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Abstract 

The Protein Data Bank (PDB) is one of the richest open‑source repositories in biol‑

ogy, housing over 242,000 macromolecular structural models alongside much of the 

experimental data that underpins these models. By systematically collecting, validat‑

ing, and indexing these models, the PDB has accelerated structural biology discov‑

eries, enabling researchers to compare new entries against a vast archive of solved 

structures and, more recently, powering protein structure prediction. Leveraging this 

wealth of data, structural bioinformatics has uncovered patterns, such as conserved 

protein folds, binding‑site features, or subtle conformational shifts among related 

proteins, that would be impossible to detect from any single structure. Through the 

democratization of structural data and open-source analytical tools, now amplified 

by the power of large language models, a broader community of researchers is 

equipped to drive new scientific discoveries using structural data. However, good 

structural bioinformatics requires understanding some of the nuances of the under‑

lying experimental data, data encoding conventions, and quality control metrics that 

can affect a model’s precision, fit‑to‑data, and comparability. This knowledge, com‑

bined with developing good controls, statistics, and connections to other databases, 

is essential for drawing accurate and reliable conclusions from PDB data. Here, we 

outline 10 recommendations for doing structural bioinformatic analyses crafted to 

pave the way for others to uncover exciting discoveries.

Author summary

Here, we provide a roadmap for users to leverage the Protein Data Bank’s vast 
collection of protein structural models into reliable and valuable insights. It lays 
out 10 clear rules that help readers quality control their data, choose fair com‑
parison sets, and judge model quality so results aren’t led astray by noise, bias, 
or overconfidence. The guide also shows how to connect structures to other 
databases. By highlighting best practices, such as utilizing re-refined models 
and being aware of common pitfalls, we guide users to leverage this rich data 
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for enhanced biological insights. These guidelines will enable stronger, more re‑
producible structural analyses that accelerate drug discovery, illuminate disease 
mechanisms, and make open data broadly useful across the life sciences.

Introduction

In 1971, with only seven structures, the first, and still active, open-access database 
in biology was created: the Protein Data Bank (PDB) [1]. From these modest begin‑
nings, the PDB has grown to include over 242,000 structures [2], and its systematic 
archiving of macromolecular models has reshaped the field, transforming our under‑
standing of the relationship between structure and biological function and enabling 
advances from elucidating enzyme catalysis to the rational design of new therapeu‑
tics. Critically, when the Research Collaboratory for Structural Bioinformatics (RCSB) 
PDB was established, one of their first major undertakings was a large-scale reme‑
diation of legacy data, addressing inconsistent formats, incomplete metadata, and 
nonstandard nomenclature to enable systematic analysis and ensure that the archive 
could support future large-scale structural bioinformatics. The remediation effort, later 
extended by the wwPDB partners (PDBe, PDBj, and Biological Magnetic Resonance 
Bank [BMRB]), standardized chemical components, corrected errors, and transi‑
tioned the archive to the current, more robust mmCIF format [2–4]. These efforts laid 
the foundation for structural bioinformatics by ensuring that PDB data were reliable, 
interoperable, and machine-readable.

Today, the PDB is maintained as a single, global archive through the Worldwide 
Protein Data Bank (wwPDB) consortium, which coordinates deposition, validation, 
and dissemination of macromolecular structures. The consortium comprises regional 
data centers, RCSB PDB in the United States, PDBe in Europe, PDBj in Japan, each 
providing unique portals, visualization tools, and database integrations tailored to 
their respective communities [5–7]. All sites share a unified deposition system, ensur‑
ing that structures are consistently validated and mirrored worldwide within 24 hours 
of release [8]. In addition, the Electron Microscopy Data Bank (EMDB), jointly main‑
tained with the PDB, serves as the central repository for cryo-electron microscopy 
(cryo-EM) electron potential maps, enabling joint deposition of maps and models. 
Together, these interconnected entities provide a comprehensive and interopera‑
ble ecosystem that continues to accelerate discovery across the structural biology 
community.

The original vision of the PDB centered on the deposition of individual structures, 
where each entry told a story about a protein’s fold, function, or interaction. This 
one-structure, one-story mode of structural biology has yielded an enormous wealth 
of knowledge and fundamentally shaped our understanding of biology. But one of 
the greatest strengths of the PDB lies in its ability to uncover new biological insights 
beyond the scope of a single structure. This has spurred the field of structural bio‑
informatics, which, through examining patterns over tens to thousands of struc‑
tures, has identified relationships of protein families and folds, the role of evolution 
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driving protein structure and function, and information on macromolecular interactions and catalysis [9–16]. Structural 
bioinformatics also created the critical foundation for the protein structure prediction breakthrough [17–21]. By analyzing 
thousands of structures at once, you gain the statistical power to detect subtle variations that, when aggregated, have 
the potential to reveal robust patterns in allostery, ligand binding, macromolecular assembly, and catalysis [9,12]. These 
analyses can be incredibly powerful alone or in conjunction with other bioinformatic databases, prospective experiments, 
or theoretical models.

At the core of every PDB structural model lies the atom table, which records the atomic coordinates along with key 
attributes such as atom type, residue identity, B-factor (atomic displacement parameter), and occupancy. The adoption of 
the mmCIF format has provided a far richer and more extensible representation than the legacy PDB format. Unlike the 
fixed-column limitations of PDB files, mmCIF can accommodate the growth of structural biology, including new ligands 
with five-character identifiers and very large macromolecular assemblies that exceed the capacity of the original format 
[22]. Another key advantage of mmCIF is its ability to map these deposited coordinates to canonical protein sequences, 
enabling seamless integration with UniProt and related databases [23]. mmCIF also underpins emerging resources such 
as PDB-IHM [24], which supports the deposition of integrative and ensemble models, and it provides the extensibility 
needed for new schemas, including recent work on hierarchical representations of conformational and chemical heteroge‑
neity [25].

The democratization of coding skills, facilitated by large language models, has enabled more users to delve into struc‑
tural bioinformatics, build hypotheses, support experimental findings, or make independent discoveries. However, struc‑
tural data is nuanced and can be challenging to work with; without proper quality control or control analyses, it can lead 
to inaccurate conclusions. Users should understand limitations, potential pitfalls, and caveats to use the data to its full 
potential.

The guidelines outlined here stem from the lessons and challenges I and others have encountered while performing 
structural bioinformatics projects, with many of the lessons being applicable for machine learning applications as well. 
Although predicted structures are increasingly valuable in bioinformatics research [26–28], this article emphasizes exper‑
imentally derived structures. While each rule is not universally applicable, consider each recommendation carefully and 
evaluate how it may relate or be tweaked to fit their problem.

So, first things first, what question do you want to ask, or hypothesis do you want to test? For example, are you look‑
ing at the overall protein fold, or does your question require you to know the rotamer angles and only look at wild-type 
structures of a specific protein? Knowing the answers to these questions is critical for determining your selection criteria, 
statistical power, analysis, and controls, as outlined below.

Recommendation #1: Define your biological selection criteria

When starting a structural bioinformatics project, the first step is to define the biological criteria for your study. Consider 
the structures you need to answer your research question, whether it involves all lysozymes, a specific tyrosine kinase, or 
all enzymes. Additionally, you may want to further refine your dataset based on ligands. Small molecules such as glyc‑
erol or DMSO are often crystallographic additives, while other molecules may be native or synthetic ligands, leading to 
differences in how you want to classify each structure. Further, assess whether your protein is part of large complexes by 
examining the identities of other chains. Identical chains typically reflect symmetry-related protomers, whereas distinct 
macromolecules reveal a multi-protein complex (see more details in Recommendation #4).

Beyond structural selection, sequence-level considerations remove redundancy and drive clustering and align‑
ment analyses. A significant fraction of PDB entries corresponds to homologous proteins or multiple structures of the 
same protein. Depending on your question, you may want to filter based on sequence or structure. You can cluster by 
sequence, using MMseq or CDHit [29,30], or based on structure, using TM-score and CATH [31,32], selecting represen‑
tatives from each cluster for your downstream analysis based on resolution and R-factors or other metrics (see more 
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in Recommendation #2). Tools like the PISCES server automate this by removing sequences above a chosen identity 
threshold and keeping the highest-quality structure from each group [33].

The RSCB PDB offers precomputed sequence clusters at certain thresholds (100–30%), based on the MMseqs2 
algorithm [30], which applies variable identity thresholds based on modeled residues. Note that this does not include 
unmodeled residues, often in terminal or loop regions, which can impact this analysis. For sequence alignments, the 
PDBe supports multiple sequence alignment (MSA) using Clustal Omega [34] and allows retrieval of FASTA sequences 
for custom alignment. By leveraging the SIFTS database [35], you can map PDB entries onto CATH or SCOP structural 
hierarchies, UniProt sequence records, and select structures by fold, superfamily, or sequence-based functional annota‑
tion (see more in Recommendation #9) [23,31,36]. Additionally, you can use structural alignments, such as those per‑
formed with FATCAT, TM-align, CE, or Smith-Waterman 3D alignment, to provide insights into sequence and structural 
relationships [37–41]. These can be powerful in identifying similar shapes of proteins, yet with sequence differences. 
Many of these selections can be made using one of the three PDB APIs [5,7,42].

Recommendation #2: Determine how you will quality control your data

Beyond determining the biological and sequence selection criteria, it is crucial to consider the experimental data under‑
lying structures to ensure a quality dataset. This begins with identifying the methods of structure determination, such as 
X-ray crystallography, cryo-EM, nuclear magnetic resonance (NMR), or neutron diffraction. Additional factors include reso‑
lution (not applicable for NMR), agreement with structure determination data, and stereochemical accuracy.

Resolution, the most common criterion for structural bioinformatics analysis, sets the theoretical limit on the precision 
of the structural model and is reported for all structures. High resolution, better than 2.5 Å, is essential for accurate side 
chain positioning, whereas lower resolution models can still yield valuable insights into overall fold and backbone con‑
formation. In cryo-EM, however, resolution is estimated differently than in crystallography: it is typically calculated using 
the Fourier Shell Correlation (FSC) between two independently reconstructed half-maps [43]. The FSC curve reflects 
the degree of agreement between the two maps as a function of spatial frequency, and the resolution is conventionally 
reported at the point where the correlation falls below a given threshold (commonly 0.143). However, the FSC is not a 
direct measure of atomic detail in the same way that crystallographic resolution is, but rather a measure of the global sim‑
ilarity between two noisy reconstructions. Complicating matters further, cryo-EM maps often exhibit substantial variation in 
local resolution across the structure, meaning a single global resolution metric may not faithfully capture the interpretability 
of all regions of the map [44]. It is also important to note that in both X-ray and cryo-EM, while two structures can have the 
same resolution, they can be modeled to different levels of accuracy, necessitating the exploration of other metrics.

The PDB publishes global validation metrics, including knowledge-based assessments of atomic models, evaluations of 
the underlying experimental data, and measures of agreement between model and data, and provides detailed validation 
reports for each entry, following standards established by the X-ray, NMR, and cryo-EM validation task forces [45–49]. 
Even at high resolution, nearly all structures have a few local errors, but at lower resolutions, errors become more wide‑
spread. As structural models can vary widely in quality, these validation metrics are important to consider maintaining sci‑
entific reliability and to minimize the risk of errors propagating into biological interpretation, drug design, or computational 
modeling.

Geometric metrics, such as Ramachandran outliers, are derived from tools such as MolProbity and PROCHECK 
[50–52]. In X-ray crystallography, R-values quantify the agreement between model and data, with higher values reflecting 
poorer fits; a value near or above 0.3 is commonly used as a threshold for poor quality [53]. Further, depending on your 
question, you also may want to examine geometry or fit to real space data of individual residues using tools such as Mol‑
probity, Ringer, or real space correlation coefficients [52,54–57].

In cryo-EM, there is an expanding set of approaches being introduced to evaluate the quality of deposited maps 
and models [58]. As discussed above, global measures such as FSC between half-maps remain the gold standard for 
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estimating overall map resolution, while model–map FSC curves assess the consistency between the atomic model and 
experimental maps [47,59]. Increasingly, local validation has become critical. EMRinger evaluates the accuracy of side-
chain placement by comparing electron potential peaks with expected rotamer positions, and Q-scores quantify how well 
the electron potential supports individual atoms and residues [60,61].

You should also be aware of unmodeled regions, often loops or termini. These can be identified by manually comparing 
the FASTA sequence, representing the input construct, against the sequence in the PDB structural model or with tools like 
Seqatoms [62]. One may decide to exclude proteins with large missing segments or model in missing loops (see Recom‑
mendation #3). The PDB-REDO team has developed an algorithm (Loopwhole) to help fill in many of these missing loops, 
but it is most effective when high-quality homologous structures are available and when the experimental electron density 
supports accurate grafting and refinement [63]. Models that include filled loops will be classified as “rebuilt” in the PDB-
REDO database. If you include structures with unresolved regions, acknowledge this limitation and adjust your analysis 
accordingly (see more in Recommendation #8).

Beyond proteins, structures often include small molecules, nucleic acids, carbohydrates, or other molecules of varying 
quality [64]. Small molecule ligand quality is assessed by agreement with experimental data and geometric accuracy [65], 
with the latter being evaluated against Cambridge Structural Database reference structures [66]. Metals are also checked 
by CheckMyMetal, which evaluates metal coordination geometry, bond valency, and potential steric clashes [67]. For 
nucleic acids, PDB-REDO has introduced validation routines to assess the normality of Watson–Crick base-pair geometry, 
while DNATCO provides complementary validation of DNA and RNA backbone conformations [68,69].

Ultimately, determining the appropriate experimental selection criteria depends on your research question. For 
instance, if your research focuses on side chain positioning, higher resolution, lower R-values, and precise stereochemi‑
cal validation are critical. Alternatively, if you are looking for information on the overall protein fold, a broader selection of 
structures may be acceptable.

Recommendation #3: Re-processing structural model data

Most structural bioinformatic approaches take information directly from coordinate (PDBx/mmCIF) files. By taking informa‑
tion directly from the coordinate files, you are taking on any errors or biases the original modelers had. Where possible, it 
is recommended to use X-ray structural models from PDB-REDO [70–72], which reanalyzed the majority of structures in 
the PDB with experimental data (structure factors), providing uniform automated re-refinement, combined with structure 
validation and difference-density peak analysis. Since the deposition of reflection data was only encouraged beginning 
in 1998 and became mandatory in 2008, older structures, whose experimental data were less frequently archived in the 
PDB, are underrepresented in PDB-REDO [73]. While many models without experimental data can be informative, they 
come with caveats due to different and older data processing pipelines.

It is also possible to re-process all structures yourself [74,75]. If you are new to refinement, there are many tutorials 
to get you started [76,77]. Re-processing data can ensure that experimental data is processed in the same way, or allow 
the application of specific modeling modality or tooling within a refinement program, such as multiconformer modeling, 
ensemble refinement, 3D variation analysis, or quantum refinement [78–80]. To be able to reprocess your data, you need 
experimental data to be available, such as MTZ files for X-ray crystallography, maps, half maps, or particle stacks for 
cryo-EM from the EMDB [81,82], or raw NMR data from the BMRB [81]. After re-processing, similar quality control metrics, 
as described in Recommendation #2, should be used to evaluate structures.

Recommendation #4: The PDB and structural models are weird and biased

The PDB is not a uniform sample of all proteins. Because high-resolution crystallography, which comprises the majority 
of the PDB, favors small, globular, soluble proteins, membrane and flexible or disordered proteins account for roughly 
20%–30% of genes but make up less than 2% of PDB entries [83]. Moreover, publication bias further distorts the 
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distribution of structural models with drug targets, enzymes, and other high-value human proteins accounting for a dispro‑
portionate share of PDB entries. This skewing of many structures of the same protein is becoming even more pronounced 
with an increase in fragment‐screening campaigns [84]. As a result, certain protein families dominate the PDB, artificially 
amplifying their characteristic features in any global analysis. You must consider these redundancies in your analysis, as 
discussed in Recommendation #2.

In addition to redundancy, it is also important to understand what structural unit is represented in a PDB file. The data‑
base distinguishes between the asymmetric unit, the crystallographic unit directly observed in the experiment, and the 
biological assembly, which represents the functional quaternary structure in vivo. The PDB provides separate mmCIF files 
for biological assemblies, which are either specified by the authors or inferred computationally by tools such as PISA [85]. 
For most biological analyses, the biological assembly is the appropriate choice, though it should be noted that approxi‑
mately 20% of these assemblies may be incorrect, with ProtCID and ProtCAD databases being valuable for sorting true 
assemblies from crystallographic artifacts [86,87].

Beyond the bias of what structural models exist in the PDB, structural models can be odd and biased. First, it is import‑
ant to remember that PDB models are just models. They do not explain all the underlying experimental data and can vary 
depending on the processing pipeline (see Recommendation #3). For example, in X-ray crystallography, crystal contacts, 
nonbiological interactions between symmetry-related molecules within the crystal lattice, can artificially stabilize particu‑
lar conformations or create interfaces that don’t exist in solution, potentially skewing structural bioinformatics analyses of 
protein dynamics, flexibility, and genuine interaction sites. We also previously showed that binding site residues are often 
better modeled than residues outside the binding site [88]. Further, regions of unmodeled residues can arise for many 
reasons, including resolution and subjective modeling, but automated refinement pipelines cannot correct all of them. 
All of these issues can lead to structures having different biases. In addition, structures often include unmodeled blobs, 
frequently ligands.

Finally, all structural data contains extensive conformational and compositional heterogeneity modeled with varying 
accuracy and encoding [25]. These include anisotropic B-factors, alternative atom locations (altlocs), or multiple models. 
Anisotropic B-factors describe the direction and magnitude of atomic displacement, while alternative atom locations (alt‑
locs) represent multiple conformations modeled for a single atom [78]. Multiple models, often used in ensemble structures, 
provide different plausible conformations that together capture the underlying structural variability [89]. While there are 
ways to encode some of these metrics more uniformly, some encodings cannot be interchanged. Additionally, most bio‑
informatics libraries, including Biopython, strip out much of this encoding, potentially introducing biases into downstream 
analyses [90]. To guard against these biases, it is essential to document any data exclusions or alterations made to the 
data, ensuring accurate comparisons downstream.

Recommendation #5: Consider your analysis’s sample size, statistics, overfitting, and uncertainty

After dataset selection and quality control comes the fun part, looking at and identifying what drives differences between 
structures. Descriptive bioinformatic analyses, such as cataloguing residue types and counts within binding pockets, are 
straightforward, but any comparative study requires careful attention to sample size and statistical power. Smaller groups 
demand larger effect sizes to achieve significance, and paired comparisons should employ paired statistical tests to 
account for within‐pair correlations. Equally important is judging whether observed differences, such as shifts in binding 
site residue rotamers or altered pocket volumes, are biologically meaningful [91].

When comparing two unpaired groups, choose parametric or nonparametric tests based on data distribution. Para‑
metric tests assume normality, while nonparametric tests are more flexible when distributions are skewed (e.g., residue 
B-factor values or pocket volumes). For paired data, for example, wild-type vs. mutant, or bound vs. unbound structures, 
use paired t-tests or Wilcoxon signed-rank tests. Further, be wary of multiple hypothesis testing. Consider adjusting 
p-values using Bonferroni or false discovery rate corrections. You can also use resampling methods such as jackknife, 



PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013094  October 31, 2025 7 / 15

bootstrap, or cross-validation to help estimate variability and confidence intervals. Applying well‐chosen controls helps 
guard against false positives and ensures that your findings reflect genuine structural phenomena rather than quirks of a 
particular dataset.

Avoiding overfitting is equally critical, whether you are working in bioinformatics or machine learning. Where possible, 
never develop and validate hypotheses on the same data without independent testing. Splitting your dataset into train, 
test, and validation sets, or employing k-fold cross-validation, is even recommended when defining new structural descrip‑
tors or clustering algorithms. Further, consider how you partition your test set, whether by sequence similarity, structural 
features, or other criteria, to avoid overfitting or memorization [92].

Recommendation #6: Determine and apply the correct controls

Choosing the proper controls is one of a bioinformatic study’s most challenging and often overlooked aspects. Fortunately, 
the abundance of publicly available structural data makes incorporating negative and positive controls feasible. Controls 
must directly address the null hypothesis you wish to reject. Negative control datasets, where no effect is expected, are 
usually easier to define, while positive control datasets, datasets known to exhibit the effect, can be harder to assemble. 
For example, if you’re testing whether a novel structural motif alters protein function, you might compare your proteins of 
interest against a set of homologous structures that lack the motif. Differences that persist between the groups are more 
likely to stem from the motif than background variation. You can also randomize specific features, such as residue type 
or solvent exposure, to break genuine signals, or selectively choose structures that should not display the phenomenon 
under study [12]. This strategy ensures that any detected signal isn’t merely an artifact of the overall distribution of struc‑
tural features.

For example, consider a case where you argue that hydrophobic residues in binding sites are inherently less dynamic. 
Alternative explanations might include differences in solvent exposure, secondary‐structure context, or biases introduced 
by your dataset (for instance, selecting only certain CATH classes or ligand types). A robust negative control would exam‑
ine hydrophobic residues outside binding pockets matched for solvent accessibility and local secondary structure. While it 
may be impossible to control every variable perfectly, assessing your metric across complementary subsets is critical for 
demonstrating that your findings reflect genuine biological effects rather than quirks of data selection.

Recommendation #7: Understand how metrics are compared across your structures

Without careful evaluation, comparison metrics can lead to incorrect conclusions. For instance, larger proteins naturally 
exhibit higher overall root mean squared distance (RMSD) values, a common metric for comparing the two structures’ 
similarities. Normalizing RMSD by sequence length or reporting RMSD per residue can correct this. Many structure align‑
ment tools, including DALI and TM-align, provide Z-scores indicating the likelihood that an observed similarity would occur 
by chance [32,93]. Alignment and comparison in torsion space also provide a powerful way to distinguish functionally 
relevant conformational states. Torsion-angle-based approaches preserve subtle, biologically meaningful differences that 
are often obscured in atomic coordinate space [94,95].

B-factors, also called temperature factors, atomic displacement parameters, or Debye–Waller factors, estimate each 
atom’s displacement parameter, combining thermal motion of the atom with static disorder from the crystal lattice [96]. 
Because they arise from the refinement process, B-factors are influenced by data resolution, model bias, occupancy, and 
lattice packing. As a result, high B-factors do not necessarily guarantee high flexibility in solution. To use them reliably, it’s 
best to normalize B-factors, for example, by Z-scoring within a structure, comparing structures with very similar crystal‑
lographic parameters [97,98], and, when possible, corroborating with another metric of flexibility. There are a plethora of 
other comparison metrics that can be used to compare groups or pairs of PDBs [93,99–101]. Understanding how these 
metrics are derived and how best to apply them to your analysis is essential to ensuring you use them properly and avoid 
introducing bias.
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Recommendation #8: Appropriately connect and compare structures

When comparing two groups of structures, it is crucial to balance confounding variables to ensure that biological differ‑
ences, rather than methodological or crystallographic artifacts, drive the observed differences. Differences in resolution, 
space group, unit‐cell parameters, data processing, and data collection parameters can lead to incorrect conclusions. 
Depending on the question, this can also include differences in local metrics such as MolProbity or validation scores [102]. 
Even reprocessing identical raw data with identical refinement settings can yield subtly different models due to stochastic‑
ity built into those processes to help with the complex refinement optimization process [74,75]. To minimize such artifacts, 
applying consistent processing pipelines (such as PDB-REDO) and, where possible, matching crystallographic parame‑
ters is important.

These controls become even more critical when looking at pairs of structures, such as ligand-bound versus apo or 
mutant versus wild type. In these analyses, you often look for subtle conformational changes you want to ensure are not 
driven by nonbiological artifacts. We recommend pairing structures based on biological differences and ensuring that 
they have similar crystallographic properties. Some general guidelines include using datasets with resolutions within 0.3 
Å, identical space groups, and unit cell dimensions that differ by no more than 10%. While these criteria are not always 
achievable, deviations can introduce artifacts: differences in crystal contacts or solvent volume may affect the conclusions 
you can draw.

In some cases, it is valuable to collect structures with diverse crystallographic properties from the same or closely 
related proteins. Such comparisons can provide insight into conformational heterogeneity and, in particular, are useful for 
studying loop conformations that crystal contacts may influence. By grouping structures into distinct crystal forms, one can 
analyze loop conformations across different crystallographic contexts and disentangle genuine biological flexibility from 
artifacts introduced during crystallization [103,104].

Additionally, you must determine how you will compare structures across groups for all comparisons. For most com‑
parisons, you will need to align structures, often based on the alpha carbon; however, other options include aligning the 
entire structure or taking sequence into account. Global metrics, such as RMSD, allow you to ignore sequence or small 
length differences, but if you want to compare specific sections of the protein or amino acids, this will take more care and 
thought. For example, you may want to compare how a specific loop compares among homologs. This will require aligning 
structures around that loop or to all residues besides the loop, and also ensuring that crystal contacts are not driving these 
conclusions.

Comparing structures of the same protein, you can compare using chain and residue IDs, but a standard numbering 
scheme is required. This can be done by manually renumbering chains and residues or employing algorithms such as 
PDBRenum to map PDB residue numbers onto UniProt numbering, which also allows for integration with other databases 
(see Recommendation #9) [105]. If PDBs are similar, you can also align them based on a MSA. One thing to note is that 
while the MSA will enable renumbering, a single residue number may still correspond to different residue types.

Additionally, it is worthwhile to see if existing databases or collections have the comparisons you want. For example, 
multiple databases pair apo-holo structures together, although depending on your question, you may want to further 
curate this database down based on crystallographic properties [106].

Recommendation #9: Connect your analysis to other databases or prospective experiments

By connecting PDB structures with other bioinformatics databases, you can enrich your analyses with sequence fea‑
tures, domain architectures, pathway contexts, and chemical insights, uncovering deeper relationships between structure, 
function, and activity. The PDBe API provides programmatic access to sequence, taxonomy, and functional annotations 
[5]. Family and domain classifications, including Pfam, SCOP, ECOD, and CATH [14,31,35,107,108], are accessible 
via SIFTS [35]. SIFTS also offers residue-level mappings between PDB structures and UniProt sequences, enabling 
the labeling of functional sites onto PDB structures [109]. This facilitates comparative analyses, such as examining 
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conformational changes across a family or correlating structural motifs with functional annotations from Gene Ontol‑
ogy or InterPro [110,111]. PDBs can be connected to pathway and chemical databases such as KEGG and Reactome 
via UniProt [112,113]. PDBe-KB further consolidates annotations from multiple specialist resources, providing an inte‑
grated knowledge base that highlights functional and biological insights mapped onto PDB entries [114]. In addition, the 
3D-Beacons network connects structural biology resources across multiple providers, ensuring consistent and federated 
access to experimental and computational models [115]. While these resources are highly complementary, they are not 
entirely overlapping, as each database captures different aspects of biological knowledge, and careful integration is often 
necessary to avoid redundancy or misinterpretation.

Additionally, many PDB structural models have small molecules. PDBe provides excellent ligand pages and tools for 
analysis within the database [116,117]. Additionally, small molecule information can be linked to existing databases. The 
PDB’s Chemical Component Dictionary assigns ligand IDs that can be cross-referenced with ChEMBL, PubChem, or 
DrugBank [118–120]. Additionally, external databases such as PDBBind and BindingDB can group chemical or binding 
information and link it back to PDB information [121,122]. These databases enable easier retrieval of assay data, clinical 
information, or physicochemical properties of ligands. A growing number of ‘curated’ databases also look at protein-ligand 
interactions, post-translational modification, nucleic acid interaction sites, among many others [123–127]. You can then 
use the pre-calculated metrics or the curated PDB list to calculate the metrics you are interested in.

Additionally, bioinformatics can serve as an excellent partner for hypothesis generation or for supporting prospective 
experiments. For example, structural bioinformatics can pinpoint the specific residue(s) to mutate to test a desired func‑
tional effect, or evaluate whether an experimentally derived hypothesis, such as a loop–domain interaction, holds across 
homologous structures and influences protein activity.

Recommendation #10: Visualize everything!

One of the best things about structural biology is visualizing what you are discovering. Looking at structures and the 
metrics you are using via Pymol or Chimera is a powerful quality control tool for your bioinformatic analyses [128,129]. For 
example, calculating the comparison between two structures and then manually exploring the metric in a visualization soft‑
ware for a given metric. You can ask: Are you aligning the structures or residues correctly? Does the quantification of the 
metric you are getting make sense? Once you have confirmed that metrics are calculated correctly and you have results 
you want to show, Pymol, Chimera, or Coot offer various representations for pieces of the molecule, underlying experi‑
mental data, and distance measurements [128–130]. PyMOL can also load molecular dynamics trajectories to visualize 
conformational changes. ChimeraX’s plugin infrastructure efficiently handles larger structures.

Discussion

Structural bioinformatics provides a robust framework for identifying patterns in macromolecular structures, integrating 
with other databases, supporting theoretical approaches, and informing prospective experiments [9,12,131]. For example, 
overlaying quantitative proteomics and large-scale sequence variation onto structural clusters enables identifying regula‑
tory hotspots and prioritizing functionally relevant variants. Additionally, structural bioinformatics can be incredibly powerful 
in supporting or refuting hypotheses from prospective experiments. While we did not focus on this, AlphaFold or other 
structure models can help fill gaps where experimental structures are absent [18–20], including now expanding beyond 
proteins [18,132]. However, users must remain mindful of the “last-Ångstrom” problem, where these prediction models are 
often inaccurate in very precise measurement, including molecular interactions, residue networks, and the lack of confor‑
mational ensembles stemming from these predicted structures [133,134].

Beyond single-structure analyses, statistical and integrative structural biology approaches can help merge structural 
models to detect new or more subtle changes in structures or structural ensembles. Further, while most of this article 
focused on how to detect subtle differences using bioinformatics, these tools can be used to go the other way spatially by 



PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013094  October 31, 2025 10 / 15

integrating cell-scale data to construct multiscale assemblies in their native contexts. We bridge atomistic observations to 
emergent cellular behaviors, closing the loop between structure, function, and phenotype [135].

Finally, many concepts presented in this paper should also be considered when doing machine learning on protein 
structures. While protein structure prediction has led to an explosion of machine learning algorithms and approaches 
applied to structural data, many issues that hinder bioinformatic analyses also arise when splitting datasets in machine 
learning [92,136,137]. In particular, researchers must carefully avoid information leakage by ensuring that homologous 
proteins, redundant structures, or closely related crystal forms are not distributed across training and test sets, as this can 
lead to overly optimistic performance estimates. Incorporating these principles into structural bioinformatics ensures that 
computational results remain reliable, reproducible, and ultimately informative for guiding experimental design.
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