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Abstract

Sleep patterns in infancy and early childhood vary greatly and change rapidly during devel-

opment. In adults, sleep patterns are regulated by interactions between neuronal popula-

tions in the brainstem and hypothalamus, driven by the circadian and sleep homeostatic

processes. However, the neurophysiological mechanisms underlying the sleep patterns and

their variations across infancy and early childhood are poorly understood. We investigated

whether a well-established mathematical model for sleep regulation in adults can model

infant sleep characteristics and explain the physiological basis for developmental changes.

By fitting longitudinal sleep data spanning 2 to 540 days after birth, we inferred parameter

trajectories across age. We found that the developmental changes in sleep patterns are

consistent with a faster accumulation and faster clearance of sleep homeostatic pressure in

infancy and a weaker circadian rhythm in early infancy. We also find greater sensitivity to

phase-delaying effects of light in infancy and early childhood. These findings reveal funda-

mental mechanisms that regulate sleep in infancy and early childhood. Given the critical role

of sleep in healthy neurodevelopment, this framework could be used to pinpoint pathophysi-

ological mechanisms and identify ways to improve sleep quality in early life.

Author summary

Sleep is crucial for healthy neurodevelopment in infants and young children. Sleep pat-

terns in these early years vary greatly between infants, and can also change rapidly with

age. While the underlying mechanisms of adult sleep are well explored, it is not well

understood how those mechanisms change during infancy and early childhood. We used

a well-established mathematical model of sleep regulation to explore how maturing sub-

cortical sleep circuitry could explain the changes in sleep patterns in the longitudinal

sleep/wake data of four infants. Our results identified changes in the circadian rhythm’s

influence on sleep, the dynamics of sleep pressure accumulation, and a delayed response

of the circadian rhythm to light being required to produce similar sleep patterns to those
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of the real-life infants. This modelling is a step towards a better understanding of infant

and young child sleep.

Introduction

Sleep is fundamental to health in all stages of life and critical for neurodevelopment in early

life. Across many species, sleep patterns change dramatically from early life to adulthood, likely

reflecting differential functions of sleep and changing brain morphology across the lifespan

[1,2]. Sleep in human infancy is characterized by very long sleep durations (>12 h) and the

division of sleep into multiple bouts per day. As an infant ages, sleep bouts begin to consoli-

date, total sleep time decreases [3], and more sleep occurs during the night [4]. Night-time

sleep consolidates during the first few years of childhood, with fewer awakenings, and day-

time sleep bouts (naps) ultimately cease for most (though not all) children by age 5 years [5].

This results in a single, consolidated block of night-time sleep, which persists through adoles-

cence into adulthood. Surprisingly, it is still unknown which biological mechanisms drive

these striking changes in sleep patterns.

The neural circuitry that regulates sleep/wake patterns has been well characterized in mam-

mals [6]. Neuronal populations in the brainstem and hypothalamus serve as an ‘ascending

arousal system’ that promotes wakefulness via neuromodulation of the corticothalamic system.

Mutual inhibition between these wake-promoting neurons and distinct populations of sleep-

promoting neurons gives rise to a ‘sleep/wake switch’, which drives the distinction between

sleep and wake states [6–8]. Within this sleep/wake switch framework, sleep/wake patterns are

generally assumed to be driven by a combination of the circadian process (originating from

the brain’s central clock, the suprachiasmatic nuclei; SCN) [8,9] and the sleep-homeostatic

process (driven by accumulation of sleep-promoting factors in the brain such as adenosine)

[8]. Both of these processes are known to directly act upon the sleep/wake switch [6]. Changes

in sleep patterns across early life could therefore be driven by changes to the circadian process,

the sleep homeostatic process, or the circuitry of the sleep/wake switch itself.

Mathematical models have long been used to understand the mechanisms underpinning

sleep patterns. Even before the physiology of the sleep/wake switch was elucidated, it was

known that circadian and sleep homeostatic processes regulate sleep patterns in human adults

[10], and that differences in dynamics of either the circadian or sleep homeostatic process

could cause changes in sleep duration and the number of sleep bouts per day [11]. More

recently, physiological models of the sleep/wake switch have been developed [12–14], provid-

ing a powerful framework for linking sleep phenotypes (both healthy and pathological) with

underlying physiological mechanisms. This approach has provided insight into the basis for

individual differences in sleep and circadian timing in both healthy and disease states [15–18],

narcolepsy [19], sleep fragmentation [20], and differences in sleep patterns between species

[21,22]. Furthermore, these models have provided insights into the physiological processes

that drive age-related changes in sleep patterns from adolescence to old age [16,23]. To date,

however, we know very little about the physiological mechanisms that cause the profound

changes to sleep patterns during neurodevelopment in infants and children.

Here, we used a physiologically based model of the sleep/wake switch to identify the mecha-

nisms by which sleep patterns change across development from infancy through childhood.

We posited that parameters of the homeostatic and circadian drives in particular—for example

as implicated in adolescent development age [23]—are able to explain the major changes in

sleep patterns across development. We hence fitted the model to longitudinal sleep data across
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infancy to determine the trajectories of physiological parameters that underpin sleep

maturation.

Results

Sleep/Wake switch model

We used a previously validated model of the sleep/wake switch that includes the sleep homeo-

static process and a dynamic model of the circadian clock ([16]; see Methods for more details).

This is a mean-field model describing the ensemble activity of populations of neurons, and

produces sleep/wake behaviour through a mutual inhibition between sleep-promoting neu-

rons (the ventrolateral preoptic group; VLPO) and wake-promoting neurons (monoaminergic

group; MA) of the ascending arousal system. This switch is acted upon by the sleep homeo-

static process and the central circadian clock in the SCN, which is in turn affected by light.

Empirical sleep patterns

We examined longitudinal densely-sampled sleep activity data from four public domain data-

sets (Fig 1), each for a single infant:

1. Sleep diary data from 2 days to 548 days post birth (approx. 18 months);

2. Sleep diary data from 86 days to 535 days post birth (approx. age 3–18 months).

3. Actigraphy data from 7 days to 372 days post birth (approx. 12 months) [24].

4. Sleep diary data from 3 days to 182 days post birth (approx. 6 months) [25].

Details about the data sources and processing are in the Methods.

The common features of these data are: (1) erratic and not well entrained sleep patterns

immediately after birth, (2) eventual consistent sleep patterns containing daytime naps at simi-

lar times each day, and (3) changes in sleep patterns as the number of naps decreases and the

infant transitions into a new sleep pattern with different sleep timings.

The parameter space of sleep maturation

One of the primary defining characteristics of infant sleep is the increased amount of sleep

compared to adults (approximately 13–15 h per day during first few months of life), a charac-

teristic that typically decreases with development to around 13 h per day at the age of 2 years,

to 11–12 h throughout childhood, and 7–9 h in adolescence [26,27]. Moreover, immediately

after birth, sleep is broken into a large number of bouts [4], before consolidating to fewer

bouts of longer length. As an initial model exploration, we calculated total sleep duration

(TSD) and number of sleep bouts per 24 h day (BPD) as a function of four model parameters

via a systematic grid search. The four key parameters we chose to vary were based on previous

evidence that these parameters may underlie individual differences in sleep timing and struc-

ture [21,23,28,29]: μ, the rate of increase of sleep homeostatic pressure, which when increased

will increase TSD and BPD; χ, the characteristic clearance time for sleep homeostatic pressure,

which when decreased will increase BPD; vvc, the strength of the circadian drive (inhibition to

the VLPO), which when increased in magnitude (more negative) reduces BPD and advances/

delays sleep/wake patterns with respect to the daily light curve; and b, the phase-delay bias of

the circadian clock to light, which when increased delays sleep/wake patterns. A selection of

results from this grid search is presented in Fig A in S1 Text. One plausible trajectory through

the space that captures the main features of sleep development consists of: an initial high μ that
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decreases with age (but does not reach the adult value of *4.2 nM s during childhood), a χ
that starts low but rapidly increases, and increases in the magnitude of vvc (more negative).

Skeldon, Derks and Dijk [23] has previously found that sleep patterns in late childhood (age

10+) corresponded with a higher μ. Changes in vvc have already been suggested in the literature

[30–32], and in particular McGraw, Hoffmann, Harker and Herman [25] and Jenni, Deboer

and Achermann [24] showed that the circadian influence on sleep tends to be close to zero in

the days soon after birth as the infant loses the mother’s circadian signal and their own circa-

dian system (already active in utero [33,34]) matures in response to the ex utero environment.

Trajectories through parameter space inferred from empirical data

We next sought trajectories in model parameters that reproduce the specific empirical sleep

patterns of Fig 1. Using the output from the previously mentioned grid search, we sought to

find parameter combinations that minimized the difference between modelled and empirical

Fig 1. Empirical sleep/wake data from four infants. a) Sleep diary data from the Agenoria GitHub repository. b) Sleep diary data from the

Baby-data-viz GitHub repository. c) Sleep patterns derived from actigraphy data from Jenni, Deboer and Achermann [24]. d) Sleep diary data

from McGraw, Hoffmann, Harker and Herman [25]. See Methods for further details.

https://doi.org/10.1371/journal.pcbi.1012541.g001
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probabilities of being asleep per 30-minute interval across a day, for sleep/wake patterns aver-

aged across 7-day windows (see Methods).

We first present results for the infant with the longest recording (541 days, Infant 1, Figs 1A

and 2A). Fitting each daily sleep pattern independently showed that the model is able to cap-

ture the main features of the data (Fig 2B). Namely, the initial phase up to day *100 where

daily rhythms are emerging and sleep is highly fragmented, the onset of entrainment at a fixed

phase at day*120 where the consistent sleep pattern of two daily naps emerges, and persis-

tence of this regime up to around day 280 where the sleep pattern evolves from two naps to a

single nap each day. While the single nap sleep pattern is consistent throughout the second

half of model fit data, the timings of waking and falling asleep do not completely align with the

data. At the start of the trajectory (up to day *100) there is large variability in χ and vvc, with

these parameters exhibiting compensatory effects (decreases in χ coincide with decreases in vvc
and vice versa). In the first 100 days, the sleep patterns in the infant’s data differ markedly

from day to day, leading to the averaged sleep probability being relatively uniform across the

day (Fig 2A).

The trajectories of each parameter in the best-fitting combinations (Fig 2C), although

noisy, exhibit clear trends. For example, μ (the rise in homeostatic pressure from wake) is high

in the early months of Infant 1, reaching a maximum of 13.8 nM s−1 for the windows centred

Fig 2. Fitted trajectory of sleep maturation. a) The sleep/wake patterns of Infant 1 summarised by the probability of being asleep per

30-minute window, averaged across 7 days with 6 day overlap (7 day sliding window). b) The sleep/wake patterns for each best-fitting

parameter combination for each set of sleep probabilities in a). c) The trajectories of best-fitting parameter combinations, superimposed

with a Loess smoothed line (thick lines) with smoothing parameter αLoess = 0.2.

https://doi.org/10.1371/journal.pcbi.1012541.g002
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on days 17 to 21, before settling around μ = 8 nM s−1 for the rest of the trajectory (mean (SD)

after timepoint centred on day 120 of μ = 7.97 (0.388)). The circadian strength parameter vvc
starts close at zero (aligning with prior observation that there is negligible circadian influence

on sleep/wake cycling at birth [24, 25]), before increasing in strength to between -2.25 to -4.5

mV after day 100. The homeostatic clearance time, χ, starts small at around 5–10 h for some

time (smoothed χ estimate below 10 h until timepoint centred on day 30), then increasing

over time to eventually becoming relatively constant at between 30 and 35 h from day 130 to

day 265, then increases again to 45 h from day 280 onwards. The parameter b is high (b>0.95,

versus adult b = 0.4) and shows a slight decrease over time. While there are clear trends, there

also exists evidence of non-monotonicity in how the parameters change with development.

The variability in TSD in Infant 1 is reflected in the variations in μ (Fig 2C). The sleep pat-

terns in the early days of Infant 1 reflect the lack of discernible rhythm that is typical of new-

borns, which is also evident in the large variability in the parameters related to sleep timing

(χ, νvc, b) in the early days (Fig 2C). Although the model captures the highly polyphasic nature

of the sleep patterns and weak entrainment to clock time, this variability reflects the low iden-

tifiability of the parameters given the uncertainty in the empirical sleep probabilities. Many dif-

ferent parameter combinations can produce patterns that produce similar probabilities when

averaged across a number of days. For example, for the earliest days in the infant’s data (week

centred on day 5 in Fig B in S1 Text) there is considerable density at the lowest end of the cost

distribution across the grid, indicating that there are many parameter combinations that pro-

duce behaviours that have comparable similarity to the sleep patterns at the start of the data.

Later in the data when there is a clearer sleep pattern, the lowest cost exists at the end of a thin

tail, indicating increased identifiability of the model parameters with age.

Trends of best-fitting parameter combinations for all infants

We repeated the fitting for the other infants. The trajectories of best-fitting parameter combi-

nations for each infant are shown in Fig 3 (smoothed trajectories overlaid as an illustrative

aid). We anticipated differences between the individual trajectories, as the sleep patterns were

noticeably different between infants (Fig 1), for example with Infant 1 changing to a sleep pat-

tern of 1 nap per day before 300 days of age and Infant 2 not changing to 1 nap per day until

after 500 days of age. Nevertheless, there were many commonalities.

For Infants 1 and 3, we found an early rapid decrease in μ, while Infant 2 starts much later

(3 months) so appears to have missed that initial decrease. Infant 4 has a slower decrease in μ,

possibly due to the lack of parental intervention in sleep patterns [25] as the parents of Infant 4

explicitly did not influence the sleep patterns of the infant. Hence the slower decrease in μ in

Infant 4 may be a more natural decrease, compared to the faster decreases with the other

infants possibly being influenced by parental sleep schedule decisions. All four infants appear

to have individual-specific best fit values of the parameters, with the differences in μ reflecting

the individual differences in TSD.

Consistent among the datasets was the value of the parameter b, which predominantly con-

trols the phase response of the circadian drive to the solar curve. After the initial newborn

days, the best-fitting parameter combinations in each of the datasets tend to have values of

b�0.9, higher than the typical adult value of 0.4 [16, 29], indicating a phase-delayed response

to the solar curve compared to adults. The Infant 1 trajectory yields b values consistently 0.9–

0.95 around the time consistent sleep bouts emerge, similar to Infant 2 which reaches b = 0.95

at around day 300 when a consistent 2 nap sleep pattern emerges.

One consistent feature of the parameter trajectories is a positive relationship between χ and

vvc. While it was expected that vvc would become more negative (increase in strength [24, 25])
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Fig 3. The trajectories of best-fitting parameter combination for each infant. For each parameter and infant, the

best-fitting parameter value at each day (thin lines) is plotted with a Loess smoothed line (thick lines) with smoothing

parameter αLoess = 0.2. The day is the middle day of the sliding 7-day window.

https://doi.org/10.1371/journal.pcbi.1012541.g003
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with age, and χ would increase in age (to go from many bouts of sleep per day to consolidation

[21]), the compensatory effects of these two parameters obscures the main trend in both param-

eters. In Datasets 1, 2 and 3, there is a rapid increase in χ before becoming mostly steady across

time and only increasing when the number of bouts per day changes in the sleep patterns

(around day 280 in Infant 1, and day 500 in Infant 2). Infants 1 and 4 both have rapid decreases

in vvc during the youngest days, while Infants 2 and 3 start with strong vvc (large negative) before

weakening, largely corresponding to changes in χ. Infant 2 doesn’t begin until 3 months of age,

so it is possible that a rapid increase in the strength of vvc would have occurred before then.

The strong vvc values at the beginning of some of the trajectories (i.e., Infants 2 and 3) could

reflect parental intervention in the timing of sleep bouts throughout the day, rather than signal

from the SCN. Infant 4 (where the parents aimed to not explicitly influence the sleep patterns

of the infant), began with a small vvc as the best fit before increasing in strength. Infant 4 also

had a larger χ than Infant 1 and 3 in the first 100 days (though still less than the default adult

value of 45 h� ln 3.8). A χ value of�45 h does not occur in the trajectories of best-fit parame-

ter combinations until after day *280 in Infant 1. This suggests that even with a range of pos-

sible vvc values, a lower χ is still needed during infancy and early childhood, at least until the

sleep pattern is highly consolidated. It is possible that without parent intervention, Infants 1, 2

and 3 would have displayed sleep patterns that would have fit to smaller |vvc| and higher

(though not as high as typical adult) χ.

Relative contributions of parameters at different ages

Finally, we asked whether reduced parameter spaces permit more parsimonious fits to the

data, and whether different parameter combinations are more/less informative at different

ages. We systematically fitted the model to Infant 1, allowing only constrained subsets of two

or three parameters to vary, and assessed goodness of fit in terms of their cost (see Methods,

Eq 14) relative to fitting all four parameters (Fig 4). For the four-parameter fit (black line in

Fig 4A), the cost function value over time starts low, increases to a relatively stable value until a

decrease just after day 300 where the one-nap regime is well fitted (Fig 2A and 2B), before

increasing through to the end of the dataset where the model fails to capture the progressively

later evening sleep onset (Fig 2A and 2B). Systematically fixing one parameter (cool colours in

Fig 4A) or two parameters (warm colours in Fig 4A) naturally increases the fit cost, but some

parameter combinations fit better than others. We found that allowing μ to vary from its adult

value was essential, as fixing μ to an adult value (μ = 4.5 nM s) drastically increased the cost

function value at all ages (dashed line in Fig 4A). For the remaining subsets with fixed μ, we

used μ = 8.1 nM s (grid value of μ that was the best fit for most of the time when Infants 1 and

2 had consolidated, consistent sleep patterns, cf. Fig 3). We also found that fixing χ to an adult

value (χ = 45 h) tends to increase the fit costs, with those subsets tending to fit worse than

those fixing vvc and b (vvc = −3mV as most of best fit vvc values were between -2 and -4 mV so

we selected the middle of that range, and b = 1 given most of the infants best parameter fit

involved b = 1).

The different parameter subsets performed differently at different ages (Fig 4B and 4C). In

the first 200 days of the dataset, fixing one parameter tended to not increase the cost signifi-

cantly (increases of 8–37%) as compared to ages 12–18 months (last 200 days of Infant 1,

increases of 38–91%). Fixing χ resulted in the highest increase in total cost, while fixing μ at a

value consistent with infant and child sleep (8.1 nM s) gave the best overall three-parameter fit,

albeit at some cost relative to the four-parameter fit indicating that μ is still informative over

these ages. The increase in cost from fixing vvc to an adult value decreased with age, and the

increase in cost from fixing b to an infant value of 1.0 increased with age, supporting the
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notion that the circadian rhythm matures over infancy. At young ages, the best two-parameter

fits perform similarly to three- and four-parameter fits (Fig 4A and 4B) and the distribution of

costs has a higher density towards the minimum (Fig B in S1 Text). The three lowest cost two-

parameter fits each fix the parameter b, suggesting b = 1 could be a parsimonious solution for

the first three months of age, and the two highest cost two-parameter fits both fix χ, indicating

the importance of varying χ in early infancy (Fig 4B).

Discussion

Computational modelling of sleep has focused on adult sleep, leaving the rapid and profound

development of sleep patterns across infancy and early childhood largely unexplained. Here,

Fig 4. Relative contributions of subsets of parameters at different ages in infancy. a) The minimum cost function value over time for

different parameter constraints in Infant 1. b) The total cost value over the first 200 days of Infant 1 (seven day windows from midday 5 to

204). c) The total cost value over the last 200 days of Infant 1 (seven day windows from midday 345 to 544). Subsets of parameters with two

fixed parameters have the fixed value from the corresponding single fixed parameter sets (connected by dashed lines in b and c), that is

m ¼ 8:1 nM s� 1; w ¼ 45 h; nvc ¼ � 3 mV, and b = 1.

https://doi.org/10.1371/journal.pcbi.1012541.g004
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we used a computational model to infer the physiological changes that drive normal sleep mat-

uration. The model reproduced the observed changes in the probability of being asleep in

30-minute time bins throughout the day in the first 2 years of life, reflecting the characteristic

maturation of sleep duration, sleep fragmentation, and sleep timing. We found that the under-

lying biological processes appear to mature at different rates, with the strength of circadian

rhythms increasing rapidly after birth, sleep homeostatic accumulation and the circadian sys-

tem’s response to light maturing slowly, with these processes likely continuing into childhood

or adolescence, and sleep homeostatic clearance rapidly slowing over infancy.

Our findings reveal an important role for four key parameters in the maturation of sleep/

wake patterns. Two of these parameters reflect changes in the sleep homeostatic process, one

represents the strength of the circadian drive, and one represents the relative sensitivity of the

circadian clock to phase-delaying light. While there were similar trends between the four

infants we examined, there were also notable differences in when and how the trajectories

evolved. This is consistent with the large heterogeneity in infant sleep behaviour [3, 5]. In

adults, it is well established that there are large inter-individual differences in sleep and circa-

dian physiology [35–38]. While inter-individual differences in sleep and circadian physiology

are not yet well understood in infants, our work provides a novel method for potentially infer-

ring these differences. This approach could be used to understand the reasons for pathological

sleep conditions and to propose solutions tailored to an individual’s physiology.

In previous work, this computational model has been used to simulate sleep/wake patterns

in older age groups, from adolescents through to older adults [23]. However, this is the first

time the model has been applied to simulating sleep/wake patterns in infants. Compared with

previous fitting of the same model to adults, our results reveal systematic differences in

inferred physiological parameters, which in most cases align with theories of circadian and

sleep homeostatic development. Specifically, we found shorter timescales for sleep homeostatic

clearance and accumulation. These findings are consistent with previously proposed theories

[27] and consistent with previous modelling work showing that such homeostatic differences

drive more rapid sleep/wake cycling in children [39], and in species that sleep polyphasically,

similar to human infants [21,22]. This result also aligns with that of Jenni, Achermann and

Carskadon [40] and Skeldon, Derks and Dijk [23], whereby the rate of accumulation of sleep

pressure during wakefulness (μ) continues to decrease throughout adolescence from the higher

childhood values to the lower adult value. We also found circadian amplitude was generally

weaker in the first ~100 days of life compared to adults, consistent with the observation that it

takes time for robust diurnal rhythms to emerge after birth [24,25] and evidence from animal

studies that the circadian system is still undergoing development after birth [32]. Finally, we

inferred an increased sensitivity to phase-delaying light in infants compared to adults, consis-

tent with a recent study showing quite large phase delays in children in response to evening

light stimuli [41].

An interesting observation from our findings was that the enhanced sensitivity to phase-

delaying light remained robustly the case across the full age range that we explored. We

inferred b�1 in each of the four infants’ data versus b�0.4 in adults. This suggests that matura-

tion of the circadian phase response to light may occur over a longer time period. This seem-

ingly aligns with findings showing enhanced sensitivity of the circadian system to light in

young children based on melatonin suppression to evening light [42], and greater light sensi-

tivity in early-to-mid adolescence compared to late adolescence [43]. Collectively, these find-

ings suggest that there are likely pubertal changes in how the human circadian system

responds to light.

Newborn and early infant sleep is characterized by high BPD, with many night awakenings

and bouts of sleep throughout the day. Both fast homeostatic clearance (low χ) and weak
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circadian drive (low |vvc|) can produce polyphasic sleep (BPD> 1), though to produce

BPD> 4 a lower χ is required. While it is expected that the circadian drive to sleep would start

at close to 0 before strengthening [24,25], our modelling suggests that both χ and vvc have dif-

ferent values in infancy versus adulthood, and thus developmental changes in both parameters

would occur during infancy. Given the complementary relationship between the two parame-

ters (Fig A, panel c in S1 Text), where changes in one can be offset by changes in the other to

have consistent BPD, it is difficult to pinpoint exactly how each parameter would change with-

out a further constraint. Such a constraint could be informed by animal studies into the devel-

opment of the sleep homeostatic process in infancy (e.g. sleep deprivation studies), or

modelling circadian markers such as cortisol or core body temperature.

There are some important limitations to this work. First, we made several simplifying

assumptions in this model, which could be investigated as ways to refine model performance

in future work. For instance, the relatively simple assumptions regarding the environmental

light exposure patterns and the model’s freedom to sleep and wake freely. We have not mod-

elled other factors that could affect sleep. For example, in infants the timing of each sleep bout

can be influenced by feeding needs, the external environment (e.g. loud noises), and an inabil-

ity to self soothe after brief awakenings. Moreover, interventions by parents/carers can change

an infant’s sleep schedule, for example by encouraging naps at certain times, attempting to

consolidate naps, or promoting sleep onset at night. While we expect development is a contin-

uous process, there exists in the model parameter space between the 2-nap and 1-nap sleep

behaviour, combinations of parameters that produce behaviour which alternates between

1-nap and 2-naps. Parents may intervene at this point to impose a 1-nap solution. These exter-

nal forces may result in changes in parameters that do not actually reflect changes in the

underlying physiological processes, thus reducing the model’s accuracy and affecting the inter-

pretation. Notably, this model can be used to simulate constraints on sleep timing [16,17,44],

meaning that such behaviours could theoretically be incorporated to more accurately model

individual circumstances. Future work could also incorporate effects of other environmental

stimuli, such as noise [20] or sleep-encouraging behaviours from parents, to more accurately

describe the inputs to the sleep model. While we have attempted to ameliorate stochastic

effects by fitting to sleep patterns averaged over a week, influences that are consistent from day

to day would affect our parameter estimates. Hence some sudden jumps in inferred parameter

values may reflect the model attempting to compensate for external influences. The observed

non-monotonicity in the trends may also be a result of these external forces. Other causes may

be identifiability issues, as well as the interdependence between parameters leading to any

non-monotonicity in one parameter being reflected in other parameters. Nevertheless, we

expect that the longer and slower changes do reflect the main features of sleep maturation. We

anticipate that incorporating noise in the model would lead to greater day-to-day variability in

the sleep/wake patterns, and potentially a greater number of sleep bouts. This may change

some of the parameter estimates.

Second, while we found differences in the parameter trajectories between the infants, the

limited sample size makes it difficult to draw conclusions about the heterogeneity in sleep pat-

terns in infancy, as well as the differences in recording methods (sleep diary vs actigraphy)

which can bias estimates in TSD and sleep onset time [45] with the particular complications of

using actigraphy in infancy well documented [46] including underestimating day time sleep

and dependence on classification algorithm. Heterogeneity in recording methods likely

reduces the identifiability of parameters at the cohort level; future work would benefit from

large datasets with fixed recording protocols. Moreover, while Infant 4 [25] is an example of

parents having as little input as possible to the sleep times, sleep timings from the other infants

are influenced in some way by parent/carer decisions unique to each family. Third, while we
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have selected physiological parameters in the model that are well motivated by theory and by

empirical evidence, we cannot exclude the role of other physiological mechanisms in also con-

tributing to developmental changes in sleep/wake patterns.

While previous sleep/wake modelling has covered the period from early adolescence to old

age, the work presented here extends our understanding of sleep/wake regulation into infancy.

We present proof-of-principle for individualized estimation of parameters governing the

development of human infant sleep patterns. It should now be possible to map the full lifespan

trajectory in sleep maturation as detailed data become available, which is increasingly feasible

with the rise of sleep diary apps and wearables. Beyond understanding natural development,

our modelling framework could also be used to understand the underpinnings of sleep disor-

ders in children, for example by inferring the model parameters for specific disorders, e.g.

sleep disordered breathing [47]. This could lead to an improved understanding of the underly-

ing neurobiology of such disorders, as well as revealing model informed ways to address these

issues. The model could also be used to develop optimised sleep schedules for children, where

improvements in sleep could lead to improvements in neurodevelopment and cognition, simi-

lar to work that has been done for adolescence [16,48]. We thus anticipate that sleep modelling

will be a valuable tool in paediatric sleep research.

Methods

Sleep/wake switch model

The mutual inhibition between the MA and VLPO neuron populations (red and blue respec-

tively in Fig 5) is governed by Eqs 1 and 2 [19], respectively,

tm
dVm

dt
¼ � Vm þ nmvQv þ A; ð1Þ

tv
dVv

dt
¼ � Vv þ nvmQm þ D; ð2Þ

where

Qj ¼
Qmax

1þ expð� ðVj � yÞ=sÞ
; j ¼ m; v: ð3Þ

The mean firing rate and mean cell body potential of the neuron populations j = m,v are Qj

and Vj, respectively, and A is excitatory input from the orexinergic and cholinergic neurons

[19,49]. The vab terms represent the strength of the input/connection from the neuron popula-

tion/drive b into neuron population a. For example, vmv is the strength of the VLPO input into

the MA group.

The sleep drive to the VLPO is the term D in Eq 4, which is the weighted sum of the sleep

homeostatic process (H), circadian process (C), and constant background input to the VLPO

(D0) which represents the sum of all other inhibitions and excitations to the VLPO [20]:

D ¼ nvhH þ nvcC þ D0: ð4Þ

The sleep homeostatic process H, the process by which sleep-inducing chemicals such as

adenosine build up in the brain (particularly the basal forebrain) during wakefulness and clear

during sleep, obeys

w
dH
dt
¼ � H þ mQm; ð5Þ

PLOS COMPUTATIONAL BIOLOGY Mapping the physiological changes in sleep regulation across infancy and young childhood

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012541 October 21, 2024 12 / 19

https://doi.org/10.1371/journal.pcbi.1012541


where χ is the characteristic clearance time of the somnogens, and μ is the rate of increase in

the level of somnogens, assumed to be proportional to the activity of the wake-promoting

group MA, due to the correspondence between MA activity and arousal state [19].

The circadian process C is defined by

C tð Þ ¼
1

2
1þ 0:80y � 0:47xð Þ; ð6Þ

where x and y are the variables of a forced, modified van der Pol oscillator [28] defined by

k
dx
dt
¼ g x �

4x3

3

� �

� y
24

f tc

� �2

þ kB

 !

; ð7Þ

k
dy
dt
¼ xþ B; ð8Þ

dn
dt
¼ l a0

~I
I0

� �p

ð1 � nÞ � bn

 !

; ð9Þ

where n is the fraction of activated photoreceptors and B is the drive from the photoreceptive

Fig 5. Schematic of the sleep model. The sleep/wake states are produced by mutual inhibition between the sleep-

promoting VLPO (blue) and wake-promoting MA neuronal populations (red). The MA receives excitatory input from

orexin neurons and cholinergic (Ach) neurons. The sleep drive is a combination of a homeostatic sleep drive (purple)

and a light-entrained circadian drive (green). The circadian drive is entrained by the daily light cycle (yellow), and

gated by the arousal state (no influence from light when asleep). Arrows denote excitatory connections, flat line ends

denote inhibitory connections.

https://doi.org/10.1371/journal.pcbi.1012541.g005
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pathway to the circadian pacemaker [50],

B ¼ G 1 � nð Þ 1 � bxð Þ 1 � byð Þa0

~I
I0

� �p

; ð10Þ

~I ¼
LðtÞ; Vm > Vv

0; Vm � Vv

; ð11Þ

(

and where L(t) defines the light level, with

L tð Þ ¼ le þ
ðld � leÞ

2
tanhðcðt � s1ÞÞ � tanhðsðt � s2ÞÞ: ð12Þ

This light function describes a combination of brighter exposure to light levels during the

day (due to a combination of indoor and outdoor light sources), and exposure to indoor artifi-

cial light during other hours of wakefulness. The minimum light level in the evening is given

by le, and maximum light level during the day is given by ld. The term c defines the steepness of

the solar curve, with the change from le to ld occurring around the time s1 (dawn), and the

change from ld to le occurring around the time s2 (dusk). Values for s1, and s2 were taken from

Skeldon, Phillips and Dijk [16]. We used 20 lux for le and 1000 lux for ld to more closely match

the light infants and young children would experience while awake [51].

Wake is defined as when Vm>Vv. Parameter values are given in Table 1.

Implementation

We implemented the model in MATLAB R2021a using the ode23s solver. The model was solved

for all combinations of parameter values as listed in Table 2, for an initial time of 4 weeks to

remove transients caused by initial values, then using the last value of the initial run as the

starting values, solved for a time period of 35 days to produce a sleep/wake state time series.

We calculated sleep characteristic summary measures on the last 14 days of the generated time

series. To create the windows of sleep probability (e.g. Fig 2B), we interpolated the time series

to have uniform time points, and the probability of being asleep in each half an hour time win-

dow was calculated on the last seven days of the time series.

Sleep characteristic summary measures

There is considerable variability in how studies characterize sleep at different ages. Here we

focus on two measures that are applicable across the age range explored: the total sleep

Table 1. Parameter values used in modelling.

Sleep/wake regulation Circadian Light

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

Qmax 100 s-1 vvh 1.0 mv nM-1 α0 0.16 κ 12/π h c 1/6000

θ 10 mV vvc *mV I0 9500 lux γ 0.23 le 20 lux

σ 3 mV D0 -10.2 mV p 0.6 f 0.99669 ld 10000 lux

A 1.3 mV χ * h b * τc 24.2 h s1 8 h

vvm −2.1 mV s μ * nM s G 19.9 k 0.55 s2 17 h

vmv −1.8 mV s λ 60

τm,j 10 s β 0.013

*no fixed value as it is part of the grid of values

https://doi.org/10.1371/journal.pcbi.1012541.t001
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duration (TSD) per 24 h (midnight to midnight), and the number of bouts of sleep per 24 h

(BPD, in particular in the model, the number of state transitions per 24 h divided by 2).

Parameter grid search

We performed simulations varying four parameters that could plausibly vary with age and

which have been previously shown to affect sleep patterns in a way that could account for

developmental changes. The specific parameters used and their ranges are presented in

Table 2. The circadian coefficient vvc is negative, as the circadian rhythm acts to inhibit sleep

in the model. Because of the nonlinear relationship between χ and the number of sleep bouts

per 24 hours, we initially varied χ on a logarithmic scale. A further set of χ and vvc values were

added to improve fitting given the effect of χ on sleep timing [28]. We set physiological bounds

on each parameter based on previous parameter range estimates and biological constraints

[29,49]. The ranges of χ and μ were chosen to be able to produce the infant sleep characteristics

of large total sleep durations (high μ) and many bouts of sleep (low χ). We updated the feasible

constraints of μ to allow infant sleep, as per Phillips and Robinson [49], using an upper bound

of infant sleep and wake times of 18 and 6 hours [3], the explored range of μ was increased to

15.9 nM s.

Extracting and converting the empirical data

Infant 1:

Sleep diary data taken from the Agenoria package (https://github.com/jiuguangw/

Agenoria) collected from a male infant by Jiuguang Wang (www.robo.guru), used for aca-

demic purposes under CC BY-NC-SA 4.0. Data was recorded as sleep onset and offset time.

We used only complete days of data.

Infant 2:

Sleep diary data taken from the Baby-data-viz package (jitney86 https://github.com/

jitney86/Baby-data-viz), used for academic purposes under MIT license. Data was recorded as

whether the infant was awake, awake and feeding, or asleep, in 15 minute intervals. We used

only complete days of data. No information on biological sex given.

Infant 3:

Actigraphy data from a female infant, converted to rest/activity using a cut-off of 5 activity

counts per minute as per Jenni, Deboer and Achermann [24]. Periods of one hour or more

with zero activity were considered missing data and removed.

Infant 4:

Sleep diary data taken from a scan of the published image from McGraw, Hoffmann, Har-

ker and Herman [25]. Data from a male infant was originally manually recorded, and was

Table 2. Parameter ranges defining the grid search parameter space.

Parameter Description Adult value Grid Search Range

χ Characteristic clearance time for sleep homeostatic pressure. Lower value results in sleep

pressure dissipating faster.

45 h (ln(45)

= 3.8)

15 h to 45 h in steps of 1 h, and for

ln χ, 1.5 to 3.8 in steps of 0.1

(ln χ2[1.5,3.8],χ2[4.5 h,45 h])

μ Accumulation rate for sleep homeostatic pressure during wake. Higher number means faster

accumulation.

4.2 nM s 2.1 nM s to 15.9 nM s in steps of 0.3 nM s

vvc Strength of circadian drive. More negative values mean a stronger circadian drive. -3.37 mV -7 mV to 0 mV in steps of 0.5 mV

with additional steps from -3.5 mV to -1.0

mV in steps of 0.25 mV

b Parameter determining shape of the circadian clock’s phase-response curve to light. Higher

values bias the phase-response curve toward phase delay.

0.4 0.4 to 0.7 in steps of 0.1, 0.8 to 1.0 in steps

of 0.05

https://doi.org/10.1371/journal.pcbi.1012541.t002
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published with feed times, sunsets, sunrises and other information overlaid. The image was

scanned in black and white, imported to Matlab as numeric array via the imread function (scale

from 0 to 255 where black is 0 and white is 255), and a cut-off used to distinguish between wake

and sleep (cut-off of 200). Horizontal lines of pixels were manually chosen for extraction to rep-

resent each day. Extra information (sunrise, sunsets etc.) was removed manually.

It should be noted that the data collection method for each subject is different, which is a

clear limitation to this work.

Fitting to empirical data

To facilitate fitting, for both the data and the model simulations we calculated the probability of

being asleep by clock time, using half-hour clock time bins, computed using 7-day sliding win-

dows for averaging (long enough to aggregate data, and shorter than the timescale on which

most developmental changes occur) with 6-day overlap (sliding step of 1 day). We assessed sim-

ilarity between the model and the data using a cost function based on sum of squares:

Cost ¼
X

30 minute windows

ðprobdata � probgridÞ
2
; ð13Þ

With Total Cost normalised to a time period of n days given by,

Total Cost ¼
1

n

X

n days

Cost; ð14Þ

The parameter combination that minimized the cost function was identified for each slid-

ing window week in the sleep datasets.

Since the sleep/wake patterns in each of the empirical datasets were not fully consolidated

(all included daytime napping), we used only parameter combinations that produced times

series with an average bouts per day of 1.5 or more. This allowed the trajectory algorithm to

only consider non-consolidated sleep/wake patterns, while not biasing the fitting toward time

series with a pre-specified number of bouts. We also limited the search space for the best-fit-

ting parameter combinations to those with a pacemaker period close to 24 hours (between

23.995 h and 24.005 h). Ties in optimal cost function value between parameter combinations

(which could often occur when vvc = 0 resulting in b having no effect on sleep patterns) were

decided based on the closest pacemaker period to 24 h. The period (τobs) of the circadian pace-

maker (the modified forced van der Pol oscillator, Eqs 7 and 8) was calculated by from the

oscillator’s rate of phase accumulation:

c ¼ arctanðy; xÞ; ð15Þ

tobs ¼
2p

ðcend � cstartÞ=ðtend � tstartÞ
: ð16Þ

Supporting information

S1 Text. Supplementary 1 –Selection of results from grid sweep. Supplementary 2 –Distri-

bution of cost function value for Infant 1. Supplementary 3 –Comparison of optimal parame-

ter combinations with and without period constraint. Supplementary 4 –Summary of fitted

parameters for specific sleep pattern periods.
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