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Abstract

Sleep onset is characterized by a departure from arousal, and can be separated into
well-differentiated stages: NREM (which encompasses three substages: N1, N2 and

N3) and REM (Rapid Eye Movement). Awake brain dynamics are maintained by vari-
ous wake-promoting mechanisms, particularly the neuromodulators Acetylcholine (ACh)
and Noradrenaline (NA), whose levels naturally decrease during the transition to sleep.
The combined influence of these neurotransmitters on brain connectivity during sleep
remains unclear, as previous models have examined them mostly in isolation or only in
deep sleep. In this study, we analyze fMRI data obtained from healthy individuals and
employ a whole-brain model to investigate how changes in brain neurochemistry dur-

ing NREM sleep, specifically involving ACh and NA, affect the Functional Connectivity
(FC) of the brain. FC analysis reveals distinct connectivity changes: a decrease in Locus
Coeruleus (LC) connectivity with the cortex during N2 and N3, and a decrease in Basal
Forebrain (BF) connectivity with the cortex during N3. Additionally, compared to Wake-
fulness (W), there is a transition to a more integrated state in N1 and a more segregated
state in N3. Using a Wilson-Cowan whole-brain model, informed by an empirical con-
nectome and a heterogeneous receptivity map of neuromodulators, we explored pos-
sible mechanisms underlying these dynamics. We fit the model adjusting the coupling
and input-output slope of the whole-brain model to account for ACh and NA, respectively,
and show that region-specific neurotransmitter effect is key to explain their effects on FC.
This work enhances our understanding of neurotransmitters’ roles in modulating sleep
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stages and their significant contribution to brain state transitions between different states
of consciousness, both in health and disease.

Author summary

Falling asleep involves a gradual shift away from wakefulness and into distinct stages of
sleep: NREM (with stages N1, N2, and N3) and REM (Rapid Eye Movement). Awake
brain activity is promoted by neurotransmitters like acetylcholine (ACh) and nora-
drenaline (NA), which decrease during sleep. However, how these chemicals shape brain
connectivity during sleep isn’t fully understood.

In this study, we used brain scans (fMRI) from healthy individuals to explore how ACh
and NA influence brain connectivity during NREM sleep. We found that Basal Forebrain
and Locus Coeruleus —main sources of ACh and NA, respectively- reduce their connec-
tions with the rest of the brain in deeper sleep stages. We also saw that the brain areas
become more connected in light sleep (N1) and less during deep sleep (N3).

To better understand these patterns, we used a computer model of the whole brain, com-
bining real brain structure data with maps showing where ACh and NA have the most
influence. Our results suggest that these neurotransmitters play a key role in how the
brain shifts between wakefulness and different sleep stages—insights that may help us
better understand sleep-related conditions and consciousness itself.

Introduction

Sleep is a natural state of reduced consciousness, where the brain transits between different
functional states naturally driven by neuromodulatory systems [1]. Transitions between dif-
ferent stages of sleep constitute a naturalistic way to understand the neurochemical mech-
anisms behind states of consciousness. The patterns of static and dynamic BOLD-derived
FC (as measured by fMRI) change during the different stages of sleep; there are spectral [2],
dynamic connectivity [3], and static connectivity changes [4,5] that shape brain architecture
during sleep. Characterizing these neural dynamics and understanding how they emerge can
provide insights into how consciousness arises from neural processes, how it is lost, and can
even suggest ways to recover it [6,7].

The brain shows marked differences in connectivity between wakefulness (W), NREM, and
REM phases [8]. More specifically in NREM sleep, the differences in static FC can be used to
accurately classify sleep stages [9]. In [10], the authors report a decrease in thalamocortical
connectivity during N1, which is partially restored in N2 and N3, suggesting a thalamic
origin of sleep-specific neural signatures, like spindles [11] that orchestrate these changes.
The differences in FC between sleep stages have also been characterized in the Integration-
Segregation axis [12,13], which are two principles that capture how the brain organizes
different sources of information processing [14,15]. It is generally assumed that integration
and segregation work in a balance that facilitates flexibility in cognitive demands, and pre-
vious studies have connected the effects of Acetylcholine (ACh) and Noradrenaline (NA)
on modulating this balance, with ACh and NA promoting segregated and integrated states,
respectively [16,17]. How these changes arise from brain-wide neurotransmitter modulation
has not been fully explored.
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Neuromodulators mediate the changes associated with the transition from wakefulness
to sleep [1]. Neuromodulators differ from classical neurotransmitters in that they are typi-
cally expressed by unique clusters of neurons, they project diffusely throughout the nervous
system, and they modulate postsynaptic neurons in a way that alters their responses to tra-
ditional neurotransmitters (such as gamma-aminobutyric acid GABA, and glutamate) [1].
The Ascending Activating System (AAS) encompasses the main nuclei that release these
neuromodulators [18], coordinating their response to different natural contexts, and sustain-
ing arousal and the sleep cycle. The main neuromodulators of wakefulness that are reduced
during NREM sleep are ACh and NA, while GABA has been associated with sleep initiation
mechanisms [1].

ACh is a neurotransmitter that acts as a neuromodulator in the central nervous system
(CNS), playing an important role in arousal, attention, memory, and motivation [19,20]. The
two main cholinergic nuclei of the brain are the Pedunculopontine nucleus (PPN), and the
Basal Forebrain (BF), each with distinct functions and projections, but which together work
to shape brain function. Tonic discharge of ACh from the BF neurons is highest during wake-
fulness and REM sleep, and lowest during NREM sleep [21]. It promotes a desynchronization
of neuronal field potential activity, as measured in EEG [21]. ACh acts through two classes
of receptors: muscarinic (mAChRs, metabotropic) and nicotinic (nAChRs, ionotropic).
Although having many effects, a relevant consequence of the activation of pre- and post-
synaptic ACh receptors is an enhanced excitation and reduced cortico-cortical interactions
[19,20,22].

Noradrenaline (NA) is an organic chemical of the catecholamine family, whose function
is to promote rapid responses to environmental changes and is the main modulator of arousal
[23]. According to the Glutamate Amplifies Noradrenergic Effects (GANE) model [24],
arousal-induced NA released from the LC biases perception and memory in favor of salient,
high-priority representations at the expense of lower-priority ones, through the different
adrenergic receptors [25]. This effect can be locally summarized as an increase in the slope
of the input-output function of the excitatory population, having a sharper “all or none”
response [26]. This makes the neuronal population more sensible to suprathreshold incom-
ing stimuli, and less responsive to subthreshold ones. LC neurons discharge of NA is state-
dependent and lower during sleep: LC neurons display the highest discharge rates in W,
lower during NREM, and are virtually silent during REM sleep [27]. However, recent works
in rodents have shown that NA levels fluctuate dynamically, reaching even higher levels in
thalamus in NREM sleep than W [28].

Evidence has shown that changes in brain connectivity in sleep can arise due to changes
in neuromodulation by ACh and NA [1], and these changes can be characterized by differ-
ences in the balance of integration and segregation of the brain network. Previous empirical
and modeling studies have investigated the effect of ACh in the transition from wakefulness
to deep sleep [3,29], where ACh and NA modulation has been proposed to sustain integration
and segregation dynamics [16,17].

In this work, we aim to connect sleep modulation by neurotransmitters and FC differ-
ences in sleep, proposing a comprehensive model of NREM substages modulation. From
empirical analysis, we hypothesize a differential neuromodulation profile and a fluctua-
tion of integration and segregation across NREM stages, and a testable mechanistic connec-
tion between these two observations. We tested these hypotheses using a Wilson-Cowan
model of brain dynamics, where we varied parameters that represent the effect of ACh and
NA. Further, we hypothesized that the effects of ACh and NA in mediating the transitions
from wakefulness to sleep depend on the specific connectivity of neuromodulatory nuclei
with the brain [30,31]. To test this hypothesis, we incorporated BF and LC projections to the
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brain as priors, and compared empirical and simulated BOLD-derived FC matrices as well as
integration/segregation profiles as objectives of fit.

Results

We used fMRI data previously obtained in [9]. Recordings were obtained from 71 individuals,
simultaneously with polysomnography measures from which sleep stages were labeled in each
fMRI volume. As is common during a normal night’s sleep, there are regular jumps between
epochs of different sleep stages. For our purposes, all {MRI volumes of the same individual

in the same sleep stage were concatenated, obtaining different time series for W, N1, N2 and
N3 stages. Individuals with time spent in all four stages were selected for analysis (N=15 indi-
viduals). BOLD data voxels were averaged over larger cortical and sub-cortical Regions of
Interest (ROIs), determined by the AAL90 brain parcellation (see Materials and Methods). In
addition to this, we applied a mask to obtain the BOLD time courses of BF [32] and LC [33].
AAL90-parcellated, BF and LC timeseries are publicly available in https://zenodo.org/records/
16755776.

BF and LC functional connectivity changes from wakefulness to sleep

We calculated the 90 X 90 FC matrices from the extracted BOLD time series, defined as the
Pearson correlation coefficient between all pairs of brain areas. As previously reported [34],
we observe an overall variation in the FC distribution between different areas of the brain as a
function of sleep depth. We extracted the BOLD activity of LC and BF, and compared the FC
between these nuclei and the cortex (LC-FC and BF-FC, respectively) between W and NREM
stages. During N1, BF-FC and LC-FC remain around the same levels as in W (effect sizes

of D = -0.17 for BF and D = 0.22 for LC, neither significant); there is a stronger decrease in
LC-FC during N2 (D = -0.19 not significant for BF and D = -0.92 significant for LC), and a
joint decrease of BF-FC and LC-FC during N3 (D = -1.06 significant for BF and D = -1.9 sig-
nificant for LC) (see Fig 1A, significance at Benjamini-Hochberg corrected p < 0.05, we report
the repeated measures correlation value for comparing multiple groups [35]).

Compared to W, Cohen’s Ds between node strengths are D = 1.09 in N1, D = 0.05 in N2
and D = -1.9 in N3. When analyzing the spatial distribution of these effects, for W we see a
strong BF-FC to frontal regions, and mild BE-FC to occipital regions, that decrease to mild
and low in N3, respectively. In the case of the LC connectivities with the cortex, we see a more
homogeneous initial correlation structure that decreases in N2 and N3 in an approximately
uniform manner (see brain connectivity plots in Fig 1B, generated using Brainnet Viewer [36]
in MATLAB). For reference, see MNI-aligned masks of BF and LC in Fig 1C.

When comparing nodal strength (sum of incoming FC to each node) against W, we find
the highest increase in light sleep N1, which decreases in N2 and N3, with a minimum in
this latter stage. All these fluctuations are significant (T-test, p < 0.05, Benjamini-Hochberg
correction for multiple comparisons) (see Fig 1D).

These results suggest that even if FC profiles may not fully capture the transitions between
sleep stages, they might be affected by changes in the neuromodulatory influences of the
cholinergic and noradrenergic systems. We further test this idea using computational model-
ing with mechanistic assumptions about the role of neuromodulation.

Testing BF and LC local modulation of NREM stages in-silico

A whole-brain computational model was implemented. The brain is separated in 90 areas
according to the AAL90 parcellation, and the activity of each area was simulated using a
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Fig 1. Brain-wide connectivity changes in W and NREM stages. (A) FC between brain areas and BE, and FC
between brain areas and LC, across sleep stages. Each point is the value for one brain area, averaged across individ-
uals (multiple comparisons). Horizontal black lines represent significance (T-test, p < 0.0001). (B) Glass brain plots,
displaying the spatial distribution of FC with BF and LC, correlation value displayed in color. (C) LC and BF position
in the brain. AAL90 areas displayed in light blue (not individually labeled). (D) Functional nodal strength (sum of
incoming FC values) across sleep stages.

https://doi.org/10.1371/journal.pcbi.1012852.9001
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Wilson-Cowan oscillatory model with homeostatic inhibitory plasticity [37]. Excitatory pop-
ulations were connected to each other according to an empirical human brain connectome
[31]. According to previous modeling approaches, ACh tone was modeled as a decrease of
the global coupling parameter G of the model [17,22,38,39], and NA tone as an increase in
the slope parameter o of the input-output function of each brain area [26]. Instantaneous
excitatory activity of each node was fed into a Balloon-Windkessel model of hemodynamic
response of brain oxygenation to neuronal activity [40], to obtain a simulated BOLD signal
(Fig 2, see Materials and Methods for more details).

We first fitted the model to the empirical averaged FC matrix of individuals in the awake
(W) state. The fit was obtained with a 2D sweep of G and o parameters, minimizing the euc-
correlation metric between empirical and simulated FC (we developed the euccorelation
metric as a trade off between Euclidean distance and Pearson correlation, see Materials and
Methods). The G and o values that best fitted the W state were used as reference for the rest
of fitting, and therefore the optimal parameters for N1, N2 and N3 FC fit were expressed as
variations from those of W (&g and &)

Homogeneous modulation. As a first exploration, we considered a scenario of homo-
geneous neuromodulation, in which the effect of ACh and NA were assumed to be equal in

A Empirical
priors

Anatomical
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(AAL 90)
connectivity (DTI)
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Whole-brain ‘ Modulation maps
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\
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Resting-State
fMRI LC-SC (NA)
4y
=4
/
[T
min max
B Dynamical model and | Neural mass
: model with
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Fig 2. Modeling outline. (A) Empirical priors included to construct our whole-brain model. (B) Nodal dynamics
scheme, exemplifying how ACh and NA hypotheses are included. ACh is taken as a modulator of global cerebral
coupling, while NA modulates the input-output slope of each node.

https://doi.org/10.1371/journal.pchi.1012852.9002
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all brain regions. In other words, the parameters G and o were uniformly changed across all
nodes.

Compared to W optimal, a higher G parameter is required for fitting N1, that then is lower
(to the exact same as in W) in N2, and a much lower G value for N3 (65 =0.04in N1, 85=0
in N2, and ¢ = -0.04 in N3, see left in Fig 3A and 3B). For o, we do not observe variations
until N3, that needs a higher value (65 = 0 in N1 and N2, and 65 = 0.04 in N3, right in Fig 3A
and 3B). These are the “naive” variations that our model suggests, before considering the dis-
tinct effect of NA and ACh over different brain areas, and could be interpreted as a decrease
in ACh in N1, a null change of ACh and NA in N2, and a simultaneous increase in ACh and
decrease in NA in N3 (see homogeneous simulated FC matrices in the center column of
Fig4).

Heterogeneous modulation. Then we moved on to test the hypothesis that the region-
specific modulation of ACh and NA are important for reproducing the empirical data,
making the modulation of G and o heterogeneous according to a spatial Modulation Map of
each neurotransmitter.

We used the empirical structural projections from Locus Coeruleus to the cortex (LC SC,
[41]) for regionally leveraging the effects of NA , and the Vesicular Acetylcholine Transporter
(VAT [42,43]) for ACh (see Brain maps in Methods). We repeated the sweep of §; and 5, but
with a heterogeneous regional prior given by these respective maps. Regional values of the G
and o parameters are given by equation (5). Running 50 seeds, we compared the fit (euccorre-
lation value) in the optimal parameter combination with homogeneous versus heterogeneous
modulation, using Cohen’s D [44].

Heterogeneous variation of parameters sets a new W optimal from which to compare the
other stages (optimal W: ¢ = 0 and 85 = -0.02). From this point, the transition from W to
N1, N2 and N3 requires a reduction of ACh modulation (6 = 0.18,0.2,0.02 for N1, N2 and
N3, respectively), in parallel to a decrease of NA tone (85 = -0.02,-0.04,-0.12 for N1, N2
and N3, respectively). These values can be interpreted as a decrease in ACh in N1, N2 and N3
(although with an unexpected high variation in N1, see Discussion), and a decrease of NA
starting in N2, that is deeper in N3 (see homogeneous simulated FC matrices in the rightmost
column of Fig 4).

In order to test whether the specific regional distribution of the maps improves the fit, we
performed the same procedure with a randomized version of the maps (See Map Shuffling
in Materials and Methods). In all sleep stages, the best fit —i.e., lower distances to empirical
FC - was obtained in the heterogeneous map case, and the shuffled map produced the worst
fits in N1 and N3 (Fig 3C). As measured by Cohen’s D and its range interpretation (see Meth-
ods), the greatest improvement given by map heterogeneity was in N1 (huge), N3 (huge), W
(large) and N2 (medium) (see values in Fig 3C).

Integration and Segregation changes during sleep

Given the proposed relation between ACh and NA modulation with integration and segrega-
tion [16], and given our claim that ACh and NA modulation could specifically characterize
each NREM sleep stage, we sought to explore whether empirical integration and segregation
change through sleep stages, and how ACh and NA neuromodulatory systems are associated
with FC network properties.

For quantifying integration and segregation, we calculated the integration and segregation
nodal components of empirical and simulated FC matrices, using the Hierarchical Modular
Analysis framework [45], which is a partition method based on eigenmodes of human brain
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Fig 3. Optimal parameters and goodness of fit across stages and modalities. (A) Optimal parameter variation (8¢
and &), where the euccorrelation metric between empirical and simulated FC matrices is minimized, displayed for
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state to the next (note that for homogeneous modulation W and N2 are in the same spot). (B) Optimal parameters for
the homogeneous and heterogeneous simulation cases, displayed side by side for each stage, for ease of view. Notice the
apparent “flipping” of the y axis for the coupling parameter, which arises because we are modeling a decrease in ACh as
an increase in G. (C) Violin plots comparing the euccorrelation metric between the simulated and empirical
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FC matrices, in the optimal, across 50 seeds, for all stages (* for p < 1073, ** forp< 1074, o forp < 10722, 000t for p <
1079, see Cohen’s D interpretation in Methods).

https://doi.org/10.1371/journal.pcbhi.1012852.g003
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T N
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Fig 4. Empirical and optimal simulated matrices across stages and modalities. Empirical and simulated optimal
whole-brain FC matrices for the homogeneous and heterogeneous simulation case, displayed side by side, for all stages
(rows).

https://doi.org/10.1371/journal.pchi.1012852.9004
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tunctional networks, that measures the global integration and segregation of the network and
their local component for each ROI (see Methods).

When analyzing the global trend, we notice a transition towards an integrated FC from W
to N1, which returns to lower values in N2, and then reverses to a FC dominated by segrega-
tion in N3 (Fig 5A).

We took the BF-FC and LC-FC of each area, and compared them with their respective
nodal integration and segregation components (local weighted contribution of each region to
the whole-network value of integration and segregation, see Methods) in the W state, when
ACh and NA modulation are highest. We found a positive correlation between the segrega-
tion component of brain areas and the BF-FC profile (o = 0.4784 Pearson’s correlation coef-
ficient, p < 0.0001), and also a positive correlation between their integration component and
the LC-FC (p = 0.6243, p < 0.0001) (Fig 5B). This suggests that, in the awake brain, areas
with a higher FC to LC tend to have a higher integration component, and that areas with
a higher functional interaction with BF tend to have a higher segregation component. For
completeness, note that BF-FC correlates negatively with integration and LC-FC correlates
negatively with segregation, as expected (see small sub-panels within Fig 5B).

In-silico integration and segregation. To further test our hypothesis of NA and ACh
neuromodulation as a mechanistic explanation for the observed FC changes during sleep, we
tested the ability of the model to replicate these empirical results, measuring the similarity of
simulated and empirical profiles of integration and segregation. We calculated the Pearson’s
correlation coefficient between the optimal model’s integration and segregation profile, across
50 simulation seeds, for the homogeneous, heterogeneous with modulatory map, and random
heterogeneous cases. In particular, we quantified how much heterogeneity improves or wors-
ens the correlation with empirical data (Cohen’s D effect size calculated over Pearson’s corre-
lation coeflicients). We found that simulated integration and segregation in the heterogeneous
map case improved the fit to empirical integration and segregation in all stages (Fig 5C and
Table 1; see S1 Fig for the full distribution of integration and segregation profiles in empirical
and simulated data).

Discussion
Summary

In this work, we analyzed empirical FC of individuals in NREM sleep stages, and fitted FC
using a whole-brain model that includes ACh and NA neuromodulatory influences. From

the analysis of the fluctuations of empirical FCs, our results suggest a decrease in NA modu-
lation during N2, and a joint decrease of ACh and NA modulation in N3. At the same time,
they do not show changes in LC and BF FC between W and N1. The in-silico testing of our
empirically-derived hypotheses of NREM modulation then suggests a role of ACh in the tran-
sition from W to N1, and a role of NA in the transition from N1 to N2 and N3 (see parame-
ters in Fig 3 and FC matrices in Fig 4). When leveraging the influence of NA and ACh using
Modulation Maps, we better reproduce empirical FC across all brain states, suggesting that the
transitions from W to different NREM stages are mediated by regional-specific NA and ACh
modulation. We also found that, compared to W, the organization of the brain network shows
an increase in integration in N1, that in N2 shifts back to values close to those of W, and a
shift towards a network dominated by segregation in N3. Furthermore, we found evidence
that ACh and NA modulate the integration-segregation of the brain in an antagonistic fash-
ion (Fig 5B). Finally, the model is capable of describing the empirical integration-segregation
distribution across sleep stages, and even more when informed with ACh and NA modulation

maps (Fig 5C).
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Fig 5. LC and BF effects on the integration/segregation profiles in W and NREM. (A) Empirical nodal integration
and segregation components across stages. Each dot is the value for one brain area, averaged across individuals. (B)
Empirical nodal integration component versus nodal FC connectivity with the LC, and nodal segregation component
versus nodal FC connectivity with the BE, in W. o is the Pearson’s correlation coeflicient between the variables. LC-FC
vs segregation (0 = -0.64) and BF-FC vs segregation (o = -0.54) are shown in the small panels within. (C) Correlation
between simulated and empirical integration (segregation) components, for all stages and modalities (homo, map and
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shuffle). Each point is the correlation between the simulated integration (segregation) component of one seed with the
integration (segregation) component of the average empirical FC of the corresponding stage. A higher value implies a
better fit to the empirical integration (segregation) profile.

https://doi.org/10.1371/journal.pchi.1012852.9005

Table 1. Cohen’s D effect size between the empirical-simulated similarity measure (Pearson’s coefficient),
measuring how much better or worse one modality of simulation is over another (for example, map-homo

D = 3.88 for N1 Integration means that simulations with map have consistently higher correlation with empirical
Integration distribution than homogeneous simulations, with a Cohen’s D value of 3.88).

Integration Segregation
map-homo map-shuffle map-homo map-shuffle
w 3.66 3.37 2.69 2.28
N1 5.61 6.77 5.4 6.22
N2 1.11 1.32 2.47 2.3
N3 3.78 2.26 4.77 5.61

https://doi.org/10.1371/journal.pchi.1012852.t001

Perspectives on neuromodulation

There is extensive literature on the implication of ACh and NA in the modulation of arousal,
and sleep onset [1,46,47]. However, other than their different effects in general NREM vs
REM sleep, few studies have found a finer dissociation of ACh and NA in modulating NREM
substages. For example, in [21] the authors address the role of ACh in early sleep, through its
influence on thalamocortical interactions in wakefulness and general NREM sleep. In [29],
the authors investigate the role of ACh in the emergence of slow waves in a computational
brain model, but without including N1 and N2 stages nor NA modulation in their analyses. In
another study in rodents, the optogenetic stimulation of basal forebrain ACh neurons during
early NREM sleep promotes a transition to wakefulness, while late stimulation promotes tran-
sition towards REM sleep [48]. Although we do not analyze REM sleep here, the fact that our
results suggest a lower ACh modulation in NREM stages than in W is in agreement with these
studies.

Likewise, during NREM sleep, phasic 0.5-1 Hz burst firing of LC NA-neurons has been
reported in rodents, coupled with slow waves and anti-correlated with spindles [49,50].
Those neurons project to the prefrontal cortex and thalamus, where a diminished activity
promotes the transition to REM sleep only when it occurs late in rodent NREM sleep [51].
Considering N1-N3 are characterized by higher and higher stimulation thresholds for awak-
ening [52], it is natural to hypothesize the deepest decrease of NA in the (exclusively human)
N3 stage, which is what our results suggest.

However, it is important to note that rodent studies have revealed region-specific nuances
in NA dynamics. For instance [28] showed that tonic NA levels in the sensory thalamus were
actually higher during NREM sleep compared to quiet wakefulness in mice, highlighting
that NA is not reduced everywhere in the brain during sleep. These findings support the idea
that neuromodulatory dynamics are different in cortical and subcortical structures, and sug-
gest caution when generalizing global trends from regional to global data or from rodents to
humans. As the majority of the nodes in our model are cortical, we do not explicitly distin-
guish between cortical and subcortical nodes. Moreover, our framework for map inclusion
only allows for all nodes to be modulated in the same direction (higher or lower). Thus, we
must interpret our results primarily as reflecting large-scale cortical effects of neuromodula-
tory gradients.

Although many sleep-facilitating drugs work through GABAergic agonism [53], dif-
ferent factors affect vigilance and sleep onset, involving many neurotransmitters acting
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simultaneously and interacting in complicated ways [1,54,55]. Serendipity plays a big role

in drug discovery [56]. Cholinergic agonists (like Donepezil, commonly prescribed for the
treatment of Alzheimer’s cognitive symptoms) usually cause insomnia-like side effects, and at
the same time an overall change of sleep architecture toward a predominance of REM sleep
[1,57]. An example of the intricacies of sleep modulation is that of clonidine and mirtazap-
ine; while the former is an agonist of cr,-adrenergic receptors, and the latter an antagonist,
these two medications have sleep-promoting side effects. We believe that although we do not
focus on specific receptor effects, our results are interpretable as the general effect of tonic lev-
els of NA and ACh, and our approach to disentangle their modulation of NREM sleep stages
can be taken as substrate, or even extended, for future empirical or in-silico analyses that
delve deeper into the neurochemistry of sleep, the way in which FC is organized differently in
NREM substages, and how this is reflected in integration and segregation measures of brain
connectivity.

Although the great majority of cholinergic innervation of the cortex comes from the BE,
only a small proportion of BF neurons are cholinergic (10-20% in rat), and they are concen-
trated in the Meynert subnucleus portion of the BF [58], whose cortical innervation has been
shown to closely correlate with Vesicular Acetylcholine Transporter (VAT) [43]. On the other
hand, LC is more homogeneously populated by noradrenergic neurons [59], so we hypothe-
size that a structural projection map coming from LC is representative of the NA modulation
exerted by this nucleus. This is the explanation for the apparent discrepancy between using a
map of the VAT distribution for ACh [43], but structural projections of LC for NA [41].

Integration and segregation in sleep

Previous research [12,60] found decreased integration and increased modularity during

late NREM sleep (stages S2-4). Simultaneous EEG and fMRI recordings show that mutual
information between brain activity patterns progressively decreases from wakefulness to N3
[61]. Likewise, our findings show that N2 is more similar to wakefulness in terms of segrega-
tion/integration balance. We found that in N3, integration is lower and segregation higher,
which we connect to NA modulation, and that adds to the growing body of literature suggest-
ing that brain activity in N3 is more local than in the other stages [60,61]. In our work, ACh
seems to promote an increase of integration in early sleep, while decrease in NA induces an
increase of segregation later, in line with their effects in wake dynamics already described in
the literature in rodents [16,27,51].

Overall, in sleep research, different measures (from graph theory, information theory, and
spectral analysis) might be capturing similar neuromodulatory mechanisms that we here try
to jointly encompass. To arrive at more comprehensive conclusions, common datasets using
the same criteria to differentiate NREM sleep stages must be analyzed with similar measures
and techniques.

Noradrenaline and acetylcholine fluctuations during NREM may help to
explain fluctuations in consciousness

Sleep is a reversible model of altered consciousness, distinct from coma, epilepsy, or anes-
thesia due to its cyclical and naturally induced nature. Brain activity and responsiveness
change gradually across sleep stages (N1 to N3), highlighting that consciousness is not binary
but multidimensional. Our work builds on previous literature about how wake-promoting
neurotransmitters affect vigilance in specific ways, and how their interaction can origi-

nate these different states of connectivity and stability. Dreams (i.e., distorted conscious-

ness during sleep) have been reported not only during REM sleep, but also in NREM
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sleep [62-67], albeit with less vivid imagery reported in general [68]. Dreaming (and its
recall) also correlates with reduced slow wave activity and increased fast spindles, spe-
cially in posterior parietal and central cortical areas [66]. As slow waves tend to be anti-
correlated with acetylcholine [69], and thalamic noradrenaline is anticorrelated with sleep
spindles[28], dreams might be expected when acetylcholine is high (for NREM stan-
dards) and noradrenaline is low. This is coherent with current mechanism hypotheses
such as apical drive due to cholinergic modulation [70]. Also, lower noradrenaline levels
might correlate with inability or difficulty to remember dreams [71]. Understanding fine-
grained neuromodulation dynamics might shed light on how and when subjective expe-
rience is modified or lost during sleep, contributing to the ongoing discussion regarding
dreamless sleep [72-74]. Also, more detailed simulation including noradrenaline fluc-
tuations across NREM stages both in cortex and thalamus would allow us to make more
fine-grained predictions in order to explain how, and when, can dreams occur within
NREM sleep.

Finally, studying how neuromodulation can mediate these transient changes in conscious-
ness might help us in understanding how structural and/or neuromodulatory permanent dis-
turbances can be related to impaired unconsciousness, like Disorders of Consciousness [7,75].
We expect our empirical and in-silico approach could be applied to assess hypotheses of the
emergence of other states of consciousness to gain insights into their origin and modulation.

Strengths and limitations

It is important to acknowledge the limitations of our study. While computational models offer
a powerful tool for studying complex biological systems [76], they inherently rely on sim-
plifications and assumptions that may not fully capture the intricacies of real-world physiol-
ogy. Our model, for instance, makes simplifications for the functioning of neurotransmitter
systems, and does not take into account the influence of other neurotransmitters, such as
GABA, and other external factors, such as regulators of the circadian rhythms or environmen-
tal stimuli.

We made strong assumptions in the way we model NA and ACh’s effects in our model.
These have been used in previous works [17,77], and are based on biological evidence [22,26].
For NA, our assumptions build on the GANE framework [24], which, despite its simplic-
ity, has been referred in recent studies to interpret both human and rodent data [78,79]. For
ACh, we implemented its effects as a reduction in global coupling, inspired by its proposed
role in enhancing local processing and reducing long-range correlations [22]. Although we
believe that the results concerning the specific effect of the spatial distribution of NA and ACh
modulation are solid, future studies could aim to incorporate more realistic effects of these
neurotransmitters to provide a more comprehensive understanding of sleep regulation.

Results for N1 are conflicting, and we believe that could be explained by the existence of
other phenomena that our model is not capturing, like thalamic-driven short-time modula-
tion of cortical dynamics [80], the appearance of up and down states of the local population
of neurons in deep sleep (that has been connected to NA modulation dynamics) [50], and the
role of other neuromodulators whose levels also change in sleep [1,46]). The short duration of
N1 compared with the other stages makes its exploration more difficult, and while we know
that ACh levels are higher in wakefulness and REM, and lower in N2 and N3, N1 is seldom
mentioned in studies that classify data in substages (e.g. [81]). In [9], the highest staging error
from the fMRI FC matrices was the misclassification of W as connectivity N1, suggesting that
N1 shares many similarities with W, which could by itself be explained by the fact that eyes
closed wakefulness also displays general higher connectivity than eyes open [82], or that it is
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systematically misclassified compared to W, N2 and N3. These factors could lead to distor-
tions in the expected optimal parameters. It is worth noticing that also when the ACh param-
eter of the model is fixed on its N1 optimal value, a decrease on NA modulation is needed to
transition to N2 and N3 (see sweeps for all modalities and stages in S1 Fig), which is in accor-
dance to NA’s assumed role in sleep modulation [50,51,83,84]. We believe that in future stud-
ies, more suitable metrics and fitting approaches can disentangle the interplay between NA,
ACh, GABA, serotonin, and other modulators’ effects in sleep in a way that also includes elec-
trophysiology. All in all, we are proposing ACh and NA modulation mechanisms that explain
transitions between sleep stages, but that may not be enough to explain the transition to light
sleep N1.

Conclusion

In this work, we conclude that heterogeneous neuromodulation that uses an anatomically
informed prior produces a better fit of the FC observed in each NREM sleep stage, above both
a homogeneous and a randomized heterogeneous neuromodulation. This result confirms our
hypothesis that anatomically informed priors of NA and ACh influences explain the changes
in FC across sleep stages.

Our study contributes to the growing body of literature on neurotransmitter modulation
of NREM sleep stages by proposing specific roles of ACh and NA in sleep architecture. Using
computational modeling, we have demonstrated how alterations in ACh and NA levels can
impact the brain-wide connectivity profile of NREM stages, also in terms of integration-
segregation balance, and offering potential avenues for therapeutic intervention in sleep
disorders. Further research in this area holds promise for advancing our understanding of
sleep physiology and developing targeted treatments to improve sleep health.

Materials and methods
EEG-fMRI acquisition and preprocessing

The dataset comprises EEG, EMG and fMRI recordings acquired from 71 participants [9]. All
subjects were scanned during the evening and instructed to close their eyes and lie still and
relaxed.

A cap EEG device with 30 channels (sampling rate 5 kHz, low pass filter 250 Hz) was used
during fMRI acquisition (1505 volumes of T -weighted echo planar images, TR/TE = 2,080
ms/30 ms, matrix 64 X 64, voxel size 3 X 3 X 2 mm?, distance factor 50%, field of view [FOV]
192 mm?) at 3 T (Siemens Trio) with a polysomnographic setting, consisting on Electromyo-
graphy (EMG) on the chin and tibia, Electrocardiogram (ECG), bipolar Electrooculography
(EOG), and pulse oximetry. MRI artifact correction was carried out based on the average arti-
fact substraction (AAS) method [85]. Using Statistical Parametric Mapping (SPM8) EPI data
were realigned, normalized (MNI space) and spatially smoothed (Gaussian kernel, 8 mm? full
width at half maximum). Sleep staging was performed by an expert according to the AASM
criteria [86].

A more detailed description of demographics, scanning parameters, and experimental
conditions are provided in [5].

Brain parcellation and structural connectivity estimation

Participants brains were parcellated into 90 cortical Regions of Interest (ROIs), according to
the cerebral labels of the Automated Anatomical Labeling Atlas (AAL90 [87]), in line with
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previous whole-brain modelling work [31]. AAL90 subdivides the entire brain into 76 cor-
tical and 14 subcortical regions, 45 per hemisphere. The structural connectivity between
brain areas was obtained using diffusion Magnetic Resonance Imaging, and resources and the
methods are available in [31].

Previous to all experiments carried out in this work, we performed an optimization of
homotopic connectivities of the structural connectivity, i.e., the connection of each area with
its corresponding counterpart in the other hemisphere, following the general scheme of [88].
This is because DTI has been reported to underestimate interhemispheric connectivity, which
is also reflected as a mismatch between empirical and simulated FC matrices. The procedure
consists in fitting an optimal coupling parameter of a whole-brain model to the empirical W
FC, and then iteratively simulating FC matrices in epochs t € {1,2,...,60}, updating entries of
the original SC matrix according to the following rule:

SCEJ = Sczt',j + €(FCijiempirical ~ F C;j;simulated)’
where i,j are restricted to homotopic connections. Notice that the simulated FC matrix is the
mean of 20 seeds, for canceling out stochastic noise. The Hopf dynamical model was used for
this procedure, for its simplicity and speed (see [88] for more details).

FC estimation

For ACh and NA modulation nuclei, we used previously obtained masks for extracting the
fMRI time courses of BF and LC [32,33]. Furthermore, due to the proximity between the
pedunculopontine nucleus (PPN) and the LC, and the considerably larger size of the former
compared to the latter, we regressed out the PPN time courses from the LC ones across all
subjects using a PPN-specific MNI mask [33], which has been suggested to control for pos-
sible confounding effects of PPN on LC activations [55,89]. After this, we computed the FC
connectivity vectors between BF and LC with AAL90 ROIs across subjects and brain stages
(W, N1, N2 and N3 sleep) as the Pearson correlation between all areas. We used these values
for subsequent analysis.

Brain maps

The effects of NA and ACh at the whole-brain level are complex, and are achieved by the
contribution of many of their receptors (such as a1 and a2 for NA, and Muscarinic and Nico-
tinic for ACh). For simplicity, we hypothesized that the structural projections of the respective
nuclei should parsimoniously encompass the effects of these neurotransmitters.

In the case of NA we used the structural projections from the LC to each AAL ROI
as a Modulation Map (Locus Coeruleus Structural Connectivity LC-SC). This data was
extracted in [41], and the authors kindly provided it in the AAL90 parcellation. For this, The
AAL (ROIs) were transferred from MNI space to the individual subject space using ANTs
(https://picsl.upenn.edu/software/ants/), and the connectivities were recalculated for each
subject from the voxel level in the AAL parcellation, and averaged across subjects.

The maps were normalized so that their mean was 1, in this way their change in param-
eter, in the mean, was equal to their modulation by § explained further in this article. A bit
different was the case of the LC structural map, which presented values 20 times higher in
the thalamus compared to the other areas. For being able to interpret the effects of the map
in all non-thalamic areas, LC connectivity values for the thalamus were de-escalated to the
maximum of the other areas before normalized.
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For ACh, we used the Vesicular Acetylcholine Transporter distribution (VAT), obtained
using PET [42,43], which has been shown to have a close correlation with cholinergic inner-
vations coming from the cholinergic Meynert subnucleus of the BF [90].

For obtaining the FC distribution of ROIs with the BF and LC, the BOLD time series of
these two areas were extracted for each awake fMRI volume, and then correlated with all
AAL90 ROIs, obtaining a 90-valued vector of correlations for each subject. After this, these
vectors were averaged across subjects, obtaining a representative map of the FC distribution
of the BF and LC with the rest of the brain.

Whole-brain model

The Wilson-Cowan model is an ODE-based neural-mass model for the activity of an excita-
tory and inhibitory population of neurons. As a model, it has been widely used for simulat-
ing brain activity, due to its relative simplicity but high effectivity and flexibility in modeling
brain dynamics [17,37,91]. In our whole-brain model setting, each brain area of our parcella-
tion is modeled by a Wilson-Cowan oscillator, that are later connected through an empirically
obtained connectome matrix [31]. The activity of the Excitatory E and Inhibitory I subpop-
ulations of one brain area are defined using differential equations, which, for the i-th node

are:
dE; ZN
TEidtl = —Ei + (1 - fEEl)S aEEEl- - Q{EL' + C]lE] + P+ De (1)
1
;4L EI
o =l (- '1)S (a"'E;) )
- dalE
P2~ [(E; - oF 3
o =E = I(Ei ") ®

Where £ =/ = 0.5 are self-response constants ¥ = 0.01, 7! = 0.02 are excitatory and
inhibitory time constants, and a®f = 3.5 and a®! = 3.75 are self-excitatory and excitatory-
to-inhibitory, intra-node coupling constants, respectively. The matrix C;; represents the
excitatory-to-excitatory long-range coupling values (the corresponding connections between
the respective areas i,j in our parcellation) [31]. P = 0.4 is the external input to the excitatory
population, taken to be equal for each area. € is zero-centered white noise, and D = 0.002 is the
corresponding noise scaling factor.

Equation (3) corresponds to the implementation of a homeostatic inhibitory plasticity
IE

i
the corresponding excitatory variable E; oscillates in the vicinity of a set value of p* = 0.18.
Inhibitory plasticity has a time constant of 7?. This plasticity mechanism is based on bio-
physics and grants the model a more robust and stable response to fluctuations and changes
in parameters [37].

The integration of the incoming stimulus (noise and input or from other nodes) for a node

mechanism, in which the inhibitory-to-excitatory intra-node connection a;" evolves so that

j is made through its evaluation in a sigmoid-like activation function Sg;, whose defining
equation is:

1

Sei(x) = 1+ e G-ioer

4)
where ¢t = 1,0 = 4 are position and slope constants, respectively. It is important to notice that
when we consider variations of the o parameter, it changes its value only for the excitatory
population, and o = 4 remains constant.
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Time units are seconds. Equations were integrated using the Euler method scheme for sim-
ulating differential equations with a dt = 0.0001. White noise was sampled at each time step. A
transient period of 400 seconds was simulated first with a fast inhibitory plasticity (z? = 0.05),
and then discarded to reach stable dynamics. After this, 600 seconds were considered for anal-
ysis, simulated with 7% = 2. Excitatory activity E; was fed into a hemodynamic model [92] to
obtain a simulated BOLD response.

fMRI BOLD signals simulation

Once instantaneous excitatory activity for each brain area E;(t) was obtained, we simulated
BOLD-like signals using the Balloon-Windkessel model of hemodynamic response [92]. An
increase in excitatory activity starts a vasodilatory response s;, which in turn triggers blood
inflow f;, and changes in blood volume v; and deoxyhemoglobin content g;. The equations
governing these responses are

dsi() o0 () fi() -1
TR Ei(t) - .
a(n
TR
o 20 p) oy
_dain) _f(HA-(1-E)"O) qi(opm(n'’s
T qr Ey vi(t)

Time constants of signal decay, blood inflow, blood volume, and deoxyhemoglobin content
are 7, = 0.65, 7= 0.41,7, = 7, = 0.98, respectively. The resistance of veins and arteries to blood
flow is represented by a stiffness constant x = 0.32, and the resting-state oxygen extraction rate
is Eg = 0.4. The BOLD response B;(t) is a non-linear function of g;(t) and v;(t), given by

(1)
vi(t)

B,-(t):Vo[kl(l—qi(t))+k2(1— )+k3(1—vi(t))]

where Vj = 0.04 represents the ratio of venous (deoxygenated) blood to all blood in resting-
state, and k; = 2.77,k, = 0.2, k3 = 0.5 are kinetic constants.

This system of differential equations was solved using the Euler method, with an
integration step dt = 0.001 seconds. These BOLD simulated signals were then filtered in the
frequency range [0.01,0.1] with a 2nd order Bessel filter, and downsampled to TR = 2, as
empirical data. We used these signals to build the FC matrices, taking the pairwise correla-
tions between all AAL90 brain areas.

ACh and NA maps modulation

The effects of ACh and NA were introduced in the model as modulating the coupling G and
input-output slope o, respectively. For an ACh (NA) map distribution ACh; (NA;), we gave
the coupling (slope) parameter a local value G; (0;) for each brain area i, expressed as a vari-
ation from the homogeneous value G (o), weighted by a delta 5 (85) parameter:

Gi =G+ 5G AChl (5)
o;=0+ 045 - NA;.
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The & parameter was swept taking 50 equidistant parameter values in the range [-0.5,0.5].
The §, parameter took 50 equidistant parameter values in the range [-1,1]. 50 runs with
different seeds were simulated for each change of parameters.

Map shuffling

To obtain a surrogate distribution of values for a given map (90 values, 45 per hemisphere),
we randomly shuffled its values. The procedure was performed symmetrically in each hemi-
sphere, so its correlation with structural connectivity (which is highly homotopically symmet-
ric itself) was preserved. This shuftling procedure ensured that the average value of the maps
per hemisphere was conserved.

Fit distance: The euccorrelation semi-metric

We assessed the Goodness of fit of our model as its capacity to reproduce empirical FC
matrices. Once generated, we compared empirical and simulated FCs using a metric based
on Euclidean distance and Pearson Correlation, which we call the euccorrelation, being able
to capture both the overall connectivity pattern, and overall connectivity strength between
simulated and empirical FC matrices (being a trade off between Euclidean distance and Pear-
son correlation, as [93]), while also having the advantage of being invariant under changing
the order of data ROIs. Since FC matrices are symmetric, we only took the values under the
diagonal and compared them as flattened vectors. The euccorrelation metric is defined as:

euc(v1,v2)

—_— 6
(v, 2) ©

euccorr(v1,v2) =

where euc(v1,12) is the Euclidean distance between our flattened-FC-matrix vectors v1 and
v2, and p(v1,v2) is the Pearson Correlation between their values. As for measuring similar-
ity, this measure is a lower fit when Euclidean distance is lower and correlation is higher, so it
is to be minimized to obtain a better fit to empirical data.

Hierarchical modular analysis

To identify functional modules in both empirical and simulated data, and quantify their inte-
gration and segregation components, we used the Hierarchical Modular Analysis (HMA)
method following [45,94]. In short, the method applies an SVD decomposition of the FC
matrix to find its eigenvectors and eigenvalues. The regions whose corresponding entries in
the eigenvector have the same signs are assumed to have joint activity (cooperation) and put
in the same module, and another one for the negative signs. The first functional level (first
eigenvector) has one module that encompasses all brain areas, the second level divides the
brain in two modules according to the signs of the entries of the second eigenvector, the third
in four modules, and so on. During this partition process, the number of modules in each
level M;, and the size of each module m; were recorded.

The single large module of the first level corresponds to the global network integration
with the largest eigenvalue A. The second level with two modules supports local integration
within each module and the segregation between them, which is weighted by a lower eigen-
value. With an increasing mode order, more modules reflect deeper levels of segregation,
accompanied by smaller eigenvalues A. The integration and segregation component at each
level can be defined as

H; = A7M;(1 - p;)/N,
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Z] |mj7N/M,‘|

where p; = N

is a correction factor that takes into account heterogeneous modular
sizes.

After this, the global integration component is taken from the first level H;, = H;/N, and
the segregation component is obtained as a sum from the 2nd to the Nth levels, as H,, =
Zﬁz H;/N. Finally, the local component of segregation HJ§ and integration H]l:n for each brain
area j can be obtained by weighting the integration components for the corresponding entries

of the eigenvectors, as:

i 2
I{;n - Hlulj
N
i _ 2
H, =" Huj,
i=2

where uy; is the j-th eigenvector entry at the i-th level. More details and previous applications
of these measures can be found in [45,94].

Statistical analyses

We used repeated measures correlation for assessing linear correlations between BF and LC
fMRI time series and AAL90 ROIs, in all brain stages (W, N1, N2, and N3). This method is
a statistical technique designed to assess the strength and direction of a linear relationship
between two variables when data are collected repeatedly [35]. For group comparisons (e.g.,
W versus N1), we used paired T-tests. To minimize the likelihood of committing type I errors
(false positives), we employed the Benjamini-Hochberg method for multiple comparisons
correction. This correction was applied to paired comparisons and multiple correlations.
Given that statistical p-values could be artificially decreased by sample size in computer
simulations (varying the number of seeds), instead of statistical tests, we report results using
Cohen’s D for effect size. Cohen’s D is usually interpreted as representing a very small ( < 0.2),
small (0.2 < D < 0.5), medium (0.5 < D < 0.8), large (0.8 < D < 1.2), very large (1.2 < D < 2) or
huge (2 < D) effect size [95].
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