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Abstract

Schizophrenia and bipolar disorder are severe mental illnesses that significantly impact
quality of life. These disorders are associated with autonomic nervous system dysfunc-
tion, which can be assessed through heart activity analysis. Heart rate variability (HRV)
has shown promise as a potential biomarker for diagnostic support and early screening
of those conditions. This study aims to develop and evaluate an automated classifica-
tion method for schizophrenia and bipolar disorder using short-duration electrocardio-
gram (ECG) signals recorded with a low-cost wearable device. We conducted classifi-
cation experiments using machine learning techniques to analyze R-R interval windows
extracted from short ECG recordings. The study included 60 participants—30 individu-
als diagnosed with schizophrenia or bipolar disorder and 30 control subjects. We eval-
uated multiple machine learning models, including Support Vector Machines, XGBoost,
multilayer perceptrons, Gated Recurrent Units, and ensemble methods. Two time win-
dow lengths (about 1 and 5 minutes) were evaluated. Performance was assessed using
5-fold cross-validation and leave-one-out cross-validation, with hyperparameter optimiza-
tion and patient-level classification based on individual window decisions. Our method
achieved classification accuracy of 83% for the 5-fold cross-validation and 80% for the
leave-one-out scenario. Despite the complexity of our scenario, which mirrors real-world
clinical settings, the proposed approach yielded performance comparable to advanced
diagnostic methods reported in the literature. The results highlight the potential of short-
duration HRV analysis as a cost-effective and accessible tool for aiding in the diagnosis
of schizophrenia and bipolar disorder. Our findings support the feasibility of using wear-
able ECG devices and machine learning-based classification for psychiatric screening,
paving the way for further research and clinical applications.
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Author summary

Mental health conditions such as schizophrenia and bipolar disorder can be challenging
to diagnose, but early detection is crucial to better outcomes. In our study, we explored
a simple but powerful idea: using heart rate variability (HRV), the natural fluctuations
in time between heartbeats, as a potential indicator of these disorders. As HRV reflects
the balance of the autonomic nervous system, research has shown that people with
schizophrenia and bipolar disorder often have distinct HRV patterns, suggesting that
heart activity analysis could support mental health screening. We tested whether a wear-
able heart monitor, similar to a fitness tracker, could help recognize these patterns using
artificial intelligence. By analyzing heart activity records from 60 individuals, some with
these conditions and others without, we trained several machine learning models to
differentiate between them. Our approach successfully classified individuals with about
80% accuracy. Although not a replacement for clinical diagnosis, heart monitoring
combined with artificial intelligence could help detect signs of mental illness, leading

to faster interventions. Our work opens the door for further studies and, ultimately, the
development of easy-to-use tools that could support doctors and improve patient care.

1. Introduction

Schizophrenia and bipolar disorder (BD) are both severe, chronic mental disorders with a
high population prevalence rate of more than 1% [1] and a well-documented increasing ten-
dency in the case of schizophrenia [2]. Both diseases have a significant negative impact on
patients’ quality of life [2], including social interactions, employment levels and income [3].
Both diseases overlap in symptoms and pathophysiology and can be discussed in terms of
spectrum and continuity [4]. Diagnosis of the disease in its early, prodromal stage, when
treatment is most effective, is challenging [5]. Diagnosis usually occurs only when symp-
toms become more pronounced and aggravation of symptoms in these two diseases is one
of the main reasons for psychiatric ward admission [6]. This increases treatment costs and
the burden placed on the mental healthcare system [7]. Thus, early diagnosis and interven-
tion are crucial for the improvement of treatment costs and outcomes [8]. Current diag-
nostic methods are based purely on clinical interviews by trained physicians [9,10]. It is
time- and resource-consuming and open to debate whether this approach is truly objective
[11,12].

The clinical diagnosis may change over time, with a retrospective consistency (a con-
cept similar to sensitivity) of 91.5% and 89.3% in a clinical setting for schizophrenia and BD,
respectively. In addition, the consistency of the diagnosis is significantly different when the
patients are assessed in psychiatric emergency and out patient settings, with a retrospective
consistency lower than 70% [13]. Although the results in a clinical setting could be considered
satisfactory and provide a workable baseline, there is a desire to improve accuracy and achieve
even better outcomes. More importantly, the findings outside the clinical setting highlight
the importance of improving the overall quality of diagnostics, regardless of location, using
accessible and user-friendly on-site diagnostic tools.

Various sources of biological data are taken into consideration to enhance and objec-
tify the psychiatric diagnostic process. Among them, broad-ranging approaches, including
Magnetic Resonance Imaging (MRI) [14,15], Electroencephalography (EEG) [16,17], func-
tional MRI (fMRI) [18,19], genetic analysis [20], and Autonomic Nervous System (ANS)-
mediated physiological patterns such as R-R interval derived heart rate variability (HRV) [21]
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offer a rich source of data on the functioning and structure of the brain. This complexity and
richness of data pose a challenge in itself, e.g. in cases such as MRI and genetic profiling, as
these types of data have a multidimensional character [22,23]. This can lead to a significantly
larger number of false associations due to a higher degree of confounding effects [24] and
makes it challenging and resource-intensive to identify the desired features [25,26]. Most
importantly, global economic reality limits the access of most people to clinical settings with
expensive equipment and trained personnel and consequently, to effective psychiatric care
[27,28].

A possible solution to this problem might be the use of a diagnostic approach based on
physiological biomarkers such as physical activity [29], galvanic skin response [30], pupillary
response [31] or HRV [32]. These biomarkers can be easily obtained through currently avail-
able wearable devices [33-35], fairly inexpensive technology that can be used even outside
the clinical setting [36]. Among these biomarkers, HRV stands out as particularly promising.
Both schizophrenia and BD share numerous common genetic, endophenotypic, and phe-
nomenological traits [37,38]. One such particular trait is an ANS dysregulation that can be
observed through changes in HRV [21,32]. The classification of HRV patterns in a given indi-
vidual could provide an objective source of symptom information within the diagnostic pro-
cess [32,39,40]. A robust wearable device-based classification could significantly support the
low-cost, widespread early diagnosis of schizophrenia and BD.

HRV-based wearable diagnostic systems have received significant attention in recent years.
The authors of [33] propose a Mobile Health (mHealth) wearable device, which collects HRV,
electrodermal activity (EDA) and movement data. After six days of wearing, the recorded
data showed a statistically significant difference in HRV values between participants with
schizophrenia and healthy controls, confirming previous results. However, this analysis was
limited to long recording windows (> 8h) and did not consider the classification accuracy in a
diagnostic setting. A similar approach is used by [41], where a disposable adhesive patch HR
and activity sensor worn for several days are used to classify whether a patient is diagnosed
with schizophrenia or belongs to a healthy control. This approach has achieved a promising
AUC (area under a receiver operating characteristic curve) score of 0.96 for eight-day win-
dows and 0.91 for two-day windows. However, this method is possibly limited by the manual
choice of features, the lack of hyperparameter optimization for the classifier, and is restricted
to a minimum of two days of patient observation.

A different approach is used by [42], which uses short time frame ECG measurements
(25-minute windows), together with structured yoga exercises. The classification, based on the
thresholding Z-score computed from Linear Discriminant Analysis (LDA), achieves a promis-
ing score of sensitivity of 91% and specificity of 81%. However, the sample size is limited (only
12 participants with schizophrenia) and, possibly because of that, no cross-validation proto-
col is mentioned, which severely limits the generalization of the reported scores. A wearable
HRV-based setup was also successfully tested for hallucination spectrum experiences (HSE)
and paranoia assessment [43], for the detection of stress in working people [44], as well as for
the monitoring of symptoms in early psychosis [45] and anxiety disorders [46].

In this article, we study a classification approach for short-duration R-R interval windows
to differentiate the data as belonging to a patient with schizophrenia/BD or a control group.
R-R intervals are directly extracted from the ECG signal and various HRV metrics are based
on their values [39,47]. Therefore, R-R intervals are a rich source of knowledge about ANS
functioning and their consecutive values can be used as input features for classifiers.

Our main contribution is the assessment of the accuracy of a wearable-recorded
classification-based diagnosis protocol. In reference to previous works, our specific contribu-
tions are as follows:

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012983 September 3, 2025 3/29



https://doi.org/10.1371/journal.pcbi.1012983

PLOS COMPUTATIONAL BIOLOGY

Deep learning for psychotic disorder diagnosis with R-R intervals

1. Larger data sample analyzed (60 participants vs 24/28 in previous works reporting
classification results), distributed in a publicly available dataset;

2. State-of-the-art classification test scheme, including two levels of cross-validation,
allowing for unbiased patient evaluation with automatic methods” hyperparameter
optimization;

3. Comparison of several state-of-the-art machine learning classification approaches,
including deep neural networks, allowing for their comprehensive evaluation, without
hand-picked features.

Our approach can therefore be viewed as method-independent, providing a reference assess-
ment that directly corresponds to a real-world clinical setting. This is particularly important
as recent studies emphasize the need for advanced, automated ECG analysis techniques in
various clinical applications [48]. The accuracy obtained (83% in the 5-fold cross-validation
scenario and 80% in the leave-one-out cross-validation scenario) provides a solid, promis-
ing result for further applications. We view the application of our work as a prospect for the
development of diagnostic and disease monitoring tools that combine traditional disease cri-
teria based on observable symptoms [9,10] with physiological parameters such as the ECG
signal for more accurate diagnosis [49]. Furthermore, we hope that in the future, with the
implementation of biological marker-based machine learning-supported diagnostic methods,
it will be possible to enhance predictive validity to assess the possibility of schizophrenia or
BD in their prodromal state [50].

The outline of our method is presented in Fig 1 and will be discussed in detail in the next
section.
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Fig 1. The scheme of the presented approach. First, for each person, ECG data is collected, from which a sequence of R-R interval lengths is extracted. Next, we
apply a rolling window of size 60 or 300 to the aforementioned sequence of R-R interval lengths. The step between two consecutive windows is one, therefore there
is an overlap of 59 or 299 R-R values between the two consecutive time series extracted by our rolling window algorithm. Then, for each window, a classifier pre-
dicts whether it belongs to the person from the control or treatment group. Finally, a single decision for a given person is returned, based on predictions for multiple

windows.

https://doi.org/10.1371/journal.pcbi.1012983.9g001
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2. Methods
2.1. Ethics statement

All participants were informed and gave their written consent prior to admission to the exper-
iment. The experimental procedure in the study received approval from the Bioethics Com-
mittee of the Medical University of Silesia, No.: BNW/NWN/0052/KB1/135/1/22/23.

2.2. Dataset

The dataset used for the classification experiments contains 1-1.5 hour recordings of R-R
intervals for 60 participants, collected with a Polar H10 ECG chest strap suitable for measure-
ments under different activity conditions [36]. Recordings were conducted during daytime
hours, primarily around midday. The histogram illustrating participant activity is presented
in Fig 2A. Out of the 60 participants, 30 belong to the control and 30 to the treatment group.
The age range is 20 to 69 years in the treatment group and 24 to 69 years in the control group.
In the patient group, 23 have been diagnosed with schizophrenia and 7 with bipolar disor-
der. Qualified psychiatrists diagnosed all study participants according to the International
Classification of Diseases (ICD-11) guidelines. We decided to analyze schizophrenia and BD
together as both are psychotic disorders with similarities in underlying mechanisms and HRV
changes. For further explanation, please refer to Sect 4.1. The sex structure in both groups

is comparable, i.e. the treatment group consists of 16 women and 14 men, while the control
group includes 17 women and 13 men. The age distributions across the two compared groups
are depicted in Fig 2B. All study participants, both in the treatment and the control group, are
unique. The dataset is publicly available in [51].

Based on the analysis depicted in [39], all participants were examined using the Positive
and Negative Syndrome Scale (PANSS) questionnaire designed for the assessment of symp-
tom severity in psychotic disorders [52]. The mean values of consecutive PANSS subscores
equal 16.37, 19.80, 35.30 and 71.47 for positive, negative, general and total scores, respectively.
Furthermore, as shown in Fig 13 in [39], HRV was negatively correlated with the general
score of PANSS (7= 0.45, p = 0.01). A more detailed evaluation of this dataset was performed
in [39].

To perform an unbiased classifier evaluation, we divided the dataset into five separate folds
in a standard cross-validation scheme, with windows containing a maximum of 60 or 300
consecutive R-R interval lengths, which correspond approximately to 1- or 5-minute record-
ings. Therefore, we have a total of 545604 or 521204 individual time-rolling windows with
step length 1, respectively. Thus, there is an overlap of 59 or 299 R-R interval lengths between
two consecutive time series.

During each of the five cross-validation steps, one fold is selected as a test set, while the
remaining four folds are used for training and validation sets. A single fold contains all win-
dows of six patients and six control individuals. This approach prevents data leakage between
folds, as all measurements of a given individual are confined to a single fold. Training is per-
formed in two phases: In the first phase, hyperparameters are optimized, while in the sub-
sequent phase, a model is trained with the appropriate hyperparameter values. In the initial
phase, during hyperparameter optimization, one of the four training folds is designated as the
validation set. Once the optimal set of hyperparameters is determined, the four training folds
are combined. During the final training phase, the data split into training and validation sets
(within the four training folds) varies depending on the method, while the test set remains
consistent across all methods.
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Fig 2. (a) Histogram of hourly activity for each group. Each bar indicates the number of individuals whose measurements covered the corresponding hour. (b)
Histogram of age distributions across the control and treatment groups with kernel density estimation of ages.

https://doi.org/10.1371/journal.pcbi.1012983.9002

For clarification, in Fig 3A, 3B, 3C, 3D and 3E, we depicted the distribution of individual
R-R intervals’ lengths for the treatment and control groups for five consecutive folds with 60-
element time windows (consisting of approximately 1-minute long measurements), as well as
median R-R values with the corresponding standard deviations in Fig 3F.

The presented plots reveal variations in data distributions across the folds. For example,
fold 4 includes lower individual R-R values from the treatment group and higher values from
the control group compared to the other folds. Fold 1 is different from the other folds in the
sense that the distribution of the treatment group has two modes, and it largely overlaps with
the distribution of the control group. This heterogeneity poses challenges for machine learn-
ing models; however, such distributional differences are often unavoidable in real-world sce-
narios involving limited data. To prevent selection bias and maintain the integrity and fairness
of the experiments, we deliberately avoided manual adjustments in participant assignment
across folds. Instead, individuals were randomly assigned to folds.

Our approach handles a real-world scenario in which long-term monitoring of many
patients is challenging because patient signals have various characteristics. Performing exper-
iments without severe limitations for evaluated persons (e.g., being in an isolated environ-
ment) is easier to arrange in practice but harder to analyze further. However, 60 persons with
1-1.5 hour recordings deliver a large number of individual time windows. We anticipate that
brief events that alter the lengths of the R-R intervals, such as short walks, as described in the
experiment procedure in [39], will not prevent the classifier from making accurate diagnoses
for a substantial number of windows.

We also performed an additional leave-one-out cross-validation experiment to verify the
impact of a larger and more diverse training set on the test results. In this scenario, record-
ings from 59 people form the training set during each training run, and the remaining per-
son is in the test set. The procedure is repeated 60 times, each time for a different test person.
This experiment is considerably more time-consuming than the 5-fold cross-validation and is
therefore used solely as a supplementary analysis.
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Fig 3. The distributions of five folds designed for the cross-validation classification experiments with 60-element time
rolling windows (a—e). Each fold contains six patients and six persons from the control group, and when merged, they form
the whole dataset. In consecutive iterations, samples (sequences of R-R interval lengths) from four folds form a training

and a validation set, while the remaining fold constitutes a test set. (f) Comparison of median R-R interval values with
corresponding standard deviations across the two experiment groups and five data folds.

https://doi.org/10.1371/journal.pchi.1012983.9003

2.3. Classifiers

From the theoretical point of view, our task, the diagnosis of schizophrenia or bipolar dis-
order based on the R-R interval lengths, can be seen as a time series classification task, for
which various approaches have been introduced, including methods based on neural net-
works [53], Bayesian networks [54], hidden Markov models [55], genetic algorithms [56],
Support Vector Machines (SVMs) [57], decision trees [58], frequent patterns (known as
motifs or shapelets) and hubness-aware classifiers [59]. In our study, we considered the most
prominent approaches that will be described in the following sections.
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2.3.1. Nearest neighbor. In [60], authors compared various time series classifiers, and
concluded that 1-nearest neighbor “is an exceptionally competitive classifier”. For this rea-
son, it has been widely considered a baseline in the last decades. Although the nearest neigh-
bor classifier had been used mainly with dynamic time warping (DTW) distance, it was
shown that the Euclidean distance may lead to similarly accurate results [61]. In particu-
lar, with increasing dataset size, the difference between the accuracy of the nearest neigh-
bor with DTW and Euclidean distance is decreasing, and in the case of moderately large
datasets, the difference is negligible [62]. At the same time, the Euclidean distance can be cal-
culated in orders of magnitude faster than DTW, especially if the calculations are performed
on GPUs.

For these reasons, we considered 1-nearest neighbor with Euclidean distance as a base-
line in our experiments. For computational efficiency, we randomly selected 100000 training
time series and searched for the nearest neighbors of test/validation time series only among
those selected time series. Additionally, in line with the experiments with other models, this
allowed us to repeat the experiments with various seeds that led to various selections of the
training time series. The only hyperparameter we learned using the validation data was the
decision threshold for classifying persons, i.e., the ratio of positively classified segments, so
that the person will be classified as positive.

2.3.2. Multilayer percepton. Multilayer perceptrons (MLP), i.e. fully connected feed-
forward neural networks, with at least one hidden layer and non-linear activation, are known
to be universal function approximators [63]. Therefore, MLP served as a deep learning base-
line in our experiments. In particular, we considered MLP with a single hidden layer con-
taining 128 units. We used the sigmoid activation function in the hidden layer and softmax
activation in the output layer. We trained the model for 100 epochs using the Adam opti-
mizer with cross-entropy loss. We learned the decision threshold for window classification,
the decision threshold for person classification, as well as the most important hyperparam-
eters of the optimizer, i.e., the learning rate and batch size, using the validation data. In par-
ticular, in each round of cross-validation, we performed a grid search and we searched for the
best thresholds from {0.01,0.02, ...,0.99}, learning rate from {107*,107*,107°}, and batch size
from {256,512,1024}.

2.3.3. SVM + feature selection with automatically configured hypothesis tests (FSH).
The method follows a classical approach to feature engineering with feature extraction
and selection based on hypothesis tests. Initially, feature extraction is conducted using the
“efficient” set of tsfresh [64] features. The set contains over 700 features, including statistical
moments (mean, variance, skewness, and kurtosis), autocorrelation and partial autocorre-
lation, frequency domain features (Fourier/wavelet coefficients, spectral entropy), as well as
linear model coefficients, distributional and quantile-based statistics and metrics related to
peaks and changes. The overview can be found at [65].

Subsequent feature selection involves eliminating features with low variance and statisti-
cally identifying the 50 most pertinent features via the Mann-Whitney U test. Preprocessing is
performed through robust normalization and random subsampling, in which the classifier is
trained on a balanced subset of 1500 examples from each class. The classification task is exe-
cuted utilizing an SVM with a Radial Basis Function (RBF) kernel. Parameter optimization
for the SVM’s C and gamma hyperparameters is achieved through a grid search in the range
from 107! to 10%, based on the model’s performance on the validation set.

The threshold estimation for person classification is approached heuristically, determin-
ing it as the midpoint of the median scores across the classes derived from the training and
validation sets.
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2.3.4. Ensemble of SVMs. The ensemble classification scheme for R-R interval data fol-
lows the bagging paradigm. It utilizes a set of SVM classifiers E = {C;} |, each trained on a
different and exclusive subset of training data with hyperparameters C,y determined by the
method described in [66]. Those classifiers then perform a majority vote classification on each
window in the test set. The label being a result of most of the SVM classifiers in E is treated as
aresult of E.

Then, a threshold ¢ is calculated based on each person in the validation set data. For each
person in the validation set, a R; percentage of windows classified as '’ is calculated, where
i€ {0,1}. Thus, R/’s are cleared of outliers, understood as data more distant from the mean
than 2 standard deviations. Finally, the threshold ¢ is set as the mean between the average
values in Ry and R;.

The final classification of a person having the labels for each window assigned by E is
obtained by determining whether a percentage of windows classified as class “positive”
exceeds the threshold ¢.

Data preprocessing is performed for each window w by extracting features: min(w), max(w),
var(w), mean(w), median(w).

2.3.5. XGBoost. XGBoost [67] or Extreme Gradient Boosting, is a scalable and efficient
implementation of gradient boosting that has proven highly effective in various machine
learning competitions and tasks. XGBoost, like the other tree-based methods, is very prone to
overfitting, thus initially we used grid search to determine the hyperparameters. Two hyper-
parameters were checked, NEstimators and MaxDepth. The NEstimators parameter specifies
the number of gradient-boosted trees used in the model, directly influencing the complexity
of the model and its potential to overfit or underfit the data. The MaxDepth parameter con-
trols the maximum depth of the trees, affecting the model’s ability to capture complex patterns
and its risk of overfitting with deeper trees. Using full cross-validation for each set of hyper-
parameters, we trained the model on NEstimators € {10, 50, 100, 200, 500} and MaxDepth €
{5,10, 15,20, 25,30, 35,40,45,50}. Then, we used the accuracy of the validation set to select
the optimal hyperparameters. The optimal hyperparameters were NEstimators = 200 and
MaxDepth =5 in both cases, i.e. for 60 and 300-element time series. In the second stage, we
used the validation subsets to determine the percentage of “positive” predictions that corre-
spond to the highest person accuracy. If more than one value corresponded to the highest
accuracy, we chose the value closest to 50%. The determined values were 49% and 44%, for 60
and 300-element windows, respectively.

2.3.6. GRU + FCN. Another deep learning architecture selected for the classification
experiments was GRU + FCN, i.e. Gated Recurrent Unit and Fully Convolutional Network
hybrid model [68], designed for univariate time series classification. The model architecture
consists of two independent paths, the first of which is created by GRU blocks followed by
the dropout layer, while the second part is formed by three blocks of convolutional layers fol-
lowed by batch normalization and the ReLU activation in each of the Convolutional Neural
Network (CNN) blocks. At the end of the second path, a global average pooling is applied.
Finally, the output of the two model parts is merged and a fully connected layer assigns a label
to a given sample. The authors of GRU + FCN proposed its approach based on Long Short-
Term Memory+FCN (LSTM+FCN) [69], replacing LSTMs with GRU cells. We decided to
include a recurrent neural network architecture in our studies because such an approach is
well-suited for time series analysis, capturing short- and long-range dependencies.

For both 60- and 300-second time windows, we trained models through a maximum of 30
epochs with early stopping (based on the validation loss value), 10 epochs of patience and a
learning rate scheduler with 5 epochs of patience. After that, the learning rate was reduced by
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an order of magnitude. We performed optimization of the crucial hyperparameters using the
cross-validation procedure described in Sect 2.2. We searched for an initial learning rate from
the set {107*,107*}, batch size among {64, 128}, the number of GRU layers {1,2}, the hidden
state sizes {100, 200}, dropout probability (in the GRU path) {0.4,0.8}, as well as for uni- and
bidirectional recurrent networks. Furthermore, for the 60-element time windows, a batch size
of 16 was evaluated.

As the highest-performing setup, we selected a network having a single layer of the uni-
directional gated recurrent unit followed by a dropout layer with a probability of zeroing out
values set to 0.8. Also, the convolutional layers were adjusted to 128, 256 and 128 kernels. The
kernel sizes were set to 7, 5 and 3, respectively. For 60-element time windows, we selected
an initial learning rate of 1074, a batch size of 128 and a hidden state size in GRU equal to
100. However, for the larger, 300-element time windows, an initial learning rate was about an
order of magnitude higher than previously, that is, 107, a batch size was reduced to 64 and a
hidden state of GRU was extended to 200.

3. Results
3.1. Cross-validation experiments

In Table 1, we present results for all the evaluated machine learning methods in the case of
5-fold cross-validation experiments. As evaluation metrics, we selected window and person
accuracies. More specifically, we compared the accuracy of all consecutive time windows with
the accuracy for a given person based on a criterion specific to the method, e.g. majority vot-
ing. It is necessary to emphasize that not all windows for an evaluated person must be cor-
rectly classified to determine whether such an individual belongs to the control or treatment
group.

We compared two variants of the time window length, i.e. 60 and 300 consecutive R-R
interval lengths in a single window. Analysis reveals that the two considered time window
length variants yield comparable performance, suggesting that providing additional contex-
tual information, such as extending measurements to approximately five minutes, is unnec-
essary for the classifiers. This conclusion is important from a practical point of view because

Table 1. Experimental results for different methods and time window lengths averaged over 5 test folds, in terms
of overall accuracy [%]. Also, in the case of the non-deterministic methods, results are additionally averaged over

5 training runs per each cross-validation step. Bold font indicates methods with the highest accuracy in a given cat-
egory. MLP — multilayer perception; FSH - feature selection with automatically configured hypothesis tests; GRU -
Gated Recurrent Unit; FCN - fully convolutional network.

method windows length test window accuracy test person accuracy
Nearest neighbor 60 65.62 + 5.4 7733 +4.4
300 58.08 + 6.4 70.00 + 12.5
MLP 60 74.10 £ 7.4 80.67 + 8.7
300 70.99 £ 6.7 7333 £9.7
SVM + FSH 60 73.37+7.2 80.33 +10.2
300 73.65 + 6.7 79.00+7.3
Ensemble of SVMs 60 73.74 £ 5.0 81.67 + 6.2
300 73.54+49 83.33+5.3
XGBoost 60 7222 +£83 83.33+8.3
300 71.45+ 8.7 80.00 + 12.6
GRU + FCN 60 69.97 £ 8.1 80.00 + 11.7
300 71.75 £ 11.0 79.67 +13.2

https://doi.org/10.1371/journal.pcbhi.1012983.t001
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300-element time windows are more computationally expensive while not bringing clear
advantages. Also, most of the methods perform even slightly better for shorter windows.

We also noticed that the methods based on the ensemble of classifiers like XGBoost and
Ensemble of SVMs lead to the highest test person accuracy, exceeding 80% for both com-
pared window settings. Taking into account that the final person’s decision may be based on
multiple time windows, this experimental scenario is more favorable for ensemble methods.
They are designed to benefit from the variety of information contained in different windows.
Their performance is the highest, even though the accuracy for individual windows is slightly
higher for MLP and SVM + FSH. However, it is necessary to emphasize that the differences
between the compared methods are not huge and, in general, they achieve similar accuracy;,
except for the nearest neighbor classifier having the lowest scores in each category. Never-
theless, in such an experimental setting, which corresponds to the real-world scenario with
limited possibilities of patient monitoring, we can still classify 8 out of 10 evaluated persons
correctly, on average.

The results of the statistical tests confirm these observations. For both considered window
lengths and two evaluated performance metrics, we applied the Friedman test to compare
multiple classifiers. In the case of 60-element test windows, the Friedman test statistic for per-
window accuracies was 11.97 with a corresponding p-value of approximately 0.035, indicating
statistical significance at the 0.05 level. For per-person accuracies, the test statistic was 3.63
with p & 0.6, showing no significant differences.

Following the significant finding for per-window accuracies, we conducted pairwise com-
parisons using the Wilcoxon signed-rank test with the Benjamini-Hochberg correction for
multiple testing. However, none of the pairwise differences reached statistical significance. To
further examine the magnitude of differences between classifiers, we computed Cohen’s d for
paired samples, as presented in Fig 4A. These effect sizes confirmed a considerable discrep-
ancy between the nearest neighbor classifier and the other methods, with d values ranging
from 0.81 to 2.14.

We performed an analogous analysis for 300-element time windows. The Friedman test
yielded a statistic of 11.63 (p = 0.04) for per-window accuracies, and 6.20 (p ~ 0.29) for
per-person accuracies. Post-hoc Wilcoxon signed-rank tests, adjusted with the Benjamini-
Hochberg procedure, again indicated no statistically significant differences between pairs of
classifiers. Nevertheless, Cohen’s d values, depicted in Fig 4B, pointed to consistently large
discrepancies between nearest neighbor and the remaining classifiers, albeit with smaller
effect sizes for other pairs of classifiers compared to the 60-element time windows. However,
we note that these findings are biased with a relatively small sample size, since results were
averaged over five folds per method.

We performed an additional series of experiments in a leave-one-out cross-validation sce-
nario for two methods, i.e. Ensemble of SVMs and GRU + FCN. Their results are presented
in Table 2 while the distributions of consecutive in-person accuracies for 60 test folds are
depicted in Fig 5A and 5B. The two analyzed methods achieved comparable performance,
both in terms of test window accuracy (70.1% for Ensemble of SVMs and 71.8% for GRU +
FCN) as well as for test person accuracy (80% for Ensemble of SVMs and 79.4% for GRU +
FCN). Based on the presented histograms, we can observe that for the majority of persons,
more than 50% of windows were classified correctly. Also, the median fold accuracy was equal
to 76.3% for GRU + FCN and 77.9% for Ensemble of SVMs.

Additionally, the statistical comparison of the two considered approaches revealed no sig-
nificant differences in either per-window or per-person accuracies. The Wilcoxon signed-rank
test statistics were 851 (p = 0.64) and 121.5 (p =~ 0.86), respectively.
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Fig 4. Results of Cohen’s d between consecutive pairs of classifiers, calculated for the two considered time window sizes: 60 (a) and 300 (b), corresponding to
the experiments described in Table 1.

https://doi.org/10.1371/journal.pchi.1012983.9004

Table 2. The results of the leave-one-out cross-validation experiment averaged over 60 test folds (in terms of
overall accuracy [%]). In the case of the non-deterministic method, like GRU + FCN, results are additionally aver-
aged over 3 training runs for each cross-validation step. Bold font indicates the highest-performing method in each

category.

method windows length test window accuracy test person accuracy
Ensemble of SVMs 60 70.08 + 26.5 80.00 +40.0

GRU + FCN 60 71.75 £22.2 79.44 + 37.6

https://doi.org/10.1371/journal.pcbi.1012983.t002

3.2. The impact of data features on classifier decision

To analyze the influence of features on model decisions, we employed SHapley Additive
exPlanations [70] (SHAP). SHAP quantifies each feature’s contribution to a model’s predic-
tion (here, the probability of belonging to the positive class), ensuring that, for every instance,
the sum of SHAP values for all features equals the difference between the model’s output and
its baseline (average) prediction.

For this investigation, we have manually selected a small set of seven distinct, well-known
and intuitive features: mean, minimum, maximum values, standard deviation, skewness, kur-
tosis, lag-i autocorrelation function (ACF) values in each window, where i € {1,2,3,4}. We
then applied a Random Forest (RF) classifier to a dataset resampled by selecting every 500th
instance (so the visualization is not overloaded). In a standard 5-fold cross-validation exper-
iment performed on this subsampled dataset, the RF classifier achieved 73.3% accuracy with
60-element windows and 73.9% with 300-element windows, suggesting that these features
are effective data descriptors. The importance of the features obtained was similar in both
experiments, so only the 300-element windows’ experiments are presented here.

Fig 6 presents the bee-swarm plot that highlights the distribution of the impact of the
features on model predictions and shows how this impact correlates with the feature values
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Fig 5. The distributions of 60 test fold accuracies for the leave-one-out cross-validation experiment for GRU + FCN (a), averaged over three different runs, and
Ensemble of SVMs methods (b).

https://doi.org/10.1371/journal.pchi.1012983.9005

(high/low). It reveals that standard deviation and maximum values are the most essential fea-
tures, with high values (red) linked to the negative class (control group), and low values (blue)
related to the positive class (treatment group), especially for standard deviation. This tendency
agrees with our observations that the low variance of R-R values and shorter beat-to-beat
intervals are characteristic of the treatment group.

Lag-i ACF values, where i € {1,2, 3,4}, show relationships of the currently considered R-R
interval to their first, second, third and fourth neighboring R-R interval values, respectively.
These variables are considerably important in terms of influencing the model predictions.
High lag-4 and lag-3 ACF values are associated with the positive (treatment) group, while
high lag-1 and lag-2 ACF values are related to the control group.

We extended our analysis concerning ACF and separately calculated its values for all data
instances, as presented in Table 3. The highest autocorrelation is observed between two con-
secutive R-R intervals. However, its mean values are higher for the control than for the treat-
ment group, especially for the 60-element time series (0.84 # 0.1 vs 0.78 +0.2). This ten-
dency reverses for larger lag values, and finally, for lag-4, ACF is much higher for the treat-
ment group (0.74 +0.17 vs 0.61 +0.21 for 300-element time series) than for controls. These
observations are further discussed in Sect 4.3.

Kurtosis and skewness have a visibly lower impact on the classifier decision, which may
result from the fact that R-R intervals, especially within a short window, are likely to have
a relatively symmetrical distribution if the heart rate does not change significantly due to
external factors.

Fig 7 presents the heatmap plot where the X-axis corresponds to the instances ordered by
the model output value (sum of SHAP values) shown at the top of the plot. We can see how
the examples for which the model is most confident in its decision are mainly impacted by a
small subset of features, and how other features are more relevant for less obvious instances
located in the middle of the presented X-axis range.
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Fig 6. The distribution of feature impact on model predictions of the treatment (positive SHAP values) and the control
group (negative SHAP values) as a SHAP bee-swarm plot. Every point represents a data instance with clusters indicating
the data density. Rows and columns correspond to features and SHAP value, respectively, while color intensity represents
the feature value. The red color indicates high values of the considered features, while the blue color represents the opposite
case. Features are ranked by their impact on the model output. Data is from a 300-element windows’ experiment on a
dataset sampled every 500th instance.

https://doi.org/10.1371/journal.pcbi.1012983.9006

Table 3. Autocorrelation function with lag values, i.e. ACF(i), where i € {1, 2, 3,4}, for control and treatment
groups across all time windows. For lags greater than 2, the mean ACF values for the treatment group consistently
exceed those of the control group.

mean =+ standard deviation
lag window control group treatment group
ACE(1) 60 0.84 +0.12 0.78 £0.20
ACF(1) 300 0.91 +0.07 0.90 £0.11
ACF(2) 60 0.67 +£0.19 0.65+ 0.25
ACF(2) 300 0.81 +£0.12 0.84 +0.13
ACE(3) 60 0.51+0.23 0.58 + 0.24
ACEF(3) 300 0.70 +0.17 0.79 +0.15
ACF(4) 60 0.37 £0.27 0.50 +0.24
ACF(4) 300 0.61 +£0.21 0.74+0.17

https://doi.org/10.1371/journal.pchi.1012983.t003

3.3. Classifier diversity and ensemble methods

Due to the diverse patterns among evaluated individuals, each scenario contains a subset

of data that is misleading for classifiers. Although the evaluated methods are consistent in
straightforward cases, as shown in Fig 8A, they generate numerous errors in ambiguous cases,
resulting in a high number of misclassified time windows, like for the individual depicted

in Fig 8B. The classifiers occasionally disagree, as presented for the individual in Fig 8C, for
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Fig 7. The influence of features on model predictions, presented as a SHAP heatmap. Rows and columns correspond to
features and instances, respectively. Instances are sorted according to the model’s output score. Color intensity represents
the SHAP value, with red indicating a positive impact and green a negative impact on the model output (probability of
belonging to the positive class) relative to the baseline. Features are ranked by their importance and are also presented as
sidebars. Data is from a 300-element windows’ experiment, on a dataset sampled every 500th instance.

https://doi.org/10.1371/journal.pcbi.1012983.9007

which GRU + FCN incorrectly classified most windows, whereas Ensemble of SVMs was
correct in nearly all its predictions.

This observation aligns with the no-free-lunch theorem, which states that there is no uni-
versal classifier with high performance for diverse datasets. Although each evaluated method
may focus on different patterns, even for correctly classified individuals, a subset of time
windows is misclassified due to locally varying characteristics. This considers patients in
both movement and rest conditions. For example, for control individuals, the R-R inter-
vals decrease during activity and exhibit low variance within the analyzed windows, making
them more similar to the individuals in the treatment group, who generally have shorter R-R
interval lengths with slight variance (see Figs 7 and 9A).

Stacking classifier. The high level of disagreement between classifiers (see e.g. Fig 8C)
raises the question of whether forming a stack of classifiers would improve classification
accuracy. To investigate this, we conducted an additional experiment using a stack of three
methods from architecturally diverse model families: GRU + FCN, Ensemble of SVMs, and
XGBoost, with a logistic regression classifier. The classifier input to the logistic regression
model was a three-element sequence of 0s or 1’s based on the predictions of each method for
a given time window. However, the final classification accuracy remained similar to the best
result among the individual models, indicating that, in this case, the use of multiple methods
does not significantly improve overall results.
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Fig 8. The overview of R-R values and predictions of XGBoost, Ensemble of SVMs, and GRU + FCN classifiers for con-
secutive time windows for the three selected individuals. Green areas correspond to the correctly classified periods, while
red areas refer to the opposite case. (a) depicts the individual from the treatment group being relatively straightforward

for all three classifiers. (b) corresponds to the selected control group individual for whom most of the time windows are
classified incorrectly by all three compared methods. Finally, (c) represents the treatment group individual classified mostly
accurately by XGBoost and Ensemble of SVMs but misclassified by GRU + FCN.

https://doi.org/10.1371/journal.pcbi.1012983.9008

Long-term predictions. The time windows in this study were approximately 1 or 5 min-
utes in duration, corresponding to 60 or 300 consecutive R-R intervals, respectively. Short-
term measurements in randomly selected time windows may lead to incorrect predictions
in changing conditions. However, in many cases, classification with 60-element time win-
dows yielded higher accuracy than for the 300-element sequences, as presented in Table 1.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012983 September 3, 2025 16/ 29



https://doi.org/10.1371/journal.pcbi.1012983.g008
https://doi.org/10.1371/journal.pcbi.1012983

PLOS COMPUTATIONAL BIOLOGY Deep learning for psychotic disorder diagnosis with R-R intervals

R-R values and method predictions in time, ground truth class: control, ID: 31

R-R value
u O N
o O O
o O o

1 1 1

Method: XGBoost

Method: SVM_ensemble

Method: GRU_FCN

Prediction Prediction Prediction

o

1000 2000 3000 4000 5000 6000
Index of time window
= correct prediction === wrong prediction

(a)

R-R values and method predictions in time, ground truth class: treatment, ID: 1

R-R value
[, e IR
o O O
o O O

1 1 1

Method: XGBoost

Method: SVM_ensemble

Method: GRU_FCN

o

Prediction Prediction Prediction

2000 4000 6000 8000
Index of time window
= correct prediction === wrong prediction

(b)

Fig 9. The overview of R-R values and predictions of XGBoost, Ensemble of SVMs, and GRU + FCN classifiers for consecutive time windows for the two indi-
viduals. Green areas correspond to the correctly classified periods, while red areas refer to the opposite case. (a) corresponds to the control group individual for
whom selected contiguous time windows were classified incorrectly. All three tested methods made errors for periods corresponding to lower R-R interval lengths,
while for the remaining time windows, the Ensemble of SVMs achieved the highest performance. (b) depicts the individual from the treatment group whose signal is
demanding for classifiers. Only the middle part of the measurements mostly led to the correct labelling (except for GRU + FCN, making many prediction errors but
still less than for the remaining parts of the signal).

https://doi.org/10.1371/journal.pcbhi.1012983.9009

Therefore, extending the time range within individual windows seems to be unnecessary.
Nevertheless, as shown in Fig 9A and 9B, some time periods may be easier to classify than
others. Thus, the selection of windows merits consideration in future experiments and may
increase the classification accuracy.

Minimum variance critertion. We evaluated an alternative voting strategy (compared to
the one described in Sect 2.3) for assigning the final label which relies on identifying the most
extended period of stable predictions characterized by the lowest prediction variance. This
approach is based on the premise that consistent predictions over a long time period should
provide more reliable information than predictions across varying states. To evaluate this, the
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variance was calculated based on 60 consecutive time window predictions. Then, the longest
time range having the lowest variance was considered, and the most common class within this
subset was set as a model prediction.

The experiment was carried out using the three methods described in Sect 2.3: Ensem-
ble of SVMs, XGBoost, and GRU + FCN. This strategy improved the accuracy of XGBoost
to 85.00 + 12.25%, the highest result among all methods tested. However, since it did not
improve the performance of the other methods, the approach was ultimately not adopted.

4. Discussion

4.1. Schizophrenia and bipolar disorder as a common group of psychotic
disorders

Although schizophrenia and bipolar disorder are classified as two distinct diseases based on
the phenomenological description of symptoms [9,10], there is an ongoing debate whether
both diseases actually represent a continuum [71,72]. Based on MRI findings on the neuro-
logical level, both diseases share a common altered network of brain areas [71], both mani-
fest as psychotic disorders [37] and both share many common genetic, endophenotypic and
phenomenological traits [38]. One of such prominent endophenotypic traits is the shared dif-
ference in ANS regulation in comparison to healthy controls as observed through heart rate
variability that is well described in both schizophrenia [21] and BD [73]. For these reasons,
we chose to analyze both diseases collectively, aligning with other studies that examine these
groups together with respect to severity of symptoms [32] or by broadly defining the studied
population as psychotic [74].

4.2. The effect of antipsychotic medication on classification results

The influence of antipsychotic medications on ANS dysfunction is well established, with a
diminishing ANS activity and subsequent change in HRYV, especially in the patient group tak-
ing the antipsychotic quetiapine [75]. This raises the question whether the classifier results
actually represent a distinction between psychotic patients and healthy controls, or rather a
distinction between patients under antipsychotic medication with an impact on HRV and
healthy controls.

It was not possible to directly resolve this question in our research by withdrawing patients’
medication during hospitalization due to bioethical concerns, as this could have a major
detrimental effect on the course of the disease. Although it is important to remember that
it is already well established that psychotic patients generally have changes in ANS activity
and HRV [21,73]. Recent work considering this dataset [39] indicated that HRV is related to
the severity of psychotic symptoms, representing a global change in the activity of CNS (cen-
tral nervous system) and ANS. In addition, patients in our group were treated with a range of
antipsychotic medications. Given that different antipsychotics exhibit distinct pharmacologi-
cal profiles and varying effects on the autonomic nervous system, the treatment group is likely
to exhibit greater heterogeneity, potentially complicating classification efforts. It is also impor-
tant to take into the account that in our research, patients and healthy controls performed var-
ious degrees of activity during a time-span of more than one hour. Considering that the influ-
ence of ANS activity on cardiac regulation is multifactorial and can be interpreted on many
levels, such as in the neurovisceral integration model [76], the effect of antipsychotics should
be even out with other factors that appear during normal activity, resulting in HRV regulation
representing global ANS activity and not antipsychotic medications selectively.
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However, to assess the potential effect of antipsychotic use on R-R intervals in our study,
we compared the distributions of the R-R values between seven patients receiving quetiapine,
which has the most significant diminishing effect on sympathetic and parasympathetic ANS
activity [75] and the remaining participants in the treatment group. The histograms for both
subgroups are presented in Fig 10. We expected that if the classifier results were influenced
mainly by antipsychotic medication, the antipsychotic with the largest effect on ANS would
result in a significantly different R-R distribution; however, no substantial differences were
observed. This result is consistent with observations in [39] where no significant effect of que-
tiapine on mean HRV scores was identified compared to other antipsychotics. In general, our
analysis does not reveal a significant impact of quetiapine compared to other antypsychotics
on the distribution of R-R intervals.

Even if antipsychotic medications were proven to have an influence on the features utilized
by the classifiers, this phenomenon does not undermine the importance of ongoing research
efforts in this area. In such cases, these classifiers would, for example, help clinicians distin-
guish between patients who comply with treatment guidelines and those who have stopped
taking their medicine and are at risk of disease remission.

4.3. Relationship between ACF values and ANS balance

Based on the SHAP values presented in Fig 6, we can observe that the high lag-3 and lag-4
R-R interval autocorrelation values are more common in the treatment group, while the high
lag-1 and lag-2 autocorrelation are mostly related to the control group. This may be partially
explained by the fact that parasympathetic and sympathetic regulation of HRV through the
ANS occurs at different time intervals, with a maximum response of about 0.5 seconds for
the parasympathetic branch and about 4 seconds for the sympathetic branch [77,78]. Given

B quetiapine
0.005 1 non-quetiapine
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0.003 1

0.002 1

Probability density
|

0.001 1
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Fig 10. Histogram of R-R intervals for treatment group participants, stratified by quetiapine usage (quetiapine vs.
non-quetiapine treatment subgroups).

https://doi.org/10.1371/journal.pcbi.1012983.9g010

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012983 September 3, 2025 19/ 29



https://doi.org/10.1371/journal.pcbi.1012983.g010
https://doi.org/10.1371/journal.pcbi.1012983

PLOS COMPUTATIONAL BIOLOGY Deep learning for psychotic disorder diagnosis with R-R intervals

that the ACFs of successive lags correspond to the aforementioned time intervals, these fea-
tures have the potential to distinguish between parasympathetic and sympathetic activity.
This is in line with the fact that the beat-to-beat regulation of HRV represented by lag-1 is
parasympathetic in its nature [79] and that psychotic patients have an impaired parasympa-
thetic response [21,80,81]. It suggests that lag-1 remains an important feature for the control
group due to the proper functioning of the parasympathetic system and beat-to-beat regu-
lation. Consequently, parasympathetic dysregulation would shift the balance in favor of a
stronger sympathetic response in the patient group [21,82], which could correspond to what
we can observe as a growing strong relationship between the high value of lag-3 and the sub-
sequent lag-4 feature and the prediction in the patient group. In this case, the lower value of
lag-2 could represent the moment of transition moment between the peak parasympathetic
and sympathetic response, in which neither the sympathetic nor parasympathetic branch of
the ANS has a dominant impact on this characteristic. This hypothesis is strongly supported
by changes in the distribution of the impact of the feature on model predictions between
subsequent lag ACF values.

There is an ongoing debate on whether the ANS imbalance in favor of higher sympathetic
activity in psychotic patients occurs mainly because they have higher baseline sympathetic
activity [82] or mainly because they have lower parasympathetic activity [21]. As we men-
tioned earlier, the parasympathetic system has a short response latency of 0.5 seconds and a
return to baseline within approximately 1 second [78]. Therefore, the influence of parasym-
pathetic activity on lag-1 and possibly also lag-2 should be high, probably with little to no
impact on lag-3 and even less on lag-4. In the case of our results, given that the impact of lag-3
and lag-4 ACF on the prediction of the model is greater than that of lag-1 and lag-2 ACE, this
could suggest that psychotic patients not only have a sympathetic shift in ANS balance but
mainly have a higher baseline level of sympathetic activity compared to the control group. In
a scenarijo in which psychotic patients predominantly exhibit reduced parasympathetic activ-
ity, the influence of sympathetic activity, as reflected in lag-3 and lag-4 ACF values, would be
expected to have a diminished impact on prediction within the patient group. Conversely,
in the control group, the predictive contribution of lag-1 ACF, which represents parasympa-
thetic activity, would be expected to be comparatively higher. However, this is not the case in
our sample.

4.4. Relation of our study to other works

In this work, we have evaluated a diverse set of classifiers to generalize on particular charac-
teristics of different algorithms. Additionally, our cross-validation scheme removes the bias
of the manual choice of hyperparameters. Our experiments address a broad spectrum of key
methods in ECG processing, as outlined in [48]. Together, we view this as a solid foundation
for the quantification of the possible accuracy of a wearable HRV diagnostic system. The dif-
ferent methodologies employed by the authors of [41] and [42] complicate direct compar-
isons. However, our findings are broadly consistent with theirs and significantly enhance the
generalizability of the evaluation of this diagnostic framework. Our paper supplements such
works as [33] or [43], where no actual classification takes place.

When measuring HRV, an important variable is the length of the recorded sequence and
patient activity. In this work, we use the dataset described in [39] which comprises relatively
short time measurements (on the order of 1h) and lightly structured activity (patient-defined
activity punctuated by walking). This limitation of time and broadly defined instructions
are advantageous and provide flexibility (e.g. applicable to both on-site and at-home diag-
nostics) and provide minimal burden for the patient. We view this as a more accessible and
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versatile approach than long-term recording on the order of days [33,41] or structuring the
activity [42].

The diversity of patients is an important factor to consider when evaluating a diagnostic
scheme. The dataset we considered is significantly larger (60 persons) than in previous works
reporting classification results (24 in [41] or 28 in [42]), while simultaneously maintaining
similar or higher accuracy.

Our choice of sampling window (300 samples) corresponds to the theoretical analysis of
short-term cardiorespiratory dynamics presented in [83], where it was found to provide a
feasible assessment of cardiac dynamics variability from electrocardiographic records. Our
experimental scheme is related to the one presented in [84], where three subsequent stress
interventions were used, preceded by a baseline record and each followed by a rest period. In
our case, walking interventions were used (see [39] for details) to achieve HRV tracking in a
variety of activities.

4.5. Comparison of EEG- and ECG-based methods in psychiatric
diagnostics

Most available research in the field of EEG in schizophrenia and BD focuses on the analysis of
the electrical activity of the brain cortex in the resting state [85]. Consequently, machine and
deep learning classification research in this field focuses mainly on resting state data [86,87],
partially because some of these EEG datasets are publicly available [88]. Another branch of
EEG research in schizophrenia and BD is the analysis of event-related potentials (ERP), which
are short EEG segments that are linked to particular events of experimental interest and are
repeated through numerous trials to filter out signal noise [89]. One such ERP of particular
interest is mismatch negativity (MMN), which has a well-documented link to psychotic dis-
orders [90,91]. Another ERP of potential use in psychiatry is the P300 component of auditory
evoked potential, with some research showing its relationship to mood disorders, including
BD [92]. ERP has potential as a tool for disease treatment and progression monitoring, mainly
in the area of patient cognition evaluation [93].

Deep Learning (DL)- assisted whole-brain resting-state EEG activity has a high diagnos-
tic potential, although limitations arise from its complexity and reluctance to adapt to clinical
use by caregivers [86]. Machine and deep learning methods using EEG tend to have a higher
accuracy rate than ECG methods, at the level of 90 to 99%, with few works reporting an accu-
racy rate of 70% [16]. Many of them are based on public sets, and even in the case of using
one public dataset, the accuracy of the methods between different studies may vary between
70 and 99% [16]. This may be the result of the richness of the data used in the studies. Also,
it is important to remember that due to the complex spatial-temporal data structure, EEG
research can often suffer from non-reproducibility due to inadequate data analysis methods
and overfitting [94].

HRYV focuses on changes in the beat-to-beat interval, which are ANS activity-dependent
[95,96], while ECG signal morphology should be understood as the shape of the voltage curve
over time. The morphology of the ECG represents different phases of depolarization and
repolarization of the heart’s sinuses and ventricles. The authors in [97] analyze together dif-
ferent psychiatric disorders, including schizophrenia, and present various degrees of classifi-
cation accuracy from 73.7 to 89.2%, based on the selected ECG lead, and accuracy of 96.3%
for 12 combined ECG leads. The fact that different levels of accuracy are achieved for different
ECG leads may suggest that the classifier takes into account something different from brain
activity. An additional limitation of this approach lies in the analysis of ECG morphology,
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as it increases the likelihood of classifying patients based on the side effects and physiolog-
ical impacts of administered psychiatric medications. Different classes of drugs prescribed
for specific psychiatric disorders exert distinct effects on various aspects of ECG morphol-
ogy [98]. This limitation is less pronounced when HRV or R-R intervals are analyzed, as this
type of signal lacks information about electrical potentials or specific time-dependent events,
although it is also susceptible to medication-induced changes [75]. Another issue comes from
the fact that the ECG morphology of different leads depends on the shape of the thoracic
chest [99]. In that context, schizophrenic patients are a distinct group when it comes to their
metabolic functioning and, thus, the presented body type [100]. For these reasons, we con-
sider classification based solely on ECG morphology to be inadequate for the psychiatric diag-
nosis. In addition, a complex 12-lead ECG signal requires more complex equipment than a
single-lead Polar H10.

The above-mentioned example shows mainly that the acquisition of complex signals may
not always be a desired solution to the given problem, particularly in a situation where we
do not have direct access to the reasoning behind the given conclusion, as in the case of DL
algorithms [86]. This could also be a problem for EEG whole brain resting state signals.

HRYV and ERP address the described problem by isolating and extracting distinct func-
tional activities from the base signal, reducing its complexity. Thus, these approaches may
reduce the risk of inadequate data analysis and overfitting [94]. In the case of HRYV, this
extraction appears to be without disadvantages as the rest of the ECG signal outside of the
R-R intervals is not an established significant information carrier of brain activity. This lack
of disadvantages does not apply to ERP as it is extracted from an EEG data source that repre-
sents brain activity as a whole, resulting in a loss of potentially significant data.

Finally, when evaluating the EEG methodology in relation to ECG in psychiatry, it is cru-
cial to note that both resting-state EEG and ERP reflect cortical activity [85], with the ERP
focusing on smaller-scale networks, such as the temporal-prefrontal network in the case of
MMN [101]. In contrast, changes in HRV measured by the ECG represent the ANS activity
regulated by deep brain structures [95,102] and provide information on the affective states
mediated by ANS activity [96]. Taking into account this information, ECG and EEG analysis
do not overlap in their utility and could potentially be treated as complementary methods that
provide different types of insight into brain activity.

4.6. Wearables in the context of other disease monitoring approaches

In comparison to other diagnostic and treatment monitoring methods in healthcare, wear-
able devices tend to be the most cost-effective. This depends on the context of the disease

we choose to monitor and the general availability of systemic healthcare [103]. In the case

of ECG measurements with the use of Polar H10, at a price point lower than $100, this tool
offers a significantly more affordable option compared to other advanced diagnostic methods.
In addition, it is less time-consuming and readily available with high reusability, without the
need for highly specialized personnel for it to be operational. With the proper software, it is
ready to use at home.

As wearables mostly rely on general physiological signals, they are not self-sufficient in
their diagnostic and monitoring tasks, especially in psychiatric healthcare. They are a source
of transdiagnostic information [104] and require contextual interpretation through software
or a trained physician. But the same applies even to other more robust diagnostic methods,
e.g. neuroimaging (MRI) [105].

A very important disease monitoring approach in medicine in general is laboratory blood
testing, including genetic profiling. In the case of psychiatry, this method presents challenges
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in interpretation due to the absence of established diagnostic biomarkers and the high vari-
ability in genetically determined traits, which complicates the integration of genetic tests into
routine clinical practice [25].

This raises the question of the area of application of these methods. In contrast to the
above-mentioned, wearable HRV monitoring is possibly much more publicly available. This
allows it to be used outside of a clinical setting, for example, in rural areas and low-income
countries, where the availability of professional healthcare is lacking as a first-line method of
selective screening [106]. Another strategy would be the wide use of the method for popula-
tion screening for psychotic disorders that could enable a faster diagnosis of the disease in the
prodromal stage, reducing the burden on systemic healthcare. As shown in [46], good quality
monitoring can be achieved even in a non-standardized at-home setting, potentially broaden-
ing the application beyond healthcare facilities (e.g. for patients with limited mobility, living
in a remote location, or under-home quarantine).

Another aspect is the monitoring of disease treatment and progression using telemedicine,
as HRV is correlated with the severity of psychotic diseases [39]. This would enable the execu-
tion of treatment plans in more controlled ways as one of the main treatment problems is low
compliance and the recurrence of symptoms due to the patient losing continuity of treatment
and contact with professional healthcare [107]. It would also potentially allow for intervention
before the aggravation of symptoms.

Such large-scale proceedings would not be possible using neuroimaging or EEG, which are
available primarily in specialized hospital settings, and not even laboratory testing.

4.7. Conclusions

In this study, we presented a classification approach, using short-duration R-R interval win-
dows based on ECG signals, to differentiate between schizophrenia/bipolar disorder patients
and healthy control individuals.

Our primary contribution lies in evaluating the accuracy of a classification-driven
wearable-based diagnostic protocol. We examined the publicly available dataset containing
samples from 60 persons. We implemented a state-of-the-art classification framework with
a rigorous two-level cross-validation scheme for unbiased patient evaluation and automatic
hyperparameter optimization. In addition, we compared several cutting-edge classification
techniques, including deep learning approaches, to provide a comprehensive assessment.

Our method-independent approach, which yields an accuracy of 83% in 5-fold cross-
validation and 80% in leave-one-out cross-validation, represents a significant step toward
real-world clinical application. Our study indicates that wearable devices may be a cost-
effective diagnostic tool, both for in- and outpatients. These promising results suggest that
our framework could support future developments in diagnostic tools that integrate tradi-
tional symptom-based criteria with physiological markers, e.g. derived from ECG signals, for
more precise and reliable diagnoses. In addition, our experiments correspond to a real-world
scenario, assuming an almost unsupervised environment.

Furthermore, biomarker-based diagnostics supported by machine learning offers a poten-
tial pathway to improve the predictive validity and early interventions for schizophrenia and
bipolar disorder in their prodromal phase. Our study opens the door to self-monitoring of
the patient, even when performing daily activities, when the ECG is collected over a longer
time period. In addition to early detection, this may provide an opportunity to monitor the
development of the disease.
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