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Abstract

Characterizing protein families’ structural and functional diversity is essential for
understanding their biological roles. Traditional analyses often focus on primary and
secondary structures, which may not fully capture complex protein interactions. Here
we introduce InteracTor, a novel toolkit that extracts multimodal features from protein
three-dimensional (3D) structures, including interatomic interactions like hydrogen
bonds, van der Waals forces, and hydrophobic contacts. By integrating eXplainable
Artificial Intelligence (XAl) techniques, we quantified the importance of the extracted
features in the classification of protein structural and functional families. InteracTor’s
interpref features enable mechanistic insights into the determinants of protein struc-
ture, function, and dynamics, offering a transparent means to assess their predictive
power within machine learning models. Interatomic interaction features extracted by
InteracTor demonstrated superior predictive power for protein family classification
compared to features based solely on primary or secondary structure, revealing the
importance of considering specific tertiary contacts in computational protein analysis.
This work provides a robust framework for future studies aiming to enhance the capa-
bilities of models for protein function prediction and drug discovery.

Author summary

InteracTor is a computational toolkit designed to enhance our understanding of
protein structure and function by focusing on three-dimensional (3D) structural
interactions. Unlike traditional approaches that primarily rely on sequence or sec-
ondary structure data, InteracTor extracts biologically meaningful features such
as hydrogen bonds, van der Waals forces, and hydrophobic contacts, which
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are critical for protein stability and dynamics. By integrating these features into
machine learning models alongside Explainable Al methods, InteracTor provides
interpretable insights into how specific structural interactions influence protein
behavior. Our results demonstrate that tertiary structure features significantly im-
prove the accuracy of protein family classification compared to sequence-based
methods alone, underscoring the importance of considering 3D interactions in
computational protein analyses. The toolkit's modular design makes it adaptable
for diverse applications, including drug discovery and protein engineering. In a
broader context, InteracTor bridges the gap between computational biology and
practical applications in medicine and biotechnology by offering a transparent
and robust framework for analyzing proteins at a molecular level. This work rep-
resents a step forward in leveraging structural data to advance predictive model-
ing and biological discovery.

Introduction

In recent decades, high-throughput sequencing techniques have dramatically
expanded protein sequence databases. At the same time, advances in cryo-electron
microscopy and deep-learning-based computational structure determination meth-
ods, including AlphaFold [1] and RoseTTAFold [2], have transformed protein structure
elucidation. Consequently, the surge in available sequence and structural data has
catalyzed the development of machine- and deep-learning techniques for predictive
modeling. This data has been leveraged to address a variety of challenges, such as
identifying non-classical secreted proteins [3,4] predicting binding affinity [5-7], and
engineering proteins for novel functions [8,9].

Central to these algorithms is feature engineering and encoding, aimed at convert-
ing protein sequences and physiochemical properties into machine-readable formats.
Ideally, this process captures the attributes most relevant to the predictive targets of
interest. Sequence-based feature representations are among the most widely uti-
lized, including amino acid composition, chemical property-based features, k-mers,
and alignment-based embeddings. These descriptors effectively simplify sequence
information and reduce the data dimensionality while still highlighting broader func-
tional characteristics, sequence patterns, and evolutionary relationships. However,
sequence-based methods can suffer from high dimensionality and data sparsity and
are limited in their ability to capture critical properties influencing protein function. The
incorporation of 3D structural data into the suite of available encodings allows pre-
dictive models to have a deeper layer of biological context that can give insight into
functional dynamics. This has spurred the development of more comprehensive fea-
ture extraction platforms such as iFeatureOmega [10], Pfeature [11], and ProFeatX
[12] which incorporate both sequence and secondary structure descriptors.

Pfeature utilizes amino acid sequences, employing binary encoding for chemical
elements and leveraging PaDEL software for fingerprint generation. ProFeatX focuses on
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torsional angle bigrams, providing insights into secondary structure. This diverse array of methodologies underscores the comple-
mentary nature of these tools, with each excelling in specific bioinformatics applications. However, these tools do not consider the
three-dimensional structure of the protein, nor do they consider the interactions between amino acids within the protein’s three-
dimensional framework. Tools like iFeature harness molecular structures to calculate Half Sphere Exposure (HSE) and Accessi-
ble Surface Area (ASA), but still lack support for the extraction of interatomic interactions and other key structural features [10].

While traditional protein sequence descriptors have been fundamental for many predictive modeling types, encoding
interaction features remains a significant yet underutilized strategy for capturing the nuances of protein behavior. Recent
advancements in sequence- and structure-based embeddings have substantially improved prediction accuracy. How-
ever, these embeddings often obscure interpretability and transform even inherently simple models into black boxes by
abstracting input features into complex, opaque representations. This makes it difficult to discern how specific biological
properties influence model predictions, even when applying advanced explainable Al (XAl) techniques [13]. In contrast,
InteracTor’s extracted interatomic interaction features are inherently biologically meaningful, allowing for more direct and
transparent application of XAl in downstream models. This enables researchers to pinpoint specific interatomic interaction
types responsible for observed protein structural and functional properties, offering a clearer path to biological insight.

Here we present InteracTor, a toolkit for the extraction of three types of protein feature encodings: interaction features,
physicochemical features, and compositional features. Interaction features include hydrogen bonds, hydrophobic con-
tacts, repulsive interactions, and van der Waals interactions, each encoding unique aspects of molecular dynamics that
play an important role in governing protein function. Specifically, hydrogen bonds and hydrophobic contacts are important
for stabilizing secondary and tertiary structures [14,15]. Van der Waals interactions influence molecular complementarity,
which is crucial for substrate binding, and mediate transient interactions that can facilitate or destabilize protein structures
and complexes [16]. Accessible solvent area, hydrophobicity, and surface tension are implicated in protein folding, stabil-
ity, solubility, and protein-protein interactions. Compositional features include mono-, di-, and tripeptide composition and
amino acid side chain chemical property (CPAASC) frequencies [17—-19]. These features determine local spatial arrange-
ments (secondary structure) and the overall 3D folded conformation (tertiary structure) of a protein through the formation
of alpha helices, beta sheets, loops, and structural motifs.

By leveraging XAl techniques such as Shapley Additive exPlanations (SHAP) [20], we compared the importance of
InteracTor’s extracted interatomic interaction features to classic primary and secondary structure features across multiple
machine learning model architectures. Our feature sets directly map to biologically meaningful concepts, enabling users
to readily interpret results and validate the logic of explainable Al models, in contrast to abstract embedding or principal
component vectors. This approach allowed us to pinpoint the most impactful features for characterizing protein families
and elucidate the relative contribution of tertiary structural information to predictive performance. Structural and sequence-
based features were complementary and provided a more comprehensive representation of the protein. Our integrative
feature encoding and selection approach underscores the complexity and richness of proteins, ultimately advancing our
ability to characterize proteins for various applications in structural biology, biotechnology and medicine.

Results

InteracTor is an open-source computational toolkit for feature engineering and XAl that operates through four major steps (Fig
1): (1) extraction of atom, residue, and sequence information from protein structure files, (2) calculation of interatomic inter-
actions and physicochemical properties, (3) computation of sequence-based compositional features such as mono-, di-, and
tripeptide frequencies, and (4) integration and export of these multimodal features for downstream analysis and interpretation.

Multimodal protein profiling

InteracTor computes 11 different interatomic interaction features and 8 distinct CPAASC that are key for characterizing
structure and function of proteins (Table 1 and S1 Table). In addition to interaction and structural features, our toolkit
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Fig 1. Pipeline of the interactor algorithm. (A) Extensive database of PDB files, where each chain is split into an individual PDB file and converted

to MOL2 format. (B) The following metrics are calculated: atom-atom distances (d) and van der Waals radii (r); bond angles (a); geometric centers (g);
interaction types and atom types. Molecular representation with carbon atoms in gray, oxygen in red, and nitrogen in blue. (C) The following features are
calculated: interatomic interaction features (Table 1); side chain physicochemical properties (S1 Table); mono-, di-, and tripeptide composition (S2 Table).
(D) The extracted features are exported in tabular format, which then are utilized for feature selection, dimensionality reduction, clustering, visualization,
and machine learning.

https://doi.org/10.1371/journal.pcbi.1013038.g001

also extracts classic protein sequence compositional features such as k-mer frequencies (S2 Table), resulting in a total

of 18,296 multimodal features extracted (Table 2). This provides a comprehensive representation of protein structure,
function, and sequence characteristics, enabling in-depth analysis of protein properties across various scales of molecular
organization. While we demonstrate InteracTor’s utility through protein function family classification, the toolkit is designed
for modular adaptation to diverse structural biology tasks—from drug binding analysis to protein engineering—thanks to
its interpretable, feature-driven framework.

InteracTor characterizes the variability among distinct protein families

We conducted principal component analysis (PCA) across all 18,296 features extracted from 20,877 protein structures repre-
senting the most abundant protein families and GO terms in the PDB REDO database to evaluate the overall utility of InteracTor
in the characterization of variability among protein families and Gene Ontology (GO) terms (S3, S4 Tables). Fig 2 shows the first
two of 500 selected PCAs, which captured 1.72% of the variance across protein families (Figs 2A, S1A), and 1.0% of the vari-
ance across GO terms (Figs 2B, S1B). Except for Peptidase S1 and the Glycosyl hydrolase 5 (cellulase A), the protein families
exhibited well-defined clusters in the two-dimensional space (Fig 2A), whereas GO terms exhibited less separation overall (Fig.
2B). This difference may be attributed to the inconsistent accuracy of GO annotations across non-model organisms [30].

Three-dimensional projections provided clearer clustering of the data, allowing a distinct visualization of relationships
among the protein families. The first three principal components captured 2.40% of the variance across protein families
(Figs 2C, S1A), as well as 1.38% of the variance across GO terms (Figs 2D, S1B). The 3D visualization also improved the
separation of Peptidase S1 and Glycosyl hydrolase 5 families, as well as the separation of GO groups, allowing for a more
nuanced interpretation of functional relationships among groups.

Mutual Information scoring identifies key features across protein families

To enhance clustering quality and classification accuracy in downstream analyses, InteracTor performs feature selection
using Mutual Information (MI) scoring. All features were ranked by MI score to prioritize those most relevant to the target
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Table 1. Protein structural features based on interatomic interactions and physicochemical properties.

Feature Name

Feature Description

Total hydrophobic contacts [21]

Aggregation of nonpolar amino acid side chains, which tend to mini-
mize their exposure to the aqueous environment.

Total van der Waals (vdW) interactions [5,22]

Weak, non-covalent interactions that arise from transient dipoles
induced in atoms or molecules. They are significant when atoms are
in proximity, and while individually weak, they collectively contribute
substantially to the stability of a protein’s structure.

Deformation effect [23]

Intrinsic changes and potential movements within the protein that can
occur due to its inherent flexibility and dynamic structural nature.

Intramolecular hydrogen bonds [24]

Intramolecular hydrogen bonds, formed between electronegative
atoms and hydrogen atoms, provide directional and specific inter-
actions that stabilize secondary and tertiary protein structures. We
adapted our previously described intermolecular hydrogen bond scor-
ing method to compute intramolecular hydrogen bond scores.

Repulsive interactions [22]

Number of atom pairs that are very close to each other, causing their
electron clouds to overlap. This overlap leads to a repulsive force due
to the Pauli exclusion principle, which prevents electrons from occupy-
ing the same space.

London dispersion forces [5,25]

The London dispersion forces, a type of van der Waals force, arise
from the temporary formation of instantaneous dipoles and contribute
to the overall stability of protein structures. While the vdW feature con-
siders interactions within a distance threshold of < 0.7 plus the sum of
the van der Waals radii, London dispersion focuses on longer-range
interactions, thereby minimizing overlap between these features.

Total hydrophobicity [26]

Sum of the hydrophobic contacts within the protein structure, which
influence its folding, stability, and interactions.

Internal hydrophobicity [26]

Sum of hydrophobic contacts located within the interior of the protein
structure. This arrangement is driven by the hydrophobic effect, which
is important for protein folding and stability.

Total surface tension [27]

Imbalance of attractive intermolecular forces at the surface of a
protein, which influences the stability and interactions of protein
structures.

Internal tension [28]

Resistance encountered by parts of the protein (e.g., secondary
structures) as they move relative to each other, essential at all stages
of protein folding.

Accessible Surface Area (ASA) [29]

Solvent-exposed surface area of a protein, which influences its stabil-
ity and interactions.

https://doi.org/10.1371/journal.pcbi.1013038.t001

variables. To optimize feature selection, various Ml score cutoffs were systematically tested and compared later in the
analysis to identify the subset of features that best balances dimensionality reduction with model performance. Fig 3A
shows the distribution of Ml scores used for feature selection across protein families. The distribution exhibits a primary
mode, or large peak, which corresponds to features with low Ml scores (MI<0.2), reflecting background noise and less
informative features. The remaining lower peaks (Ml 20.2) represent a subset of 354 features with informational content

effectively distinguished from the background noise peak. Among the top 100 high Ml scoring features for the protein fam-
ily dataset are 9 interatomic interactions, 2 CPAASC features, and 89 sequence composition features (S5 Table). Among
the 12 most highly ranked features across protein families (Fig 3B) are intramolecular hydrogen bonds (MI=0.775), total
surface tension (MI=0.763), London dispersion forces (MI=0.758), repulsive interactions (MI=0.722), internal tension
(MI=0.708), Accessible Surface Area (ASA) (MI=0.694), total hydrophobic contacts (MI=0.561), dipeptide TG frequency
(MI=0.562), internal hydrophobicity (MI=0.561), dipeptide VN frequency (MI=0.556), total hydrophobicity (MI=0.539),
and dipeptide GG frequency (MI=0.509).
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Table 2. Overview of protein features extracted.

Feature type Number of | Feature Description
Features

Structural features (interatomic interactions and physicochemical properties)

Interatomic interactions | 11 Interatomic interactions between residues in a protein, such as
hydrogen bonds and hydrophobic contacts.

Chemical properties of | 8 The chemical properties of amino acid side chains govern their inter-

amino acid side chains actions with other molecules or residues in proteins, encompassing

(CPAASC) characteristics such as polarity, charge, size, and hydrophobicity.

Compositional features (n-peptide descriptors)

Monopeptide 26 Frequency of single residues, or k-mers where k=1.

Dipeptide 675 Frequency of two residues linked by a peptide bond, or k-mers
where k=2.

Tripeptide 17,576 Frequency of three residues linked by peptide bonds, or k-mers
where k=3.

Total 18,296

https://doi.org/10.1371/journal.pcbi.1013038.t002

For GO terms, the MI score analysis revealed values ranging from approximately 0.06 to 0.1, as shown in Fig 3C.
While several peaks are well-defined, indicating key features, the Ml scores are notably lower compared to those for
protein families. Fig 3D presents a violin plot illustrating the distribution of Ml scores, with a low density of high Ml scores
between 0.1 and 0.2. High MI scoring features include total surface tension (MI=0.202), London dispersion forces
(MI=0.165), total hydrophobicity (MI=0.146), ASA (MI=0.142), dipeptide EL frequence (MI=0.127), total vdW interactions
(MI=0.123), dipeptides EG, NL, KT, GN, and AN, (MI1=0.113, 0.111, 0.109, 0.105, and 0.103, respectively) and repulsive
interactions (M1=0.100). Despite the lower Ml scores, these features show a significant association with protein families
and GO categories (Wilcoxon test p<2.2x10-16).

Clustering of selected features reveals distinct patterns and relationships among protein families

To uncover inherent structural and functional relationships among protein families based on the selected features, we
applied hierarchical clustering analysis to group proteins with similar feature profiles. This clustering approach enables
identification of natural groupings and subgroups within the dataset, facilitating downstream interpretation of protein
family diversity and functional specialization. The resulting clusters provide a framework for exploring complex inter- and
intra-family heterogeneity and complementary subsequent analyses.

Hierarchical clustering grouped the dataset into 19 distinct clusters across eight families (Fig 4A), revealing complex
internal organization. The Short-chain dehydrogenases/reductases (SDR) family exhibited the most extensive dispersion,
spanning seven clusters (C1, C6, C10, C11, C12, and C13), highlighting its functional diversity. Three distinct clusters (C17,
C19, C20) encompassed the Cytochrome P450 family. Similarly, the Peptidase S1 family was distributed across three
clusters (C8, C9, C16), suggesting potential functional specialization within this protease group. The Enoyl-CoA hydratase/
isomerase family was found in two clusters (C2, C3), indicating possible sub-functionalization. In contrast, several protein
families demonstrated a more focused distribution, each confined to a single cluster: Bacterial solute-binding protein 2 (C4),
FPP/GGPP synthase (C14), Glycosyl hydrolase 5 (cellulase A) (C15), and Class-I aminoacyl-tRNA synthetase (C18).

Complementary t-SNE clustering analysis identified 9 groups (Fig 4B), not only corroborating these groupings but also
unveiling finer details of inter-group relationships. While hierarchical clustering effectively segmented proteins with similar
functions, t-SNE provided a more nuanced separation. Occasional cross-family similarities were highlighted with some
datapoints from different families appearing in unexpected clusters. Multivariate visualization further supported the role
of interatomic interaction features (Fig 4C), which were predominantly observed in the Cytochrome P450 and Glycosyl
Hydrolase 5 (cellulase A) families (Wilcoxon p<4.9x10#, S6 Table). In contrast, dipeptide features were more prevalent
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B) Clustering of three representative groups based on molecular functions. C) Three-dimensional PCA representation of protein families, capturing the
variance and complexity within different functional categories. D) Three-dimensional PCA visualization of molecular functions.

https://doi.org/10.1371/journal.pcbi.1013038.g002

among other protein families, indicating a varied functional landscape shaped by distinct sequence composition patterns.
(Wilcoxon p<0.031, S6 Table).

InteracTor’s feature selection effectively reduces dimensionality of models without compromising model
performance

Protein families exhibited better clustering than Gene Ontology (GO) terms in PCA analysis, so the protein family data-
set was selected for downstream model training. Across all feature sets described in Table 2, ensemble models, espe-
cially Histogram Gradient Boosting and Random Forest, consistently ranked among the top performers in protein family
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classification, achieving 0.71-0.80 F1-score on the test dataset after 80%-20% train-test split, indicating that the complex
relationships captured by InteracTor’s features are effectively leveraged by these models’ ability to combine multiple
decision trees (Fig 5A, STA-S7D Table). This trend was consistent across different accuracy metrics such as accuracy,
precision, recall, and MCC (S7B, S7C Table). CPAASC was the feature type that showed the lowest accuracy across all
feature subsets (Tukey’s post hoc test p<0.05, S7A, S8 Tables and Fig 5B). MI score-based feature selection and further
F1 score comparison across models showed that reducing InteracTor’s feature set to the top 100-500 features achieved
comparable performance to using all 18,296 features (Tukey’s post hoc test p20.82). The smallest feature set selected
via Ml score (top 100) showed similar performance relative to larger subsets as well (Tukey’s post hoc test p>0.12 versus
top 200-500, S8 Table). These results highlight the effectiveness of our feature selection approach for optimizing model
performance and interpretability.
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XAl reveals key features for protein family prediction models

We employed XAl techniques, specifically the SHAP method [20], to analyze the impact of InteracTor’s features on
machine learning models for protein family prediction. The top 20 features showed SHAP values with heterogenous
contributions to the models’ predictions across different protein families (Figs 6, S2). The most important features included
interatomic interactions and physicochemical properties, such as surface tension and hydrophobicity, as well as specific
atomic interactions like repulsive interactions and hydrogen bonds. Additionally, certain peptide composition patterns, such
as those involving monopeptides (e.g., P, H, and W) and tri- and di-peptides (e.g., CLG, PP) were also among the most
important features. These findings indicate that a combination of multimodal feature types, including structural properties,
interatomic interactions, and amino acid composition, critically affects the model’s capacity to differentiate protein families.

The features were ranked differently by SHAP values across different protein families, with each protein family type
exhibiting a unique association pattern. For instance, London dispersion forces, intramolecular hydrogen bonds, and
internal hydrophobicity had a positive impact on predictions for the Cytochrome P450 family (Figs 6A, S2A). However,
these same features showed negative impacts for other families, including Bacterial solute-binding protein 2, Class-I
aminoacyl-tRNA synthetases, and Short-chain dehydrogenases reductases (Figs 6B—6G, S2B-S2H). FPP/GGPP syn-
thases also exhibited a distinct pattern and ranking of SHAP values relative to other families, with key contributors from
dipeptide DD, internal hydrophobicity, London dispersion forces, and several specific amino acid combinations including
tripeptide RRG and monopeptide H (Figs 6B, S2B).

To evaluate whether atomic interaction-based features consistently contributed more to model predictions than composi-
tional features across various families, we conducted a two-sample Kolmogorov—Smirnov (KS) test on the total SHAP val-
ues for both feature groups. The analysis demonstrated statistically significant differences, with false discovery rate (FDR)
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adjusted p-value <0.001 in all eight protein families and KS statistics spanning 0.45 to 0.82. Glycosyl hydrolase 5 (cellulase
A) and Peptidase S1 families presented the greatest separation between interaction and non-interaction features (KS=0.82
and 0.75, respectively). In contrast, the Cytochrome P450 family showed a lower effect size (KS=0.45), yet retained strong
statistical significance (adjusted p=1.6 x 10-"°). These results underscore that interaction features are broadly enriched for

predictive capacity and emphasize their distinct, family-specific importance across protein families (S9 Table).

Discussion
A novel algorithm for improved characterization of protein structural properties

Our protein feature extraction algorithm distinguishes itself by focusing on the tertiary structure of proteins, unlike other
approaches that rely on primary and secondary structures [10,31,32]. By analyzing three-dimensional relationships, the algorithm
captures intramolecular interactions that underpin protein structure and function. Extracting features directly from the tertiary
structure allows the algorithm to uncover additional patterns in the chemical properties of amino acids and their interactions,
offering a comprehensive understanding of the structural and functional dynamics of proteins [33]. This enhanced perspective
provides new insights into the complex mechanisms governing protein behavior, facilitating advancements in protein engineering
and drug design [34]. The graphical representations (Figs 3—6) provide a comprehensive overview of protein characteristics as
well, assisting in the visualization and interpretation of complex structural and physicochemical properties across protein families.

The feature selection process, guided by MI scores, was crucial in identifying the most effective features for distinguish-
ing protein families (Fig 3). Prominent peaks in Ml scores indicated that features such as hydrogen bonds, total surface
tension, and contact hydrophobicity are particularly influential in differentiating protein families. This prioritization of key
features enhances our ability to effectively distinguish between various protein structural and functional groups. The iden-
tification of 9 out of 11 interatomic interactions features among the top 12 features with the highest Ml scores underscores
their importance in differentiating protein families. This finding highlights the importance of specific molecular interactions,
such as hydrogen bonds and hydrophobic contacts, in defining protein structure and function, providing valuable insights
into the fundamental principles governing protein family diversity.

Notably, several dipeptide-based descriptors, including TG, VN, and GG, were identified among the top-ranked fea-
tures in our mutual information analysis. Given the much larger number of possible tripeptides compared to dipeptides, we
would expect more tripeptides than dipeptides to appear among the top features, reflecting a feature representation bias.
However, Ml scoring inherently adjusts for feature frequency and only highlights those patterns that occur often enough to
be reliably informative. This helps account for feature representation bias, so the overrepresentation of certain n-peptides
among top predictors reflects their actual predictive value with the available sample size, rather than simply their greater
number. Biologically, tripeptides capture more specific local sequence contexts and functional motifs that are crucial for
molecular recognition, enzymatic activity, and binding interactions [35,36]. Therefore, beyond statistical considerations,
the prominence of some tripeptides among top features likely reflects their genuine molecular and functional importance.

Fig 4 shows clear separations of specific clusters, highlighting the effectiveness of the approach in identifying grouping
patterns among protein families. The groupings reflect complex interatomic relationships between different features and
demonstrate the formation of distinct clusters within dipeptide feature groups. The Peptidase S1 family, Glycosyl hydro-
lase 5 (cellulase A) family and Short-chain dehydrogenases/reductases (SDR) family demonstrate clustering of dipeptide
feature groups. This result confirms the method’s ability to highlight relevant functional patterns and distinguish between
different protein family categories based on the observed interatomic interactions.

Clustering reveals complex structure and functional diversity in protein families

Hierarchical clustering effectively delineated differences among protein families such as short-chain dehydrogenases/
reductases (SDR), Cytochrome P450, Enoyl-CoA hydratase/isomerase, Bacterial solute-binding protein 2, Class-I
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aminoacyl-tRNA synthetase, Glycosyl hydrolase 5 (cellulase A), Peptidase S1, and FPP/GGPP synthase. Complementary
analysis with t-SNE allowed for the detection of subtle similarities and differences among the protein families and offered
deeper insights into their functional connections (Fig 4, S6 Table). Multivariate visualization allowed for the identification
of unique aspects of protein families, including specific features contributing to the clustering process, yielding valuable
insights into the functional diversity within and between protein families. This integrative approach led to a deeper under-
standing of the complex relationships and functional diversity inherent across protein families, revealing details on the
interplay of intermolecular interactions, physicochemical properties, and composition of proteins. This holistic methodol-
ogy not only enhances our comprehension of protein family dynamics but also establishes a robust framework for future
research. The extracted features have the potential to directly impact the performance of machine learning and deep
learning models by offering a new feature engineering and feature selection tool. By providing new insights on protein
structural and functional properties, our approach supports advancements in structural biology, synthetic biology and in
the characterization proteins of unknown function (PUFs) [37—40]. Additionally, these features can contribute to emerging
fields such as quantum biology [41-45], facilitating a deeper understanding of biological roles and interactions across
diverse protein families.

XAl reveals key features for classification of protein function families

Our XAl results show that a combination of physicochemical properties, atomic interactions, and peptide motifs enhances
protein family classification accuracy. This approach underscores the importance of integrating protein structural, phys-
icochemical and sequence features in computational modeling, assembling groundwork for advanced protein analysis
methods. By integrating these features, we open a new pathway for understanding protein structure, activity, and function.
Feature selection and XAl analysis revealed that atomic-level interactions, specifically hydrogen bonds and London dis-
persion forces, in conjunction with distinct peptide composition patterns (e.g., proline, cysteine-leucine-glycine, and dipro-
line sequences) were pivotal for identifying protein families. Moreover, the application of XAl methodologies elucidated the
differential impact of these features across various protein families (Fig 6).

Our findings align with previous studies that emphasize the significance of atomic interactions and physicochemical
properties in protein classification [5,10—-12,17—-19]. Other sequence based features have been widely reviewed [46,47].
Our proposed set of interatomic interaction features were often among the top ranked features contributing to the accurate
classification of protein families, complementing other feature types (S5-S9 Tables). By leveraging XAl, we successfully
quantified and interpreted the specific impact of each feature- an aspect that conventional approaches could not compre-
hensively address- offering deeper insights into the biological mechanisms underlying the model’s performance.

The capacity to identify key features for protein classification has implications for drug design and protein engineering
because understanding molecular interactions is critical. InteracTor enables interpretable modeling tasks such as protein
feature engineering, feature selection, and XAl, supporting applications like drug discovery (e.g., binding site analysis),
protein function prediction, and structure-guided protein design. InteracTor applies XAl principles—such as feature impor-
tance attribution and structural interpretability—to map interatomic interactions to functional outcomes. This bridges the
gap between black-box protein models and actionable insights, enabling targeted protein engineering (e.g., optimizing
binding affinity or stability by prioritizing CPAASC features) and error diagnosis (e.g., flagging repulsive vdW clashes in
misfolded designs).

The consistent enrichment of SHAP values associated with atomic interaction features across all protein families
suggests these interactions encapsulate fundamental aspects of protein architecture (e.g., folding stability, conformational
constraints, and domain compaction). Unlike conventional sequence-derived descriptors, which typically reflect evolution-
ary conservation or motif recurrence, interaction features provide a direct readout of the structural energetics underlying
protein behavior. By leveraging a model-agnostic statistical framework to quantify the influence of these features, we offer
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rigorous, reproducible evidence for their importance. This approach paves the way for generalizing interaction-aware mod-
eling to a wider range of protein classification tasks and underscores the foundational importance of structural biophysics
in computational protein science.

Mechanistic insights on protein structure, activity, and function

The features extracted by InteracTor provide critical insights into the structural and functional diversity of analyzed pro-
tein families. Hydrophobicity-related features consistently rank among the top predictors across most families; however,
internal hydrophobicity is particularly important for classifying the Cytochrome P450 and FPP GGPP synthases, while
mean hydrophobicity plays a more prominent role in other protein families (Figs 6, S2). The variation in feature importance
can be attributed to the structural and functional diversity of the protein families. For example, the importance of London
dispersion forces [48] and internal hydrophobicity [49] in Cytochrome P450 classification [50] emphasizes the crucial role
these interactions play in maintaining its tertiary structure (Fig 6A). The tripeptides NAG and NNA showing as the top 1
and top 3 predictors in Short-chain dehydrogenases reductases (SDR) are consistent with the conserved NNAG motif,
known for stabilizing the B-strands within the central B-sheet of the characteristic Rossmann fold that is critical for cofactor
binding and enzymatic function in this family (Fig 6E) [51,52]. The tripeptides VTG and ITG showing as the top 2 and top
4 redictors are also consistent with the glycine-rich cofactor-binding motif (TGxGxxxG sequence) in the SDR family [51].
These peptide features likely capture key conserved elements of the NAD(P)(H) binding site, reflecting their important
structural and functional role in SDR enzymatic activity [53]. These family-specific variations highlight how different feature
types contribute distinctively and synergistically to protein classification.

Intramolecular hydrogen bonds were also among the top predictors for classifying SDR proteins (Fig 6E). Hydrogen
bonds are known to be essential in the stabilization of the Rossmann fold and the NAD(P)(H)-binding region of SDRs,
which is consistent with our findings [54,55]. ASA and total hydrophobic contacts were key features in the classification
of Cytochrome P450 family (Fig 6A). The importance of hydrophobic contacts in Cytochrome P450 function has been
highlighted by studies showing that hydrophobic residues are pivotal in complex formation with their redox partners [56].
Cytochrome P450s also have deeply buried active sites that are connected to the solvent by a network of channels exiting
at the distal surface of the protein, which could be reflected by the high contribution of ASA in the classification of this
protein family [57].

The Bacterial solute-binding protein 2 family displayed a balance of total surface tension and internal hydrophobicity,
showing equally intense but opposite effects (Fig 6C), which could reflect in the dynamic conformational states involved
in substrate transport [58,59]. While this finding is intriguing, further studies involving other dynamic protein families are
necessary to confirm whether this behavior is a generalizable feature. Hydrophobicity-related features were key predic-
tors for the Peptidase S1 family (Fig 6G). Chymotrypsin-like enzymes within the S1 family have a hydrophobic S1 pocket,
which allows them to cleave peptide bonds following medium to large hydrophobic amino acids such as tyrosine, phenyl-
alanine, and tryptophan, which is consistent with our findings [60]. The Peptidase S1 family also contains a catalytic site
that is typically preceded by a block of hydrophobic residues as well, which is also consistent with our results [61]. These
observations highlight InteracTor’s utility in characterizing protein families based on their global structural features, offering
a foundation for future studies exploring interaction-specific mechanisms within these families.

Methods
Algorithm overview

InteracTor algorithm consists of a sequence of steps for analyzing protein structures and calculating various features from
proteins’ interatomic interactions, physicochemical properties of residues, and peptide composition (Fig 1). The following
is a description of each step:
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Step 1. Extract atom, residue, and sequence information from PDB file (Fig 1A): this process involves parsing the Protein
Data Bank (PDB) file to obtain the atomic types, 3D coordinates, and the amino acid sequence of the protein.

Step 2. Extract additional atomic information from MOL2 file (Fig 1A), including covalent bond mapping and types (e.g.,
single, double, triple bonds, aromatic rings, etc.) and sp? hybridization.

Step 3. Calculate atom-atom distances (Fig 1B): the algorithm computes van der Waals (vdW) radii and distances
between pairs of atoms not covalently bound within the protein structure, which is used to identify potential interatomic
interactions within the protein structure. A distance threshold, as described by Dias et al., [5] is applied to determine
whether atoms are interacting.

Step 4. Calculate geometric centers (Fig 1B): additional properties are extracted from atoms selected as potentially partic-
ipating in non-covalent interactions (step 3) and covalently bound to multiple atoms (step 2). This includes the calcula-
tion of geometric centers between the selected atoms and their respective covalently bound atoms. These centers are
utilized to calculate angles between hydrogen bond donor and acceptor atoms (step 5).

Step 5. Calculate angles (Fig 1B): the algorithm then computes the angles between atoms or groups of atoms in the pro-
tein structure, which is used to evaluate hydrogen bonding geometry.

Step 6. Compute interatomic interaction features and protein physicochemical properties described in Table 1 and Fig 1C.

Step 7. Extract compositional features (S2 Table and Fig 1C): InteracTor calculates n-peptide frequencies such as mono-
peptides, dipeptides, and tripeptides in the protein sequence.

Step 8. Extract CPAASC frequencies (S1 Table and Fig 1C): the algorithm computes the frequencies of several physico-
chemical properties associated with the side chains of the amino acids in the protein sequence.

Step 9. Write results and postprocessing (Fig 1D): the final step is to write the features computed in steps 6, 7 and 8 to
an output file for further analysis or use in other applications. The toolkit also includes example scripts for downstream
analyses such as feature selection via Ml scoring, dimensionality reduction via PCA, t-SNE, UMAP, hierarchical cluster-
ing and visualization using heatmaps, and protein function classification using machine learning and XAl.

Our toolkit extracts and encodes protein structural features based on physico-chemical properties, amino acids composition,
and interatomic interactions. By building upon our previous methods for predicting protein-ligand binding affinity [5], we mod-
ified the algorithm to analyze residue-residue interactions within protein structures (Table 1). We also included the calculation
of CPAASC frequencies [17], (S1 Table), monopeptide [18], dipeptide, and tripeptide composition [19] (S2 Table). In addition to
the 20 classic amino acids, our algorithm supports rare residues found in distinct biological systems, including selenocysteine,
pyrrolysine, and N-methylvaline. These amino acids, although rare, are key in specific biological processes [62,63].

Structural datasets and preprocessing

Dataset for clustering analyses. We used 20,877 protein structures from the PDB-REDO database [64], having elimi-
nated redundant (50% sequence similarity) and small proteins (<50 residues) using Biopython and in-house scripts (see
Data availability statement). PDB-REDO was used to enhance structural data quality, improving machine learning model
reliability by minimizing errors and inconsistencies (e.g., low resolution, missing atoms, etc.). This approach aligns with
research showing that prioritizing data quality over quantity leads to better prediction performance and model robustness
[64]. Including distant protein relatives with lower identity cutoffs in the study can provide valuable insights into functional
conservation and evolutionary relationships as proteins with low sequence identity can still share similar tertiary structures
and functions [64]. PDB files were converted to MOL2 format using Open Babel [65]. We then applied the InteracTor algo-
rithm to extract features from both PDB and MOL2 files.
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Datasets for machine learning and XAI. We further filtered out proteins with more than 50% sequence identity to mini-
mize data leakage in our machine learning and XAl experiments. We also filtered out structures with low resolution (>2.5
A) and less than 100 residues in order to reduce noise and potential outliers.

Datasets selected for demonstration. We utilized UniProt’s application programming interface (API) [66] to extract Gene
Ontology [67] (GO) terms and protein family names based on the PDB accession number [68] to facilitate analysis and
demonstration of use cases. We performed power analysis to determine the minimum sample size needed per protein
family and GO term for further demonstration of use cases (Tables 1 and 2). For the demonstration of use cases, we
selected protein family categories with at least 30 representatives in our dataset to ensure sufficient statistical power for
downstream analyses. Similarly, we applied a minimum threshold of 90 annotations for Gene Ontology (GO) terms but fur-
ther restricted selection to terms directly associated with the binding mechanisms of proteins (e.g., ligand type) to further
assess the potential of InteracTor for profiling of protein functions directly associated with ligand or substrate binding. By
selecting protein families and GO terms with enough sample sizes, we ensure that our use cases effectively demonstrate
our approach’s capabilities. Mapping and power analysis scripts are available in GitHub as well (see Data availability
statement).

Feature selection and clustering analysis

We applied Ml scoring to quantify the relevance of each feature in distinguishing between different protein families and
GO categories [69]. We ranked the features by their respective Ml scores and selected the top 100 most informative fea-
tures for further analyses.

We applied PCA to reduce the dimensionality of the data generated by our toolkit and evaluated how the pri-
mary components capture the variability among protein families and GO terms [70]. In addition to PCA, we also
applied t-SNE [71,72] and Freeviz [73] to reduce dimensionality while preserving nonlinear relationships and
local structures in data. We used violin plots to visualize the distribution and density of the extracted features
across different protein families and GO terms, providing insights into the distribution and central tendencies of
the data.

We performed hierarchical clustering using Pearson correlation as the distance metric and the complete linkage
method for cluster formation [72]. This approach allowed us to identify and visualize the hierarchical relationships between
protein families based on similarities among the features extracted by our toolkit. The dimensionality reduction and clus-
tering results were visualized with FreeViz.

Machine learning benchmark

We generated 11 feature sets to assess their contribution to improving machine learning performance in predicting
structural properties. Five datasets comprised individual feature types: interatomic interactions, CPAASC, monopeptides,
dipeptides, and tripeptides (Table 2). Another five datasets were created using the top 100, 200, 300, 400, and 500 fea-
tures ranked by MI scores, incorporating a mixture of the five feature types (S5 Table). The eleventh dataset integrated
all features extracted by InteracTor (Table 2). This approach allowed us to evaluate the relative importance of different
feature combinations in enhancing predictive accuracy.

We tested Machine Learning (ML) models to assess the performance of InteracTor’s features in the prediction of
protein families. In this experiment, we used 43 ML algorithms implemented in the Python library Scikit-learn (S7D Table)
[74]. To evaluate model performance, we randomly shuffled the data, performed 80%-20% train-test split and measured
multiclass classification accuracy, precision, F1 score, Mathew’s correlation coefficient (MCC), and precision for each
combination of feature set and algorithm [72]. Feature selection was conducted exclusively on the 80% training set to
identify the most informative features.
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eXplainable Al (XAl) methods

We calculated SHAP [75] values to quantify the individual feature contributions in predicting protein families using
best-performing model (HistGradientBoostingClassifier). SHAP values were extracted from the test set using the trained
model. We then generated SHAP summary plots using the summary plot function from the SHAP library [20]. To create
SHAP bar plots, we calculated the total absolute SHAP values for each feature and determined the effect direction by
computing the Pearson correlation between SHAP values and the model’s predicted probabilities

Statistical analysis

Statistical Power tests [76] were performed using the TTestindPower from the statsmodels package in Python to com-
pute the Cohen’s d effect sizes for comparisons between groups (effect size=0.8, alpha error=0.05, power=0.8). The
Wilcoxon [77] test was used to compare the means and medians between feature sets and models. We ran Tukey’s test
[78] pairwise comparisons among F1 scores to identify feature sets that significantly contribute to model performance. We
applied p<0.05 as statistical significance threshold across all statistical tests.

Features enrichment analysis

To statistically assess the relative importance of 3D interatomic-interaction-based features compared to other composi-
tional descriptors, we performed a Kolmogorov—Smirnov (KS) test on SHAP values across all protein families. For each
protein family, we used the SHAP feature importance values generated by the model and split the features into two
groups: (1) Interatomic Interaction features; and (2) Other features—comprising all remaining compositional and structural
descriptors used in the model.

We computed the sum of SHAP values per protein for each feature group (interaction vs. others), thus obtaining two
distributions of summed SHAP values per family. These distributions were then compared using a two-sided two-sample
Kolmogorov—Smirnov test, as implemented in scipy.stats.ks_2samp. This non-parametric test evaluates whether the
cumulative distributions of the two feature sets differ significantly. A large KS statistic (D) and a small p-value indicate that
the interaction features, as a group, contribute differently—and often more strongly—to the model’s predictive behavior
compared to the other features. To correct for multiple testing across the eight protein families, we applied the Benjamini—
Hochberg procedure to control the false discovery rate (FDR), although Bonferroni correction was also tested and yielded
similar significance patterns.

Supporting information

S$1 Fig. Principal component analysis of protein families and GO terms. A) Scree plot illustrating the variance
captured by each of the 500 principal components across different protein families. B) Scree plot depicting the variance
explained by each of the 500 principal components across Gene Ontology (GO) terms.

(TIFF)

S2 Fig. Global feature importance in Protein Family Classification. Mean absolute SHAP values were computed for
each protein family, representing the overall impact of features on each protein family. The direction of the impact was
computed based on the correlation between the SHAP values and the likelihood of the predicted class: red for positive
correlation, blue for negative correlation. Subplots (A-H) correspond to distinct protein families. Colored tiles beside each
feature indicate feature types: orange for 3D structural features (based on interatomic interactions and structural proper-
ties), green for CPAASC, and brown for sequence compositional (n-peptide) features. I) Learning curve for the best model
(Histogram Gradient Boosting), showing validation F1 score as a function of training sample size.

(TIFF)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013038 October 13, 2025 17122



http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013038.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013038.s002

N\ Computational
PLOS }. Biology

S1 Table. Protein physicochemical features based on chemical properties of amino acid side chains (CPAASC).
(DOCX)

S2 Table. Protein sequence composition features.
(DOCX)

S3 Table. Distribution of selected protein families.
(DOCX)

S4 Table. Distribution of selected GO terms.
(DOCX)

S5 Table. Ml Scores for protein families and GO terms.
(XLSX)

S6 Table. Wilcoxon p-values for pairwise comparisons between protein families.
(XLSX)

S7 Table. A) Ranking of models trained on different feature sets across all tested algorithms, sorted by their
F1-score. B) Ranking of models grouped by algorithm type, based on their average F1-score across different feature sets,
providing insights into relative algorithm effectiveness. C) For each feature set, the top five models (algorithm-feature set
combinations) with the highest F1-score are highlighted to identify the best-performing pairs. D) A detailed overview of
algorithm characteristics and the performance of models based on these algorithms, including descriptions of their princi-
ples, strategies, and associated metrics.

(XLSX)

S8 Table. Tukey’s post-hoc test comparing validation F1-scores of models trained on different feature sets, high-
lighting statistically significant differences in model performance.
(XLSX)

S9 Table. Feature enrichment test by two-sided two-sample Kolmogorov—Smirnov test.
(XLSX)

Acknowledgments

The authors gratefully acknowledge UF Research Computing for providing computational resources and support that have
contributed to the research reported in this publication (http://www.rc.ufl.edu).

Author contributions

Conceptualization: Jose Cleydson F. Silva, Layla Schuster, Raquel Dias.

Data curation: Layla Schuster, Nick Sexson.

Formal analysis: Jose Cleydson F. Silva, Raquel Dias.

Funding acquisition: Raquel Dias.

Investigation: Jose Cleydson F. Silva, Layla Schuster, Raquel Dias.
Methodology: Jose Cleydson F. Silva, Layla Schuster, Nick Sexson, Raquel Dias.
Project administration: Raquel Dias.

Resources: Raquel Dias.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013038 October 13, 2025 18722



http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013038.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013038.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013038.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013038.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013038.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013038.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013038.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013038.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013038.s011
http://www.rc.ufl.edu

Software: Jose Cleydson F. Silva, Layla Schuster, Nick Sexson, Raquel Dias.
Supervision: Raquel Dias.

Validation: Jose Cleydson F. Silva, Melissa Erdem, Ryan Hulke, Raquel Dias.
Visualization: Jose Cleydson F. Silva, Layla Schuster, Raquel Dias.

Writing — original draft: Jose Cleydson F. Silva, Layla Schuster, Melissa Erdem, Ryan Hulke, Matias Kirst, Marcio F. R.
Resende, Raquel Dias.

Writing — review & editing: Jose Cleydson F. Silva, Layla Schuster, Melissa Erdem, Ryan Hulke, Matias Kirst, Marcio F.
R. Resende, Raquel Dias.

References

1. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold Protein Structure Database: massively expanding the
structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50(D1):D439—44. https://doi.org/10.1093/nar/
gkab1061 PMID: 34791371

2. Baek M, DiMaio F, Anishchenko |, Dauparas J, Ovchinnikov S, Lee GR, et al. Accurate prediction of protein structures and interactions using a
three-track neural network. Science. 2021;373(6557):871-6.

3. Wang X, Li F, Xu J, Rong J, Webb GlI, Ge Z, et al. ASPIRER: a new computational approach for identifying non-classical secreted proteins based
on deep learning. Brief Bioinform. 2022;23(2):bbac031. https://doi.org/10.1093/bib/bbac031 PMID: 35176756

4. Zhang, Yu S, Xie R, Li J, Leier A, Marquez-Lago TT, et al. PeNGaRoo, a combined gradient boosting and ensemble learning framework for pre-
dicting non-classical secreted proteins. Bioinformatics. 2020;36(3):704—12. https://doi.org/10.1093/bioinformatics/btz688

5. Dias R, Kolazckowski B. Different combinations of atomic interactions predict protein-small molecule and protein-DNA/RNA affinities with similar
accuracy. Proteins. 2015;83(11):2100-14. https://doi.org/10.1002/prot.24928 PMID: 26370248

6. Hong X, Tong X, Xie J, Liu P, Liu X, Song Q, et al. An updated dataset and a structure-based prediction model for protein-RNA binding affinity.
Proteins. 2023;91(9):1245-53. https://doi.org/10.1002/prot.26503 PMID: 37186412

7. Zhang H, Saravanan KM, Zhang JZH. DeepBindGCN: Integrating Molecular Vector Representation with Graph Convolutional Neural Networks for
Protein-Ligand Interaction Prediction. Molecules. 2023;28(12):4691. https://doi.org/10.3390/molecules28124691 PMID: 37375246

8. Torng W, Altman RB. 3D deep convolutional neural networks for amino acid environment similarity analysis. BMC Bioinformatics. 2017;18(1):302.
https://doi.org/10.1186/s12859-017-1702-0 PMID: 28615003

9. Shroff R, Cole AW, Diaz DJ, Morrow BR, Donnell I, Annapareddy A. Discovery of novel gain-of-function mutations guided by structure-based deep
learning. ACS Synth Biol. 2020;9(11):2927-35. https://doi.org/10.1021/acssynbio.0c00256
10. Chen Z, Liu X, Zhao P, Li C, Wang Y, Li F, et al. iFeatureOmega: an integrative platform for engineering, visualization and analysis of features
from molecular sequences, structural and ligand data sets. Nucleic Acids Res. 2022;50(W1):W434—47. https://doi.org/10.1093/nar/gkac351 PMID:
35524557

11. Pande A, Patiyal S, Lathwal A, Arora C, Kaur D, Dhall A, et al. Pfeature: A Tool for Computing Wide Range of Protein Features and Building Predic-
tion Models. J Comput Biol. 2023;30(2):204-22. https://doi.org/10.1089/cmb.2022.0241 PMID: 36251780

12. Guevara-Barrientos D, Kaundal R. ProFeatX: A parallelized protein feature extraction suite for machine learning. Comput Struct Biotechnol J.
2022;21:796-801. https://doi.org/10.1016/j.csbj.2022.12.044 PMID: 36698978

13. Hassija V, Chamola V, Mahapatra A, Singal A, Goel D, Huang K, et al. Interpreting Black-Box Models: A Review on Explainable Atrtificial Intelli-
gence. Cogn Comput. 2024;16(1):45-74.

14. Gao J, Bosco DA, Powers ET, Kelly JW. Localized thermodynamic coupling between hydrogen bonding and microenvironment polarity substan-
tially stabilizes proteins. Nat Struct Mol Biol. 2009;16(7):684—90. https://doi.org/10.1038/nsmb.1610 PMID: 19525973

15. Coulocheri SA, Pigis DG, Papavassiliou KA, Papavassiliou AG. Hydrogen bonds in protein-DNA complexes: where geometry meets plasticity.
Biochimie. 2007;89(11):1291-303. https://doi.org/10.1016/j.biochi.2007.07.020 PMID: 17825469

16. Irulan S, Nilofer C, Sukhwal A, Mohanapriya A, Kangueane P. Protein-protein interfaces are vdW dominant with selective H-bonds and (or) electro-
statics towards broad functional specificity. Bioinformation. 2017;13(06):164—73.

17. Carvalho TFM, Silva JCF, Calil IP, Fontes EPB, Cerqueira FR. Rama: a machine learning approach for ribosomal protein prediction in plants. Sci
Rep. 2017;7(1):16273. https://doi.org/10.1038/s41598-017-16322-4 PMID: 29176736

18. Silva JCF, Ferreira MA, Carvalho TFM, Silva FF, Silveira SdA, Brommonschenkel SH, et al. RLPredictiOme, a Machine Learning-Derived
Method for High-Throughput Prediction of Plant Receptor-like Proteins, Reveals Novel Classes of Transmembrane Receptors. Int J Mol Sci.
2022;23(20):12176. https://doi.org/10.3390/jms232012176 PMID: 36293031

PLOS Computational Biology | https:/doi.org/10.1371/journal.pcbi.1013038 October 13, 2025 19/22



https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1093/nar/gkab1061
http://www.ncbi.nlm.nih.gov/pubmed/34791371
https://doi.org/10.1093/bib/bbac031
http://www.ncbi.nlm.nih.gov/pubmed/35176756
https://doi.org/10.1093/bioinformatics/btz688
https://doi.org/10.1002/prot.24928
http://www.ncbi.nlm.nih.gov/pubmed/26370248
https://doi.org/10.1002/prot.26503
http://www.ncbi.nlm.nih.gov/pubmed/37186412
https://doi.org/10.3390/molecules28124691
http://www.ncbi.nlm.nih.gov/pubmed/37375246
https://doi.org/10.1186/s12859-017-1702-0
http://www.ncbi.nlm.nih.gov/pubmed/28615003
https://doi.org/10.1021/acssynbio.0c00256
https://doi.org/10.1093/nar/gkac351
http://www.ncbi.nlm.nih.gov/pubmed/35524557
https://doi.org/10.1089/cmb.2022.0241
http://www.ncbi.nlm.nih.gov/pubmed/36251780
https://doi.org/10.1016/j.csbj.2022.12.044
http://www.ncbi.nlm.nih.gov/pubmed/36698978
https://doi.org/10.1038/nsmb.1610
http://www.ncbi.nlm.nih.gov/pubmed/19525973
https://doi.org/10.1016/j.biochi.2007.07.020
http://www.ncbi.nlm.nih.gov/pubmed/17825469
https://doi.org/10.1038/s41598-017-16322-4
http://www.ncbi.nlm.nih.gov/pubmed/29176736
https://doi.org/10.3390/ijms232012176
http://www.ncbi.nlm.nih.gov/pubmed/36293031

PLO.\Sﬁ;- Computational

19.

20.

21.

22.
23.

24,
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

4.

42,

43.

44.

Biology

Silva JCF, Carvalho TFM, Fontes EPB, Cerqueira FR. Fangorn Forest (F2): a machine learning approach to classify genes and genera in the fam-
ily Geminiviridae. BMC Bioinformatics. 2017;18(1):431. https://doi.org/10.1186/s12859-017-1839-x PMID: 28964254

Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, et al. From Local Explanations to Global Understanding with Explainable Al for
Trees. Nat Mach Intell. 2020;2(1):56—67. https://doi.org/10.1038/s42256-019-0138-9 PMID: 32607472

Pace CN, Fu H, Fryar KL, Landua J, Trevino SR, Shirley BA, et al. Contribution of hydrophobic interactions to protein stability. J Mol Biol.
2011;408(3):514—28. https://doi.org/10.1016/j.jmb.2011.02.053 PMID: 21377472

Sung S-S. Peptide folding driven by Van der Waals interactions. Protein Sci. 2015;24(9):1383-8. https://doi.org/10.1002/pro.2710 PMID: 26013298

Bao G. Protein Mechanics: A New Frontier in Biomechanics. Exp Mech. 2009;49(1):153—64. https://doi.org/10.1007/s11340-008-9154-0 PMID:
19809588

Herschlag D, Pinney MM. Hydrogen bonds: simple after all? Biochemistry. 2018;57(24):3338-52.

Walters ET, Mohebifar M, Johnson ER, Rowley CN. Evaluating the London Dispersion Coefficients of Protein Force Fields Using the Exchange-
Hole Dipole Moment Model. J Phys Chem B. 2018;122(26):6690-701.

van Gils JHM, Gogishvili D, van Eck J, Bouwmeester R, van Dijk E, Abeln S. How sticky are our proteins? Quantifying hydrophobicity of the human
proteome. Bioinform Adv. 2022;2(1):vbac002. https://doi.org/10.1093/bioadv/vbac002 PMID: 36699344

Wei AP, Herron JN, Andrade JD. The Role of Protein Structure in Surface Tension Kinetics. In: Crommelin DJA, Schellekens H, editors. From Clone
to Clinic [Internet]. Dordrecht: Springer Netherlands; 1990 [cited 2025 Feb 15]. p. 305—13. (Developments in Biotherapy; vol. 1). Available from:
http://link.springer.com/10.1007/978-94-011-3780-5_38

Sashi P, Ramakrishna D, Bhuyan AK. Dispersion Forces and the Molecular Origin of Internal Friction in Protein. Biochemistry. 2016;55(33):4595—
602. https://doi.org/10.1021/acs.biochem.6b00500 PMID: 27479029

Shrake A, Rupley JA. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J Mol Biol. 1973;79(2):351-71. https://doi.
org/10.1016/0022-2836(73)90011-9 PMID: 4760134

Gaudet P, Dessimoz C. Gene Ontology: Pitfalls, Biases, and Remedies. In: Dessimoz C, Skunca N, editors. The Gene Ontology Handbook [Inter-
net]. New York, NY: Springer New York; 2017 [cited 2025 Feb 15]. p. 189-205. (Methods in Molecular Biology; vol. 1446). Available from: http://link.
springer.com/10.1007/978-1-4939-3743-1_14

Cao J, Xiong L. Protein sequence classification with improved extreme learning machine algorithms. Biomed Res Int. 2014;2014:103054. https://
doi.org/10.1155/2014/103054 PMID: 24795876

Markin CJ, Mokhtari DA, Sunden F, Appel MJ, Akiva E, Longwell SA, et al. Revealing enzyme functional architecture via high-throughput microflu-
idic enzyme kinetics. Science. 2021;373(6553):eabf8761. https://doi.org/10.1126/science.abf8761 PMID: 34437092

Holehouse AS, Kragelund BB. The molecular basis for cellular function of intrinsically disordered protein regions. Nat Rev Mol Cell Biol.
2024;25(3):187—211. https://doi.org/10.1038/s41580-023-00673-0 PMID: 37957331

de Juan D, Pazos F, Valencia A. Emerging methods in protein co-evolution. Nat Rev Genet. 2013;14(4):249-61. https://doi.org/10.1038/nrg3414
PMID: 23458856

Markowska A, Bruzgo M, Gorodkiewicz E, Surazynski A. Synthesis and Biological Activity of N-Sulfonyltripeptides with C-Terminal Arginine as
Potential Serine Proteases Inhibitors. Int J Pept Res Ther. 2013;19(3):191-8. https://doi.org/10.1007/s10989-012-9338-4 PMID: 23926446

Yu W, Wu Z, Chen H, Liu X, MacKerell AD Jr, Lin Z. Comprehensive conformational studies of five tripeptides and a deduced method for efficient
determinations of peptide structures. J Phys Chem B. 2012;116(7):2269-83.

Poudel S, Cope AL, O’Dell KB, Guss AM, Seo H, Trinh CT, et al. Identification and characterization of proteins of unknown function (PUFs) in
Clostridium thermocellum DSM 1313 strains as potential genetic engineering targets. Biotechnol Biofuels. 2021;14(1):116. https://doi.org/10.1186/
$13068-021-01964-4 PMID: 33971924

Park J, Lappe M, Teichmann SA. Mapping protein family interactions: intramolecular and intermolecular protein family interaction repertoires in the
PDB and yeast. J Mol Biol. 2001;307(3):929-38. https://doi.org/10.1006/jmbi.2001.4526 PMID: 11273711

Hoffmann SA, Cai Y. Engineering stringent genetic biocontainment of yeast with a protein stability switch. Nat Commun. 2024;15(1):1060. https://
doi.org/10.1038/s41467-024-44988-8 PMID: 38316765

Nadzirin N, Firdaus-Raih M. Proteins of unknown function in the protein data bank (PDB): An inventory of true uncharacterized proteins and com-
putational tools for their analysis. Int J Mol Sci. 2012;13(10):12761-72. https://doi.org/10.3390/ijms131012761

Pal S, Bhattacharya M, Lee S-S, Chakraborty C. Quantum Computing in the Next-Generation Computational Biology Landscape: From Protein
Folding to Molecular Dynamics. Mol Biotechnol. 2024;66(2):163—78. https://doi.org/10.1007/s12033-023-00765-4 PMID: 37244882

Ha P, Kwak JH, Zhang Y, Shi J, Tran L, Liu TP, et al. Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic
therapy for spaceflight-induced bone loss in mice. NPJ Microgravity. 2023;9(1):75. https://doi.org/10.1038/s41526-023-00319-7 PMID:
37723136

Doga H, Raubenolt B, Cumbo F, Joshi J, DiFilippo FP, Qin J, et al. A perspective on protein structure prediction using quantum computers. J Chem
Theory Comput. 2024;20(9):3359-78.

Menezes AA, Cumbers J, Hogan JA, Arkin AP. Towards synthetic biological approaches to resource utilization on space missions. J R Soc Inter-
face. 2015;12(102):20140715. https://doi.org/10.1098/rsif.2014.0715 PMID: 25376875

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013038 October 13, 2025 20/22



https://doi.org/10.1186/s12859-017-1839-x
http://www.ncbi.nlm.nih.gov/pubmed/28964254
https://doi.org/10.1038/s42256-019-0138-9
http://www.ncbi.nlm.nih.gov/pubmed/32607472
https://doi.org/10.1016/j.jmb.2011.02.053
http://www.ncbi.nlm.nih.gov/pubmed/21377472
https://doi.org/10.1002/pro.2710
http://www.ncbi.nlm.nih.gov/pubmed/26013298
https://doi.org/10.1007/s11340-008-9154-0
http://www.ncbi.nlm.nih.gov/pubmed/19809588
https://doi.org/10.1093/bioadv/vbac002
http://www.ncbi.nlm.nih.gov/pubmed/36699344
http://link.springer.com/10.1007/978-94-011-3780-5_38
https://doi.org/10.1021/acs.biochem.6b00500
http://www.ncbi.nlm.nih.gov/pubmed/27479029
https://doi.org/10.1016/0022-2836(73)90011-9
https://doi.org/10.1016/0022-2836(73)90011-9
http://www.ncbi.nlm.nih.gov/pubmed/4760134
http://link.springer.com/10.1007/978-1-4939-3743-1_14
http://link.springer.com/10.1007/978-1-4939-3743-1_14
https://doi.org/10.1155/2014/103054
https://doi.org/10.1155/2014/103054
http://www.ncbi.nlm.nih.gov/pubmed/24795876
https://doi.org/10.1126/science.abf8761
http://www.ncbi.nlm.nih.gov/pubmed/34437092
https://doi.org/10.1038/s41580-023-00673-0
http://www.ncbi.nlm.nih.gov/pubmed/37957331
https://doi.org/10.1038/nrg3414
http://www.ncbi.nlm.nih.gov/pubmed/23458856
https://doi.org/10.1007/s10989-012-9338-4
http://www.ncbi.nlm.nih.gov/pubmed/23926446
https://doi.org/10.1186/s13068-021-01964-4
https://doi.org/10.1186/s13068-021-01964-4
http://www.ncbi.nlm.nih.gov/pubmed/33971924
https://doi.org/10.1006/jmbi.2001.4526
http://www.ncbi.nlm.nih.gov/pubmed/11273711
https://doi.org/10.1038/s41467-024-44988-8
https://doi.org/10.1038/s41467-024-44988-8
http://www.ncbi.nlm.nih.gov/pubmed/38316765
https://doi.org/10.3390/ijms131012761
https://doi.org/10.1007/s12033-023-00765-4
http://www.ncbi.nlm.nih.gov/pubmed/37244882
https://doi.org/10.1038/s41526-023-00319-7
http://www.ncbi.nlm.nih.gov/pubmed/37723136
https://doi.org/10.1098/rsif.2014.0715
http://www.ncbi.nlm.nih.gov/pubmed/25376875

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.
70.

Mokhtari M, Khoshbakht S, Ziyaei K, Akbari ME, Moravveji SS. New classifications for quantum bioinformatics: Q-bioinformatics, QCt-bioinformatics,
QCg-bioinformatics, and QCr-bioinformatics. Brief Bioinform. 2024;25(2):bbae074. https://doi.org/10.1093/bib/bbae074 PMID: 38446742

Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 2022;23(1):40-55. https://doi.
org/10.1038/s41580-021-00407-0 PMID: 34518686

Silva JCF, Teixeira RM, Silva FF, Brommonschenkel SH, Fontes EPB. Machine learning approaches and their current application in plant molecular
biology: A systematic review. Plant Sci. 2019;284:37—47. https://doi.org/10.1016/j.plantsci.2019.03.020 PMID: 31084877

Reimers JR, Ford MJ, Marcuccio SM, Ulstrup J, Hush NS. Competition of van der Waals and chemical forces on gold—sulfur surfaces and
nanoparticles. Nat Rev Chem. 2017;1(2):0017.

Shah MB, Wilderman PR, Liu J, Jang H-H, Zhang Q, Stout CD, et al. Structural and biophysical characterization of human cytochromes P450 2B6
and 2A6 bound to volatile hydrocarbons: analysis and comparison. Mol Pharmacol. 2015;87(4):649-59. https://doi.org/10.1124/mol.114.097014
PMID: 25585967

Brignac-Huber LM, Park JW, Reed JR, Backes WL. Cytochrome P450 organization and function are modulated by endoplasmic reticulum phos-
pholipid heterogeneity. Drug Metabol Dispos. 2016;44(12):1859—-66.

Graff M, Buchholz PCF, Stockinger P, Bommarius B, Bommarius AS, Pleiss J. The Short-chain Dehydrogenase/Reductase Engineering Database
(SDRED): A classification and analysis system for a highly diverse enzyme family. Proteins. 2019;87(6):443-51. https://doi.org/10.1002/prot.25666
PMID: 30714194

Yu S, Sun Q, Wu J, Zhao P, Sun Y, Guo Z. Genome-Wide Identification and Characterization of Short-Chain Dehydrogenase/Reductase (SDR)
Gene Family in Medicago truncatula. Int J Mol Sci. 2021;22(17):9498. https://doi.org/10.3390/ijms22179498 PMID: 34502406

Rigolet P, Mechin I, Delage M-M, Chich J-F. The structural basis for catalysis and specificity of the X-prolyl dipeptidyl aminopeptidase from Lacto-
coccus lactis. Structure. 2002;10(10):1383-94. https://doi.org/10.1016/s0969-2126(02)00851-1 PMID: 12377124

Kavanagh KL, Jornvall H, Persson B, Oppermann U. Medium- and short-chain dehydrogenase/reductase gene and protein families : the SDR
superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci. 2008;65(24):3895-906.
https://doi.org/10.1007/s00018-008-8588-y PMID: 19011750

Demange P, Joly E, Marcoux J, Zanon PR, Listunov D, Rulliére P, et al. SDR enzymes oxidize specific lipidic alkynylcarbinols into cytotoxic
protein-reactive species. eLife. 2022;11:€73913.

Kenaan C, Zhang H, Shea EV, Hollenberg PF. Uncovering the Role of Hydrophobic Residues in Cytochrome P450-Cytochrome P450 Reductase
Interactions. Biochemistry. 2011;50(19):3957—67.

Urban P, Lautier T, Pompon D, Truan G. Ligand access channels in cytochrome P450 enzymes: A review. Int J Mol Sci. 2018;19(6):1617. https://
doi.org/10.3390/ijms19061617

Ortega A, Matilla MA, Krell T. The Repertoire of Solute-Binding Proteins of Model Bacteria Reveals Large Differences in Number, Type, and Ligand
Range. Microbiol Spectr. 2022;10(5):€0205422. https://doi.org/10.1128/spectrum.02054-22 PMID: 36121253

Gennis RB. Pores, Channels and Transporters. In: Biomembranes [Internet]. New York, NY: Springer New York; 1989 [cited 2025 Feb 15]. p.
270-322. (Cantor CR, editor. Springer Advanced Texts in Chemistry). Available from: http://link.springer.com/10.1007/978-1-4757-2065-5_8

Scheidig AJ, Hynes TR, Pelletier LA, Wells JA, Kossiakoff AA. Crystal structures of bovine chymotrypsin and trypsin complexed to the inhibitor
domain of Alzheimer’s amyloid beta-protein precursor (APPI) and basic pancreatic trypsin inhibitor (BPTI): engineering of inhibitors with altered
specificities. Protein Sci. 1997;6(9):1806—24. https://doi.org/10.1002/pro.5560060902 PMID: 9300481

Mizusawa N, Harada N, lwata T, Ohigashi I, ltakura M, Yoshimoto K. Identification of protease serine S1 family member 53 as a mitochondrial
protein in murine islet beta cells. Islets. 2022;14(1):1-13. https://doi.org/10.1080/19382014.2021.1982325 PMID: 34636707

Brugére JF, Atkins JF, O’Toole PW, Borrel G. Pyrrolysine in archaea: a 22nd amino acid encoded through a genetic code expansion. Robinson NP,
editor. Emerg Top Life Sci. 2018;2(4):607-18.

Turanov AA, Lobanov AV, Fomenko DE, Morrison HG, Sogin ML, Klobutcher LA, et al. Genetic Code Supports Targeted Insertion of Two Amino
Acids by One Codon. Science. 2009;323(5911):259-61.

Joosten RP, Long F, Murshudov GN, Perrakis A. The PDB_REDO server for macromolecular structure model optimization. IUCrJ. 2014;1(Pt
4):213-20. https://doi.org/10.1107/S2052252514009324 PMID: 25075342

O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011;3:33.
https://doi.org/10.1186/1758-2946-3-33 PMID: 21982300

UniProt Consortium, Bateman A, Martin MJ, Orchard S, Magrane M, Agivetova R, et al. UniProt: the universal protein knowledgebase in 2021.
Nucleic Acids Res. 2021;49(D1):D480-9. https://doi.org/10.1093/nar/gkaa1100 PMID: 33237286

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Con-
sortium. Nat Genet. 2000;25(1):25-9. https://doi.org/10.1038/75556 PMID: 10802651

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235-42. https://
doi.org/10.1093/nar/28.1.235 PMID: 10592235

Kraskov A, Stogbauer H, Grassberger P. Estimating mutual information. Phys Rev E. 2004;69(6):066138.
Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Phil Trans R Soc A. 2016;374(2065):20150202.

PLOS Computational Biology | https:/doi.org/10.1371/journal.pcbi.1013038 October 13, 2025 21122



https://doi.org/10.1093/bib/bbae074
http://www.ncbi.nlm.nih.gov/pubmed/38446742
https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.1038/s41580-021-00407-0
http://www.ncbi.nlm.nih.gov/pubmed/34518686
https://doi.org/10.1016/j.plantsci.2019.03.020
http://www.ncbi.nlm.nih.gov/pubmed/31084877
https://doi.org/10.1124/mol.114.097014
http://www.ncbi.nlm.nih.gov/pubmed/25585967
https://doi.org/10.1002/prot.25666
http://www.ncbi.nlm.nih.gov/pubmed/30714194
https://doi.org/10.3390/ijms22179498
http://www.ncbi.nlm.nih.gov/pubmed/34502406
https://doi.org/10.1016/s0969-2126(02)00851-1
http://www.ncbi.nlm.nih.gov/pubmed/12377124
https://doi.org/10.1007/s00018-008-8588-y
http://www.ncbi.nlm.nih.gov/pubmed/19011750
https://doi.org/10.3390/ijms19061617
https://doi.org/10.3390/ijms19061617
https://doi.org/10.1128/spectrum.02054-22
http://www.ncbi.nlm.nih.gov/pubmed/36121253
http://link.springer.com/10.1007/978-1-4757-2065-5_8
https://doi.org/10.1002/pro.5560060902
http://www.ncbi.nlm.nih.gov/pubmed/9300481
https://doi.org/10.1080/19382014.2021.1982325
http://www.ncbi.nlm.nih.gov/pubmed/34636707
https://doi.org/10.1107/S2052252514009324
http://www.ncbi.nlm.nih.gov/pubmed/25075342
https://doi.org/10.1186/1758-2946-3-33
http://www.ncbi.nlm.nih.gov/pubmed/21982300
https://doi.org/10.1093/nar/gkaa1100
http://www.ncbi.nlm.nih.gov/pubmed/33237286
https://doi.org/10.1038/75556
http://www.ncbi.nlm.nih.gov/pubmed/10802651
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/28.1.235
http://www.ncbi.nlm.nih.gov/pubmed/10592235

N\ Computational
PLO\Sﬁ\' Biology

71. Belkina AC, Ciccolella CO, Anno R, Halpert R, Spidlen J, Snyder-Cappione JE. Automated optimized parameters for T-distributed stochastic neigh-
bor embedding improve visualization and analysis of large datasets. Nat Commun. 2019;10(1):5415. https://doi.org/10.1038/s41467-019-13055-y
PMID: 31780669

72. Demsar J, Demsar J, Curk T, Curk T, Erjavec A, Erjave A. Orange: Data Mining Toolbox in Python.

73. Demsar J, Leban G, Zupan B. FreeViz--an intelligent multivariate visualization approach to explorative analysis of biomedical data. J Biomed
Inform. 2007;40(6):661—71. https://doi.org/10.1016/j.jbi.2007.03.010 PMID: 17531544

74. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python [Internet]. arXiv; 2018 [cited
2025 Feb 15]. Available from: http://arxiv.org/abs/1201.0490

75. Lundberg S, Lee Sl. A Unified Approach to Interpreting Model Predictions [Internet]. arXiv; 2017 [cited 2025 Feb 15]. Available from: https://arxiv.
org/abs/1705.07874

76. Uttley J. Power analysis, sample size, and assessment of statistical assumptions—improving the evidential value of lighting research. LEUKOS.
2019;15(2-3):143-62.

77. Rey D, Neuhduser M. Wilcoxon-Signed-Rank Test. In: Lovric M, editor. International Encyclopedia of Statistical Science [Internet]. Berlin, Heidel-
berg: Springer Berlin Heidelberg; 2011 [cited 2025 Feb 15]. p. 1658—9. Available from: http://link.springer.com/10.1007/978-3-642-04898-2_616

78. Nanda A, Mohapatra DBB, Mahapatra APK, Mahapatra APK, Mahapatra APK. Multiple comparison test by Tukey’s honestly significant difference
(HSD): Do the confident level control type | error. Int J Stat Appl Math. 2021;6(1):59-65.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013038 October 13, 2025 22122



https://doi.org/10.1038/s41467-019-13055-y
http://www.ncbi.nlm.nih.gov/pubmed/31780669
https://doi.org/10.1016/j.jbi.2007.03.010
http://www.ncbi.nlm.nih.gov/pubmed/17531544
http://arxiv.org/abs/1201.0490
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1705.07874
http://link.springer.com/10.1007/978-3-642-04898-2_616

