhance model accuracy and predictive value.
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Our sensitivity analysis only considered a subset of all possible parameter combinations, with two levels for each
parameter. There might be other influential parameters not considered in our study. Our study is also limited by the
scarcity of experimental data on the relative change in each fibrosis-associated parameter. Despite these limitations, we
believe the directionality of each parameter is within reasonable physiological range. Future experimental studies might
refine exact parameter changes.

We only consider three patients, whereas clinical studies typically involve hundreds of patients. Combined MRI and
EAM data collection is logistically challenging, while model simulations are time-consuming. Extending the analysis to a
larger cohort would increase confidence in our findings and allow more granular analysis. Moreover, our analysis focuses
on fibrotic regions identified by LGE, which is normalized to non-fibrotic myocardium. This approach does not capture
interstitial fibrosis, which is also present among AF patients [5] and might underestimate remodeling in LGE-identified
non-fibrotic regions.

4.5 Future work

This study’s findings warrant future research quantifying Ic,., lkq, and myocardial stiffness. Clinical and experimental stud-
ies are needed to validate the results presented here, while computational studies can build on our results. Several antiar-
rhythmic and rate-control agents used for atrial fibrillation contain ly4-blocking agents [115], while blockers of atrial-specific
potassium channels (Ca®*-activated K+ channels of small conductance, SK channels) have been suggested as future
therapeutic drugs [116,117]. These may serve as alternatives to other medications, including but not limited to calcium
channel blockers [118]. While primarily assessed in terms of arrhythmogenicity, these drugs also impact intracellular cal-
cium and force generation. However, blocking lx4 may trigger ectopic activity due to increased resting membrane poten-
tial. Careful investigation is warranted regarding the balance between arrhythmic effects and benefit to atrial biomechani-
cal function. An interesting avenue and extension of our work could be exploring the impact of rhythm control medication
on atrial and ventricular function, in both sinus rhythm and subject to re-entry waves mimicking those observed in atrial
and ventricular fibrillation.

Sensitivity analysis studies of the fibrotic LA could extend in several directions. Incorporation of additional parame-
ters (e.g., other ion channels or parameters relevant to interstitial fibrosis in non-fibrotic tissue) could reveal other influ-
ential mechanisms. Wall deformation predicted by electromechanical simulations could also be integrated with spatially
resolved analyses of LA flow and coagulation dynamics to assess how fibrotic remodeling affects downstream outcomes
such as thrombosis risk [21,119-121]. In an extended sensitivity analysis, one could include spatiotemporal analysis of
blood flow, including parameters associated to atrial morphology [122], blood rheology [123] (e.g., hematocrit and red
blood cell aggregation timescale), coagulatory state, or anticoagulation regime [120]. The sensitivity analysis scheme
could be extended to ventricular models or whole-heart models, considering the impact of ventricular fibrotic remodeling
in comparison or in addition to atrial fibrotic remodeling.

Modeling studies with clinical data can yield mechanistically informative results. Image-based strain analysis can be
combined with model-based analysis for the same individuals. Such a study would provide detailed insight into where
strain analysis deviates from the model, important for model validation. Another avenue could be to combine model-
ing with regional analysis of fibrosis distributions [124,125], relating fibrosis burden and variations in spatial patterns to
changes in LA function. Computational modeling could also compare LA function after pulmonary vein ablation [126,127],
by representing veins as non-conductive, stiffer regions and possibly incorporating post-ablation LGE-MRI. Findings could
be related to clinical data showing decreased LA function [71,84,128,129].

5 Conclusions

In our study, we used a computational model combined with patient-specific LA geometries to analyze the impact of nine
parameters related to fibrotic remodeling. Our sensitivity analysis predicted that impairment of I, and lx; were most
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consequential in terms of changes in LA function, having respectively decreased and improved effect. Future research
focusing on these may greatly improve our understanding of fibrotic remodeling and its effects on atrial function. We found
that reduction in I, and Ik, had a dispersive effect impacting non-fibrotic tissue, and that an increase in fibrosis burden
produced a comparably moderate reduction in LA function, potentially related to fibrosis density (scattered versus dense).
In the future, modeling frameworks with larger cohorts could better elucidate relationships between fibrosis burden, spatial
patterns, and LA function impairment. Modeling efforts could include spatiotemporal analysis of thrombogenic risk subject
from fibrotic remodeling, ultimately improving risk assessment and prevention strategies.
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