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correct model parameters, ensuring model stability, and preventing the mod-
els from either under-learning from data or over-learning from noise. This paper
presents a new, integrated methodology to overcome these obstacles. The
approach provides a systematic workflow incorporating analyses of parameter
identifiability, model stability, and predictive capabilities. By addressing these
critical pitfalls, this research aims to facilitate the creation of more reliable and
mechanistically insightful models, ultimately enhancing our understanding of
microbial community dynamics.

Introduction

A microbial community, often referred to as a microbiome, is a group of microor-
ganisms that live together in a specific environment [1]. These microorganisms can
include bacteria, archaea, fungi, and viruses. They interact with each other in com-
plex ways, forming intricate ecosystems. These communities play crucial roles in
various processes. For instance, the gut microbiota influences digestion and immu-
nity, while the soil microbiome is essential for nutrient cycling and plant growth.
Understanding microbial communities is vital for fields such as bio-medicine,
microbiology, ecology, biotechnology, and agriculture, as they can impact human
health and environmental sustainability [2].

Characterizing the nature of interactions within these systems helps reveal the
roles of microbial species. Various qualitative and quantitative methods have been
developed to analyze microbial community functions [3]. Quantitative approaches
based on mathematical modeling are especially helpful. They provide valuable
insights into the functioning of microbial communities, helping researchers to
understand, predict, and potentially manipulate these complex systems [4—6]. The
abstraction capabilities of these mathematical models are crucial for capturing under-
lying phenomena and linking the various scales at which these systems operate [7].
In this context, a number of network inference methods have been applied to char-
acterize microbial interactions as static network models, sometimes mapping the
inferred interactions with ecological motifs, such as cooperation, competition, com-
mensalism, predation, and amensalism [8]. However, these network models offer a
static view of microbial communities, capturing their status at a specific moment. In
order to study changes over time, and time-dependent phenomena such as stability,
response to disturbances, and succession, dynamic models are necessary.

Dynamic modeling is a particularly powerful framework that helps infer direc-
tionality and causality, predict time-dependent properties, and capture the dynamic
behaviors of microbiomes in changing environments [9]. It can identify key microbes,
molecules, and genetic determinants with significant causal effects on microbial com-
munity behaviors, predict their responses to perturbations, and guide the design
of precise interventions to modify community functions [10]. Many existing frame-
works for modeling the dynamics of microbial communities have been inspired by
ecosystem modeling approaches, and include Lotka—Volterra, consumer—resource,
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trait-based, individual-based and genome-scale metabolic models, each one with its own scope, advantages and lim-
itations [5,11,12]. In particular, Generalized Lotka-Volterra (GLV) and consumer-resource (CR) models are widely
used [5,13], although their suitability depends on the origin of the available experimental data and the theoretical
assumptions [14].

While various dynamic modeling paradigms exist, including agent-based models (ABMs) and partial differential
equations (PDEs) for spatially explicit scenarios [15,16], ordinary differential equations (ODEs) are frequently used when
spatial effects are averaged or not the primary focus [7,17]. ODEs effectively capture time-dependent processes like the
complex interactions between microbial species, such as competition, cooperation, and predation. Moreover, they can
incorporate the influence of environmental factors (e.g., nutrient availability, temperature, and pH) on microbial growth and
interactions, and can be used to make quantitative predictions about the behavior of microbial communities under different
conditions. These ODE-based models can help understand the underlying mechanisms driving community dynamics and
design time-dependent interventions to manipulate these communities. In the remainder, we consider dynamic modeling
of microbial communities using ODE-based models. In any case, it should be noted that several of the methods described
below can be extended to handle PDEs, and probably ABMs.

Building these ODE dynamic models is challenging due to several factors. To begin with, microbial communities involve
complex networks of interactions among microbes and with their environment. These interactions can be direct (e.g., com-
petition, predation), indirect (e.g., through metabolite exchange), or higher-order (beyond simple pairwise interactions).
Capturing all these interactions accurately and mapping them to the structure of an ODE-based model is difficult [4,5].
But, more importantly, even when the model structure is adequate, we still need to solve the identification problem, i.e.,
fitting the model to data and evaluating its predictive power.

The identification of dynamic nonlinear ODE-based models presents a complex set of challenges that stem from both
the intrinsic properties of the models and the nature of available data. These challenges can significantly impact the accu-
racy, reliability, and predictive power of the resulting models. One of the primary challenges is the potential lack of identifi-
ability. Identifiability refers to whether the model’s parameters can be uniquely determined from the available data [18—20].
If a model is not identifiable, different parameter values can produce the same output, making it impossible to know which
ones truly reflect the underlying biology.

Given the model (as a set of ODEs) and the mathematical formulation of the measured quantities (e.g., microbial abun-
dances, nutrient concentrations, etc.), lack of identifiability can manifest in two forms [21]:

« Structural Identifiability: this arises from the structure of the model and its mapping with the measured variables. Some
parameters or combinations of parameters may be inherently unidentifiable, regardless of the quality or quantity of data
available.

 Practical Identifiability: even when a model is structurally identifiable, limitations in the available data (such as noise,
sparsity, or limited range) can render certain parameters practically unidentifiable.

A second challenge is related to the nonlinear nature of these models, which introduces additional layers of
complexity to the parameter estimation process, notably the non-convexity of the optimization problem used in the fitting
process. Also, it should be noted that the solutions of some nonlinear ODEs may not exist for all integration times. A phe-
nomenon known as finite-time blow-up, also called explosive instability, can occur, where solutions approach infinity in a
finite amount of time, which is often biologically unrealistic but mathematically possible in some models. This behavior has
been observed even in relatively simple ecological models [22,23].

In this study, we address the identification problem within microbial communities and propose an integrated method-
ology to effectively tackle these challenges. Specifically, we examine four critical pitfalls that commonly undermine the
identification of nonlinear ODE-based models:
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« |dentifiability issues, structural or practical: as mentioned above, can lead to unreliable parameter estimates or multiple
equivalent solutions.

 Blow-up: if the model exhibits finite-time blow-up for certain parameter combinations, and the optimization algorithm
explores these regions, this can lead to numerical issues that hinder optimization.

+ Underfitting: this occurs when the estimation algorithm converges to a local optimum rather than the global optimum. It
results in a model that fails to capture the full complexity of the underlying system dynamics.

» Overfitting: in this case, the model fits the noise in the data rather than the true underlying signal. Overfitted models
often perform well on training data but fail to generalize to new scenarios, i.e., they lack predictive power.

These four issues are often intertwined and can exacerbate each other. For example, fitting a model with unidentifiable
parameters might be more prone to overfitting and getting trapped in local optima. Blow-up dynamics can further compli-
cate the optimization landscape and make it harder to find the true parameters. While these challenges are not unique to
models of microbial communities, in our experience they arise more frequently and with greater severity within this class
of problems, as further detailed in the Methods section below.

We demonstrate that if these pitfalls are not properly detected and mitigated, they can lead to significant modeling
artifacts. These artifacts may include biased or inconsistent parameter estimates, unrealistic model behavior in certain
regimes, poor generalization to new data or scenarios, and misleading interpretations of system dynamics. Ultimately,
models suffering from these issues lack robust predictive power and may lead to incorrect conclusions about the system
being studied.

To the best of our knowledge, these issues have not been thoroughly examined in the microbial communities literature.
Only recently have a few studies begun to explore identifiability analysis for some of these models. Two of these works
address structural identifiability specifically [24,25], while another considers both structural and practical identifiability [26].
Other critical challenges, however, remain largely unexamined.

Here, we present an integrated and systematic methodology to detect and address these issues simultaneously. This
paper is structured as follows: first, we describe a comprehensive workflow to properly evaluate identifiability, perform
robust model calibration, and assess the predictive power of the resulting fitted model. We also introduce a software
implementation of this workflow that makes use of electronic notebooks, making it more accessible and user-friendly.
Next, we apply our methodology to case studies of increasing complexity, including several examples of widely used
canonical models, to demonstrate its effectiveness and versatility. Finally, we discuss the main findings, emphasizing the
effectiveness of the proposed methodology in addressing the identified pitfalls.

Methods
Overview

We present a methodology for the robust calibration and validation of dynamic models of microbial communities described
by nonlinear Ordinary Differential Equations (ODEs). Dynamic models of microbial communities, such as generalized
Lotka-Volterra (gLV) or consumer-resource models, possess distinctive features compared to many other models in
computational systems biology [28—30]. While challenges like nonlinearity and high dimensionality are common in sys-
tems biology, their specific combination and context in microbial ecology, plus the presence of other specific challenges,
create a uniquely difficult parameter estimation problem that motivates a tailored computational workflow. The primary
challenges are:

Strong Nonlinearity and Highly Nonconvex Landscapes. Microbial community models explicitly encode complex
interaction networks through nonlinear terms. This inherent nonlinearity gives rise to complex, multimodal dynamics
and, consequently, a highly nonconvex objective function landscape. This makes optimization susceptible to local
optima, hindering the identification of globally optimal solutions.
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Dense Model Structures and Data-Driven Identifiability Issues. Unlike many systems biology models with defined
topologies (e.g. biochemical pathways), certain types of models like gLV often assume a dense, all-to-all interac-
tion structure. This leads to a quadratic (O(N?)) increase in parameters with the number of species (N), resulting in
extremely high-dimensional systems. This structural complexity is compounded by severe identifiability challenges
rooted in the symmetries of the interactions and the lack of sufficient informative data (given the large number of
parameters). Many parameters, especially interaction coefficients, can be structurally or practically non-identifiable
from typical community-level data. Data often consist of relative abundances or aggregated signals, which compli-
cates the unique resolution of absolute parameter values. Observability is limited since some species or resources
may be unmeasured or measured only coarsely.

Phenomenological Nature and Proneness to Overfitting. Compared to more mechanistic frameworks (e.g.,
metabolic models constrained by stoichiometry), gLV and similar models are largely phenomenological. The large
number of parameters often lacks strong theoretical or prior constraints. This high degree of freedom, combined
with what is often sparse time-series data, creates a significant risk of overfitting, where the model captures noise
in the training data but fails to generalize.

Potential for Numerical Instability. Due to their nonlinear structure, these models (particularly gLV formulations) can
exhibit solutions with finite-time blow-up (unbounded growth). This causes numerical instability during parameter
estimation, as many candidate parameter sets lead to ODE solver failures. Calibration algorithms must therefore
incorporate strategies to handle or constrain the search to dynamically stable regions.

Overall, although these distinctive characteristics and challenges are not strictly exclusive to microbial community mod-
els, the confluence of a dense parameter structure, the potential for overfitting and numerical instability, and a lack of
mechanistic constraints does present a distinct and severe challenge. To the best of our knowledge, the literature lacks
a comprehensive framework that systematically addresses this specific combination of issues, which is the gap our work
aims to fill. As previously indicated, only recently have a few studies [24—26] begun addressing some of these issues
(e.g., identifiability analysis for selected models). Thus, a key contribution of our paper is to introduce and demonstrate
the latest methods for identifiability analysis and robust model calibration specifically in the context of microbial community
modeling, where these challenges are particularly pronounced.

Our integrated computational workflow has been developed to address these issues and consists of three sequential
phases, each subdivided into modular subtasks:

» Phase 1, pre-estimation preparation, begins with structural identifiability analysis (SIA) to determine whether model
parameters are theoretically distinguishable. If simplification is required, users can remove non-identifiable parameters,
reparameterize equations to reduce complexity, or explore alternative input-output mappings by adjusting perturbed or
measured variables.

* Phase 2, robust parameter estimation, employs global optimization techniques to avoid local minima, paired with
efficient adaptive ODE solvers and mechanisms to address numerical instabilities and overfitting. After estimation, prac-
tical identifiability analysis (PIA) is used to assess whether model parameters can be reliably estimated from the avail-
able data, considering measurement noise and experimental constraints. When needed, it can be followed by dynamic
stability analysis via Jacobian eigenvalue evaluations to assess system robustness.

» Phase 3, predictive power analysis, checks possible over-fitting and its consequences. It also evaluates predictive
power and generalizability by comparing simulations against experimental data and additional cross-validation tests with
held-out datasets. The results can help users to refine the model if needed. Refinement options include simplifying the
model structure, redesigning experiments to improve data quality, or collecting additional data to resolve ambiguities.
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This workflow, implemented via version-controlled scripts and interactive electronic notebooks, ensures reproducibil-
ity and transparency. By integrating theoretical rigor (e.g., identifiability checks, stability analysis) with computational
robustness (e.g., global optimization, regularization), this pipeline minimizes risks such as over-fitting, non-identifiability,
and unstable dynamics, yielding reliable models for real-world applications. The methodology is outlined in Fig 1. We
describe the different phases in the following sections, with further technical details in S1 Text (Section 3).

Pre-estimation preparation

The microbial communities under consideration are described by sets of non-linear Ordinary Differential Equations
(ODEs) and the observation function as follows:

f(x,x,u,8,t) =0 (1)
y=9d(x1) 2)

where x = %, x(f) € X c R"x is the vector of state variables at time ¢, with initial conditions x(fy) = x¢(); 6 € ® C R
denotes the vector of model parameters within the feasible parameter space @, and u € U c R™ corresponds to the exter-
nal factors or inputs. y € R" regards the vector of n, observables. We will regard as fully observed (FO) systems those for
which all the state variables are amenable to experimentation and partially observed (P0), otherwise.

Structural identifiability analysis (SIA) seeks to determine which model parameters can be uniquely estimated from a
given perfect data set, i.e., continuous and noise-free. It should be noted that in reality we never have perfect, noise-free
data and measurements over infinite time. The question is whether parameter estimation is even theoretically possible
given the model structure in Egns (1)-(2). In general, we can distinguish:

* Global structural identifiability: parameters can be uniquely determined from the observations.

« Local structural identifiability: there is a finite set of parameter values that yield the same observations. In synthetic prob-
lems, parameters can be uniquely inferred near their nominal values, but multiple equivalent solutions may exist in the
parameter space.

« Structural non-identifiability: there is an infinite set of parameter values that yield the same observations.

Structural identifiability is crucial for meaningful parameter estimation, as non-identifiable models yield unreliable and
non-unique parameter values that may not reflect the true system properties. Inaccurate estimates of mechanistically
significant parameters compromise the usefulness of the model to provide biological insights [21,31,32]. It also impacts
model validation and interpretation, making it difficult to draw robust conclusions when parameters cannot be uniquely
determined. Furthermore, identifying non-identifiable parameters informs new experiment design, guiding data collection
and experimental strategies to improve parameter identifiability.

Several methods exist for studying S1A in nonlinear models [31,33], but they often rely on complex symbolic manipu-
lations. While various software tools are available, they tend to be user-unfriendly and require significant expertise. More-
over, no single method applies universally to all models. These challenges create barriers that often lead to the neglect of
this crucial step in model calibration.

After an initial screening based on our requirement to analyze structural global identifiability, as well as considerations
of computational scalability, flexibility (including multi-experiment identifiability of both parameters and initial conditions),
and previously reported performance [33], we selected the following tools for further evaluation:
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Fig 1. Diagram illustrating the workflow for model calibration. The figures correspond to a simple Generalized Lotka-Volterra model with 2 species
in a competition scenario, specifically representing an in-vivo competitive mixture experiment with influenza strains in ferrets [27]. Further details about

each phase of the workflow can be found in Methods.

https://doi.org/10.1371/journal.pcbi.1013204.g001

* GenSSI2 [34] is a MATLAB-based tool that uses a generating series approach. It transforms the model equations into a
system of polynomial equations on the parameters, analyzing their rank conditions to determine local identifiability and
solving the system of equations to analyze global identifiability. However, its reliance on pure symbolic computations

can make it computationally demanding for partially observed, highly non-linear systems.
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* SIAN [35,36] is a Julia package that uses a randomized Monte-Carlo algorithm and an improved version of the Taylor
series approach. It employs a differential algebra method that eliminates non-identifiable parameters through Grobner
basis computations.

* Structural Identifiability [37]is another Julia-based package that also uses differential algebra approach
based on input-output equations. The method combines randomization and a differential elimination algorithm, and
presents good scalability.

In principle, all these tools can handle both local and global identifiability, and can be applied to polynomial and rational
ODE models. This selection offers a well-balanced combination of capabilities, performance, and suitability for the models
under analysis. Each tool has unique strengths: Genss12 is effective for smaller to medium-sized models but can strug-
gle with scalability due to its symbolic computation overhead, while SIAN and Structural Identifiability employ
symbolic-numeric randomized algorithms and leverage Julia’s modern computational advantages for improved scalability
and efficiency.

Robust parameter estimation

Dynamic model calibration is the process of adjusting the parameters to ensure accurate representation of the biological
system’s behavior based on available data [38]. This process is typically framed as an optimization problem aimed at min-
imizing discrepancies between model predictions and observed data. Here we adopt a single-shooting approach, where
the initial value problem described by the ODEs is solved for each evaluation of the cost function [39]. Other options are
discussed elsewhere [40,41].

The choice of objective function plays a crucial role in quantifying this mismatch, as it directly impacts the accuracy and
reliability of the calibration. The objective function encapsulates characteristics of the measurement process and incor-
porates prior knowledge. In frequentist approaches, it typically takes the form of the maximum (log)-likelihood function
(details in S1 Text, Section 3.1). When standard deviations are known, this function follows a weighted least-squares form:

o0 e,0 e,0 ,04 12
c yms’ _ys, (e’ts’ )

2

e,0
15=1 Os

n

NgE
oo

Jea® =3 3)
e=1

(o]

Where n,, n¢ and ng° regard the number of experiments, the number of observables in a given experiment e and the
number of sampling times for the specific observables and experiment, respectively. ym§’° represents the measured data
at a given sampling time s for a specific observable o in the experiment e; y¢°(6, t2°) denotes the model prediction for the
sampling time 2°; and 0% is the standard deviation of noise. The estimation problem is formulated as the minimization of
one of these objective functions subject to differential and algebraic constraints (i.e., the ODEs describing the dynamics
plus the observation function and bounds on the parameters, 6in <6 < Bmax)-

In the above formulation, the parameter space is often high-dimensional and the problem is strongly non-convex,
characterized by multiple local minima, flat regions, and possibly discontinuities caused by solver failures or finite-time
blow-ups. These complexities make traditional gradient-based local optimization methods insufficient on their own, as they
tend to get trapped in local minima and depend heavily on the initial guess.

To overcome these challenges, we adopt a global optimization strategy that can efficiently explore the parameter space
and avoid premature convergence to suboptimal solutions. Specifically, we employ enhanced Scatter Search (eSs),

a metaheuristic algorithm that integrates global search heuristics with periodic local refinement steps [42,43]. The key
advantages of eSs include:
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1. Balance of exploration and exploitation: eSS maintains a diverse population of candidate solutions to explore
the parameter space broadly (exploration), while leveraging local optimization techniques to fine-tune promising
solutions (exploitation). This balance helps in efficiently navigating complex landscapes typical of nonlinear ODE
parameter estimation.

2. Robustness to nonconvexity and noise: the metaheuristic nature of ess allows it to handle nonconvex and rugged
objective functions, including those with discontinuities or noisy evaluations caused by numerical integration issues.
This robustness is critical when the underlying ODE solver occasionally fails or produces invalid results (NaN, Inf).

3. Reliable convergence properties: compared to other popular stochastic methods such as genetic algorithms and
other more recent evolutionary computation methods, eSs has demonstrated superior convergence speed and reli-
ability in a range of parameter estimation benchmarks, due to its strategic combination of global and local search
components [44,45]. Recent benchmarking studies have also illustrated its superiority over sophisticated multi-start
gradient-based local methods [43].

4. Flexibility and adaptability: ess is flexible enough to be combined with problem-specific constraints and can incorpo-
rate parallel evaluations, which is beneficial when solving computationally expensive ODE integrations [44,45].

Given these strengths, we found ess particularly well-suited for the parameter estimation challenges typical of the
class of problems considered here. It allows us to obtain high-quality parameter estimates with a higher probability of
identifying global or near-global optima, ultimately improving the predictive accuracy and reliability of the fitted models,
and justifiying its selection as the global optimization solver in our workflow.

Stability analysis. In the above formulation, the estimation relies on repeatedly solving the ODE system for differ-
ent parameter values within an optimization loop. If the ODE system is unstable (e.g., exhibits blow-up) for even a small
region of parameter space, the simulations will become unreliable or impossible to complete. For certain parameter
values, the numerical solver might fail, produce nonsensical results (NaN, Inf), or take excessively long to simulate. This
disrupts the optimization process, making it difficult to evaluate the objective function and navigate the parameter space.
Even when convergence to a good fit is achieved, it is important to check if the calibrated model is stable.

The global optimization ess metaheuristic in our workflow, described in the previous section, explores the parameter
space broadly and therefore is prone to encounter blow-ups. However, unlike multi-start local optimization methods, which
often fail due to blow-up in large portions of the parameter space, this hybrid strategy can effectively handle cases where
the ODE integration returns NaN or Inf. As illustrated below with several case studies, this method successfully identifies
parameter sets that yield good data fits while avoiding blow-up over the time horizons of interest.

However, an important issue arises with some of the solutions found by this approach. While they fit the data well
and exhibit no blow-up over the observed time interval, extending the simulation beyond this horizon reveals that certain
trajectories eventually diverge. This indicates that these parameter sets correspond to models that are locally valid but
globally unstable. Recognizing this limitation, we implemented a stability analysis to assess the long-term behavior of the
fitted models.

Our strategy for stability analysis for these nonlinear dynamical systems begins by identifying equilibrium points and
then describing the system’s behavior around these points. This is achieved by linearizing the system using the Jacobian
matrix at each equilibrium point, which captures the local dynamics. The stability is then determined by analyzing the real
parts of the eigenvalues of this Jacobian matrix. If all real parts are negative, the equilibrium is asymptotically stable; if at
least one is positive, it is unstable; and if all are non-positive with some being zero, it is neutrally stable. Based on the pat-
terns of these eigenvalues, equilibrium points can be further classified as stable or unstable nodes, saddle points, spirals,
or centers. To understand the broader system behavior beyond local stability, numerical simulations are used to explore
global dynamics, including periodic orbits or chaotic behavior. For complex systems, more advanced numerical methods
can be employed to reveal aspects like basins of attraction, limit cycles, and chaotic regimes. This approach is applicable
to a wide range of ODE systems and is described in more detail in S1 Text (Sections 3.5 and 7.6.5).
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This procedure enables us to classify whether a given parameter set leads to a model that is not only a good fit over
the data horizon but also dynamically stable in a broader sense. In doing so, we can filter out solutions that are prone
to divergence beyond the observation window, thereby increasing confidence in the predictive power and robustness of
the inferred models. This post-fit stability check is a critical addition when working with nonlinear ecological models, as it
helps distinguish between transiently accurate but unstable solutions and those that reflect plausible long-term ecological
dynamics.

Practical identifiability analysis (PIA). To assess the practical identifiability of parameters, our workflow uses the
Fisher Information Matrix (FIM), computing parameter confidence intervals derived from the Cramér-Rao inequality, and
examining the correlation matrix [19,20]. The process starts by constructing the FIM (egn 4), which quantifies the amount
of information the data is expected to provide about the parameters:

_ 3J15(0) [ 041s(®) ]
?-yﬁyg[ || 50 H @

where E represents expected values and u a value of the parameters, hopefully close to their real value (see below).

Computing the FIM involves calculating sensitivity matrices, which represent how parameter changes affect the model
output, and incorporating assumptions about the measurement noise. The local parametric sensitivities for a specific
experiment (e), observable (0), and sampling time (t;) read as follows:

seoty = L2y, o=1,..,n 5
o (7)) =—735"(") 0=1....n¢ (5)

A key step is to evaluate the FIM’s properties: a singular or ill-conditioned FIM suggests practical non-identifiability, indi-
cating that parameters or combinations of parameters cannot be reliably estimated from the data. The condition number
and eigenvalues of the FIM can provide further insights into the degree of identifiability, with small eigenvalues or large
condition numbers signaling potential issues.

Subsequently, confidence intervals for the parameters can be approximated using the Cramér-Rao inequality, which
states that the inverse of the FIM provides a lower bound on the variance of unbiased estimators:

ex>F1 (6)

where C is the covariance matrix. By taking the square root of the diagonal elements of the inverse FIM, one obtains esti-
mates of the standard errors for each parameter, which are then used to construct confidence intervals. Wide confidence
intervals indicate poor practical identifiability, meaning that even with the assumed data quality, the parameters cannot
be estimated with high precision. These wide intervals suggest that different parameter values, spanning a considerable
range, could plausibly explain the observed data, thus hindering accurate parameter determination.

In practice, one typically evaluates the observed Fisher information at a point estimate (e.g., the maximum likelihood
or nonlinear least squares estimator) and uses its inverse as a local approximation to the estimator’s covariance [20].
Although knowledge of the true parameter is not required, the Cramér—Rao lower bound is defined in terms of the infor-
mation at the true value. Therefore under standard regularity conditions and for sufficiently large samples, the informa-
tion at the estimate is a consistent proxy for the true information. This approximation is most reliable when the estimate is
close to the truth, the parameter lies in the interior of an identifiable and smooth model, and the log-likelihood is approxi-
mately quadratic near the optimum. By contrast, pronounced nonlinearity, multimodality, boundary constraints, or nearly
flat likelihood directions can render FIM-based confidence intervals and correlation measures inaccurate. In those situa-
tions, alternatives such as bootstrapping are recommended [46].
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Finally, the correlation matrix, derived from the inverse of the FIM, offers insights into the interdependencies between
parameter estimates. Off-diagonal elements of this matrix reveal the correlation coefficients between pairs of parameters.
High correlation values, close to 1 or -1, suggest that these parameters are not independently identifiable, i.e., changes in
one parameter must be compensated by changes in the correlated parameter to maintain a similar model fit to the data.
This correlation implies redundancy in the parameterization and can guide model simplification or experimental redesign
to improve identifiability. By collectively analyzing the FIM’s condition, the Cramér-Rao based confidence intervals, and
the parameter correlation matrix, one can gain a comprehensive understanding of the practical identifiability of parame-
ters in ODE models, highlighting parameters that are poorly identifiable and suggesting potential remedies such as model
refinement or improved experimental design.

Predictive power analysis

To assess the predictive power of a calibrated ODE model, a crucial next step is to investigate potential overfitting. Ini-
tially, this can be achieved by examining the residuals, which are the differences between the experimental data and the
model predictions at the time points where data was collected. If the model is appropriately calibrated and not overfitting
the training data, the residuals should exhibit a random distribution around zero, with no discernible patterns or trends.

In a well-specified model with additive homoscedastic errors, in-sample residuals should behave like white noise, i.e.
approximately zero-mean, uncorrelated, and of constant variance, with no systematic structure when plotted against time.
In other words, assuming Gaussian errors in the data, residuals should also be approximately normal [20,47,48].

Visual inspection of residual plots, such as plotting residuals against time or predicted values, is helpful. Ideally, the
residuals should resemble white noise, indicating that the model has captured the underlying signal and the remaining
variation is attributable to random error rather than systematic model deficiencies. However, residual diagnostics alone do
not reliably detect overfitting, which is better assessed via out-of-sample evaluation or cross-validation [20,48,49].

Thus, following residual analysis, a more robust evaluation of predictive power requires cross-validation. This involves
partitioning the available data into training and validation sets. The model is then calibrated using only the training data
to obtain parameter estimates. Subsequently, the predictive capability of the calibrated model is assessed by compar-
ing its predictions against the validation data, which was not used during calibration. If possible, this process should be
repeated multiple times for several sets of validation data. The predictive accuracy can be quantified using metrics like the
root mean squared error (RMSE) or normalized root mean squared error (NRMSE) between the model predictions and
the validation data across all folds. Consistently good predictive performance on the validation sets, comparable to the fit
on the training data, indicates robust predictive power and absence of overfitting.

If the model demonstrates good predictive power and no signs of overfitting, the final step involves evaluating the
mechanistic plausibility of the model fit. This is crucial, especially when dealing with models built upon mechanistic prin-
ciples. The estimated parameter values should be examined for their magnitudes and signs in the context of their mecha-
nistic interpretation. For instance, parameters representing rates of biological processes should have positive values and
magnitudes that are biologically reasonable. Similarly, the signs of parameters governing interactions should align with the
expected mechanistic relationships (e.g., a parameter representing inhibition should have a negative effect).

Mechanistic plausibility can go beyond general guidelines (i.e., verifying that parameter signs and magnitudes are con-
sistent with expectations) to a domain-specific formulation that specifies the concrete criteria applicable to microbial com-
munity models. In this context, mechanistic plausibility checks can draw on established biochemical, microbiological and
ecological principles [19,50-52]. For example, maximum specific growth rates (u) should be positive and within realistic
ranges (e.g., 0.1-2 h~" for many bacteria), mortality or washout rates should be non-negative and generally smaller than
growth rates, and interaction coefficients should have signs consistent with their ecological roles (positive for facilitation
or cross-feeding, negative for competition or inhibition) and magnitudes that are biologically reasonable. Half-saturation
constants (Kj) should be positive and within typical affinity ranges for the substrate (uM—mM), stoichiometric yields should
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not exceed theoretical metabolic limits, and parameter values should respect mass and energy balances. Moreover, feasi-
ble parameter sets should allow coexistence only under realistic nutrient inflow and removal rates, consistent with known
microbial ecology constraints. Such domain-specific checks ensure that the model remains interpretable and biologically
grounded even when statistical fit and predictive power are high.

Deviations from expected ranges or signs for mechanistically meaningful parameters can suggest issues with the
model structure, identifiability problems, or inconsistencies between the model and the underlying mechanisms, even if
the model exhibits good statistical fit and predictive power. This mechanistic evaluation provides a crucial layer of vali-
dation beyond purely statistical measures, ensuring that the model not only fits the data but also offers a plausible and
interpretable representation of the system under study.

Software implementation

We developed our workflow as a unified, Matlab-based pipeline that integrates the previously mentioned three tools
for structural identifiability analysis (SIA) alongside estimation and practical identifiability analysis (PIA) methods using
AMIGO2 [53]. AMIGO2 (Advanced Model Identification using Global Optimization) is a powerful toolbox for dynamic mod-
eling and optimization, offering a broad selection of nonlinear optimization solvers. These include direct and indirect local
methods, multi-start local approaches, global stochastic algorithms, and hybrid optimization techniques. Additionally,
AMIGO2 facilitates PIA.

To enhance computational efficiency, particularly for demanding tasks such as parameter estimation, using AMIGO2
in this framework enables automatic generation of C-compiled code, significantly improving performance. Furthermore,
we extended the pipeline with additional code to support other key steps, such as stability analysis. Several case studies,
based on commonly used models of microbial communities, were implemented and tested within this workflow.

The resulting integrated software is available in both electronic notebook format (live scripts) and as standard MATLAB
scripts. It features the following key components:

* Pre-estimation analysis: the workflow simplifies model definition, data integration, and identifiability analysis, ensur-
ing a solid foundation for parameter estimation. This module efficiently handles multi-experiment datasets, incorporates
data visualization tools, and facilitates structural identifiability analysis using several methods, so non-expert users can
determine whether model parameters can be uniquely inferred.

* Robust parameter estimation: a diverse set of global and local optimization algorithms enhances the reliability and
accuracy of parameter estimation. Sensitivity analysis, practical identifiability assessment, and stability analysis help
refine parameter estimates. The framework also supports easy cross-validation with additional datasets and leverages
parallel computing for improved efficiency and scalability.

* Predictive power analysis: to ensure the model produces reliable and meaningful predictions, the workflow includes
sensitivity analysis, statistical goodness-of-fit tests and cross-validation to assess model performance. These methods
enable model comparison, interactive plotting, time series visualization, and statistical summarization, aiding in result
interpretation. Furthermore, automated report generation and documentation via electronic notebooks streamline repro-
ducibility and facilitate effective communication of findings.

Results

We provide here a summary of the key findings, with further details available in S1 Text (Section 7). We evaluated our
integrated computational workflow using a set of canonical models representing common frameworks for modeling micro-
bial communities (Table 1). These models range from Generalized Lotka-Volterra (gLV) systems of varying complexity

to more intricate models involving resource competition, phage dynamics, and synthetic gene circuits. To rigorously test
the workflow and assess its robustness against experimental variability, we generated synthetic pseudo-experimental
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Table 1. Overview of case studies. The first row shows abbreviated model names. n, denotes the number of state variables, and ng the number of
parameters. GLV denotes generalized Lotka-Volterra. For the GLV2 model, two subcases were analyzed: competition and coexistence. Further details
are provided in S1 Text (Section 7).

Feature GLV2 GLV3 MGLV CompV PCM EPHP

Reference 27] [24] [54] [55] [56] [57]

Description GLV 2 species | GLV 3 species GLV 12 species | Competition with virus | Phage cocktail Enhanced protein
production

Microorganisms | Influenza virus | Generic microbiome | Gut microbiome | Two bacteria and virus | Bacteria and phages | Synthetic E. coli
community

ny 2 3 12 4 5 5

ng 6 12 156 7 13 19

https://doi.org/10.1371/journal.pcbi.1013204.t001

datasets for each model, incorporating different types and levels of Gaussian noise. This use of synthetic data provides a
ground truth for evaluating parameter recovery and model predictive capabilities.

Phase 1: Structural identifiability analysis

We initiated the workflow with structural identifiability analysis (SIA) using GensSSI2, SIAN, and Structural Iden-
tifiability. The analysis covered scenarios ranging from ideal (fully observed states, known initial conditions) to
realistic (partially observed states, unknown initial conditions). As summarized in Table 2, all models were found to be
structurally identifiable under full observation. However, limitations arose under partial observation; for instance, in the
GLV2 case, measuring only total biomass or a single species abundance resulted in non-identifiability, consistent with [26]
and highlighting how experimental constraints impact parameter determination.

In generalized Lotka—Volterra (gLV) models, there are scenarios in which certain parameters are locally but not globally
identifiable. This means that while the parameters can be uniquely determined in a neighborhood of the true values (i.e.,
locally), there may exist multiple distinct parameter sets that produce exactly the same model output, making it impossi-
ble to distinguish between them based solely on the data. In contrast, global identifiability implies that there is a unique
parameter set (within the parameter space) consistent with the observed outputs. Understanding and resolving these
ambiguities is crucial for reliable parameter estimation and model interpretation.

We note that the presence of parameters that are locally but not globally identifiable often reflects underlying symme-
tries in the model structure. In particular, permutation symmetries can give rise to multiple distinct parameter sets that
produce indistinguishable outputs. However, in our analysis of generalized Lotka—\Volterra (gLV) models, we found that
when the system is fully observed (i.e., when all species are individually measured over time) the model parameters are

Table 2. Summary of SIA results. FO: Fully Observed, PO: Partially Observed, Gl: Globally Identi-
fiable, NGI: Non-Globally Identifiable (i.e. only a subset of parameters are identifiable). Last column
indicates which methods were successful. Key: 1 = GenSS12, 2 = SIAN, 3 = Structural Iden-
tifiability. Full details, including the partially observed schemes considered, can be found in S1
Text (Sections 7.5.2,7.6.2,7.7.2,7.8.2, 7.9.2 and 7.10.2).

Model Measurements SIA Result Method
GLV2 FO Gl 1,2,3
PO NGI 2,3
GLV3 FO Gl 1,2,3
PO NGI 2,3
MGLV FO Gl 3
CompV FO Gl 2,3
PCM FO and PO Gl 2,3

https://doi.org/10.1371/journal.pcbi.1013204.t002
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globally identifiable under generic conditions. This suggests that the gLV model, in its standard form, does not inherently
suffer from non-identifiability due to structural symmetries.

In contrast, the instances in which we observed only local identifiability (or complete non-identifiability) corresponded
to partially observed scenarios, such as when only the combined abundance of two or more species is measured. In such
cases, the permutation-like symmetries arise not from the model itself, but from the structure of the input—output mapping
induced by the observational process. The resulting lack of global identifiability is therefore a consequence of limited or
aggregate measurements.

To address these issues, we highlight two common strategies for restoring identifiability: (i) refining the experimental
design to provide more informative or disaggregated measurements (e.g., distinguishing between individual species), and
(ii) reformulating the model through reparameterization or by introducing biologically or physically motivated constraints
that remove unidentifiable degrees of freedom.

The performance of SIA tools varied. GenSSI2’s symbolic approach was effective for simpler models but struggled with
larger partially observed ones due to computational demands. STAN and Structural Identifiability, combining
symbolic and numerical techniques, handled more complex models efficiently. The EPHP model could not be analyzed
due to its discontinuous formulation, a limitation of current SIA tools assuming continuous dynamics.

Phase 2: Parameter estimation and practical identifiability

This phase addresses the challenges of finding reliable parameter estimates from noisy data, considering potential
non-convexity and numerical issues.

Optimization strategies and performance. We first explored multistart local optimization using least-squares opti-
mizers (1sgqnonlin, n12sol) [53]. This revealed significant challenges across most models, particularly non-convexity
(multiple local optima) and model instability (numerical blow-ups). For example, in the GLV3 case with 10% noise (Fig 2),
only 17.5% of runs converged, and only 6% reached objective function values near the nominal (true) value. Many runs
terminated due to blow-ups or converged to poor local optima (LO) or potentially overfitting solutions (OF).

Overall, multistart local methods showed acceptable performance only for the simplest cases (GLV2) and moderate
effectiveness for PCM, achieving 70% good fits. For more complex cases, such as GLV3 and particularly MGLV mod-
els, convergence rates were significantly lower. Blow-ups occurred frequently (over 80%, even with tight bounds), and
there was a high risk of converging to suboptimal solutions or overfitting. The high-dimensional MGLV model was espe-
cially challenging (good fits in only 12% or runs), often failing to accurately reproduce system dynamics, even when using
noise-free data. In the CompV and EPHP cases, while most of the multistarts converged, good fits were scarce: only 13%
of runs for EPHP and 30% for PCM achieved satisfactory results.

In contrast, the enhanced Scatter Search (eSs) global optimization algorithm exhibited significantly greater robustness.
Convergence rates were consistently high (exceeding 95% overall and 85% for MGLV), effectively navigating complex
optimization landscapes. While eSS did not completely eliminate challenges such as potential overfitting or local optima
traps in highly complex models (e.g., MGLV, GLV3), it consistently delivered much more reliable results than multistart
local methods. Additionally, the computational cost using eSS was very reasonable, ranging between 1 and 2 minutes for
all cases on a standard PC with Intel i5-13500 CPU (further details available in S1 Text, Section 7.1).

Practical identifiability and mechanistic interpretation. After optimization with eSS, we evaluated practical identifia-
bility using the FIM to derive parameter correlations and confidence intervals (Cls), alongside sensitivity analysis. Results
indicated a consistent decline in identifiability with increasing model complexity and noise. For simpler models like GLV2,
parameters were reasonably well-defined with narrow Cls under full observation, although some correlations emerged
(e.g., between 4, and f3,,, and between growth rates y; and initial conditions). Sensitivity analysis confirmed that param-
eters with larger Cls had less influence on system states (see Fig C and Fig E in S1 Text).
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Fig 2. Case study GLV3: multistart optimization using the n12so1 local solver. Top figure shows a histogram of the 35 optima obtained in 200
runs, highlighting the presence of overfitting (OF), underfitting (local optimum, LO), and good fit (GF) solutions. The x-axis shows the log, of the ratio
between the objective function achieved and that of the nominal vector of parameters. Figures below present the nominal system behavior and show
examples for the OF, GF, and LO cases, respectively.

https://doi.org/10.1371/journal.pcbi.1013204.9g002

However, for more complex models (GLV3, CompV, PCM, MGLV), PIA revealed significant limitations. Even when
structurally identifiable, parameters often had wide Cls and strong correlations, especially with noisy data. This indicates
that, despite achieving a good fit, the available data may not be adequate for accurately estimating all parameters. In
other words, the insufficient information content of the data rendered it inadequate for reliable model calibration.

Crucially, poor practical identifiability can compromise the mechanistic interpretation of the model. This issue was
evident in GLV models where estimated interaction coefficients (3;) frequently had signs opposite to the ground truth
values, even for models achieving a good fit (low RMSE/NRMSE). Such sign errors imply a misrepresentation of the
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underlying biological interactions (e.g., predicting competition instead of facilitation). Fig 4 illustrates this for the MGLV
model, showing sign disagreements increasing with noise but present even in the noise-free case. This highlights inherent
limitations in extracting mechanistic details when practical identifiability is poor, often linked to insufficient information con-
tent in the experimental data. Stability analysis was also performed on the best parameter sets to ensure they did not lead
to unstable dynamics under the calibration conditions.

Phase 3: Predictive power analysis

The final phase assessed model generalizability and overfitting risk using cross-validation with held-out data, also incor-
porating datasets from novel experimental conditions. Our analysis confirmed that overfitting is a significant risk across all
models. Solutions achieving excellent fits to the training data often failed to predict system behavior accurately under new
conditions. The GLV3 case study provides a clear example (Fig 3): an overfitted solution (OF) matches the training data
well but exhibits unstable dynamics long-term (left panel) and performs poorly in cross-validation with different initial con-
ditions (center panel). In contrast, a better-calibrated, though not perfectly identifiable, solution (GF) captures the trends
under new conditions more reliably (right panel).

This underscores the insufficiency of relying solely on goodness-of-fit to training data and highlights the necessity of
cross-validation for evaluating true predictive power. Predictive capability generally decreased with increasing model com-
plexity and noise. While simpler models could maintain some predictive power if carefully calibrated, complex models like
MGLV showed severely compromised prediction, even when calibrated on noise-free data, linking back to the practical
identifiability limitations discussed in Phase 2.

Recognizing that obtaining additional experimental data for cross-validation can be challenging, we also explored sev-
eral techniques for residual analysis and concluded that Quantile-Quantile (Q-Q) plots can be used as a potential indicator
of overfitting based solely on training data (details in S1 Text, Section 7.6.4).

Overall, this phase emphasizes the critical need for rigorous validation beyond the initial calibration dataset to ensure
models are not merely fitting noise but capture the underlying system dynamics robustly, especially for complex biological
systems like microbial communities.

Overall assessment of the workflow

The initial phase of our workflow uses structural identifiability analysis (SIA) to confirm whether model parameters can be
uniquely determined from a given experimental design. The analysis often reveals that while models might be identifiable
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Fig 3. Case study GLV3. Left figure: An overfitted solution OF that agrees very well with the data but shows oscillatory behavior (and eventually
blow-up) after t = 2.0. Center figure: cross-validation of the same OF for different initial conditions, showing very poor predictive value. Right figure:
cross-validation of a good fit (GF), showing that due to practical identifiability issues, the agreement with the data is not very good, although ultimately
predicts well steady state values at final time.

https://doi.org/10.1371/journal.pcbi.1013204.9g003
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with perfect data, they become unidentifiable with realistic, limited measurements, such as partially observed scenarios.
Without performing SIA, a modeler risks wasting enormous time and computational resources trying to fit a model whose
parameters are fundamentally unknowable from the combination of inputs and outputs in the experimental design. They
would be attempting an impossible task, leading to non-unique solutions where countless different parameter sets pro-
duce the exact same model output. This makes it impossible to draw reliable conclusions, turning the modeling effort into
a futile exercise and completely undermining any claim of mechanistic insight. This workflow helps avoid such a dead-end
by identifying structural limitations before the intensive estimation process begins.

Following this, the parameter estimation phase of our workflow addresses the dual challenges of finding the best-fit
parameters and ensuring those parameters are themselves reliable. The results show that standard, local optimization
methods (widely used) often fail for complex models, whereas a global optimizer is far more robust. Critically, even a
model that perfectly fits the data can suffer from poor practical identifiability, where parameters have massive uncertainty.
By using inadequate optimization tools, a modeler might wrongly conclude that their model is flawed, when in fact the tool
was simply not powerful enough to find the global solution. More dangerously, by stopping at a good fit without assessing
practical identifiability, a modeler can fall into a major trap, leading to false scientific claims. The model may look perfect,
but the estimated parameters could be meaningless, leading to incorrect biological interpretations. For example, reporting
a competitive interaction that is actually symbiotic. This mischaracterization of the system’s dynamics can misdirect future
experiments and lead to a fundamental misunderstanding of the biological system. Our workflow helps to prevents such
erroneous conclusions by demanding that the parameter estimates themselves be trustworthy.

The final phase uses cross-validation to assess a model’s ability to predict outcomes under new conditions, which
is the ultimate test of its validity. The analysis confirms that overfitting (capturing noise rather than the true underlying
dynamics) is a severe risk, especially in gLV models. Neglecting rigorous validation creates a model that may perfectly
describe the training data but is useless for its primary purpose: prediction. When faced with new scenarios, the overfitted
model will fail spectacularly, producing inaccurate and unreliable forecasts. This renders the model untrustworthy for any
practical application, such as designing a stable microbial consortium or predicting the effect of a treatment. Our work-
flow helps to avoid this critical failure by ensuring the model is not just a descriptive snapshot of old data, but a robust tool
capable of generating reliable predictions about the future.

In this context, it is important to note that several studies have highlighted fundamental limitations of generalized Lotka-
Volterra (gLV) models in microbial community dynamics. Momeni et al. [58] critique the universality assumption of pairwise
Lotka-Volterra models, showing through mechanistic references that diverse chemical-mediated interactions demand tai-
lored mathematical forms, as mismatched models yield erroneous predictions on dominance or coexistence. Similarly,
Hart et al. [59] found that parameters from standard batch cultures failed to predict growth in a synthetic cooperative
yeast community due to environment-dependent phenotypes like metabolite rates. Picot et al. [14] further argue that gLV'’s
assumption of dynamic equilibrium clashes with batch cultures’ static resource-exhausted endpoints, fostering overfitting
to early growth phases and unreliable long-term predictions with setup-sensitive parameters.

While these studies point to fundamental problems with Lotka-Volterra models, our work identifies additional, critical
challenges. We reveal that these models might also suffer from structural and practical non-identifiability, local optima
(underfitting), and numerical instabilities. Our research therefore complements previous findings and serves as a clear
warning: the popular gLV framework has numerous pitfalls, and its application to dynamic microbial modeling requires
significant caution.

Discussion

Modeling the complex dynamics of microbial communities using nonlinear ODEs presents significant challenges, often
hindering the development of reliable and predictive models. In this study, we proposed and evaluated an integrated com-
putational workflow designed to systematically address four critical pitfalls inherent in the identification process: structural
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and practical identifiability issues, numerical instabilities leading to finite-time blow-up during estimation, convergence to
suboptimal solutions (underfitting), and fitting experimental noise rather than the underlying signal (overfitting). Our results
across a range of case studies, from simple gLV models to complex representations of gut microbiomes and synthetic
systems (Table 1), demonstrate the prevalence of these issues and the necessity of a structured approach to mitigate
them.

Our approach is motivated by a unique set of challenges that distinguish these models of microbial communities from
other typical systems biology models (such as e.g. metabolic or signaling networks). Beyond being high-dimensional and
nonlinear, they often feature dense interaction structures, network symmetries that worsen identifiability, and numerical
instabilities like solution blow-up, very especially in gLV formulations. As illustrated with our results, the severity of these
combined issues makes the estimation problem particularly hard, thus demanding the tailored methodology we have
developed. We propose an integrated workflow to address four modeling pitfalls simultaneously. This research introduces
a comprehensive and systematic methodology that concurrently tackles identifiability issues, model instability (blow-up),
underfitting, and overfitting. While these challenges are known individually, this paper’s contribution is combining their
analysis and mitigation into a single, structured pipeline. This integrated approach is specifically tailored for the complex-
ities of dynamic microbial community models.

The paper demonstrates the effectiveness of its proposed workflow by applying it to a variety of canonical models
representing microbial communities, ranging from simple two-species systems to a more complex twelve-species gut
microbiome model. This rigorous testing across different model structures and complexities showcases the versatility
and practical utility of the approach. The study also provides the software implementation, enhancing reproducibility and
accessibility for other researchers. While the most complex case study (a 12-species generalized Lotka—\Volterra model)
still represents a substantial simplification of real microbial ecosystems such as the human gut microbiome, it nonethe-
less provides a valuable intermediate step between toy models and full-scale community simulations. In fact, in the
context of dynamic modeling of microbial communities, models of this size are among the most complex that have been
systematically analyzed, particularly with respect to structural and practical identifiability. Most prior studies have focused
on smaller systems due to the computational and analytical challenges involved. Our results show that even in these mod-
erately complex and controlled settings, significant identifiability issues can arise. This suggests that such challenges
are likely to be even more pronounced in more realistic, higher-dimensional microbiome models. By focusing on these
tractable yet nontrivial systems, our study highlights methodological pitfalls and limitations that must be addressed before
scaling up to more realistic, data-driven applications.

Identifiability is a cornerstone of reliable parameter estimation. Our workflow begins with structural identifiability anal-
ysis (SIA) in Phase 1, which, as shown in our results (Table 2), effectively flags theoretical limitations based on model
structure and observation schemes before estimation commences. This step can guide experimental design by high-
lighting necessary measurements (e.g., demonstrating insufficiency of total biomass measurement in GLV2). However,
even structurally identifiable models often suffer from practical non-identifiability, especially with increasing complexity and
noise, as revealed by our practical identifiability analysis (PIA) in Phase 2. This was manifested through wide confidence
intervals, parameter correlations, and, critically, incorrect sign estimations for interaction parameters (e.g., Fig 4), leading
to mechanistically unsound models despite potentially good data fits. Addressing both SIA and PIA is crucial for obtaining
meaningful parameter estimates.

The parameter estimation phase itself is fraught with difficulties arising from non-convex optimization landscapes
exacerbated by potential model instabilities. Our findings highlight the limitations of standard multistart local optimiza-
tion methods, which frequently failed due to encountering finite-time blow-up regions or converged to poor local optima
(underfitting), as exemplified by the GLV3 results (Fig 2). The use of robust global optimization techniques, such as the
enhanced Scatter Search (ess) employed in Phase 2, proved significantly more effective in navigating these complex
landscapes, reducing the incidence of underfitting and managing numerical integration failures caused by blow-ups,
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Fig 4. Case study MGLV: Sign agreement between estimated and nominal values of the interaction coefficient 3;. The figures correspond to
successful calibrations to data with 0, 5 and 10% noise. Details provided in S1 Text (Section 7.10.4).

https://doi.org/10.1371/journal.pcbi.1013204.9004

thereby increasing the likelihood of finding globally competitive solutions, even for challenging high-dimensional models
like MGLV.

Achieving a good fit to the training data is insufficient proof of a model’s validity. Overfitting, where the model cap-
tures noise, poses a major threat to predictive power. Our results clearly demonstrated instances where models fit the
training data well but failed dramatically when tested on unseen data via cross-validation (Phase 3, Fig 3). This under-
scores the indispensable role of cross-validation in assessing generalization capability. While cross-validation using
additional datasets is preferred, residual analysis (e.g., Q-Q plots, see S1 Text, Section 7.6.4) offers a potential alternative
check when obtaining such data is prohibitive. Detecting and avoiding overfitting is paramount for developing models that
provide reliable predictions beyond the calibration conditions.

Crucially, our results demonstrate that the four pitfalls (identifiability, blow-up, underfitting, and overfitting) are often
interconnected and can exacerbate one another. For instance, poor identifiability increases the risk of overfitting or con-
verging to local minima. Blow-up dynamics can completely derail the search for meaningful parameters. Failing to address
these intertwined problems systematically leads to significant modeling artifacts, as seen across our case studies. For
example, in GLV models such artifacts manifest as unreliable parameters, often with incorrect signs that misrepresent bio-
logical mechanisms. Consequently, these models predict poorly under new conditions and can lead to flawed biological
interpretations. This adds to the existing evidence [14,58,59] that gLV models, despite their popularity, are fraught with
potential pitfalls and should be used with extreme caution in microbial ecology.

Therefore, considerable care and rigorous validation, extending beyond simple goodness-of-fit checks, are essential
when developing and applying dynamic models of microbial ecosystems. The integrated, multi-phase workflow presented
here provides a structured methodology. It allows researchers to diagnose and mitigate these common pitfalls sequen-
tially. This approach fosters the development of more robust, mechanistically plausible, and predictively powerful models,
vital for advancing our understanding of microbial communities.
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