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Abstract

Protein-RNA interactions play a critical role in many cellular processes and pathologies.

However, experimental determination of protein-RNA structures is still challenging, there-

fore computational tools are needed for the prediction of protein-RNA interfaces. Although

evolutionary pressures can be exploited for structural prediction of protein-protein inter-

faces, and recent deep learning methods using protein multiple sequence alignments have

radically improved the performance of protein-protein interface structural prediction, protein-

RNA structural prediction is lagging behind, due to the scarcity of structural data and the

flexibility involved in these complexes. To study the evolution of protein-RNA interface struc-

tures, we first identified a large and diverse dataset of 2,022 pairs of structurally homologous

interfaces (termed structural interologs). We leveraged this unique dataset to analyze the

conservation of interface contacts among structural interologs based on the properties of

involved amino acids and nucleotides. We uncovered that 73% of distance-based contacts

and 68% of apolar contacts are conserved on average, and the strong conservation of these

contacts occurs even in distant homologs with sequence identity below 20%. Distance-

based contacts are also much more conserved compared to what we had found in a previ-

ous study of homologous protein-protein interfaces. In contrast, hydrogen bonds, salt brid-

ges, and π-stacking interactions are very versatile in pairs of protein-RNA interologs, even

for close homologs with high interface sequence identity. We found that almost half of the

non-conserved distance-based contacts are linked to a small proportion of interface resi-

dues that no longer make interface contacts in the interolog, a phenomenon we term “inter-

face switching out”. We also examined possible recovery mechanisms for non-conserved

hydrogen bonds and salt bridges, uncovering diverse scenarios of switching out, change in

amino acid chemical nature, intermolecular and intramolecular compensations. Our findings

provide insights for integrating evolutionary signals into predictive protein-RNA structural

modeling methods.
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Author summary

Protein-RNA interactions are crucial to many biological functions and can play a role in

diseases. We adopted a computational strategy to analyze and compare experimental 3D

structures of protein-RNA interfaces. We first built a diverse dataset of 2,022 pairs of

structurally similar protein-RNA interfaces, called structural interologs, and confirmed

the existence of an evolutionary relationship in most of these interface pairs. We analyzed

spatially close amino acid-nucleotide pairs across the interface, revealing that they are

most often similar between interologs, even when the interfaces have strongly diverged.

However, polar contacts such as hydrogen bonds are most often differently distributed

between interologs, even in closely related interfaces. This finding highlights that spatial

arrangement is more conserved than sequence in protein-RNA interactions and suggests

principles guiding the evolution of these molecular associations. Our study has important

implications for predicting protein-RNA interactions, both by providing useful rules for

transferring contacts from a template with known structure to an interface of interest, and

by paving the way for applying machine-learning techniques to integrate these patterns of

contact conservation. This holds the promise of accelerating the identification of potential

therapeutic targets and improving our molecular understanding for disease mechanisms

mediated by protein-RNA interactions.

Introduction

Protein-RNA interactions are crucial in many cellular processes, such as RNA metabolism,

translation, DNA damage repair, and gene regulation [1,2]. They have also been implicated in

numerous pathologies, such as cancers and neurological disorders [3]. Several studies of pro-

tein-RNA structures gave insights into possible pathological molecular mechanisms [4,5].

However, for many pathologies, the underlying mechanisms remain unresolved, leading to

limitations in the proposed treatments [3,6,7]. Therefore, understanding protein-RNA interac-

tions presents a major challenge in molecular biology. Detailed comprehension of those inter-

actions is a crucial goal for medical and pharmaceutical purposes like drug design [6,7], which

requires knowledge of the corresponding 3D atomic structures [2,8].

Even if the number of available experimental structures for protein-RNA complexes has

greatly increased in the last decades, experimentally solving protein-RNA structures is still

very challenging [2]. Only approximately 5,300 structures of protein-RNA complexes were

available in the Protein Data Bank (PDB) in October 2023, compared to more than 200,000

entries overall, mostly proteins and homomeric protein complexes [9]. Therefore, computa-

tional tools for protein-RNA structural prediction and interface characterization have been the

subject of dedicated research for several decades [10].

One major strategy for computational prediction of macromolecular interfaces is template-

based prediction, which provides high-quality predictions for protein-protein complexes [11].

For protein-RNA interfaces, one pioneering study searched for structural interface similarity

within a dataset of 439 non-redundant protein-RNA binary interfaces and identified a thresh-

old of 25% for the minimum sequence identity based on alignment of the two proteins and the

two RNAs, to identify structurally similar pairs of binary interfaces [12]. This study showed

that above a sequence identity threshold of 30–35%, structural binding modes are similar and

that many structurally similar complexes display low sequence identity. However, the study
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did not investigate further how this conservation is enabled at the atomic scale and rather

focused on template-based interface modeling.

When templates are not available or not detectable, interface modeling traditionally needs

to resort to template-free docking. Free docking approaches most often consist of a sampling

step generating many possible interface conformations, followed by a scoring step where these

conformations are ranked [10]. Some of the most common scoring approaches rely on statisti-

cal potentials, deriving pairwise residue-ribonucleotide propensities [13–15] or hydrogen-

bonding geometries [16] from known structures of protein-RNA interfaces. Other strategies

involve coarse-grained force fields [17] or scores optimized by machine learning [18]. Protein-

RNA free docking is more challenging than protein-protein docking due to the conforma-

tional flexibility of both protein and RNA partners [19] and the scarcity of high-resolution pro-

tein-RNA structures on which scoring methods can be trained. A hybrid strategy using both

template-based and free docking improved protein-RNA interface structural predictions, espe-

cially in cases with low-homology templates [20]. Alternative methods, such as in the HAD-

DOCK web server [21], include experimental restraints to guide the docking.

Evolutionary pressures apply to protein-protein interfaces to maintain interactions between

partners [22]. Interface conservation and co-evolution signals between interface positions can

be exploited to improve the structural prediction of protein-protein interactions in traditional

docking [23], but also in global statistical methods exploiting covariation in multiple sequence

alignments (MSAs) to derive the most likely direct contacts [24]. Many predictors of RNA-

binding protein residues rely on machine learning using evolutionary information from Posi-

tion Specific Scoring Matrices (PSSM) derived from MSAs or homology transfer from struc-

tural templates [25,26]. Alongside the propensity of amino acids (in particular positively

charged residues) for binding RNA, evolutionary conservation derived from protein MSAs is

one of the major features enabling the prediction of RNA-binding residues [27]. Co-evolution-

ary analysis can also indicate conserved RNA structures [28] and protein-RNA interfaces, with

the caveat that these methods require large coupled MSAs and, therefore, are only applicable

to a few bacterial protein-RNA complex families [29].

The recent release of powerful methods using deep learning algorithms to leverage informa-

tion from MSAs, such as AlphaFold [30], AlphaFold-Multimer [31] and RoseTTAFold [32],

has been a revolution for the structural prediction of proteins and protein-protein interactions.

These methods have increased applicability compared to previous covariation-based models,

thanks to the ability to exploit relatively small MSAs, and the success rates and precision of

models have greatly increased compared to traditional docking methods. Recently, deep learn-

ing methods have been extended to predict protein-nucleic acid interface structures, notably

with RoseTTAFold2NA [33] and, most lately, RoseTTAFold All-Atom [34] and AlphaFold3

[35]. These new methods encouragingly demonstrate the ability to learn joint parameters for

diverse macromolecular interactions despite scarce protein-nucleic acid structural data and

report high prediction performance for protein-protein complexes. However, the reported

performance for protein-RNA structure prediction is much lower; for instance, the reported

success rate based on interface local distance difference test (iLDDT) for a small test set of 25

protein-RNA complexes with low homology to PDB structures is 19% for RoseTTAFold2NA

and 38% for AlphaFold3 [35].

An earlier study of the evolution of protein-protein interface structures [36] enabled us to

identify conserved determinants that were subsequently useful to develop dedicated scoring func-

tions that improved our predictive capacity [37–39]. Even in the current context of deep learning

developments, understanding and leveraging evolutionary information remains crucial, and bet-

ter protein-RNA interface structure prediction and scoring methods are still needed. Therefore,

the structural analysis of protein-RNA interface evolution deserves special attention.
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In the present study, we focused on the analysis of protein-RNA interface evolution, aiming

to unravel the sequence and structural properties connected with interface conservation and

plasticity. We identified 2,022 pairs of homologous protein-RNA interfaces with structurally

similar experimental 3D structures and we used this unique dataset to perform a detailed anal-

ysis of how interface contacts are conserved between interologs. Abundant literature over

more than twenty years [40–42] has defined important contact types for the energetics and

specificity of protein-RNA interfaces: beyond atomic proximity, we also considered hydropho-

bic interactions, hydrogen bonds (H-bonds), and salt bridges, as well as π-stacking contacts. In

this study, we highlighted the diverse conservation of these different contact types and the role

of sequence divergence as a major determinant of contact conservation. We also explored the

role of structural properties such as secondary structure and solvent accessibility in contact

conservation.

Results

Identification of structural interologs

Initial dataset of representative protein-RNA interfaces. We first built a dataset of rep-

resentative, high-resolution protein-RNA interface structures. From all experimental struc-

tures in the PDB, we retrieved the subset of entries containing at least one protein-RNA

contact, where we defined contacts as amino acid/nucleotide pairs with a minimum heavy-

atom distance below 5Å. From these 4,173 PDB entries, we extracted binary interfaces contain-

ing one protein chain in contact with either one RNA chain, or two base-paired RNA chains

that we merged into one double-stranded chain. We removed interfaces with coordinates for

only some backbone atoms (only Cα atoms on protein and/or only P atoms on RNA). On

average, each PDB entry contains around 28 protein-RNA interfaces, although this number

reflects a diverse range of situations (see supplementary results in S1 Text and S1 Fig). Because

we aim for good-quality structures with well-defined atomic contacts, we applied resolution

criteria, leading to 6,369 remaining interfaces, then we applied size criteria and obtained 3,419

interfaces. Finally, we applied clustering to remove strictly identical protein-RNA interfaces to

avoid bias in our dataset. This pipeline (Fig 1) resulted in 977 representative protein-RNA

binary interfaces.

Structural comparison of interfaces to identify interologs. Among these 977 representa-

tive interfaces, our goal was then to identify subsets of interface structural homologs (called

structural interologs or interologs for short). We performed all-vs-all structural alignment of

these 977 protein-RNA interfaces using TM-align [43], RNA-align [44], and MM-align [45]

respectively for protein alignment, RNA alignment, and protein-RNA interface alignment (see

Methods and Fig 2A). Of note, this structural alignment step is computationally costly, further

arguing in favor of the clustering performed to obtain the 977 representative interfaces, as we

avoided unnecessary interface comparisons. In principle, we should perform 476,776 (= 977 x

976 / 2) comparisons; however, we refrained from comparing pairs of interfaces that belong to

the same PDB entry and have one chain in common, as these cannot be structural interologs

(see Methods). Out of over 444,000 remaining possible comparisons, MM-align succeeded in

aligning around 207,000 pairs of protein-RNA interfaces; in all other comparisons, MM-align

did not simultaneously align the protein and RNA molecules and did not return the structural

correspondence between both protein chains and both RNA chains. For the 207,326 success-

fully aligned pairs of interfaces, Fig 2B (gray points) shows the relationship between the inter-

face TM-score provided by MM-align (measuring the interface structural similarity) and the

minimum sequence identity based on sequence alignments for the two proteins and the two

RNAs (using a local alignment, sequence identity weighted by alignment coverage, see
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Methods). This graph shows that above a sequence identity threshold of 25%, all pairs of inter-

faces display interface TM-scores above 0.5 (the standard threshold above which TM-align

results are indicative of structurally similar folds), and a large fraction of those have interface

TM-scores above 0.8. Conversely, the gray points in Fig 2B also display a densely populated

region with interface TM-score above 0.5 but sequence identity below 25% (see also panel A in

S2 Fig).

We next wanted to identify pairs of structural interologs from those pairs of interfaces with

interface TM-score above 0.5. With structural visualization, we observed that interfaces may

not be similar even when the interface TM-score provided by MM-align is high, e.g. because of

low interface overlap (Fig 2C). On the other hand, when the RNA TM-score is low, the inter-

faces may be structurally similar, but the flexibility of RNA molecules might result in structures

that are not overall superimposable (panel B in S2 Fig). Taking into account these observa-

tions, we did not use the RNA TM-score to define interologs; we chose cutoff values of 0.5 and

0.6 for interface and protein TM-scores, respectively, and we complemented the TM-score cri-

teria with interface coverage criteria, whereby the interface overlap had to exceed 40% in both

protein and RNA chains within the pair of interologs (Fig 2A). This resulted in a final set of

2,022 pairs of confidently assigned structural interologs, represented by the red points in Fig

2B, spanning a wide range of possible interface sequence identities (panel C in S2 Fig). Among

these 2,022 pairs, 515 pairs have an RNA TM-score lower than 0.5 (panel D in S2 Fig). We

computed interface root mean square deviation (RMSD) between interologs and verified that

the vast majority of interologs have low RMSD values (99.9% below 6Å and 95.5% below 4Å,

Fig 1. Pipeline for the construction of the interface dataset. The pipeline proceeds from all available protein-RNA complexes in the PDB (dated 21 February

2022) to the representative dataset of 977 interfaces used in this study.

https://doi.org/10.1371/journal.pcbi.1012650.g001
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panel E in S2 Fig). Notably, 765 out of the 977 initial representative interfaces (78%) form the

final 2,022 pairs and have at least one identified structural interolog in this process.

Evolutionary relationship within pairs of structural interologs. Our definition of struc-

tural interologs was so far purely based on structural similarity criteria. To assess whether the

2,022 pairs of structural interologs actually correspond to evolutionary homologs, we used evo-

lutionary classifications to annotate our interfaces, namely ECOD [46] for protein chains and

Rfam [47] for RNA chains (see Methods). We then assessed whether for each pair of intero-

logs, the ECOD and Rfam classifications were consistent for the two structurally similar inter-

faces. For protein chains, 1,994 out of 2,022 pairs of structural interologs have ECOD

annotations for both interfaces; out of these, 1,991 interolog pairs (99.8%) have at least one

ECOD annotation in common at the T-group level (demonstrating homology and similar

topological connections), and 1,803 interolog pairs (90%) have exactly the same ECOD T-

group annotations. For RNA chains, 1,230 out of 2,022 pairs of interologs have Rfam clan

annotation for both aligned interfaces and 100% of these have at least one clan in common (of

which 99% have exactly the same clan annotation). 1,244 out of 2,022 pairs of interologs have

Fig 2. Identification of pairs of structural interologs among the 977 interfaces in our dataset. A: Pipeline for the identification of interologs from all-against-all

structural alignment. B: Scatter plot of all-against-all interface TM-scores (y-axis) according to (x-axis) the minimum sequence identity within each pair of binary protein-

RNA interfaces, weighted by alignment coverage. In the scatter plot, we excluded pairs of interfaces that MM-align failed to align (i.e. the scatter plot contains 207,326 gray

points). Red points represent the final 2,022 pairs of structural interologs. Partial transparency was added to the scatterplot in order to reflect the density of points in

different regions of the graph. C: An example pair of non-interolog interfaces aligned with MM-align where the interface TM-score is above 0.5 despite low interface

coverage. 5AOR_A_C; 3ADL_A_B, C (associated protein TM-score 0.74, RNA TM-score 0.12, and interface TM-score 0.61) belongs to the intermediate set of 6,479 pairs.

The two RNA chains do not bind in the same protein region so that the RNA interface overlap is 0% and this pair of interfaces is not retained in the final set of 2,022

structural interologs.

https://doi.org/10.1371/journal.pcbi.1012650.g002
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Rfam family annotation for both aligned interfaces, 57% of which (703 pairs) have at least one

common Rfam family. The set of interologs with a common clan but no common family corre-

sponds to more remote interfaces, e.g. archaeal vs. eukaryotic ribosomal RNA. This analysis

shows that beyond structural similarity, our dataset of interologs also contains a vast majority

of evolutionarily related interfaces, despite the homology relationship being very distant in a

large fraction of the interologs, as evidenced by low sequence identities.

Contact conservation analysis

Definition of contact conservation and overall results. For the 2,022 pairs of structural

interologs, we compared the specific positions involved in each interface contact. Our strict

definition of interface contacts, based on a minimum heavy-atom distance of 5 Å, is adapted

to our need to precisely assess whether the close neighbors of an interface position are con-

served in the interolog interface. Corresponding residues between interologs were defined

from the interface structural alignment, as illustrated in Fig 3A. We assessed whether each

interface contact occurring in our dataset was conserved in the structural interolog, irrespec-

tive of whether the nature of the amino acid/nucleotide varied (Fig 3B). To better represent the

conservation of atomic contacts in a situation where the residue nature can vary, we weighed

the conservation of each amino acid/nucleotide contact by the number of atomic contacts it

contains (see Methods).

On average, 73% of these distance-based, atomic-weighted contacts were conserved among

interologs. We also assessed weighted conservation for distance-based atomic contacts

restricted to pairs of C atoms (a subtype we called apolar contacts). Contact conservation was

68% on average for these apolar contacts, overall quite high, albeit significantly lower than for

all atomic contacts (panel A in S3 Fig). However, only 39% of the H-bonds, 31% of the salt

bridges, and 36% of the π-stacking contacts were conserved on average, with all distributions

significantly lower than for atomic contacts (panel A in S3 Fig). These differences in conserva-

tion levels might reflect that the interfaces are maintained in evolution through atomic and

apolar contacts, while the specificity-driving H-bonds, salt bridges, and π-stacking interactions

are more versatile.

Fig 3. Structural alignment of interologs and definition of contact conservation. A: Structural alignment illustration for two structural interologs (1HQ1_A_B

Escherichia coli interface in orange, aligned with 2V3C_C_M Methanocaldococcus jannaschii interface in cyan) sharing 62% minimum interface sequence identity. The

complexes were aligned with MM-align and the zoomed region shows alignment details for two structurally aligned amino acid/nucleotide pairs. B: Illustration of the way

contact conservation between interologs was assessed, based on structurally aligned positions.

https://doi.org/10.1371/journal.pcbi.1012650.g003
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Of note, H-bonds, salt bridges, and π-stacking interactions are much less abundant com-

pared to atomic and apolar contacts (see supplementary results in S1 Text), and they require

specific properties of amino acid side chains. These differences raise the question of how much

the higher conservation levels for the more frequent atomic/apolar contacts can be driven by

chance. Therefore, we introduced two versions of a random baseline, which involve either

shuffling the interface residues or “resampling” i.e. drawing them from a distribution allowing

us to maintain interface sequence identity with the considered interolog (see S1 Text for details

of these baselines). In both baselines, we maintain the “scaffold” of the interface, i.e. which pro-

tein and RNA positions are involved and the distances between protein and RNA backbones,

and we re-assign the contacts of all natures (atomic, apolar, H-bonds, salt bridges and π-stack-

ing) formed in the shuffled/resampled interface. The contact conservation levels are similar in

both baselines, and largely smaller than average conservation levels in the original interolog

dataset (panels A and B in S4 Fig), underscoring the specificity of contact conservation

between interologs. The smallest relative difference occurs for atomic contacts, highlighting

that despite their overall higher conservation compared to other contact types, they are proba-

bly the least specifically conserved in interologs.

Contact conservation depending on sequence identity and ribosomal/non-ribosomal

character. The 2,022 pairs of interologs display a wide range of sequence identities. We cre-

ated four equally populated groups of interologs according to the minimum interface sequence

identity based on the structural alignment between the protein-RNA interfaces: 0–19%, 19–

34%, 34–60% and 60–100%. Interfaces involving a ribosomal protein form the majority of our

dataset of interologs: we assigned 615 out of 977 interfaces as ribosomal, making up 1,371 out

of 2,022 interolog pairs (see assignment method details in S1 Text). The 0–19% and 60–100%

identity groups contain about half ribosomal and half non-ribosomal interolog pairs; however,

the 19–34% and 34–60% groups contain a large majority of ribosomal pairs.

Given that π-stacking is the least abundant type of contact in our protein interaction dataset

(see supplementary results in S1 Text), we decided to not further divide the π-stacking contact

data into sequence identity or ribosomal/non-ribosomal groups, as these groups would con-

tain very few data points. Henceforth, we will focus on atomic contacts, apolar contacts, H-

bonds, and salt bridges.

Fig 4 and panel B in S3 Fig show that the conservation of H-bonds and salt bridges is espe-

cially low for groups of interologs with minimum interface sequence identity below 60%. Even

in the groups of closest interologs (minimum interface sequence identity 60% to 100%), the

average contact conservation is only 65% for H-bonds (61% for ribosomal interologs and 68%

for non-ribosomal interologs) and 55% for salt bridges (same average value for ribosomal and

non-ribosomal interologs). On the contrary, atomic and apolar contacts are well conserved

even in pairs of remote interologs with minimum interface sequence identity below 19%; the

average conservation in this group for atomic contacts is 56% (54% for ribosomal interologs

and 58% for non-ribosomal interologs).

The contact conservation behavior is similar for ribosomal compared to non-ribosomal

interologs, provided that we account for the different interface sequence identity composition

of the two subsets (compare Fig 4A with Fig 4B). Most identity categories and contact types

display a slightly higher conservation for non-ribosomal interfaces, compared to ribosomal

interfaces (Table A in S2 Text). The difference is not always significant and cannot be obvi-

ously linked to a sequence identity bias in each sequence identity category (Table B in S2

Text). For example, a subgroup of the 19–34% ribosomal interologs displays higher than

expected contact conservation, for all types of contacts. This subgroup corresponds to a num-

ber of highly similar Argonaute proteins interacting with very different RNA sequences in a

structurally very similar manner (see below and panel B in S7 Fig). The difference between
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ribosomal and non-ribosomal interologs disappears when shuffling or resampling the

interface.

We verified that the observed trends were not due to the definition of our contact conserva-

tion metrics (see S5 Fig and supplementary results in S1 Text). We note that the more distant

the interologs, the lower the interface overlap between them (panels A and B in S6 Fig). The

Fig 4. Interface contact conservation results. Violin plot distributions of contact conservation for distance-based atomic contacts (Atomic), apolar contacts (Apolar), H-

bonds, and salt bridges, for (A) ribosomal and (B) non-ribosomal pairs of interologs separated into four groups of interface sequence identity (blue: 0–19%, brown: 19–

34%, green: 34–60%, red: 60–100%). The legend indicates how many interolog pairs are included in each category.

https://doi.org/10.1371/journal.pcbi.1012650.g004
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0–19% sequence identity group in particular has roughly one third fewer structurally aligned

amino acid-nucleotide pairs despite similar interface sizes (see supplementary results in S1

Text and panels C and D in S6 Fig), hence contact conservation in this group might be moder-

ately over-estimated compared to other groups because many amino acid-nucleotide pairs

cannot be structurally aligned due to strong divergence. The challenges in structural alignment

of such divergent interfaces will also translate into challenges for template-based modeling

based on such remote templates. On the contrary, templates at 20% to 30% sequence identity

do not seem to behave very differently from closer templates.

Contact conservation in the previously defined random baselines shows a small depen-

dency on the sequence identity category of the interolog pair before shuffling/resampling (pan-

els C and D in S4 Fig). This reflects an increasing correlation between CA-C3’ distances of

aligned amino acid/nucleotide pairs with increasing sequence identity (see supplementary

results in S1 Text).

Contact conservation within interolog groups. Ribosomal or non-ribosomal interfaces

can be further grouped according to structural homology connections; as mentioned earlier,

this grouping is consistent with evolutionary relationships within protein families and RNA

clans. We organized the 2,022 pairs of interologs into 141 groups, including 93 ribosomal and

48 non-ribosomal groups (see Methods). In each group, a node is an interface and interologs

are connected by edges; the resulting graphs are not always complete, as some interfaces are

not directly connected (not interologs) but connect through other interologs. We labeled each

of these groups with the most represented ECOD and (whenever possible) Rfam domains

among all interfaces in the group. To illustrate the variety of situations reflected by the global

distribution of contact conservation, we examined a few of the largest interolog groups, which

also correspond to well-known families of protein-RNA interfaces that are known to involve

unique interaction properties [48] (see S7 Fig and supplementary results in S1 Text). One of

the largest interolog groups involves proteins from the well-studied RRM (RNA recognition

motif) family [48,49]. In our dataset of high-resolution interfaces, this group contains 29 inter-

faces connected through 133 interolog pairs, spread over the full range of interface sequence

identities. In the RRM group, some pairs display very low H-bond conservation despite high

sequence identity and high atomic contact conservation; a single interface structure (at 2.5 Å
resolution) is responsible for this behavior, highlighting the importance of our strict selection

criteria to perform in-depth analysis of H-bond conservation (panel A in S7 Fig). The second

largest interolog group (19 interfaces connected through 154 interolog pairs) involves proteins

with domains from the ribonuclease H-like family, including some Argonaute proteins, but

also homologs such as endonuclease V. A number of pairs in this group actually display an

outlier behavior in our analysis, as they have high values of contact conservation for atomic

and apolar contacts as well as H-bonds and salt bridges, despite minimum interface sequence

identity falling in the 19–34% or 34–60% identity group. These outlier pairs correspond to

highly similar Argonaute proteins interacting with very different RNA sequences in a structur-

ally very similar manner (panel B in S7 Fig). Other large interolog groups include well-studied

interfaces between diverse ribosomal proteins (such as the L10e domain with bacterial large

subunit ribosomal RNA, panel C in S7 Fig, or the signal recognition particle SRP family) and

non-ribosomal families such as RNA helicases [50] (panel D in S7 Fig), viral RNA polymerases

and Cas9 protein families. Analysis of each of these groups can bring interesting insights into

the specifics of contact conservation for a given family of protein-RNA complexes. However,

smaller groups are difficult to analyze because they contain very few data points. Importantly,

each interolog group can be explored in the web interface and Jupyter notebook associated

with the present study (see last Results section and Data Availability Statement).
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Interface determinants of atomic and apolar contact conservation. We then explored

how different local interface properties might influence the conservation of atomic and apolar

contacts: secondary structure of interface amino acids and base pairing of interface nucleo-

tides, interface subregions assigned depending on solvent accessibility, and evolutionary con-

servation derived from a protein multiple sequence alignment. We performed this analysis on

the full dataset of interolog pairs, to identify global trends supported by a large number of data

points. However, the tendencies reported below also hold when analyzing the ribosomal and

non-ribosomal interologs separately.

We categorized contacts for each pair of interologs based on the type of secondary structure

(helix, strand, or coil) in which amino acids and their structural equivalents are involved (see

Methods). When amino acids have the same secondary structure type in both interologs,

whether this secondary structure type is helix, strand or coil, the average proportion of con-

served atomic contacts is 73%; in contrast, when amino acids change secondary structure, the

average conservation drops to 55% (panel A in S8 Fig). A similar but even stronger trend is

observed in the analysis based on RNA secondary structure, i.e. whether nucleotides are base-

paired or not in one or both interologs. The average contact conservation ratio drops from

90% (respectively 68%) when nucleotides remain base-paired (respectively, unpaired) in both

interologs to 23% when they change base-pairing status (panel B in S8 Fig). Strikingly, the ten-

dency is the same within pairs of remote interologs with low interface sequence identity (panel

C in S8 Fig). When nucleotides change base-pairing status between interologs, non-conserved

contacts correspond to a vast majority of contacts made by a base-paired nucleotide, and lost

in the interolog where the nucleotide is unpaired, rather than the reverse (see supplementary

results in S1 Text). A possible explanation for these non-conserved contacts might thus be that

the loss of nucleotide base-pairing leads to increased flexibility, compared to base-paired

nucleotides that have more limited possible contacts with the protein.

To further investigate determinants of atomic contact conservation, we classified protein

interface amino acids into core and rim regions (see Methods). Numerous studies have pre-

viously emphasized the distinctive characteristics of these subregions concerning composi-

tion and evolutionary properties in the context of protein-protein interactions [36,51,52].

We found that for protein-RNA interologs, atomic contacts within the core exhibit signifi-

cantly higher conservation compared to contacts in the rim region (panel A in S9 Fig). Spe-

cifically, the average conservation of atomic contacts involving amino acids from the core

regions in both interologs is 85%. In contrast, the average conservation of atomic contacts

involving at least one residue from the rim region in any of the two interologs is 72 to 74%

(p-value < 4e-56 based on Wilcoxon rank sum tests). Note that this analysis is limited to

contacts involving residues that remain at the interface in both interologs, therefore remov-

ing a large fraction of non-conserved contacts (see next section), which leads to rather high

average conservation percentages.

Finally, we analyzed atomic contact conservation according to position-specific amino

acid evolutionary conservation derived from a protein multiple sequence alignment (see

Methods). This property is especially interesting in the perspective of predictive develop-

ments, since it can be derived without any knowledge of the protein-RNA interface struc-

ture. We defined four groups of evolutionary conservation according to the minimum

amino acid conservation within a pair of structurally aligned contacts: 0–30%, 30–50%,

50–70%, and 70–100%, for which the average atomic contact conservation is 47%, 53%,

58%, and 68%, respectively (panel B in S9 Fig). This result confirms that the most evolution-

arily conserved amino acids within a protein family are also the positions that conserve

most often their protein-RNA structural contacts.
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Analysis of non-conserved atomic contacts

Non-conserved contacts involving residues that no longer make contacts. Given the

limitation to interface modeling that non-conserved contacts represent, we analyzed them in

greater detail. We first examined the cases where either the amino acid or the nucleotide (or

both) forming the non-conserved atomic contact not only “loses” the contact we are consider-

ing, but altogether does not make any contacts in the interolog; due to our contact-based defi-

nition of interface positions, this means that this amino acid or nucleotide no longer belongs

to the interface. We previously identified this phenomenon, which we called “switching out of

the interface”, as a major scenario of non-conservation observed in protein-protein interface

evolution [36].

In our dataset of 2,022 protein-RNA interolog pairs, on average, 11% of interface amino

acids (weighted by the number of atomic contacts they are involved in) switch out of the inter-

face in the interolog (Fig 5A) while the fraction is only 5% for interface nucleotides (S10 Fig).

These fractions rise to 21% and 17%, respectively, when not weighted by the number of atomic

contacts. Despite the low proportions of switching out residues, we found that switching out

was involved in a large proportion of non-conserved atomic contacts, 47% on average. Strik-

ingly, this proportion does not vary very strongly with sequence identity (Fig 5B). This means

that in remote interologs, the fraction of non-conserved contacts is higher compared to close

interologs, but so is the fraction of switching out residues, and the proportion of non-con-

served contacts related to switching out does not vary much. Among non-conserved contacts

related to switching out, 61% are cases where the amino acid switches out of the interface, 29%

where the nucleotide switches out, and 10% where both switch out.

Because switching out affects a small fraction of interface residues but a large fraction of the

non-conserved contacts, identifying switching out residues could be interesting in a prediction

perspective, before considering the conservation of each interface contact. Switching out resi-

dues display characteristic features that would be useful in this regard; for instance, 26% of

(unweighted) amino acids from the rim interface region switch out, as opposed to 17% from

the core region.

Fig 5. Analysis of switching out in contact non-conservation. A: Violin plot distribution of the percentage of switching out amino acids (weighted by the number of

atomic contacts in which each amino acid is involved) across the four ranges of interface sequence identity. The differences between any two distributions of switching out

among the four groups of sequence identities are statistically significant (p-value< 1.6e-13 in Wilcoxon rank sum tests). B: Violin plot distribution of the unweighted

percentage of non-conserved contacts related to switching out across the four ranges of interface sequence identity. The difference between 0–19% and 19–34%

distributions is significant (p-value = 8.4e-13 in Wilcoxon rank sum test), while the differences between 19–34% and 34–60%, and 34–60% and 60–100% are not (p-

values = 0.035 and 0.015 in Wilcoxon rank sum tests).

https://doi.org/10.1371/journal.pcbi.1012650.g005
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Compensation scenarios for non-conserved H-bonds. Numerous studies show that

hydrogen bonds play a crucial role in protein-RNA interactions by contributing to the specific-

ity, stability and function of the complexes [40,42,53,54]. As we observed a marked versatility

of hydrogen bonds, even between interologs with high interface sequence identity (Fig 4), we

conducted an in-depth analysis of non-conserved H-bonds, aiming to investigate potential

recovery mechanisms. In this analysis, we focused only on H-bonds involving the side chains

of amino acids; this simplifies the interpretation of possible compensation scenarios involving

evolutionary mutations affecting the amino acid nature. This explains why the fraction of con-

served H-bonds (light green slices in Fig 6A) is different compared to S3B Fig.

Across the four groups of interface sequence identity, we accounted for a large part of the

non-conserved H-bonds due to switching out or lost polarity of the sidechain (light blue and

dark green slices in Fig 6A, illustrated by light blue and dark green boxes in Fig 6B). A large

portion of the remaining non-conserved H-bonds (where the residues remain at the interface

and the amino acid retains a polar sidechain) can be explained by recovery mechanisms

involving other intermolecular H-bonds with a non-structurally aligned position in the

Fig 6. H-bond conservation and recovery mechanisms of non-conserved hydrogen bonds. (A) Pie plots representing the scenarios of H-bond conservation across the

four groups of interface sequence identity. The six categories represent conserved hydrogen bonds (ConsHb), non-conserved H-bonds due to switching out (Switching

out), non-conserved H-bonds due to non-polar character of the interface amino acid, leading to a loss of their ability to form H-bonds through their sidechain (Polarity

lost), non-conserved H-bonds involving amino acids that retained the ability to form H-bonds with neighboring nucleotides (Other interHb), non-conserved H-bonds

involving amino acids that retained the ability to form H-bonds but did not form them with nucleotides, rather with adjacent amino acids (Other intraHb) and other non-

conserved H-bonds where the amino acid retained the ability to form H-bonds but did not form them either inter- or intra-molecularly (OtherNC). (B) Structural

illustrations of four categories from the pie plot, from left to right: Switching out (switching out of nucleotide 193(G)), Polarity Lost (26(VAL) lost the ability to form H-

bonds through its sidechain), Other interHB (378(SER) forms a hydrogen bond with nucleotide 205(G), not structurally aligned with 149(G)) and Other intraHB (40

(ARG) no longer forms a H-bond with a nucleotide but forms an intramolecular H-bond with amino acid 35(MET)).

https://doi.org/10.1371/journal.pcbi.1012650.g006
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interolog (dark blue slices in Fig 6A, illustrated by dark blue box in Fig 6B) or intramolecular

H-bonds with a neighboring amino acid (dark purple slices in Fig 6A, illustrated by dark pur-

ple box in Fig 6B). A small fraction of the non-conserved H-bonds remains unexplained (pur-

ple slices in Fig 6A) and may correspond, for instance, to larger distance contacts mediated by

water molecules. These findings provide guidelines for both template-based modeling and

assessment of interfaces in protein-RNA docking poses.

Compensation scenarios for non-conserved salt bridges. Salt bridges form a subset of

hydrogen bonds involving short-distance ionic interactions. The conservation of salt bridges

among protein-RNA interologs is even lower than for H-bonds (Fig 4). We investigated recov-

ery scenarios in a manner very similar to H-bonds. Similarly to H-bonds, a large part of the

non-conserved salt bridges can be explained by switching out or loss of the basic chemical

property of the amino acid (light blue and dark green slices in Fig 7A, illustrated by light blue

and dark green circles in Fig 7B). However, among the remaining non-conserved salt bridges,

only a fraction can be explained by recovery mechanisms involving other intermolecular salt

bridges with a non-structurally aligned position in the interolog (dark blue slices in Fig 7A) or

Fig 7. Salt bridge conservation and recovery mechanisms of non-conserved salt bridges. (A) Pie plots representing the scenarios of salt bridge conservation

across the four groups of interface sequence identity. The six categories represent conserved salt bridges (ConsSB), non-conserved salt bridges due to switching out

(Switching out), non-conserved salt bridges because the interface amino acid is not basic in the interolog (Basicity lost), non-conserved salt bridges involving basic

amino acids that form salt bridges with neighboring nucleotides (Other interSB), non-conserved salt bridges involving basic amino acids that form salt bridges

with neighboring acidic amino acids (Other intraSB), and other non-conserved salt bridges (OtherNC). (B) Illustrations of non-conserved salt bridges due to

switching out (left, light blue circle) and loss of basic character (right, dark green circle). In the left panel, the salt bridge between 27(ARG) and 151(U) in interface

1HQ1_A_B is not conserved due to switching out of amino acid 372(LYS) from interface 2V3C_C_M; this amino acid still forms an intramolecular salt bridge

with neighboring amino-acid 406(ASP). In the right panel, salt bridge between 371(LYS) and 205(G) in interface 2V3C_C_M is not conserved in 1HQ1_A_B due

to hydrophobicity of the 371(LYS) structural equivalent, 26(VAL).

https://doi.org/10.1371/journal.pcbi.1012650.g007
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intramolecular salt bridges (dark purple slices in Fig 7A). This leaves a fraction of unexplained

non-conserved salt bridges (light purple slices in Fig 7A) that is larger compared to H-bonds.

Amino acids which remain basic but no longer form salt bridges can instead form intermolec-

ular H-bonds with neighboring nucleotides, but this scenario accounts for a very small fraction

(1–2%) of the total (hence, not singled out in Fig 7 and included in the OtherNC category).

These amino acids could also form longer distance electrostatic interactions or interactions

mediated by solvent molecules.

Web interface for the exploration of interolog groups and contact

conservation

To complement our study, we have developed a user-friendly web interface (see Methods)

allowing for the dynamic exploration of groups and pairs of interologs and the interactive

structural visualization of the 765 protein-RNA interfaces and 2,022 pairs of homologous

interfaces in our dataset. Starting from a global view of interolog groups (Fig 8A, also displayed

on the web interface home page), users can click on a group to display its network representa-

tion (Fig 8B) and details about the interolog pairs in this group. Users can then proceed to

explore either a single interface (by clicking on a node of the network) or a pair of interologs

(by clicking on an edge of the network). In the case of a single interface, contact details are dis-

played and the structure of the interface can be explored interactively (Fig 8C), including con-

tacts involving any given amino acid or nucleotide; various modes of representation can be

chosen. In the case of a pair of interologs, we display precomputed information about the con-

served and non-conserved contacts and the aligned interface structures can also be explored

interactively (Fig 8D). On all three pages accessible from the navigation menu of the web inter-

face (home page, interolog group page, and interface list page), users can search for specific

keywords within PDB, ECOD and Rfam descriptions of the macromolecular components, to

allow for the extraction of biologically relevant information from our data. Users can also

download relevant information as tables for either the full datasets or a given interface or pair

of interologs.

This web interface is freely accessible at https://bioi2.i2bc.paris-saclay.fr/django/rnaprotdb/.

Discussion

Protein-RNA interactions are critical for many biological processes, including gene expression,

RNA processing, and translation. Understanding the mechanisms underlying these interac-

tions is pivotal for improving structural prediction methods and for further drug design target-

ing these interactions. Our in-depth analysis of structural interologs provides crucial insights

into the evolution of protein-RNA interactions. We first highlighted that when protein-RNA

interfaces share a minimum of 25% sequence identity, they share similar overall interface

structures provided they display a similar protein fold. This is especially important for struc-

tural modeling of protein-RNA complexes, when aiming to identify templates or to retrieve

relevant homologous sequence data. We then built a large dataset of over 2,000 pairs of well-

resolved protein-RNA structural interologs, which enabled us to study the conservation of pro-

tein-RNA interface structures in great atomic detail. The high conservation of distance-based

atomic contacts, and especially of apolar contacts involving base-paired nucleic acids, offers a

reliable foundation for transferring these structural features of protein-RNA complexes in

template-based modeling. In parallel, the conservation of atomic and apolar contacts suggest

that they are key for interface stability and underscores their potential as robust features for

the development of machine learning predictors and for better identification of correct poses

in template-free docking (e.g. through propensity-based scoring functions taking evolutionary
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information into account, a strategy we previously found successful for protein-protein inter-

actions [37]). We further investigated the importance of interface sub-region and secondary

structure conservation. We evidenced increased contact conservation for evolutionarily more

Fig 8. Exploration of protein-RNA interfaces and interologs in our datasets. (A) Overall view of the 141 interolog groups. Nodes are colored by ECOD architecture

level information from the common ECOD domains in each group. (B) Network view of the largest interolog group (g141). Nodes are interfaces and edges are homology

relationships between interfaces. Edge colors reflect interface sequence identity (gray color scale—the darker, the higher the identity). (C) 3D structural visualization of a

single interface (1A9N_B_Q). The illustration shows a surface view for the protein colored by evolutionary conservation (from white to red, most variable to most

conserved) and a cartoon view for the RNA. Interface residues are highlighted as licorice. (D) 3D structural comparison of two homologous interfaces. The visualization is

focused on ARG 62 of 5WWE_A (yellow sticks). The structurally aligned position is shown (here, ARG 52 in 1A9N_B, green sticks) as well as the corresponding

contacting nucleotides (G 3 in 5WWE_B, aligned with G 12 in 1A9N_Q). These views can be explored interactively in the web interface of RNAprotDB (from panel A to

panel B to panels C and D): https://bioi2.i2bc.paris-saclay.fr/django/rnaprotdb/.

https://doi.org/10.1371/journal.pcbi.1012650.g008
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conserved interface regions, meaning that the most conserved interface amino acids also have

the most contact conservation. This latter feature is especially interesting in a prediction con-

text, e.g. when wondering which contacts can be transferred from a known protein-RNA inter-

face to a target homologous complex, since computing evolutionary conservation and

mapping it onto the protein surface does not require prior experimental knowledge about the

target protein-RNA interface structure. Conversely, the versatility of H-bonds and salt bridges,

even between interfaces with high sequence identity, prompts cautious consideration in tem-

plate-based modeling, and may offer insights into modulating the specificity of protein-RNA

complexes, especially by considering the possible recovery mechanisms involving neighboring

nucleotides or amino acids. Additionally, our analysis and the resources we provide cover a

diverse range of protein and RNA families. For the largest analyzed interolog groups, our care-

fully crafted dataset and our insights on protein-RNA interface evolution open new possibili-

ties for tailoring family-specific scoring metrics to further improve protein-RNA specificity

predictions. As an illustration of such specificity studies, a recent study used curated sequence

and structure data to gain insights into the recognition code for RRM-RNA interactions and

derive a specificity prediction score for this family [49].

In a previous study, we analyzed a dataset of around 1,000 pairs of protein-protein struc-

tural interologs [36], which provides us with a basis for comparing protein-protein and pro-

tein-RNA interface evolution. Protein-RNA interface evolution shows distinctive features,

with protein-RNA interfaces displaying a lower proportion of non-conserved contacts for all

contact types, even though our protein-RNA interface dataset contains many remote intero-

logs. The proportion of non-conserved contacts explained by switching out is slightly higher

in protein-RNA interologs compared to protein-protein interologs, despite the proportion of

switching out residues being much lower. Altogether, this would suggest that protein-RNA

interfaces are less versatile than protein-protein interactions, even if previous studies show

greater flexibility for both protein and RNA in protein-RNA interfaces compared to protein-

protein interfaces [19]. These observations help us to identify the most relevant keys to guide

the modeling of protein-RNA interactions.

Other possible implications of protein-RNA interface evolution include insights into prebi-

otic world interactions. Those were previously investigated through the analysis of small data-

sets of protein-RNA complexes resulting from in vitro evolution [55,56]. However, in the

present study we rather perform a statistically robust analysis of a large number of homologous

interfaces to derive general principles of protein-RNA interface evolution.

In conclusion, our study offers insights to advance understanding of protein-RNA interac-

tions and their evolution. It lays the groundwork for developing propensity-based scoring

functions and refining structural prediction methods. Finally, it opens perspectives into pro-

tein-RNA interface modulation and possible design of drugs targeting protein-RNA interfaces.

Future research should leverage these evolutionary insights in advanced protein-RNA model-

ing approaches building upon the latest deep-learning advances, such as AlphaFold3 [35] and

RosettaFold2NA [33]. Our insights into conservation of protein-RNA interfaces suggest that

these methods may be leveraging structural information from remote interologs in the training

dataset, raising the as yet unanswered question of how to fairly assess their generalizability.

Methods

Interface database construction

Fig 1 depicts the pipeline used to obtain the interface dataset. We collected 3D atomic struc-

tures of protein-RNA complexes from the Protein Data Bank [9] that contained at least one

protein polymer entity and one RNA polymer entity, resulting in a total of 4,173 structures as
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of 21 February 2022. For each PDB entry, we used Gemmi [57] to generate coordinates of the

biological assembly, which better represents the complexes in their functional form compared

to the asymmetric unit, and to assess pairwise heavy-atom distances between each amino acid

and each nucleotide. We defined a contact between an amino acid and a nucleotide if the mini-

mum heavy-atom distance between them was less than 5Å. The interface is defined as a set of

all amino acids and nucleotides involved in such inter-chain contacts. We also processed all

generated biological assembly CIF files using the software tool x3DNA v2.4 to assign base pairs

in RNA structures [58,59]. The complexes were divided into binary interfaces consisting of

one protein chain contacting either one RNA chain or two base-paired RNA chains if at least

one amino acid from the protein chain is in contact with two base-paired nucleotides, one

from each RNA chain. A total of 114,965 binary interfaces were identified in the complete

interface dataset.

As we aimed at a high-resolution study of interface contact conservation, we filtered out

NMR structures and structures with a resolution worse than 2.5 Å, as well as protein chains

shorter than 30 amino acids or containing only CA atoms, and RNA chains shorter than 10

nucleotides or containing only P atoms. We also excluded interfaces with fewer than 5 protein

or 5 RNA interface residues. Clustering was performed on the resulting 3,419 protein-RNA

(binary or ternary) interfaces, to group strictly redundant interfaces containing protein chains

with 100% sequence identity and RNA chains with 99% sequence identity or more (the RNA

redundancy threshold was taken from [12]). We used MMseqs2 [60] and CD-HIT [61] for clus-

tering protein and RNA sequences, respectively. The resulting interface dataset contains a repre-

sentative (chosen as the interface with the best resolution) for each of the 977 interface clusters.

Interface analysis

We then generated detailed structural information for the dataset of 977 representative pro-

tein-RNA interfaces. Using Gemmi [57], we recorded the number of interacting atomic pairs

(at a minimum distance of 5Å) involved in each amino acid-nucleotide contact and the num-

ber of apolar atomic pairs (focusing on carbon atoms). To characterize contacts of different

natures [62,63], we used x3DNA v2.4 [58,59] to identify π-stacking interactions, salt bridges

and hydrogen bonds (H-bonds), including details about whether each H-bond involves side-

chain/backbone for the amino acid and sugar/base/phosphate for the nucleotide. We also

assigned secondary structures for the protein amino acids using the DSSP algorithm [64]

through the Biopython Bio.PDB module [65]. We converted the DSSP output into three clas-

ses: helix (H, including DSSP H, G, and I categories), strand (E, including DSSP B and E cate-

gories) and coil (C, including DSSP T, S and - categories).

To determine the evolutionary divergence of each protein chain in our dataset, we gener-

ated multiple sequence alignments (MSAs) using 1 iteration of HHblits version 3.0.0 [66]

against the Uniref30 [67] version of February 2022. We filtered the obtained MSAs with HHfil-

ter [66] using a 30% minimum sequence identity with the query sequence and a diff parameter

to 80, limiting the number of sequences while ensuring sequence diversity in the MSA. The

Rate4Site software package was then used to calculate a conservation score for each position in

the protein sequence [68,69]. The calculated values were rescaled from 0 to 100, with higher

values associated with more conserved residues likely indicative of functional importance.

Rate4Site calculations failed for a subset of 38 interfaces in our dataset, and the corresponding

interologs are therefore excluded from evolutionary conservation analysis.

We divided the protein interface according to the core-rim model [51]. We calculated the

relative accessible surface area of the complex (rASAc) for the amino acids in each interface

using the Python module of freesasa, using a probe radius of 1.4 Å. Interface rim protein
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residues are those that have rASAc> 25% and all other protein interface residues were

assigned to the interface core region following previous work [51,52].

Structural alignment

We generated coordinates in the PDB file format for each of the 977 representative binary

interfaces. Using PDBFixer from the openMM Python module [70], we converted non-stan-

dard amino acids/nucleic acids to their standard counterparts (using the Chemical Compo-

nent Dictionary from the PDB) and we added missing atoms. We then performed all-against-

structural comparisons between the 977 interfaces, excluding pairs of interfaces that belong to

the same PDB entry and have one chain in common. For the remaining approx. 445,000 pairs

of interfaces, we used TM-align (Version 20190822) for protein structural alignment [43],

RNA-align (Version 20191021) for RNA structural alignment [44], and the updated version of

MM-align (Version 20191021) for protein-RNA interface structural alignment [45]. For each

pair of compared interfaces, we used the protein, RNA, and interface TM-scores provided by

each software tool (respectively TM-align, RNA-align and MM-align). The software provides

TM-scores normalized by each molecule/interface separately; we retained only the TM-scores

normalized by the smallest molecule/interface, as many of our comparisons involve complexes

of very different sizes.

Structural comparison metrics

We converted the alignment file from MM-align into a dictionary of structural correspon-

dence listing structurally aligned pairs of amino acids and nucleotides from each pair of inter-

faces. The interface overlap was computed for protein and RNA as the number of interface

amino acids or nucleotides that had a structural correspondent normalized by the size of the

smallest (protein or RNA) interface. For any given pair of structurally compared interfaces, all

following analyses of contact conservation were restricted to amino acids and nucleotides with

structural correspondents in both interfaces.

After superimposing interfaces with MM-align, we calculated the interface RMSD (Root

Mean Square Deviation), which measures the structural similarity between two protein-RNA

complexes at their interface, using coordinates of the P atoms for interface nucleotides and CA

atoms for interface amino acids.

In this study, we are using structural alignment as a gold standard since all considered inter-

faces have good resolution structural coordinates. Structure-based sequence identity was com-

puted for two aligned protein chains or RNA chains based on structural interface alignment

results, as the number of identical positions divided by the number of aligned positions. Inter-

face sequence identity was computed by considering only interface positions (as defined by the

minimum heavy-atom 5Å distance criterion). In general, e.g. with the goal of interface tem-

plate-based modeling or MSA-based predictions, interface structures might not be known in

advance. Hence, as a reference, we also computed a sequence-based sequence identity by

extracting reference sequences from the PDB (canonical sequences, where non-standard

amino acids and nucleotides are converted to their standard counterpart as much as possible)

and aligning separately protein sequences and RNA sequences for each pair of compared inter-

faces, using the FASTA36 program [71] as was done in the previous study of template-based

protein-RNA interface modeling [12]. Because this can lead to very short aligned segments for

dissimilar molecules, we weighted the sequence-based sequence identity by the sequence-

based alignment coverage (number of aligned positions divided by the length of the largest

molecule).
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Evolutionary classification of RNA-binding domains and RNA chains

We organized the 2,022 pairs of interologs into groups. Using the networkx [72] Python package,

we defined a graph where each of the 765 interfaces is a node and we added edges corresponding

to pairs of structural interologs. Groups of interologs were defined as the connected components

of this interolog graph. We obtained 141 groups containing between 2 and 29 interfaces.

ECOD (Evolutionary Classification of Protein Domains) [46] version 20230309 (develop288)

was used to annotate protein chains with its hierarchical classification system based on evolu-

tionary relationships and structural similarities [46,73]. We annotated each protein chain

involved in a binary protein-RNA interface according to all ECOD domains containing amino

acids within 5 Å of the RNA chain. Interfaces with more than one RNA chain were labeled with

the union of all ECOD domains including residues from all pairwise protein-RNA interfaces.

For each pair of interologs, we checked whether the sets of ECOD domain labels for the two

protein chains (when available) were identical or overlapping. We used the ECOD T-group

level for comparison (groups of homologs with similar topological connections). Each group of

interologs was labeled with the most represented (or set of most represented) ECOD domains

among all interfaces in the group; if no ECOD annotation was available or ECOD labeling was

not unambiguously possible, then the group was labeled ambiguous.

Rfam [47] is an evolutionary classification of RNA families. Rfam families are grouped into

clans when they are remotely homologous or when they can be aligned, but have distinct func-

tions. We retrieved the mapping of Rfam (version 14.8) families and clans to all RNA chains

belonging to the 765 interfaces in our dataset. We annotated pairs and groups of interologs

with Rfam labels in the same manner as described for ECOD labeling.

Calculation of interface contact conservation

The analysis of protein-RNA interface contact conservation was conducted similarly to our pre-

vious study of protein-protein interface evolution [36]. Interface contact conservation between

a pair of structural interologs (homologous interfaces) was computed only for contacts involv-

ing amino acids and nucleotides with structural correspondents in both interfaces. The conser-

vation of each type of contact was calculated using the Jaccard index (similarity coefficient),

which is the ratio of the number of conserved contacts (formed in both homologous interfaces)

to the total number of contacts formed in at least one interface. For atomic and apolar contacts,

this ratio was weighted by the average number of atomic contacts between two positions (only

for C atoms in the case of apolar contacts) if the contact existed in both interologs. If it only

existed in one interolog, the ratio was weighted by the number of atomic contacts in the intero-

log where it existed. We also computed the conservation of H-bonds, salt bridges and π-stacking

contacts assigned by x3DNA v2.4 by using the Jaccard index (no weighting).

For each pair of interologs, we computed the fraction of amino acids (respectively, nucleo-

tides) switching out of the interface, by weighing each amino acid (respectively nucleotide) by

the sum of all atomic contacts it makes within its respective interface. For each pair of intero-

logs, the fraction of non-conserved contacts linked to switching out was computed as the

unweighted ratio of the number of non-conserved contacts where the amino acid and/or the

nucleotide switch out of the interface compared to all non-conserved contacts.

For all structural visualization aspects in this manuscript (apart from Fig 8), we used the

ChimeraX software [74].

Web interface for interolog exploration and visualization

The web server hosted at https://bioi2.paris-saclay.fr/django/rnaprotdb/ provides an interac-

tive and comparative view of all 2,022 pairs of interologs in our database. It was generated
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using Django version 4.1.7 [75] and uses NGL Viewer [76,77] to allow users to freely manipu-

late and explore the interolog structures and their pre-calculated features. Additionally, users

can interactively explore interolog group networks thanks to the Cytoscape.js plugin version

3.28.1 [78]. The representations in Fig 8 were generated using these same tools.
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Software: Ikram Mahmoudi, Chloé Quignot, Carla Martins, Jessica Andreani.

Supervision: Jessica Andreani.

Visualization: Ikram Mahmoudi, Chloé Quignot, Jessica Andreani.

Writing – original draft: Ikram Mahmoudi, Jessica Andreani.

Writing – review & editing: Ikram Mahmoudi, Chloé Quignot, Jessica Andreani.
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