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Abstract

Survival of species in an ever-changing environment requires a flexibility that extends
beyond merely selecting the most appropriate actions. It also involves readiness to stop
or switch actions in response to environmental changes. Although considerable research
has been devoted to understanding how the brain switches actions, the computations
underlying the switching process and how it relates to the selecting and stopping pro-
cesses remain elusive. A normative theory suggests that switching is simply an extension
of the stopping process, during which a current action is first inhibited by an indepen-
dent pause mechanism before a new action is generated. This theory was challenged

by the affordance competition hypothesis, according to which the switching process is
implemented through a competition between the current and new actions, without engag-
ing an independent pause mechanism. To delineate the computations underlying these
action regulation functions, we utilized a neurocomputational theory that models the pro-
cess of selecting, stopping and switching reaching movements. We tested the model
predictions in healthy individuals who performed reaches in dynamic and uncertain envi-
ronments that often required stopping and switching actions. Our findings suggest that
unlike the stopping process, switching does not necessitate a proactive pause mecha-
nism to delay movement initiation. Hence, the switching and stopping processes seem

to be implemented by different mechanisms at the planning phase of the reaching move-
ment. However, once the reaching movement has been initiated, the switching process
seems to involve an independent pause mechanism if the new target location is unknown
prior to movement initiation. These findings offer a new understanding of the computa-
tions underlying action switching, contribute valuable insights into the fundamental neuro-
scientific mechanisms of action regulation, and open new avenues for future neurophysi-
ological investigations.
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Author summary

Humans exhibit a remarkable ability to regulate their actions in response to changing
environmental demands. An essential aspect of action regulation is action inhibition
that occurs when stopping unwanted or inappropriate actions. However, everyday life
rarely calls for complete inhibition of responses without switching behavior to adapt to
new situations. Despite extensive research to understand how the brain switches actions,
the computations underlying the switching process and how it relates to the selecting
and stopping processes remain elusive. Part of this challenge lies in the fact that these
processes are rarely studied together, making it difficult to develop a unified theory that
explains the computational aspects of the action regulation mechanism. The current
study aims to delineate the computations underlying action regulation functions that
involve inhibitory control, explore how these functions interrelate, and how they can be
implemented within brain networks, opening new avenues for future neurophysiological
investigations.

Introduction

Operating effectively in an uncertain and dynamic environment requires not only the abil-
ity to accurately prepare and perform actions, but also the flexibility to inhibit actions in
response to environmental changes. When driving on a city road, we often need to stop at red
lights, crosswalks or intersections. However, everyday life rarely calls for complete stopping
of actions without subsequent behavioral adjustments. In fact, altering environmental con-
ditions frequently leads us to abandon planned or ongoing actions followed by a switching
behavior to adapt to new situations. Understanding the mechanisms of selecting, stopping
and switching actions is important for revealing how the brain functions in a variable and
evolving environment.

The current study aims to dissociate the mechanisms involved in stopping and switching
reaching movements. Normative theories suggest that a current action must first be inhibited
by an independent inhibitory mechanism (i.e., pause mechanism) before switching to a new
action [1,2]. This view computationally conceptualizes response inhibition as a race between
two “runners” (i.e., processes) - a “go runner” initiated by the presentation of external stim-
uli and a “stop runner” triggered by a stop signal. If the stop runner wins the competition, the
response is inhibited. Otherwise, the response is emitted [2-4]. Therefore, when switching
action is required, the current go process must first be interrupted by the stop process before
another go process generates a new action. This theory has received significant support from
neurophysiological and functional neuroimaging studies that have identified the basal gan-
glia (BG), and in particular the subthalamic nucleus (STN), as a key region in canceling an
already selected, or currently performed, action when goals change [5-7]. Overall, these stud-
ies suggest that switching actions involves the same processes as stopping actions, with the
only difference being that a new action is generated after the old one is suppressed.

However, neurophysiological recordings in non-human primates (NHPs) challenged this
“go-stop-go” theory, suggesting that an independent pause mechanism may not be required
when switching actions [8]. Instead, switching actions can be implemented through a compe-
tition process between the current and the new action without engaging the pause circuitry.
This theory is considered an extension of the “affordance competition hypothesis” according
to which multiple motor actions are formed concurrently and compete over time until one
has sufficient evidence to win the competition [9-11]. This hypothesis predicts that action
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selection is made through a competition within the same circuit that plans and produces the
actions themselves. It predicts that the same neurons involved in the initial action selection
process remain active in adjusting and even switching between actions during overt behavior
(8],

Therefore, the main question is whether the switching process is an extension of the stop-
ping process or it can be implemented through a different mechanism. To address this ques-
tion, we trained healthy young adult participants to perform reaching movements with a
2D joystick to either a single target or one selected from two targets assigned with different
expected rewards. In a subset of trials, participants had to completely stop or switch their
reaching movements. To better elucidate the action regulation mechanisms in selecting, stop-
ping and switching of actions, we modeled the reaching tasks within a neurodynamical com-
putational framework that combines dynamic neural field (DNF) theory [12,13] with stochas-
tic optimal control (SOC) theory [14,15]. The framework was recently developed to simulate
motor behavior and the underpinning neural mechanisms in a variety of visuomotor tasks
that occur in dynamic and uncertain environments [16,17]. By modeling the experimental
tasks within the neurocomputational framework, we provide evidence that reaching plan-
ning does not involve a proactive pause mechanism, unless a stop signal is anticipated. Inter-
estingly, the mechanism for switching ongoing actions depends on whether the new target
location is known prior to the switch signal. The participants exhibited slower reaction times
for switching actions when they were aware of the new target location prior to the switch sig-
nal, compared to when they were unaware of it. This suggests that when the new target loca-
tion is unknown, an independent pause mechanism may be engaged to suppress the ongoing
action. Conversely, when the new target location is known, action switching may occur with-
out activating the pause mechanism, indicating a different implementation pathway. Over-
all, our study provides a putative model for the intricate processes involved in stopping and
switching actions, opening new avenues to better understand how the brain regulates actions
in dynamic and uncertain environments.

Results
Experimental paradigms

Participants were instructed to perform rapid reaching movements using a 2D joystick

in 3 experimental tasks: decision-making (i.e., action selection), stop signal (i.e., outright
stopping) and switch task (Fig 1). The decision-making task includes choice trials, during
which participants had to decide between two targets (blue circles) associated with different
expected rewards that were presented either on the same or opposite visual fields (Fig 1A).
Choice trials were interleaved with instructed trials, in which only one single target was pre-
sented in the field. The stop signal task is similar to the decision-making task with the differ-
ence that in a random subset of trials (i.e., 33%), the color of the target(s) turned red after a
short variable delay (stop signal delay, SSD), indicating that the participants needed to imme-
diately stop any planned/ongoing reaching movements. Stop trials occur both in instructed
(Fig 1B) and choice trials (Fig 1C). If the participants successfully stopped their action, the
SSD increased by 50 ms, making the next stop trial more challenging, otherwise the SSD
decreased by 50 ms, making the next stop trial easier. Finally, the switch task is also similar to
the decision-making task with the difference that in a random subset of instructed trials (i.e.,
33%), the original target was replaced after a short variable delay (switch signal delay, SWSD)
by a second target, prompting the participants to switch their actions towards the new target
location (Fig 1D). Similarly, in another 33% random subset of choice trials, the high-reward
target disappeared, and the participants had to move to the remaining one (i.e., low-reward
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Fig 1. Experimental setup for the decision-making task, the stop signal task and the switch task. (A) Experimental setup for the decision-making task, including
instructed trials and choice trials. (B) Experimental setup for the one-target stop task, including stop trials and instructed trials. (C) Experimental setup for the
two-target stop task, including stop trials and choice trials. (D) Experimental setup for the one-target switch task, including switch trials and instructed trials. (E)
Experimental setup for the two-target switch task, including switch trials and choice trials.

https://doi.org/10.1371/journal.pchi.1012811.9001

target) (Fig 1E). If the participants successfully switched their actions without crossing the old
target location, the SWSD increased by 50 ms, making the next switch trial more challenging.
Otherwise, SWSD decreased by 50 ms, making the next switch trial easier.

Motor strategy and performance in selecting, stopping and switching of
actions

The participants generated highly stereotyped reaching movements when they were
instructed to reach towards a target location (Fig 2A top panel) or when they were free to
choose between two targets presented simultaneously on the screen (Fig 2A bottom panel).
They were also capable of stopping or switching their movements when they were prompted
both in instructed (Fig 2B and 2C, top panels) and choice trials (Fig 2B and 2C, bottom pan-
els). We computed the reaction time (RT) in the instructed and choice trials as an index of
motor preparation of the reaching movements. The RT was computed as the time interval
between the presentation of the target(s) on the screen and response initiation. Fig 3A illus-
trates the average RT across all trials and participants for instructed and choice reaches in
the three experimental paradigms. A two-way ANOVA revealed statistically significant dif-
ferences in RT in the experimental tasks (p < 107°) and type of movements (i.e., instructed
vs. choice) (p < 107°). A post-hoc multiple-comparison analysis using the Tukey test indi-
cated that instructed trials had shorter RTs than choice trials in all three experimental tasks
(p < 1077). Furthermore, RT was longer both in instructed and choice trials when partici-
pants expected a stop signal compared to trials in which they did not anticipate to stop their
actions (i.e., decision-making task) (p < 107). These findings are consistent with the results
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Fig 2. Example human reaching trajectories in the decision-making, stop signal and switch tasks. (A) Five sample trajectories, all starting from the origin (green
dot) and reaching either the instructed target (instructed trial, top) or the selected target (choice trial, bottom). The targets are shown in blue filled circles. Note that
the target disappears as soon as the edge of the cursor touches the edge of the target. Since we tracked the center of the cursor, the trajectories end slightly before
reaching the target, as indicated by the blue dashed circles. (B) Five sample trajectories from successful stop trials in both the one-target stop task (top) and the
two-target stop task (bottom). In these cases, the trajectories end further from the target compared to panel A, showing that the participants did not reach the targets.
(C) Five sample trajectories from successful switch trials in the one-target switch task (top) and the two-target switch task (bottom). In the one-target switch trial,

the initial target on the left disappears, and a new target appears on the right. In the two-target switch trial, the target with the higher reward (on the left) disappears,
leaving the lower-reward target on the right.

https://doi.org/10.1371/journal.pchi.1012811.g002

from our previous study [17] in which we reported longer RTs when anticipating a stop signal
in instructed trials. Notably, we found that participants did not exhibit proactive inhibition in
switch tasks, that is, they did not prolong their response when they anticipated to switch their
actions both in instructed and choice trials (Fig 3A). In fact, RT was shorter in the switch task
compared to the decision-making task both in instructed and choice trials (p < 1077), even
though participants were given an extra 1.0 s to complete a trial if a switch signal was shown.

These results suggest that participants do not take a proactive action for slowing down their

movement initiation when a switch signal is anticipated. The shorter RT in the instructed and
choice trials of the switch task compared to the decision-making task can reflect an adequate
amount of practicing reaching movements - i.e., decision-making task was performed before
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Fig 3. Human performance in the decision-making task, the stop-signal task and the switch task. (A) Bar plots of the RT in the instructed trials (blue) and choice
trials (red) of the decision-making task, the stop-signal task and the switch task. (B) The probability to successfully stop an action as a function of SSD for one-
target (blue) and two-target (red) stop tasks. (C) Bar plots of the SRT for the one-target and two-target switch tasks (with reward). (D) Bar plots of the SRT for the
one-target and two-target switch tasks (no reward). Error bars correspond to SE.

https://doi.org/10.1371/journal.pchi.1012811.9g003

the switch task. In our previous study [17], the decision-making task was also performed
before the stop signal task, yet both neurotypical participants and Parkinson’s disease (PD)
patients still exhibited longer RTs when they anticipated a stop signal, which further supports
the notion that participants do not adopt a proactive inhibitory behavior when anticipating a
switch signal.

We also evaluated the performance of the participants by computing the probability to
successfully stop an action for different SSD values both in one-target and two-target stop
tasks. We found that the probability to stop an action is inversely correlated with SSD - i.e.,
the longer the SSD, the lower the probability to completely suppress a reaching movement on

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012811 February 10, 2025 6/ 26



https://doi.org/10.1371/journal.pcbi.1012811.g003
https://doi.org/10.1371/journal.pcbi.1012811

PLOS COMPUTATIONAL BIOLOGY Computational mechanism underlying switching of motor actions

time - both in one-target and two-target trials (Fig 3B). Interestingly, the probability of suc-
cessfully stopping an action was higher when participants were free to choose between two
targets (i.e., two-target stop trials) than when they were instructed to reach towards a single
target location (i.e., one-target stop trials).

Finally, we computed the time it takes for the participants to respond to a switch signal
(switch reaction time, SRT) in instructed and choice trials. The results showed that partici-
pants had a shorter switch response when they were instructed to move towards a single tar-
get location than when they had to choose between two target locations - i.e., SRT is shorter
in one-target switch task than in the two-target switch task (Fig 3C, two sample t-test anal-
ysis, p < 0.001). One potential explanation is that participants became less motivated when
they were prompted to switch their reaching movements from a high- to low-reward targets,
since motivation is correlated with expected reward [18,19]. To assess whether the longer
SRT is due to the reduction of the expected reward, we recruited 6 participants to perform a
modified version of the switch task. The modified switch task was similar to the switch task
described above, with the only difference that the targets were not assigned with an expected
reward, and the switching occurred once the reach trajectory exceeded a random distance
threshold. The results showed that SRT was still longer for two-target switch trials compared
to one-target switch trials (Fig 3D, two sample t-test analysis, p < 0.001). Therefore, we can
conclude that people had slower responses to switch their actions when they were aware of the
new target location prior to movement initiation (i.e., choice trials) than when they were not
aware of the new target location (i.e., instructed trials).

Predicting motor behavior in action regulation tasks using a
neurocomputational theory

To better understand the computations of selecting, stopping and switching actions, we mod-
eled the three experimental tasks within a recently developed neurocomputational theory
which models action regulation functions that involve motor inhibition [17]. The neurocom-
putational theory combines DNF theory and SOC theory and includes circuitry for percep-
tion, expected outcome, effort cost, stop signal, pause mechanism, action planning and exe-
cution. It is based on the affordance competition hypothesis, in which multiple actions are
formed concurrently and compete over time until one has sufficient evidence to win the com-
petition [9,20,21]. In a recent study, we showed that the theory can predict many key aspects
of motor behavior in motor tasks that involve selecting and stopping of actions, including
spatial characteristics of the reaching trajectories, as well as reaction time, movement veloc-
ity, probability of successfully stopping actions, and so on [17]. The architectural organiza-
tion of the framework is shown in Fig 4. Each DNF simulates the dynamic evolution of firing
rate activity of a network of neurons over a continuous space with local excitation and sur-
round inhibition. The core component of the framework is the “reach planning” field that

has two roles: i) activating downstream stochastic optimal controllers that generate actions
towards particular directions and ii) integrating information from disparate sources associ-
ated with actions, goals, and contextual requirements into a single value (normalized neural
activity) that characterizes the relative desirability (i.e., “attractiveness”) of the active actions.
The reach planning field receives excitatory input (green arrows) from the “spatial sensory
input” field (which encodes the angular representation of the targets in an egocentric refer-
ence frame) and “expected outcome” field (which encodes the rewards associated with mov-
ing towards particular directions), as well as inhibitory input (red arrows) from the “reach
cost” field (encodes the effort required to move towards particular directions) and the “pause”
field, which suppresses ongoing (or planned) actions when motor inhibition is required. Each
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https://doi.org/10.1371/journal.pchi.1012811.9004

neuron in the reach planning field is connected with a control scheme that generates reaches.
Once the activity of a neuron exceeds an action initiation threshold, a decision is made, and
the corresponding controller is triggered and generates a sequence of motor actions towards
the preferred direction of that neuron (more details are presented in Materials and Methods
section and our recent study [17]).

In the current study, we extended the theory to model the computations involved in
switching actions. We considered the following potential architectures that can implement the
pause mechanism in action regulation tasks.

o Architecture 1: The pause mechanism is involved in both stopping and switching actions

The pause mechanism is engaged anytime that an action has to be suppressed. In the stop
signal task, the pause field is activated during action planning, and further activated to com-
pletely suppress all ongoing/planned actions following a stop signal. Similarly, in the switch
task, the pause field is also activated during action planning, and further engaged to suppress
the ongoing/planned actions before the new action is performed to implement the change of
action plan.

o Architecture 2: The pause mechanism is involved only in outright stopping of actions

An alternative architecture suggests that the pause mechanism is involved only in outright
stopping of actions. On the contrary, the pause field is not activated during action planning,
and switching to new actions is exclusively implemented within the reach planning field - i.e.,
switching of actions is achieved through a competition within the same circuit that guides
the actions themselves. The very similar neurons in the reach planning field that guide action
selection will continue to update their activities in the presence of new incoming information
to switch the action when needed.
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Modeling reach decisions

We modeled the decision-making task within the neurocomputational framework for both
instructed and choice trials. Fig 5A depicts the simulated neural activity in the reach planning
field for typical instructed (top panel) and choice (bottom panel) reaches, respectively. The
activity starts at the baseline (resting state) before the target(s) are presented in the field. After
the instructed target is presented, the activity of the single neuronal population tuned to the
direction of the target increases. Once the activity exceeds the action initiation threshold, a
reaching movement is generated towards the target location. In the choice trial, two neuronal
populations selective for the targets start competing for selection via mutual inhibitory inter-
actions. This competition leads to a longer RT in movement initiation in choice trials com-
pared to instructed trials. Since the reach planning field receives excitatory inputs from the
expected outcome field, the target reward influences choice preferences by shifting the selec-
tion bias towards the higher valued target - i.e., the activity of the neuronal population tuned
to the higher valued target increases significantly compared to the neural activity associated
with the lower valued target. Once the activity of a neuronal population exceeds the action
initiation threshold, the competition is resolved and a reaching movement is initiated towards
the selected target location.

Modeling outright stopping of actions

We also modeled the stop signal task within the neurocomputational framework for both
one-target and two-target trials. Fig 5B illustrates the simulated neural activity of the reach
planning field for typical instructed (top panel) and choice (bottom panel) reaches that are
prompted to completely stop a few time steps after departing from the origin. Note that the
pause field is partially activated even before initiating an instructed or a choice reaching
movement. This is based on human findings that reaches have longer RTs when participants
anticipate a stop signal than when no stop signal is expected (response delay effect, RDE) (Fig
3, see also [17]). The inhibitory projection from the pause field leads to a reduction in the
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Fig 5. Simulated reach planning field neuronal activity changes in the decision-making task, the stop-signal task and the switch task. Simulated activity of 181
neurons from the reach planning field during: (A) Decision-making task (instructed trial and choice trial), (B) Stop signal task (one-target stop trial and two target
stop trial), (C) Switch task under architecture 1 (one-target switch trial and two-target switch trial), and (D) Switch task under architecture 2 (one-target switch trial

and two-target switch trial).

https://doi.org/10.1371/journal.pchi.1012811.g005
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neuronal signal in the reach planning field when a stop signal is anticipated - i.e., the activ-
ity in the reach planning field is lower in the stop trials (Fig 5B) compared to the instructed
and choice trials of the decision-making task (Fig 5A). Once the stop signal is cued, the activ-
ity of the pause field further increases to inhibit the activity of the reach planning field below
the action initiation threshold, in order to completely stop the action (see also [17] for more
details).

Modeling switching of actions

Finally, we modeled the switch task within the neurocomputational framework for both one-
target and two-target trials, considering two different architectures. Fig 5C depicts the sim-
ulated neural activity of the reach planning field in architecture 1 for typical instructed (top
panel) and choice (bottom panel) reaches that are prompted to switch to a new target loca-
tion a few time steps after departing from the origin. Similar to the stop-signal task, this archi-
tecture engages the pause mechanism during the planning phase of the reaching movement,
and therefore the activity in the reach planning field is lower when switching is expected than
when no switching is anticipated. Once the selected target is replaced by a second target, the
activity of the pause field further increases to inhibit the current action while the new action
is formed towards the new target location. Therefore, switching in this architecture is imple-
mented by the pause mechanism and the mutual inhibitory competition between the current
action and the new action. The reach planning field neural activity in the alternative archi-
tecture 2 is presented in Fig 5D. In this scenario, the pause mechanism is not engaged dur-
ing switching actions. Instead, the switching process is implemented by the same competition
process responsible for generating the reaching movement to the initial target location - i.e.,
the neuronal population tuned to the new target inhibits the neuronal population tuned to the
old target. In this case, the reaching neural activity prior to switching action is similar to the
activity in tasks where no switching is anticipated.

Simulated motor behavior in selecting, stopping and switching of actions

We simulated 100 decision-making trials with 50% instructed and 50% choice reaching move-
ments. We also simulated 600 stop signal trials, consisting of an equal split between instructed
and choice reaching movements, with 300 trials for each type. Out of these 600 trials, 500
were selected (250 from the instructed category and 250 from the choice category) to be
prompted to stop after a short, variable delay (SSD). These 500 trials were diversified using
5 different SSDs, with 50 trials conducted for each SSD. Note that we simulated such a large
number of reach trajectories in the stop signal task, so that we explored whether the model
can predict the effects of the SSD and the number of targets on the probability of success-
fully stopping an action. Finally, we simulated 200 trials with 50% instructed and 50% choice
reaching movements, but 100 of the trials (50 instructed and 50 choice trials) were prompted
to switch the action after a short delay (SWSD). We performed one set of simulations with
architecture 1 (i.e., the pause mechanism is involved in both stopping and switching actions)
and another set of simulations with architecture 2 (i.e., the pause mechanism is involved only
in outright stopping of actions). Fig 6 illustrates a sample of simulated reaching trajectories of
the three experimental tasks (consistent across architectures 1 and 2), using only two targets
located 60 degrees apart for the sake of simplicity.

Reaction time of simulated reaches. Fig 7A and 7B depict the average RT for the simu-
lated instructed (blue) and choice (red) reaches in the three experimental tasks with (panel A,
architecture 1) and without (panel B, architecture 2) the involvement of the pause mechanism
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Fig 6. Example of simulated reaching trajectories in the decision-making task, the stop-signal task and the switch task. Simulated reaching trajectories start-
ing from the origin (green dot) towards the blue target(s) in the (A) decision-making task, (B) stop signal task and (C) switch task. Note that the simulated cursor
functioned as a point mass, therefore the trajectories ended at the target location in non-stop trials.

https://doi.org/10.1371/journal.pchi.1012811.g006

in the switch task, respectively. A two-way ANOVA revealed statistically significant differ-
ences in RT in the experimental tasks (p < 0.001) and type of movements (i.e., instructed vs.
choice) (p < 0.001) for both architectures. A post-hoc multiple-comparisons analysis using the
Tukey test showed that choice reaches have a longer RT than instructed reaches (p < 0.001)

in all three tasks for both architectures due to the inhibitory action competition when two
targets are presented. For the model architecture 1 which involves a pause mechanism for
switching actions, no significant differences were observed in RT when anticipating a stop

or switch signal, both in instructed (p = 0.959) and choice trials (p = 0.959) (Fig 7A). On the
other hand, for model architecture 2 which does not involve a pause mechanism for switch-
ing actions, RT is longer in instructed (p < 0.001) and choice trials (p < 0.001) when a stop
signal is anticipated compared to when a switch signal is anticipated (Fig 7B). Instead, switch
trials have approximately the same RT as decision-making trials - i.e., when no switch signal
is expected (p = 1.000). The human findings are consistent with the results from the model
architecture 2, in which the pause mechanism is not engaged in switching actions during
movement planning, since participants responded faster when a switch signal was anticipated
than when a stop signal was expected.
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Fig 7. Simulated human behavior in the decision-making task, the stop-signal task and the switch task. (A) Bar plots of the simulated RT in the instructed

and choice trials of the decision-making task, the stop signal task and the switch task under architecture 1. (B) Bar plots of the simulated RT in the instructed and
choice trials of the decision-making task, the stop signal task and the switch task under architecture 2. (C) Simulated probability of successfully stopping a reaching
movement as a function of SSD in one-target stop trials (blue) and two-target stop trials (red). (D) Bar plots of the simulated SRT for the one-target and two-target
switch trials under architecture 1. (E) Bar plots of the simulated SRT for the one-target and two-target switch trials under architecture 2. (F) Bar plots of the simulated
SRT for the one-target and two-target switch trials under architecture 3. Error bars correspond to SE. Architecture 1: The pause field is involved in the switching
process. Architecture 2: The pause field is NOT involved in the switching process. Architecture 3: The pause field is involved in the switching process in the one-target
condition, but not involved in the two-target condition.

https://doi.org/10.1371/journal.pchi.1012811.9007

Probability to successfully stop actions. We also computed the probability to completely
stop a reaching movement in the stop signal task by measuring the number of successful tri-
als at any given SSD in both instructed and choice reaches. Consistent with human findings,
the model predicted that the probability to successfully stop reaches is inversely related to SSD
- i.e,, the higher the SSD, the lower the probability to successfully stop a reaching movement.
Notably, and consistent with human findings, the model predicted that the probability to stop
an action is higher in the two-target stop trials than in the one-target stop trials for any given
SSD (Fig 7C). The reason is that the activity of the reach neurons in the choice trials is weaker
than in the instructed trials (Fig 5B top and bottom panel) due to inhibitory competition
between the neuronal populations that are selective for the two targets. Therefore, the activ-
ity of the reach neurons is inhibited faster in the two-target stop trials than in the one-target
stop trials, explaining why it is easier to stop an action when you are free to choose between
competing targets than when you are instructed to move towards a particular target location.

Switch reaction time of simulated reaches. Both model architectures predict that the
reaction time for switching actions (SRT) will be longer in one-target trials than in two-target

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012811 February 10, 2025 12/ 26



https://doi.org/10.1371/journal.pcbi.1012811.g007
https://doi.org/10.1371/journal.pcbi.1012811

PLOS COMPUTATIONAL BIOLOGY Computational mechanism underlying switching of motor actions

trials (Figs 7D and 7E). The reason is that the reach neural activity associated with the non-
selected target in the two-target trials is often not completely suppressed before the switching
cue is given. Hence, the activity of the selected target is weaker in the two-target trials as com-
pared to the one-target trials when reaching towards the same target location. Fig 8A and 8B
depict the simulated neural activity of a single reach neuron in an instructed trial (blue trace)
and of two reach neurons, one from each population, in a choice trial (red trace) for architec-
tures 1 and 2, respectively. Neurons are centered at the target location(s). Note that the neural
activity associated with the new target location exceeds the action initiation threshold faster
in the choice trial (red discontinuous trace) than in the instructed trial (blue discontinuous
trace) in both architectures. Subsequently, switching of action in choice trials is more readily
and quickly made than in instructed trials, because the neural representation of the new tar-
get location - the one that was not originally selected - has been formed prior to the switch
signal. On the other hand, the neural representation of the new target location has not been
formed prior to switch signal in the instructed trials, since the model has been instructed

to generate movements towards one single target location without knowing the new target
location.

Interestingly, model predictions contradict the human findings. Participants exhibited
longer SRT in two-target switch trials than in one-target switch trials, both when they per-
formed the reward-based and the non-reward-based (i.e., internally-guided) reaching tasks.
One potential explanation is that one-target switch trials are governed by different switch-
ing mechanisms than the two-target trials during action execution. For instance, an alterna-
tive third architecture is that the pause mechanism is activated only in the instructed trials
to inhibit the ongoing action. The reason is that the neural activity of the current action is
too strong to be inhibited on-time by the new incoming action, which will be formed only
after the switch signal. On the other hand, the neural activity of the selected target in the two-
target trials is weaker compared to the one-target trials, due to the residual activity from the
unselected target that inhibits the neural activity of the selected target. Therefore, the new
incoming action, which is already formed before the switch signal, can inhibit the current
action when needed without the contribution of the pause mechanism. Fig 8C illustrates the
simulated neural activity of a single reach neuron in an instructed trial (blue trace) and of
two reach neurons, one from each population, in a choice trial (red trace) under this model
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Fig 8. Reach planning field single neuronal activity during switch trials. Simulated reach planning field single neuronal activity changes during one-target and
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architecture. We simulated the switch task within the new architecture and found that the
instructed trials have shorter SRT than the choice trials (Fig 7F). Taken together, our results
suggest a third potential architecture (i.e., a combination of architectures 1 and 2) of the
switching process, in which the pause mechanism is not active during action planning, but
it is activated in action execution once a switch signal is detected, but only when reaches are
instructed to a single target location.

Discussion
General

Humans can rapidly regulate actions according to evolving environmental demands. At the
same time, impairments of action regulation have been identified across a number of neu-
rological and psychiatric diseases, including PD, obsessive compulsive disorder (OCD), and
Tourette syndrome [22-29]. Given the ubiquity of action regulation in everyday life, its crit-
ical role in survival, and its impairment across a variety of neurological and psychiatric dis-
eases, understanding the mechanism of action regulation is of high value and impact. A key
component of action regulation is action inhibition that occurs when stopping unwanted or
inappropriate actions. Normative theories have also suggested that action inhibition plays a
critical role in switching between actions in response to environmental changes. An ongoing
(or planned) action has to be first inhibited, before switching to a new action [1,2]. A popu-
lar view is that when the pre-supplementary motor area (pre-SMA) detects the co-activation
of different responses - a current response and a new response for switching action - it acti-
vates the STN to temporarily suppress the current response (reviewed by [30,31]). This role
of the STN as a “pause mechanism” aligns with findings that neurons in the ventral STN
rapidly activate in response to stop signals [7]. Thus, the ventral STN likely suppresses the
ongoing action, enabling the generation of a new response. However, an alternative theory
suggests that switching action might not always necessitate an independent action inhibi-
tion process (i.e., a pause mechanism). Instead, the same neurons within the motor areas that
are involved in selecting the initial action will continue to be involved in adjusting and even
switching actions during overt behavior [8,21]. This suggests that the brain may not always
need to engage an independent pause mechanism to switch actions, particularly in scenar-
ios where multiple potential actions are concurrently represented. Therefore, the mechanisms
underlying how the brain selects, stops and switches between actions, as well as how these
seemingly disparate functions inter-relate both behaviorally and computationally still remain
elusive.

Our study focuses on the intricate interplay between action selection, stopping, and switch-
ing, and how these processes are interrelated within the human brain. We trained healthy
young adult participants to perform reaching movements with a 2D joystick for running
behavioral tasks that involve action selection, stopping and switching under conditions
that one or two target(s) were presented at the beginning of each trial. Our findings show
that when participants anticipate a stop signal, they delay initiating a movement in order to
increase the chance to successfully stop the action. Interestingly, the results did not reveal this
proactive inhibitory behavior when participants anticipate a switch signal, both when they
were instructed to move towards a target location or when they were free to choose between
two targets. Instead, they initiated faster movements similar to trials in which no adjustment
in behavior was required - i.e., decision-making task without stop or switch signals.

By modeling this motor behavior within a recently developed neurocomputational the-
ory [17], we predicted that the pause mechanism is engaged only when an outright stopping
of action is anticipated. However, this action regulation mechanism fails to explain the faster
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responses to switch ongoing actions in instructed trials compared to choice trials, suggesting
there might be a different mechanism for switching ongoing actions between instructed and
choice movements. We considered an alternative hypothesis in which the pause mechanism
is engaged to switch actions only in instructed trials. On the other hand, switching action in
choice trials is implemented through a competition between the ongoing and the new actions.
The rationale behind this hypothesis is that the neural activity associated with the new action
has not been formed prior to the switch signal in instructed trials. Therefore, there might not
be enough time for the new action to form and suppress the ongoing action without engaging
a pause mechanism that further assists in the inhibition process. On the other hand, the new
action (i.e., the action associated with the unselected target) has already been formed in the
choice trials prior to the switch signal and therefore switching can be implemented on-time
through the competition between the ongoing and the new action. This mechanism generates
reaching movements with longer SRT in choice trials compared to instructed trials. Over-

all, this study advances our understanding of the action regulation mechanism, providing
evidence that the involvement of the pause mechanism is not constant but rather selectively
activated during specific phases of action switching.

Computational approaches to action regulation

The complex mechanisms underlying action regulation have been investigated through
diverse computational frameworks. Normative models, including drift diffusion models
(DDM) [32] and race models [2,4,33], have been successful in explaining behavioral pat-
terns in multiple decision-making tasks. The race model notably conceptualizes action inhi-
bition as a competition between go and stop processes, similar to our implementation of the
pause mechanism. However, these models typically abstract away from the underlying neural
dynamics and focus on describing behavior at a computational level.

Mechanistic models, on the other hand, aim to explain how neural populations interact
to produce behavior. Several biologically inspired frameworks have been developed, includ-
ing recurrent circuit models [34], which demonstrate how attractor states emerge to represent
categorical choices. These models incorporate recurrent synaptic excitation combined with
slow cellular processes that enable temporal integration, along with feedback inhibition to
implement competitive dynamics among potential options. Wong & Wang [35] demonstrated,
through a simplified biophysically-based model, how neural circuits can achieve realistic
decision-making times using NMDA receptor-dependent dynamics. These dynamics enable
recurrent synaptic excitation, facilitating the temporal integration necessary for perceptual
decision-making. The model shows how such circuits balance the excitatory and inhibitory
processes to produce decisions within the time constraints observed in biological systems.
Similar to our neurocomputational theory, DNF theory has been used to predict the neural
mechanisms in a variety of cognitive and visuomotor tasks [12,36-38]. Schneegans et al. pro-
posed a DNF-based learning model where visual working memory is facilitated through spa-
tially distinct neural maps, offering insights into how a task might be learned by progressively
binding features [38]. Similarly, Klaes et al. presented a DNF-based model showing that sen-
sorimotor learning can bias decision-making by shifting neural dynamics, influencing how
decisions are made [37]. Both the Schneegans and Klaes models suggest that learning alters
neural processing to improve task execution, providing potential explanations for how tasks
can be learned over time.
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Although these studies have made significant contributions to understanding the neu-
ral and behavioral mechanisms underlying various cognitive and visuomotor tasks, few have
simultaneously simulated both neural and behavioral aspects. Furthermore, none of these
models provides an integrated framework for planning, executing, switching and stopping
actions in dynamic environments. In contrast, our neurocomputational framework not only
predicts both motor behavior and neural mechanisms in action regulation tasks, but also
offers a unified model for how actions are planned, selected, and dynamically adjusted.

Mapping computational framework components to brain regions

The computational framework presented in this study operates at a systems level, designed

to qualitatively model and predict motor behavior and the underpinning neuronal activity
patterns within neural ensembles. It is not intended to serve as a rigorous anatomical model
and therefore, we avoid making strict associations between its components (e.g., individ-

ual dynamic neural fields or control schemes) and specific cortical or subcortical regions.
Nonetheless, the framework effectively captures key features of neuronal activity observed
across various brain areas involved in action regulation. The spatial sensory input field
encodes the location of the targets and mimics the organization of the posterior parietal cor-
tex [39,40]. The expected reward field aligns with the ventromedial prefrontal cortex (vmPFC)
and orbitofrontal cortex (OFC), two key frontal areas involved in computing expected out-
comes [41,42]. The reach planning field can be associated with the parietal reach region (PRR)
[43,44] and the premotor dorsal cortex (PMd) [8,45], two cortical areas involved in planning
of reaching movements. Additionally, the stop signal field can be equated to the right inferior
frontal gyrus (rIFG), which is activated when a cue associated with response inhibition (i.e.,
stop signal cue) is detected [46,47]. Finally, the pause mechanism is implemented through the
STN, which receives input from the rIFG when a stop signal is detected [48]. In the context of
our study, the STN likely plays a crucial role in action switching, helping to inhibit ongoing
actions to allow for the initiation of new responses.

From Lashley’s hierarchies to affordance competition

The parallel preparation of actions, a concept central to our model, originates from Lashley’s
influential 1951 work [49]. He argued against serial chaining theories, proposing instead that
skilled behaviors are supported by the simultaneous activation of multiple potential actions.
This idea has been confirmed in various domains, such as speech production, skilled typ-
ing, sequential movements and reaching movements [50-53]. Extending this framework,

the affordance competition hypothesis posits that multiple actions are concurrently formed
and compete over time, with the most suitable action selected based on evidence accumu-
lation [20,21]. The behavioral findings in our study align with the concept of parallel action
planning, where actions compete for selection. Specifically, participants showed longer reac-
tion times when choosing between two targets compared to when reaching for a single tar-
get. Interestingly, they were better at stopping the action when choosing between two targets
than when directed towards a specific target, regardless of the SSD. These findings support the
action competition hypothesis, suggesting that competition among potential actions weak-
ens their neuronal activation, making it more difficult for one action to surpass the activa-
tion threshold and initiate a movement in the choice trials. Therefore, inhibiting an action

is easier in choice trials due to the weaker activation. In contrast, the lack of competition in
the instructed trials lead to stronger neural activation of the reaching movement, resulting in
faster reaction times but making it harder to inhibit the action.
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Switching mechanisms

The challenge of understanding how the brain switches between actions has been a longstand-
ing focus of research. Studies by Georgopoulos and colleagues have provided key insights

into this problem, highlighting mechanisms that allow the brain to dynamically adjust and
select among competing motor plans [54-56]. Georgopoulos et al. showed that target loca-
tion changes during reaching movements can be smoothly accommodated within normal
reaction times [54]. Building on this behavioral evidence, Georgopoulos et al. identified cor-
responding neural adaptations in motor cortical activity during movement interruptions, pro-
viding direct evidence of the brain’s capacity to reorganize action plans [55]. Further, Massey
et al. revealed that motor commands are prepared simultaneously during sequential tasks,
supporting Lashley’s theory about parallel processing, where multiple actions are activated
concurrently and dynamically adjusted during execution [56]. While these studies provide
strong evidence supporting the parallel processing theory of motor actions, they leave open
the possibility that selective inhibitory mechanisms might also be involved in suppressing
specific movement plans. Our findings offer an alternative theory that incorporates the con-
cept of parallel processing of actions but extends it further by proposing the involvement of an
independent pause mechanism. This mechanism is context-dependent, varying particularly
between instructed and choice conditions.

One of the main findings in our study is that people delayed initiating an action when
expecting a stop signal both in instructed and choice trials. This RDE has been reported in
previous studies [17,57,58] and has been associated with an “active braking mechanism” that
increases the chance of abandoning a response in case stopping is required [59]. Notably,
RDE was not found in the switch trials - i.e., participants did not proactively slow down their
response when a switch signal was anticipated. This suggests that the pause mechanism is not
engaged when switching of action is anticipated. However, when we modeled the switch task
without the involvement of the pause mechanism, we predicted that it takes longer to switch a
reaching movement in instructed than in choice trials. This is against the behavioral findings,
in which instructed trials have shorter SRT than choice trials. To account for these results, we
modeled the mechanism of switching action within a new architecture, in which the pause
mechanism is engaged only in switching instructed trials. In this architecture, two inhibitory
mechanisms are involved in switching actions: a) the pause mechanism that suppresses the
current action and b) the inhibitory competition between the current and the new action.

On the other hand, reaching movements in choice trials switch direction only through the
inhibitory competition between the current action and the new action.

Therefore, a reasonable question is if instructed trials require a pause mechanism for
switching ongoing reaches, why did people not exhibit a proactive planning behavior when
they anticipated a switch signal, as they did when they anticipated a stop signal? One poten-
tial explanation is that the pause mechanism is not activated prior to movement initiation,
since the goal is not to completely stop the ongoing action, but to reduce the neural activ-
ity associated with that action while the activity of the new one is formed. Another explana-
tion is that switching of actions already involves an inhibitory mechanism - i.e., the inhibitory
competition between the current and the new action. Therefore, the pause mechanism acts as
an auxiliary mechanism to inhibit on-time the current action while the new one is formed.
Another scenario that could account for the different SRTs between instructed and choice
reaches is that when people decide between two targets, the decision process continues even
after movement initiation as has been reported in “change-of-mind” studies [60,61] - i.e.,
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initial decisions are revised after movement onset. Once the switch signal is cued, in the two-
target switch trials, people might need to first stop the decision-making process and then re-
direct their movements towards the new target location, which is an overall slower process
than when they only need to re-direct their movements (i.e., one-target switch trials).

Limitations, alternative hypotheses and future experimental studies

We must emphasize that the neurocomputational theory employed in this study is a systems-
level theory designed to qualitatively predict motor behavior, and the underpinning neural
mechanisms across the three experimental tasks. While the theory successfully captures many
key features of motor behavior in action regulation tasks, it exhibits the inherent limitations
of systems-level computational models that often cannot dissociate between alternative and
competing hypotheses.

For instance, our model predicts a specific mechanism of action regulation to account for
the longer SRT observed in choice trials compared to instructed trials. However, this explana-
tion does not exclude alternative interpretations, such as those based on the capacity-sharing
model. This model suggests that motor planning relies on finite processing resources dis-
tributed across competing movement plans [62-66] -i.e., the brain has limited resources (or
capacity) that can be distributed across multiple tasks or motor actions. When planning mul-
tiple actions in the choice trials, shared processing resources are divided among the actions,
potentially prolonging SRT due to the additional time required to redistribute these lim-
ited resources effectively across the various motor actions. Nonetheless, this theory does not
preclude the involvement of a pause mechanism during resource reallocation.

Additionally, our joystick-based paradigm enables the exploration of computational prin-
ciples underlying action regulation but offers limited insight into the biomechanical aspects
of movement. Studies employing robotic exoskeletons and EMG recordings have provided
detailed analyses of arm movements and muscle activation patterns during rapid online cor-
rections and obstacle avoidance [67,68]. Future work integrating such biomechanical mea-
surements with reward-based paradigms could bridge the gap between computational the-
ories and motor system implementation, offering a more comprehensive understanding of
action regulation.

While our neurocomputational framework is developed and validated for reaching tasks
involving action selection, stopping, and switching, it can be extended to other motor behav-
ior tasks (for more information see [16]). The interaction between action planning and
inhibitory control through the reach planning field and pause mechanism captures funda-
mental computational processes in motor control. The model architecture can be adapted to
diverse scenarios, such as reaching movements with goal location uncertainty [69], sequential
reaching movements [70], eye-movements (i.e., saccades) [16], obstacle avoidance, and oth-
ers. While the specific parameters governing DNF interactions and temporal dynamics would
vary across these contexts, the core principles — i.e., competition between multiple action
plans and context-dependent engagement of the pause mechanism — should remain applica-
ble across the different tasks. Understanding how these parameters generalize across different
motor contexts remains an important direction for future investigation.

Opverall, the above considerations - ranging from alternative mechanisms to broader ques-
tions of how the framework generalizes to other motor control tasks - highlight both the lim-
itations but also the strength of the framework to generate testable hypotheses. For instance,
the presence or absence of a pause mechanism could be experimentally validated by recording
neural activity from STN in humans or animals performing motor tasks that involve action
switching. Similarly, simultaneous recording from both the motor cortices and STN could
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reveal how parallel processing and pause mechanisms might work together in action regu-
lation. Such studies would provide critical insights into the neural underpinnings of action
regulation and help refine the framework further.

Conclusion

Opverall, our study aims to better elucidate the computations underlying switching of actions
and to assess whether switching is an extension of the stopping process, or it involves a dif-
ferent mechanism. To do so, we trained people to perform reaching movements in dynamic
environments that involve stopping and switching of actions, and modeled their motor behav-
ior within a neurocomputational framework. The results showed that action planning involves
a pause mechanism only when a stop signal is anticipated. However, when a switch signal is
anticipated, the pause mechanism is not engaged to delay movement initiation. Interestingly,
the results suggest different mechanisms for switching actions when people are instructed

to move towards a single target, and when they are free to choose between two targets. To
conclude, our study provides novel insights into the computations of action regulations that
involve action inhibition, opens new doors for further investigation of the action regulation
mechanisms in neurophysiological studies.

Materials and methods
Ethics Statement

The study was approved by the University of California, Riverside Review Board and all indi-
viduals signed a written informed consent before participating.

Participants

A total number of 20 neurologically healthy adults (9 females) participated in the study. The
ages at the time of the experiment were 23.98 + 4.88 (mean * SD) years old. We determined
the sample size for participants through a power analysis based on behavioral data (reaction
time and probability of stopping an action) from our recently published study [17]. The analy-
sis indicated that a total of 20 participants is sufficient to achieve statistically significant results
(one-way ANOVA, p = 0.05 corrected for multiple comparisons, with an effect size of f = 0.4).

Stimuli and experimental procedure

General. All experiments were programmed using Psychophysics Toolbox Version 3
(PTB-3) for Matlab. Experimental setup is illustrated in Fig 1. The participants sat in an
experimental room approximately 60 cm from an LED monitor (Dell P2419HC). A two-
dimensional joystick (Thrustmaster T.16000M FCS) was positioned in front of the sitting
participants, with the base at the level of their elbows. The real-time position of the joystick
was presented on the screen by a green circular cursor (~5.5 cm diameter). Participants
were familiarized with the task by running a set of training trials, including reaches to one
(instructed) and two (choice) target trials, both with and without stop and switch cues. Once
they felt ready and comfortable with the tasks, the actual experiment started.

Decision-making task. In the decision-making task, participants were free to choose
between two targets by moving the cursor towards the selected target location. Choice trials
were randomly interleaved with instructed trials, during which the participants had to reach
towards a single target location (50% instructed and 50% choice trials). A trial started with
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the cursor appearing at the bottom center of the screen. After 1.0-1.1's, a 5.5 cm diameter cir-
cular blue cue (instructed trial) or two blue cues (choice trial) were presented on the screen,
indicating the location of the target(s). The targets were displayed at four possible locations
on the screen, each positioned 20.37 cm from the joystick’s starting point. The targets were
placed at angles of 0, 60, 120, and 180 degrees, making them equidistant and 60 degrees apart
from one another. The participants were instructed not to move the joystick before the tar-
get(s) appear on the screen. Once the target(s) were presented, the participants had to move
the cursor towards the instructed or to the chosen target location within 1.0 s. In the choice
trials, the two targets were marked with a different number (5 or 10) that reflects the reward
value. Although the two targets were assigned with different reward values, both options were
regarded as “correct”. The reward difference was implemented to establish a consistent initial
preference, ensuring that participants would typically select the higher-valued target, allowing
us to systematically study switching behavior by removing this target. A reaching movement
was considered successful if the cursor touched the target within 1.0 s after the presentation
of the target(s). If the participants failed to reach the target within 1.0 s or initiate a move-
ment prior to target(s) presentation, the trial was aborted. After each trial, the participant had
to move the cursor back to the original starting position. Otherwise, they received a warn-
ing signal “please move the joystick back to the center to start the next trial”. The participants
performed 2 blocks with 48 trials each (2 blocks x 48 trials = 96 total trials).

Stop signal task. The stop signal task is similar to the decision-making task with the dif-
ference that participants had to completely stop their actions in a random subset of trials
(33%). This proportion of stop trials was selected to balance unpredictability to ensure a suf-
ficient number of events for robust statistical analysis. It consists of one-target stop task (i.e.,
instructed trials with stop signal) and two-target switch task (i.e., choice trials with stop sig-
nal) that were performed in separate blocks of trials. In the stop trials, the color of the tar-
get(s) turned red after a short delay (stop signal delay, SSD), signifying the immediate need
to abandon the action. The participants were informed that stopping and reaching to target(s)
are equally important. A trial started with the joystick cursor presented at the bottom of the
screen. After 1.0-1.1 s, a single blue cue (instructed trial) or two blue cues associated with dif-
ferent reward values (choice trial) were presented on the screen, and the participants had to
initiate a movement towards either the single target or the selected target location within 1.0
s. If the target(s) turned red, the participants had to abandon the movement immediately. This
adaptive staircase procedure aims to maintain approximately 50% success rate in stop trials,
preventing both ceiling and floor effects in performance. The participants performed 2 blocks
of the one-target stop task - each block comprised 60 trials, of which 20 were stop trials (2
blocks x 60 trials = 120 total trials). They also performed 2 blocks of the two-target stop task -
each block comprised of 72 trials, of which 24 were stop trials (2 blocks x 72 trials = 144 total
trials).

Switch task in reward-based decisions. The switch task was also similar to the stop sig-
nal task with the difference that participants had to perform corrected movements, instead of
completely stopping their actions. It consists of one-target switch task (i.e., instructed trials
with switch signal) and two-target switch task (i.e., choice trials with switch signal) that were
performed in separate blocks of trials. In both tasks, the switch trials constitute a random 33
% of the total trials. This proportion of switch trials was selected to balance unpredictability
to ensure a sufficient number of events for robust statistical analysis. In one-target switch tri-
als, the target was replaced after a short variable delay (named switch signal delay, SWSD) by
a second target at a new location, prompting the participants to switch their actions towards
the new target location. In two-target switch trials, the high-reward target was removed after
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SWSD, and the participants had to correct their actions by moving towards the remaining
target (low-reward target). The participants were informed that switching and reaching are
equally important. A trial started with the joystick cursor presented at the bottom of the
screen. After 1.0-1.1 s, a single blue cue (instructed trial) or two blue cues associated with
different reward values (choice trial) were presented on the screen, and the participants had
to initiate a movement towards either the single target or the selected target location within
1.0 s. If switching action was prompted, an extra 1.0 s was given to the participants to com-
plete their actions. Similar to the stop task, if the participants successfully switched to the
new target without crossing the location of the old target, the trial was considered success-
ful, the screen turned black and a new trial started. In this case, the SWSD increased by 50
ms, making the next switch trial more challenging. If the participants failed to switch to the
new target (crossing the location of the old target or failed to arrive at the new target loca-
tion), the trial was aborted and the SWSD decreased by 50 ms, making the next switch trial
easier. This adaptive staircase procedure aims to maintain approximately 50% success rate

in switch trials, preventing both ceiling and floor effects in performance. The participants
performed 2 blocks of one-target switch tasks with 60 trials in each block - 40 instructed
trials without switching and 20 one-target switch trials (2 blocks x 60 trials = 120 total tri-
als). They also performed 2 blocks of two-target switch tasks with 72 trials in each block - 48
choice trials without switching and 24 two-target switch trials (2 blocks x 72 trials = 144 total
trials).

Switch task in internally-guided decisions. We are also interested in exploring whether
the reward value affects the switching behavior. To do so, we recruited 6 participants to per-
form the switch task without assigning reward values to the targets. Instead, the participants
performed “internally-guided decisions” - free choices that are not informed by any external
contingencies. The switch signal was cued based on the traveled distance from the origin - i.e.,
“distance-threshold” The distance-threshold was set to a random number between 1.2% to
3.2% of the total distance between the origin and the target(s) location. The switch task with-
out reward also consists of one-target switch task and two-target switch task that were per-
formed in separate blocks of trials. In one-target switch trials, the original target was replaced
by a new target when the cursor exceeded the distance-threshold, prompting the participants
to correct their actions towards the new target location. In two-target switch trials, the tar-
get that was closer to the cursor disappeared, prompting the participants to move towards the
remaining target. Everything else was the same as the switch task in reward-based decisions.
The participants performed 5 blocks of one-target switch task with 60 trials in each block -
40 instructed trials without switching and 20 one-target switch trials (5 blocks x 60 trials =
300 total trials). They also performed 5 blocks of two-target switch task with 72 trials in each
block - 48 choice trials without switching and 24 two-target switch trials (5 blocks x 72 trials =
360 total trials).

Statistical analysis

Cubic smoothing spline interpolation was used to smooth the joystick movement trajec-
tories and to compute the velocity of the movements. RT was defined as the time between
the target appearance and the time that movement velocity exceeded 10% of the maximum
velocity within the trial. RTs faster than 100 ms were excluded from further analysis because
anticipation is considered to be involved before participants initiate an action. RT outliers
(RTs more than 3 standard deviations from the mean RT) were also excluded. RTs across all
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participants were pooled together, and two-way ANOVA analyses were performed using
MATLAB’s anovan function with experimental task (3 levels: decision-making, stop, switch)
and movement type (2 levels: instructed vs. choice) as fixed factors to determine the group
differences in RTs. The function used Type III sum of squares to handle any unequal cell sizes.
Post-hoc multiple comparisons were performed using the Tukey-Kramer method (via MAT-
LAB’s multcompare function) following significant two-way ANOVA results. We also com-
puted the reaction time for switching reaching movements (i.e., SRT) as the time between the
switch signal (i.e., instructed/selected target disappears) and the time when the joystick starts
to move towards the new target location. A two sample t-test was performed to compare the
differences in SRT.

Computational framework

We utilized a neurodynamical computational framework that was recently proposed by our
group to model action regulation tasks that involve motor inhibition, such as selecting, stop-
ping, and switching actions [17]. The computational framework is based on DNF theory
and SOC theory, and uses a series of DNFs to model the neuronal circuitry for perception,
expected outcome, effort cost, context signal, action planning, and execution. The functional
properties of each DNF are determined by the lateral inhibition within the field and the con-
nections with other fields in the architecture. The projections between the fields can be topo-
logically organized - i.e., each neuron i in the field drives the activation at the corresponding
neuron 7 in the other field, or unordered - i.e., each neuron in one field is connected with all
neurons in the other field.

The architectural organization of the framework is shown in Fig 4. The DNF platforms
(except for the stop signal field and the pause field) consist of 181 neurons, with preferred
direction between 0 and 180 degrees. The “spatial sensory input” field encodes the angular
representation of the target(s), and the “expected outcome” field encodes the expected reward
for reaching to a particular direction. The outputs of these two fields send excitatory projec-
tions (green arrows) to the “reach planning” field in a topological manner. The “reach cost”
field encodes the effort cost required to implement a reaching movement at a given time and
state. It sends inhibitory projections (red arrow) to the reach planning field to penalize high-
effort actions. For instance, an action that requires changing of moving direction is more
“costly” than an action of keeping going in the same direction. The “stop signal” field consists
of 100 neurons and is activated when a stop cue signal (i.e., the color of the target turned red)
is detected. It is linked via one-to-all excitatory projections with the pause field. The “pause
field” is linked via one-to-all inhibitory connections with the reach planning field. Once a stop
cue is detected, the pause field quickly suppresses the activity of the reach planning field to
stop the planned or ongoing actions.

The normalized activity of the reach planning field describes the relative desirability d;(¢)
of each “reach neuron” with respect to the alternative neurons at time t - i.e., the higher the
activity of a reach neuron i, the higher the desirability to move towards the preferred direction
¢; of this neuron with respect to the alternatives at a given time t. Each neuron i in the reach
planning field is connected with an optimal control scheme that generates reaches. Once
the activity of a particular neuron i exceeds an “action initiation threshold”, the controller
is triggered and generates an optimal policy 7; - i.e., a sequence of motor actions towards
the preferred direction of the neuron i. Hence, a decision is made once a neuronal popula-
tion exceeds the action initiation threshold and the performed action 7, (x;) is given as a
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mixture of the active policies (i.e., policies with active reach neurons) weighted by relative
desirability values of the corresponding neurons at any given time and state:

Jj+M

ﬂmix(xt) = Z dj(xt)ﬂ'j(xt) (1)
J

where x; is the state of the system at time t (i.e., position, velocity, acceleration, etc.),
d;(t) is the normalized activity of the neuron i, and 7; is the optimal policy generated by the
controller connected with neuron i. Because desirability is time- and state-dependent, the
weighted mixture of the individual policies 7 ,;x(x;) can be reprogrammed based on the new
incoming information. For more details about the mathematics underlying the computational
framework, see [16,17].

Supporting information

S1 Table. Model parameters. The values of the neurocomputational model parameters used
in the simulations.

(PDF)
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