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Abstract

Apolipoprotein E (ApoE) polymorphisms modify the risk of Alzheimer’s disease with ApoE4

strongly increasing and ApoE2 modestly decreasing risk relative to the control ApoE3. To

investigate how ApoE isoforms alter risk, we measured changes in proteome homeostasis

in transgenic mice expressing a human ApoE gene (isoform 2, 3, or 4). The regulation of

each protein’s homeostasis is observed by measuring turnover rate and abundance for that

protein. We identified 4849 proteins and tested for ApoE isoform-dependent changes in the

homeostatic regulation of ~2700 ontologies. In the brain, we found that ApoE4 and ApoE2

both lead to modified regulation of mitochondrial membrane proteins relative to the wild-type

control ApoE3. In ApoE4 mice, lack of cohesion between mitochondrial membrane and

matrix proteins suggests that dysregulation of proteasome and autophagy is reducing pro-

tein quality. In ApoE2, proteins of the mitochondrial matrix and the membrane, including oxi-

dative phosphorylation complexes, had a similar increase in degradation which suggests

coordinated replacement of the entire organelle. In the liver we did not observe these

changes suggesting that the ApoE-effect on proteostasis is amplified in the brain relative to

other tissues. Our findings underscore the utility of combining protein abundance and turn-

over rates to decipher proteome regulatory mechanisms and their potential role in biology.

Author summary

We present a method to quantify and compare in vivo regulation of protein synthesis and

degradation for thousands of individual proteins. Using this method, we compare the

impact of ApoE isoforms which are known to bias the risk for Alzheimer’s disease. We

saw a pattern of changes that links together many published observations in a systematic

way to identify biochemical trends increasing the risk of Alzheimer’s disease.
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Introduction

Apolipoprotein E (ApoE) is one of the lipoproteins used for the transport of lipids and choles-

terol throughout the body and the primary transporter in the brain. The three major subtypes

of human ApoE—ApoE2, ApoE3, and ApoE4—differ by 2 amino acids and exhibit allelic fre-

quencies of 8.4%, 77.9%, and 13.7%, respectively. [1,2] The ApoE3 allele is considered the nor-

mal or wild-type, and the behavior of the E2 or E4 isoforms differs in measurable ways. The

ApoE2 protein isoform, characterized by an R158C substitution relative to the ApoE3, has

been associated with decreased affinity for the LDL receptor [3,4], while the ApoE4 protein

isoform, which features a C112R substitution relative to ApoE3, favors binding to very-low-

density lipoprotein receptors [3,4]. Thus, these seemingly minor genotypic changes may lead

to modified receptor mediated signaling, lipid availability and metabolic function, or a combi-

nation of factors.

Both ApoE2 and E4 modulate disease risk relative to ApoE3. For example, Ferrer et al. [5]

observed a ~5-fold increase in Alzheimer’s Disease (AD) prevalence in carriers of the ApoE4

allele relative to ApoE3 carriers and a decreased risk (~0.5 fold) in individuals expressing the

ApoE2 allele. Although ApoE2 expression protects against AD, its expression is associated

with the increased incidence of familial type III hyperlipoproteinemia—a disorder character-

ized by an inability to metabolize lipids including cholesterol and triglycerides.[6] ApoE iso-

forms have also been implicated in the development of Parkinson’s disease [7], vascular

pathology [8], and most recently, COVID-19 prognosis[9].

Some mechanistic details have been identified for how the ApoE alleles modulate an indi-

vidual’s risk for disease. ApoE is a transporter of amyloidβ [10–13], a widely recognized bio-

marker in AD development. ApoE-isoforms modulate brain mRNA expression, presumably

in response to changes in lipid availability[14] as well as direct transcriptional effects.[15] Here

we used both quantitative and kinetic proteomics to explore the impact of human ApoE geno-

types in the proteome of mice (Fig A in S1 File). Both approaches leverage liquid chromatogra-

phy and mass spectrometry (LC-MS) to identify and quantify thousands of proteins (Fig 1A).

We apply a simplified kinetic model of proteostasis (Figs 1B and B in S1 File) combining turn-

over rate and concentration data to reveal ApoE isoform-dependent regulation of protein syn-

thesis and degradation. We investigated the liver and brain, because there is strong evidence

that of the ~16 major apolipoproteins, only ApoA1 can cross the blood brain barrier. [16] So

although chemically identical, ApoE is found in two separate pools. The brain produces its

own ApoE using astrocytes [4,17], whereas ApoE for the rest of the body is produced in the

liver by hepatocytes [8,18]. Our analysis identifies key brain-specific proteostasis changes, as

evidenced by pathway-level differences in synthesis and degradation. Building upon a signifi-

cant body of literature and this proteome scale study, we propose a unifying mechanism

wherein ApoE alleles systemically impact cellular proteostasis through alterations in endoso-

mal trafficking, mitochondrial function, and proteo-lysosomal activity.

Results

Proteome ontology analysis

In our analysis, we identified 4,849 proteins in the brain tissue across the three ApoE-isoform

groups (n = 47). From these, we determined protein abundance and turnover rate FCs for

comparisons: ApoE2 vs. ApoE3 (E2vsE3) and ApoE4 vs. ApoE3 (E4vsE3). Here, ApoE3 serves

as the reference ’normal’ control. We quantified 3,532 abundance FCs for both the E2vsE3 and

E4vsE3 comparisons (S2 and S3 Tables). With a smaller number of turnover rate FCs 1,430 for

E2vsE3 and 1,405 FCs for E4vsE3 because of the more rigorous statistical filtering criteria.

PLOS COMPUTATIONAL BIOLOGY Proteostasis adaptations in mouse brain

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012407 December 12, 2024 2 / 29
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We focused on ontologies from six databases: GO Function, GO Component, GO Process,
WikiPathways, Reactome, and KEGG. We calculated the average abundance FC (Δabundance)

and turnover rate FC (Δturnover) for the proteins observed in each ontology (Please refer to

the Ontology-level Calculations in the methods section). This yielded ~2700 ontology-level

comparisons of average Δabundance and Δturnover calculations for both E2vsE3 and E4vsE3

(S4 Table). The interpretation (Fig 1C) relies on the traditional understanding of protein turn-

over, contextualizing changes in protein expression. It offers a lens to assess the variances in

the steady states of ApoE genotypes [19]. Using a one-sample t-test, we discerned which ontol-

ogies deviated significantly from a median Δabundance of 0. In the E2vsE3 comparison, we

Fig 1. Quantifying ApoE-dependent proteome regulation A. Homozygous ApoE transgenic mice (ApoE2, E3, or E4, n = 24 each) were given 8% D2O

drinking water for up to 32 days. Peaks Studio (Bioinformatics Solutions Inc.) was used for peptide-protein identification (IDs) and quantitation while

Deuterater software was used for turnover rate calculation. B. A simple proteostasis model relates protein abundance ([protein]) and turnover rates to in vivo

synthesis and degradation. C. Regulation of synthesis and degradation can be inferred from Δabundance (x-axis) and Δturnover (y-axis) and visualized using a

proteostasis plot. D & E. Proteostasis plot showing 276 and 288 protein ontologies with significant Δabundance (red circles) in ApoE2 (panel D) and ApoE4

(panel E)mice relative to ApoE3 mice (E4vsE3) (BH-PV< 0.05). Created with Matplotlib.py, Plotly.py, Biorender and InkScape.

https://doi.org/10.1371/journal.pcbi.1012407.g001
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identified 284 protein ontologies with notable Δabundance (BH-PV < 0.05) (Fig 1D). For the

E4vsE3 comparison, 287 protein ontologies had significant Δabundance (BH-PV < 0.05)

(Fig 1E).

The box plots in Figs 2–5 summarize the Δabundance and Δturnover for ontologies with

significant Δabundance shifts. To maximize visibility and to accommodate for space limita-

tions, these boxplots do not contain outlier points but Figs C-F in S1 File contain outlier

points. Given that some ontologies are repetitive, proteins depicted in the box plots might

appear in multiple ontologies with analogous names/functions. When faced with such redun-

dancies, we typically chose the ontology with superior coverage (Observed/Total) for represen-

tation. As a convention, each ontology is presented in an "ontology name (n)" format, where

(n) indicates the count of quantified proteins within that ontology. Overlap between similar

ontologies is shown in the heatmap.

ApoE Isoforms Modulate Synthesis and Degradation of Endocytic Vesicle

Components

We observed that multiple ontologies with significant Δabundance were associated with endo-

cytosis and vesicular processing (Fig 2). Specifically, the general Endocytosis (158) ontology

demonstrated increased Δabundance and decreased Δturnover, suggesting reduced degrada-

tion in both ApoE2 and ApoE4 compared to ApoE3. In the context of ApoE2, Clathrin-medi-
ated endocytosis (82), Clathrin binding (35), and Clathrin coat (26) mirrored the same

Fig 2. ApoE4 expression disrupts endosomal maturation and ApoE2 increases lysosomal capacity. A-B. Bar plot displaying Δabundance (orange)

and Δturnover (blue) of proteins detected in all experimental cohorts for significant* ontologies related to endolysosomal trafficking in the E2vsE3

comparison (A) and in the E4vsE3 comparison (B). C. Heatmap displaying % of proteins shared across the endolysosomal ontologies with significant*
Δabundance. (*BH-PV< 0.05). Created with Matplotlib.py and InkScape.

https://doi.org/10.1371/journal.pcbi.1012407.g002
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#degradation effect observed in endocytosis, while SNARE complex (32) showed diminished

Δabundance and Δturnover, suggesting a decline in protein synthesis compared to ApoE3.

Moreover, ApoE2 expression led to significant alterations in several regulatory ontologies tied

to endocytosis and vesicular processes, such as: Endocytic recycling (34) ("synthesis), Early
endosome ("synthesis), and Regulation of endocytosis (15) ("synthesis). In ApoE2, proteins

related to Lysosome Vesicle Biogenesis (18) have lower degradation while Regulation of Endocy-
tosis (107) had increased synthesis leading to higher abundance of these protein groups and

presumably more efficient endolysosomal function.

In both ApoE2 (E2vsE3) and ApoE4 (E4vsE3) we noted less degradation of general lyso-
some (146) proteins. Within this general ontology, the lysosomal membrane (70) ontology had

diminished Δabundance and Δturnover only in the ApoE4 group, suggesting less synthesis of

the membrane components compared to ApoE3. This is consistent with large lysosomal vesi-

cles stored in ApoE4 cells [13,20]. In ApoE4 mice there was higher Δabundance and Δturnover

("synthesis) of Phosphatidylinositol binding (90) relative to ApoE3. Conversely, there was a

Fig 3. ApoE genotype differentially regulates mitochondrial proteostasis. A-B. Bar plot displaying Δabundance (orange) and Δturnover (blue) for

ontologies of proteins detected in all experimental cohorts related to mitochondrial components with significant* Δabundance in the E2vsE3

comparison (A) and in the E4vsE3 comparison (B). C. Heatmap displaying % of proteins shared across the mitochondrial ontologies with significant*
Δabundance. (*BH-PV< 0.05). Created with Matplotlib.py and InkScape.

https://doi.org/10.1371/journal.pcbi.1012407.g003
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decline in both Δabundance and Δturnover (#synthesis) of SNARE interactions in vesicular
transport (19), Synaptobrevin 2-SNAP-25-syntaxin-1a complex (5), and SNARE complex (32).

ApoE isoforms modulate synthesis and degradation of mitochondrial

components

Our analysis identified significant Δabundance (BH-PV < 0.05) changes for multiple ontolo-

gies related to mitochondrial components (Fig 3). In the E4vsE3 comparison, these ontologies

included mitochondrial membranes, protein transport, and morphology (Figs 3A and C in S1

File). Each of these ontologies displayed a negative Δabundance coupled with a positive Δturn-

over, signifying "degradation. We also detected #synthesis of mitochondrial calcium ion trans-
membrane transport (12) and mitophagy (18). In contrast, ApoE4 mitochondrial matrix (159)
also had "degradation. (Figs 3B and C in S1 File) The percentage of overlapping proteins in

each mitochondrial component ontology is displayed in Fig 3C. The key finding from these

ontologies is that within the ApoE2 mice there is a coherent increase in the degradation of all

mitochondrial components consistent with an increase in mitochondrial degradation as an

entire unit. In contrast, the ApoE4 tissues show discordant changes in matrix versus mem-

brane proteins suggesting that mitochondrial maintenance is more piecemeal and that mito-

phagy may be less efficient as previously suggested in the literature [21]. Both the ApoE2 and

the ApoE4 results are synergistic with the changes in lysosome dynamics discussed above. In

Fig 4. ApoE2 and ApoE4 expression drive changes in cellular fuel selection A-B. Bar plot displaying Δabundance (orange) and Δturnover (blue)

for ontologies of proteins detected in all experimental cohorts belonging to oxidative phosphorylation with significant* Δabundance in the E2vsE3

comparison (A) and in the E4vsE3 comparison (B). C. Heatmap displaying % of proteins shared across the oxidative phosphorylation ontologies

with significant* Δabundance. (*BH-PV< 0.05). Created with Matplotlib.py and InkScape

https://doi.org/10.1371/journal.pcbi.1012407.g004
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ApoE2 more efficient lysosomal processing will facilitate mitophagy based quality control

while the inhibited lysosomal processing would inhibit mitophagy and make the ApoE4 more

reliant upon individual protein replacement strategies.

ApoE4 Disrupts metabolic pathway control

We observed significant changes in Δabundance (BH-PV < 0.05) across multiple ontologies

related to energy production (Fig 4). ApoE2 resulted in lower expression of levels of Pyruvate
metabolism (32), Citrate cycle (TCA cycle) (26), and Glycolysis/Gluconeogenesis (41). These

reductions were primarily attributed to decreased synthesis (#synthesis), a trend that was also

evident in the Oxidative stress and redox pathway (48) proteins which protect the cell from

reduced oxygen species. Notably, Fatty acid beta-oxidation (25) demonstrated reduced Δabun-

dance coupled with increased Δturnover ("degradation) in ApoE2 (E2vsE3), suggesting a

potential decrease in fatty acid catabolism and an increase in the use of fatty acids for building

complex lipids. In contrast, in the ApoE4 mice, major energy production pathways such as

Fructose and mannose metabolism (21), Pyruvate metabolism (32), and Glycogen metabolism
(22) all exhibited increased Δabundance and Δturnover, pointing towards enhanced synthesis

of enzymes involved in carbohydrate metabolism in the E4vsE3 comparison and an increased

reliance on carbohydrates for energy similar to previous observations [17,22].

ApoE Isoforms and Ubiquitin-Proteasome pathway activity

Proteasome-related ontologies exhibited significant changes in regulation due to ApoE iso-

forms (Fig 5). For both the E2vsE3 and E4vsE3 comparisons, we identified pronounced

increases in Δabundance and reductions in Δturnover (#degradation) associated with the pro-
teasome complex (47) Furthermore, an increased Δabundance and Δturnover ("synthesis) of

Fig 5. Proteasomal activity decreases with ApoE4 expression. A-B. Bar plot displaying Δabundance (orange) and Δturnover (blue) of proteins

detected in all experimental cohorts for several ontologies related to proteasomal activity with significant* Δabundance in the E2vsE3 comparison (A)

and in the E4vsE3 comparison (B). C. Heatmap displaying % of proteins shared across the ontologies with significant* Δabundance. (*BH-PV< 0.05).
Created with Matplotlib.py and InkScape

https://doi.org/10.1371/journal.pcbi.1012407.g005
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proteins involved in the Regulation of ubiquitin-dependent protein catabolic process (62) was

statistically significant in both comparisons (BH-PV 0.05).

The proteasome regulatory particle, base subcomplex (11) displayed "synthesis in the E2vsE3

comparison and #degradation in the E4vsE3 comparison. Meanwhile, proteins within the Pro-
teasome regulatory particle, lid subcomplex (6), demonstrated significant Δabundance due to

#degradation in the E4vsE3 comparison with ApoE4 expression. However, these changes were

not significant in the E2vsE3 comparison. Additionally, in ApoE4 we noted "synthesis in the

Negative regulation of proteasomal ubiquitin-dependent protein catabolic process (21),
#degradation Deubiquitination (79), and #synthesis Hsp70 protein binding (23). These observa-

tions suggest a nuanced regulation of the ubiquitin-proteasome system (UPS) in association

with ApoE isoforms. Hsp70 proteins are often deemed pivotal regulators of proteasome activ-

ity [23]. These changes suggest a significant reduction in the proteasome-dependent protein

quality control for ApoE4 tissue (Fig 5C).

Quantifying ApoE-dependent shifts in liver proteostasis

The liver is the largest producer of ApoE in the body and is also a major receptor of ApoE and

its associated cargo [8,18,24]. Therefore, we tested whether the liver tissue from these same

experimental mice would show matching ApoE allele-specific shifts in proteome regulation.

In contrast to the brain, ApoE2 liver there was no significant change in any of the endolyso-

somal processes relative to ApoE3 (S5 Table). Multiple mitochondrial ontologies in the liver

changed in significant ways and nearly 60% of their proteostasis changes are equivalent to the

brain. Most changes in the mitochondria in the liver with ApoE2 expression involve increased

degradation of mitochondrial components, though there is some reduced synthesis for the

mitochondrial envelope and transmembrane transport. Liver ApoE2 also did not shift protea-

some-related ontologies in the same manner as the brain. In fact, where the brain contains

decreased degradation of proteasomal components, the liver increases their synthesis and con-

tains more proteasomal capacity similar to literature reports. [23,25,26]

In ApoE4/E3 liver comparisons there was not a significant change in any of the endocytic

processes (S5 Table) with the exception of endosomal protein localization. Both tissues had

increased concentration, through increased synthesis in the brain, while the liver decreased

degradation. For ApoE4 mitochondrial components 80% of the significant mitochondrial liver

ontologies had the same proteostasis changes in the brain (S5 Table). The 20% differences

were due to certain NADH and ATP synthesis electron transport chain ontologies that were

increased synthesis in the brain and increased degradation in the liver. Similar to the liver

comparison of ApoE2 with the proteasome, in ApoE4 liver data there were no shared protea-

some changes with the brain (Figs G and H in S1 File). These data suggest that most of the

ApoE effects observed in the brain are not global.

Discussion

Exploring ApoE-genotype Effects Through the Lens of Proteostasis

Compared to the neutral ApoE3 allele, expression of ApoE4 significantly increases the risk for

Alzheimers, while the expression of ApoE2 is moderately protective [5,8,12,22,25,27–29]. Here

we investigate the etiology of these differences by measuring ApoE-dependent changes in pro-

tein homeostasis (proteostasis) in the tissues of human-ApoE transgenic mice (Fig 1A). Pro-

teostasis is the dynamic control of concentration and quality [19,30–32] in the cell. According

to our model (Figs 1C and B in S1 File), protein concentration is controlled by the competition

between synthesis and degradation while protein turnover rate, or the rate that proteins are

replaced, is the average of synthesis and degradation. We present this as simplified equations
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that relate to synthesis and degradation (see ‘Proteostasis Model and Analysis Rational’ section

for more detail). Therefore, changes in protein concentration (Δabundance, Eq 3) paired with

changes in protein turnover rate (Δturnover, Eq 10) can highlight the regulatory balance of

synthesis versus degradation between conditions (Fig 1B and 1C).

For instance, to increase abundance in the experimental condition (resulting in a positive

Δabundance), cells can either synthesize faster or degrade slower. Alternatively, to decrease

abundance (leading to a negative Δabundance), cells might reduce synthesis or increase degra-

dation. Using the change in protein turnover rates (Proteostasis Model section, Eq 10) we can

deduce whether changes in synthesis or degradation led to changes in abundance (Fig 1B).

Therefore, a positive Δabundance indicates increased synthesis when Δturnover is positive or

reduced degradation when Δturnover is negative. Conversely, a negative Δabundance signals

increased degradation when Δturnover is positive or decreased synthesis when Δturnover is

negative (Fig 1C). Applying this logic, we observed a cohesive pattern of ApoE-dependent

changes in proteostasis regulation (Fig 6). Below, we discuss how our results unify a diverse set

of literature observations for ApoE-dependent modifications of endosome trafficking, as well

as lysosomal, mitochondrial, and proteasomal function.

ApoE isoforms modify Endocytic/Endosomal trafficking

Previous research has highlighted the dysregulation of endocytic pathways associated with

ApoE4 expression [13,20,27,33–35]. We detected notable ApoE4-dependent changes in several

ontologies related to endocytosis (Figs 2 and C in S1 File). This is in line with what is known

about how ApoE isoforms modify affinity for cell surface receptors, such as LDLR and

APOER2 [3,4], initiating the endocytosis of ApoE along with its content. After this endocytic

Fig 6. Model comparing the observed changes in proteostasis for ApoE2 and ApoE4. The arrows are color coded to represent the different pathways

impacted in both ApoE2 and ApoE4 when compared to ApoE3. Created with Inkscape and Biorender.

https://doi.org/10.1371/journal.pcbi.1012407.g006
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event, ApoE-laden endosomes undergo various maturation stages, wherein contents are ear-

marked for recycling, delivery, or degradation.

ApoE4 has a higher affinity binding to receptors [3,4] and induces a trafficking anomaly in

the early endosome [33] leading to accumulation and enlargement of lysoendosomal compart-

ments [13,20]. Following an endocytic event, the clathrin coat dismantles, allowing vesicles to

fuse into various destinations for cargo release. This fusion mechanism leans heavily on SNARE

and SNAP-receptor proteins, also pivotal for exocytosis. In our study, we observed diminished

synthesis of SNARE and SNAP ontologies in ApoE4 mice which may disrupt vesicle fusion

between organelles [36] and in response to exocytic sequences [37]. Our study revealed a

reduced degradation of proteins associated with Clathrin-mediated endocytosis (82), increased

synthesis of PICALM (90), and reduced synthesis of the lysosomal membrane (70) (Figs 2B and

2C in S1 File) in the presence of ApoE4. In the literature, ApoE4 expression induced a decline

in clathrin-mediated endocytosis in astrocytes [38], dysregulation of early endosome popula-

tions in 18- and 25-month-old ApoE4 mice [34] and phosphatidylinositol binding proteins like

PICALM [39]. Before undergoing lysosomal degradation, endosomes transition to the late

endosomal phase. Our findings suggest that ApoE4 expression reduces the synthesis of both late

endosomal and lysosomal membranes. Although the general lysosome (146) ontology exhibits

increased degradation with ApoE4 expression, if we look specifically at the membrane compo-

nents of this ontology then the ApoE4 specifically has less total protein due to lower synthesis.

These results are consistent with previous observations of large-volume lysosomes which would

have a low membrane surface/volume ratio accumulating in the in ApoE4 cells [13,20]. Collec-

tively, these results underscore multiple points of failure in the ApoE4-associated inhibition of

endosomal maturation and stalled lysosomal functions as previously observed [27,33,34].

The E2vsE3 tissue had similarities in vesicle-centric ontologies. Notably, there was a decline

in the degradation of endocytosis and clathrin protein-related ontologies, and SNARE com-

plexes saw reduced synthesis. This implies that ApoE2 also modifies vesicle endocytosis. How-

ever, the changes suggested a more streamlined regulation of endolysosomal events with

ApoE2 (E2vsE3). This again agrees with literature reports of modified receptor binding with

ApoE2 having lower affinity while ApoE4 has a higher affinity [3,4]. This coupled with lower

degradation of proteins within the lysosome vesicle biogenesis ontology for the E2vsE3 com-

parison, a process intrinsically tied to endosomal trafficking and central to lysosomal adapta-

tion [40], suggests a tighter control of endocytic events and better lysosomal quality with

ApoE2 expression. These observations agree with previous research on astrocytes indicating

ApoE2 expression increases lysosomal activity relative to ApoE3 and ApoE4 expression [41].

ApoE-dependent changes in Mitochondrial Proteostasis

We observed ApoE-dependent changes in mitochondrial proteostasis that were consistent

with the modified autophagy and lysosomal function discussed above. In ApoE4 (E4vsE3)

mice, we measured elevated degradation in mitochondrial membrane (406), mitochondrial
inner membrane (303) (Figs 3 and D in S1 File), Cristae formation (11), Mitochondrial fusion
(13), and mitochondrial transport (72) with no accompanying change in mitochondrial matrix
(159) and decreased synthesis of mitophagy (18). Mitochondrial membrane complexes play

critical functions in cellular homeostasis—such as energy production, calcium level modula-

tion, apoptosis, and the regulation of reactive oxygen species (ROS) [42]. Prior research has

documented dysfunction in the mitochondrial membrane’s integrity as a promoter of Alzhei-

mer’s disease [43,44].

Most mitochondrial proteins are encoded on the nuclear DNA and are transported into the

mitochondria through translocases (TIM and TOM) [45,46]. These translocases interact with
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the many inner mitochondrial membrane (IMM) folds that make up the cristae via the mito-

chondrial cristae organizing system (MICOS).[47] Our observations indicate a change in mito-

chondrial protein import, especially evident in the higher degradation of the TOM complex
(10), cristae formation (11), and the MICOS complex (7) ontologies. (See Figs 5B and 5E in S1

File). The MICOS also plays a vital role in cristae organization and the function of respiratory

complexes.[48] Disruptions in MICOS have been documented to modify cristae structure[49],

and recent studies associate altered MICOS protein expressions with ApoE4 manifestation

[44]. The MICOS literature also report evidence of mitochondrial fusion and fission imbalance

in Neuro-2a cells expressing ApoE4.[44] Previous analysis of AD brains indicated diminished

protein levels connected to mitochondrial fusion/fission[50], which our data supports as a deg-

radation driven loss of fusion proteins (See Figs DA and DB in S1 File).

Mitochondria and the endoplasmic reticulum (ER) collectively form the mitochondria-

associated membrane (MAM), which has implications in AD pathology [51,52]. These MAMs

regulate oxidative phosphorylation, calcium levels, protein degradation, and mitochondrial

membrane organization. Our dataset elucidates an ApoE4-induced MAM (57), marked by

increased degradation contrasted against ApoE3 (Figs 3 and D in S1 File). Our results support

ApoE4-related MAM instability by diminished synthesis of chaperone complexes, mitophagy,

and calcium transport.

These results suggest that ApoE4-tissue relied on replacement of individual components

within the mitochondria to maintain homeostasis. In contrast, ApoE2 mice increased deg-

radation of mitochondrial membrane ontologies with a matching increase in the degrada-

tion of the matrix proteins. Although both ApoE2 and ApoE4 mice revealed changes in the

mitochondrial membrane and transport, our ApoE2 findings suggests that there is a cohe-

sive organelle-wide response involving both membrane and matrix proteins. Combined

with the endolysosomal systems results, we postulate this might be evidence of superior

mitophagy in ApoE2. Additionally, we theorize, as described in the literature

[17,21,22,44,53], that the disparate attempts at protein replacement in ApoE4 mitochondria

culminate in dysfunction.

ApoE disrupts ATP production

There is an increasing body of research on ApoE genotype-specific effects in ATP production

[54–56] which links compromised bioenergetic pathways to neurodegeneration [57–60]. Sev-

eral studies highlight an ApoE4-related shift towards glycolysis and diminished oxygen con-

sumption in brain tissues. [22,57,61] Our data align with these observations, with increased

synthesis of carbohydrate metabolism ontologies in ApoE4 (see Fig E in S1 File). These ontolo-

gies include Fructose and mannose metabolism (21), Pyruvate metabolism (32), and Glycogen
metabolism (22). We posit that this increased reliance on carbohydrate metabolism is a conse-

quence of the lack of cohesive mitochondrial maintenance.

While ApoE4 expression is associated with diminished ATP production [54,62–64], ApoE2

expression has been shown to enhance ATP production and glycolytic activity [57,61]. In

ApoE2 tissue, we observed decreased abundance in ontologies such as the TCA cycle (25),
Pyruvate metabolism (32), and Glycolysis / Gluconeogenesis (41) due to diminished synthesis

and augmented degradation. These regulatory changes are different than expected based on

the literature. This might be because our study averages together all cell types and regions of

the brain and therefore may diverge from cell type-specific experiments. Collectively, our data

accentuates the isoform-specific alterations in diverse metabolic pathways and suggests that

isolating single cell types or regions from the brain may be important to test for metabolic

changes in response to ApoE isoforms.

PLOS COMPUTATIONAL BIOLOGY Proteostasis adaptations in mouse brain

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012407 December 12, 2024 11 / 29

https://doi.org/10.1371/journal.pcbi.1012407


Linkages between the Proteasomal and Mitochondrial Homeostasis

The proteasome also plays a major role in the mitochondrial quality control, by degrading

excess or misfolded proteins that disrupt mitochondrial activity [65], and saving cells from

misfolding stress response. [66] Reduced proteasome activity has consistently been implicated

as a major player in the pathophysiology of neurodegeneration [21,25,26,67,68]. ApoE2 has

been shown to directly inhibit the cleavage of amyloid precursor protein (APP) to decrease Aβ
peptide formation. [69]while ApoE4 may promote its accumulation. [10,13,70–72] This

buildup of Aβ has been shown to directly inhibit proteasome function leading to increased

accumulation of amyloid plaques. [73,74]

Proteasome function can also be disrupted by mitochondrial dysfunction. For example, oxi-

dation of the 26S subunit of the proteasome due to increased mitochondrial oxidative stress

has been shown to increase the accumulation of ubiquitinated substrates and decrease protea-

somal activity [75]. Notably, we discerned a significant reduction in the synthesis of HSP70

proteins in E4 which latch onto misfolded or compromised proteins before proteasomal degra-

dation [23]. This interconnection of the proteasome and mitochondria as well as their consis-

tent implication in neurodegenerative disease has led some researchers to suggest that

dysfunction in either the proteasome or mitochondria are “two sides of the same coin” leading

to a futile cycle of mitochondrial and proteasomal insult. [76]

ApoE2 also reduced the degradation of the proteasome, paralleling the ApoE4 response

(see Figs 5 and F in S1 File). While both ApoE2 and ApoE4 increase synthesis of ‘ubiquitin-

dependent catabolism’ ontologies, the regulatory complex of the proteasome (responsible for

facilitating the unfolding and admission of ubiquitinated polypeptides into the proteasome’s

degradation chamber [77]) the ‘negative regulation of catabolism’ had increased synthesis in

ApoE4. This implies larger proteasome pool in ApoE4, albeit with more regulation.

Our data on proteasomal and lysosomal regulation in ApoE4 are in agreement with existing

literature [33,78], suggesting that suboptimal endocytic regulation might directly impact

autophagy and the proteasomal maintenance of mitochondrial proteostasis. Our findings also

substantiate the ApoE4-associated dysregulation of MAM structures [22,51,52], which poten-

tially results in disrupted mitochondrial morphology and impaired energy production. Our

working hypothesis postulates that ApoE4 expression reduces autophagy and proteasomal

activity, diminishing capacity to eliminate dysfunctional mitochondria.

Liver Proteostasis Changes Compared to Brain

ApoE is an important lipid transporter to many parts of the body, not just the brain. Although

ApoE2 protects against Alzheimer’s Disease, it increases risk for cardiovascular disease [18].

This leads us to question if the mechanism by which ApoE2 protects against Alzheimer’s, may

be detrimental and disease causing to other tissues. To understand if ApoE elicits a global

response across all tissue, we tested and analyzed the liver tissue from our experimental mice

in the same manner as the brain.

The changes in ApoE2/E3 liver and brain proteostasis were not equivalent. Although many

trends were similar between brain and liver, few changes in the liver were statistically signifi-

cant. Mitochondrial protein localization, transportation, and organization had similar proteos-

tasis trends between tissues, that suggest mitochondrial turnover to be reduced in the liver

compared to the brain (S3 Table compared to S5 Table).

Similarly, ApoE4/E3 liver and ApoE4/E3 brain proteostasis changes in the endosome,

metabolism, and proteasome pathways in the brain are not similar between tissues (see S4 and

S5 Tables). However, significant effects of ApoE4 regarding the mitochondria between the
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liver and brain contained several of the same proteostasis changes, suggesting there may be

some degree of shared effects due to ApoE4.

Thus, while some cellular pathways may be affected similarly, a global effect specific to

ApoE allele is not observed in our data. We propose the lack of a global ApoE effect (Figs G

and H in S1 File) is because most tissues have a large number of apolipoproteins (~16) partici-

pating in lipid transport [8,18]. The brain is limited to the apolipoproteins that it creates (pri-

marily ApoE and ApoJ), and ApoA1 which can cross the blood-brain-barrier [16]. Since lipid

trafficking in the liver involves many more apoliproproteins, this may dilute the ApoE effect.

Future experiments investigating peripheral tissues that only receive ApoE from the liver

could help distinguish if the ApoE-dependent changes in the brain are due to endocytosis and

internalization of the ApoE-specific cargo.

Conclusion

In this study, we demonstrated how combining protein abundance and turnover rate unveils

the cellular regulation of protein synthesis and degradation. Utilizing proteomics data, we

compared ontology-level variations due to ApoE genotypes in healthy adult mice. Our findings

present in vivo evidence that harmonizes with existing literature, linking brain ApoE4-depen-

dent changes in endosomal trafficking, autophagy, proteasome activity, and lower mitochon-

drial quality. Concurrently, our data suggests that ApoE2 enhances brain mitochondrial health

by increasing turnover in tandem with a corresponding increase in proteolysis capacity in the

brain (Fig 6). Future work investigating ApoE-dependent modification of region-specific lipid

transport or protein-protein interactions will be necessary to elucidate the key initiating vari-

ables causing these proteostatic changes.

Methods

Ethics statement

All animal handling experiments were reviewed and authorized by the Brigham Young Uni-

versity Institutional Animal Care and Use Committee (IACUC protocol #191102).

Experimental design and statistical rationale

Cohort Grouping and analysis rationale. A total of 72 homozygous ApoE transgenic

mice, with an equal distribution of female and male individuals were included (Fig A in S1

File). This cohort included 24 ApoE2, 24 ApoE3, and 24 ApoE4 (refer to S1 Table for details).

The sample groups for protein turnover rate measurements of each ApoE genotype and gen-

der, were two independent blocks of six mice. [79] These six mice were selected based on the

metabolic labeling duration, namely Day 0, Hour 6, Day 1, Day 4, Day 16, and Day 32 post-

exposure to deuterium.

The kinetic analysis utilized peptide identifications from LC-MS/MS acquisition files to

extract isotope envelope information from LC-MS (MS1 only) data. Notably, this process

heavily relies on peptide retention time. To facilitate this, MS/MS data and MS data were col-

lected within the same randomized block of samples. [79] The initial four timepoints (Day 0,

Hour 6, Day 1, and Day 4) were used to generate LC-MS/MS fragmentation spectra and iden-

tify peptide sequences with observed charge and retention time.

To streamline sample processing and turnover rate measurements, mice were organized

into four gender-specific groups of 18 mice (n = 6 per genotype, Fig A in S1 File). This group-

ing strategy accommodated instrument availability and minimized retention time deviations

associated with extensive sample worklists. [79] Additionally, from each group, a subset of
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four mice per genotype, comprising the first four timepoints (Day 0, Hour 6, Day 1, Day 4),

were selected for LFQ proteomics. This selection yielded a total of 16 mice per ApoE genotype

for an area under the LC curve (Abundance) fold change (FC) calculations, with an equal dis-

tribution of 8 females and 8 males in the four gender-specific groups. Thus, out of the initial 72

mice, 48 were used to generate the “Abundance” FC values (Fig A in S1 File).

To broaden proteome coverage, each brain homogenate sample was fractionated into cyto-

solic and membrane components, which were prepared and analyzed separately using the

workflow described below. This fractionation led to the creation of eight datasets for our analy-

sis. Each dataset underwent individual processing using the Peaks Studio software (Bioinfor-

mics Solutions Inc.) for protein abundance and Deuterater software for turnover rate

measurements. Protein-level abundance fold change relative to control (FC values), turnover

rate FC values, and statistical analysis (P-value) for each comparison (e.g., E2vsE3) were calcu-

lated for each dataset independently to minimize inter-set variance caused by sample prep dis-

crepancies, instrument noise, buffer compositions, and sample run variables. Due to problems

in sample processing, the Hour 6 sample was omitted from a single ApoE4 dataset (D16 was

substituted for LFQ analysis), and Day 4 was omitted from a single ApoE3 LFQ dataset

(S1 Table).

While FC and P-value calculations for abundance and turnover were conducted at the pro-

tein level, this study mainly focuses on how proteins with shared functional characteristics are

regulated in an ApoE isoform-specific manner. To achieve this, the StringDB multiprotein

tool [80] was employed to identify functional groups (ontologies) represented in the final data

sets (Abundance FC, Turnover FC). Every protein Abundance FC value was calculated with a

minimum of three biological abundance measurements in experimental (ApoE2, or ApoE4)

and control (ApoE3); see the ‘Protein ΔAbundance Analysis’ section for more details. The null

hypothesis (H0) posited that proteins’ collective gene expression ratio in an ontology would

remain unchanged (H0: Abundance FC = 1) across ApoE genotypes. Consequently, we tested

the alternative hypothesis that ApoE genotype alters the regulation of functionally related pro-

tein groups (Ha: Abundance FC 6¼ 1) using a one-sample t-test. This analytical approach cap-

tured changes occurring across the broader functional proteome rather than focusing solely

on identifying individually significant proteins. Python code created for both protein- and

ontology-level calculations is available in the GitHub repository JC-Price/PublicProteomeDa-

taAnalysis: scripts for proteome data wrangling.

Proteostasis model and analysis rational. A protein homeostasis model must account

for common sources and sinks of protein mass (Fig B in S1 File). In this model, we assume

there is a large circulating pool of free amino acids affected by diet, metabolites, and waste

expulsion. Amino acids become the precursors for protein synthesis in an initial tRNA charg-

ing step, which then polymerize in an mRNA-dependent step before folding into functional

proteins. Multiple competing processes subsequently influence the resulting protein concen-

tration. First, degradation returns the protein to the constituent amino acids in the free pool.

The functional proteins may also transition (reversibly) into an aggregate/condensate state

that undergoes a separate degradation process. Finally, protein concentration may be affected

by importing or exporting proteins.

Our goal is to use chemical kinetics and translate this diagram into a mathematical model

with a few tunable parameters identifiable from experimental data. Unfortunately, a complete

mathematical translation of this system leads to a model with too many parameters to draw

meaningful conclusions. We, therefore, make several simplifying assumptions about which

processes are dominant to restrict the parameters to an identifiable subset.

First, the mice in this study are healthy adults, so we assume the protein concentrations are

in steady-state with no protein aggregate. We assume that the pool of free amino acids is large
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so that the rate bottleneck in the tRNA-charging/synthesis/folding steps is synthesis and that

import/export is negligible. We also assume the protein pool is well mixed, assuring the ran-

dom selection of protein for degradation (unregulated). Although reasonable for the present

study, these assumptions are bad for surprisingly large sections of the proteome where revers-

ible aggregation [81,82], multistage regulation of synthesis rates [83–85], regulated exchange

of protein subunits in complexes [86, 87] and nonrandom degradation [32,67,88,89] are bio-

logically important, but we maintain them as a starting point for the modeling. Previous litera-

ture reports have presented mathematical modeling of protein turnover rates using similar

assumptions. [31,90–96] This then results in Eq 1 where the time-dependent change in a pro-

tein concentration is the difference between the synthesis and degradation rates.

dP
dt
¼ ksyn � kdeg P½ � ð1Þ

This model assumes that the concentration of an individual protein ([P]) in every location

is under the control of a zero-order synthesis rate (ksyn) and a concentration-dependent degra-

dation (kdeg) step. The assumption of zero-order synthesis suggests that the precursor is stable

and unresponsive to protein concentration, while a first-order rate for degradation suggests

that there is no regulation of degradation other than protein concentration. In general, the

rates ksyn and kdeg need not be constant as they are under the control of numerous exogenous

factors that may vary in time. However, we now formalize our final assumption: protein

homeostasis. This assumption is that the multiple processes regulating each protein concentra-

tion are in dynamic equilibrium so that these rates are constant for a given experimental con-

dition. Synthesis and degradation for a given protein are equal, ensuring that the number of

proteins produced is equal to the number of proteins lost. [19] Therefore, during the measure-

ments d[P]/dt = 0, leading to the relationship:

P½ � ¼
ksyn
kdeg

ð2Þ

Our hypothesis is that the expression of the ApoE polymorphisms (ApoEx = ApoE2 or

ApoE4) creates a unique steady state or proteostasis across the proteome that can differ from

the concentration of the human wild-type control (ApoE3). The change in protein abundance

(Eq 3) between the two conditions allows us to infer how the ratio of the rates is changed in

the experimental cohorts, but neither ksyn nor kdeg is individually identifiable.

DAbundance ¼
d½P�

dApoE
¼

ksyn
kdeg

 !

ApoEx

�
ksyn
kdeg

 !

ApoE3

ð3Þ

Using metabolic isotope labeling we can add rate information that will distinguish between

changes in synthesis and degradation. Assume that at t = 0 our model simplifications are true,

but that the amino acid pool is replaced with a deuterated version. Proteins synthesized after

t = 0 are isotopically labeled, and we can measure the time-dependent replacement of old unla-

beled for new labeled proteins. To make this mathematically explicit, we denote the concentra-

tion of normal proteins by [P] and the concentration of deuterated proteins by [PD]. These

two concentrations now satisfy the initial value problems.

d½P�
dt
¼ � kdeg P½ �; P½ � 0ð Þ ¼

ksyn
kdeg

ð4Þ
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and

d½PD�

dt
¼ ksyn � kdeg P

D½ �; PD½ � 0ð Þ ¼ 0 ð5Þ

These are true because normal proteins are no longer being synthesized (Eq 4) and [PD]

have no initial concentration (Eq 5). These ordinary differential equations can be solved in

closed-form using standard techniques. The solutions are:

½P�t ¼
ksyn
kdeg

eð� kdeg tÞ
� �

ð6Þ

and

½PD�t ¼
ksyn
kdeg

1 � eð� kdeg tÞ
� �

ð7Þ

Notice that these equations satisfy [P]t + [PD]t = ksyn/kdeg, which is independent of time as it

must be in homeostasis. However, the measurable fraction of deuterated protein over time is

given by.

½PD�

½P� þ ½PD�
¼ 1 � e� kdeg t; ð8Þ

Eq 8 seems to suggest that the degradation rate is the measurable driving force behind the

turnover of old protein and the replacement by labeled protein. However, because the pro-

cesses of synthesis and degradation are exactly balanced in the proteostasis condition, we can

just as easily identify the turnover rate as the per-molar synthesis rate: ksyn/[P] or fractional

synthesis [97] as it is commonly called. It is important to emphasize that these rates are only

properly defined in homeostasis. Because there is no assurance that homeostasis is equally

applied to all proteins simultaneously[85, 88, 98], we find it conceptually preferable to define

the turnover rate as the mean of the per-molar synthesis and degradation rates:

kturnover ¼
1

2
ksyn=½P� þ kdeg
� �

ð9Þ

As stated above each experimental mouse cohort will have a unique homeostasis with a pro-

tein-specific synthesis and degradation rate. Using ApoE3 as our normal control we can assess

how the average of the synthesis and degradation rates have changed with the E2 and E4 poly-

morphisms (ApoEx).

DTurnover ¼
1

2

ksynðApoExÞ

½P�ðApoExÞ
�
ksynðApoE3Þ

½P�ðApoE3Þ

� �

þ kdegðApoExÞ � kdegðApoE3Þ
� �� �

ð10Þ

This means that if, for example, the ApoE polymorphism increases a protein concentration

(+ΔAbundance, Eq 3) the ΔTurnover (Eq 10) will highlight whether the change in proteostasis

was driven by an increase in ksyn/[P](ApoEx) or a decrease in kdeg(ApoEx) because the sign of

ΔTurnover will be different for each possibility. Together the experimental ΔAbundance and

ΔTurnover for each protein identifies whether the differences in proteostasis are primarily due

to changes in synthesis or degradation. Graphing these values produces a plot where each

quadrant (Fig 1C) has meaning. For example, a positive x-axis (+Δabundance) and y-axis

(+Δturnover) suggest that synthesis increases (Syn"). Conversely, a protein with lower expres-

sion levels (-Δabundance) between ApoE genotypes, could result from less synthesis (Syn#) if
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turnover rate decreases (-Δturnover) or more degradation (Deg") if the protein turnover rate

increases (+Δturnover). Since, each measurement has independent noise, a nonrandom

enrichment of multiple proteins from a functionally related ontology within a quadrant is an

important metric of confidence that the cell is regulating protein expression to change bio-

chemical functions (Fig 1D and 1E).

Mouse handling

The mouse model employed for this study consists of ApoE knockout C57BL/6 transgenic

mice that express one of the three human ApoE alleles (ApoE2, ApoE3, ApoE4, n = 24/allele,

see S1 Table) homozygously under the GFAP promoter (JAX# 004632, 004633, 004631). Nota-

bly, this model has provided valuable insight into genotype-specific effects of ApoE in a large

number of other experiments [70,71,99–108]. This study does not encompass differences from

wild-type mice. The transgenic mice were selected with deliberate focus on ApoE isoforms

rather than wild-type conditions, or age differences. The findings reported in this publication

use fold change relative to ApoE3 to minimize the GFAP promoter variable as reported previ-

ously [10,11,109]. Because mouse ApoE has a low sequence identity (77%) and a different tran-

scription promoter, the human ApoE3 model is the best control for comparison. While we

recognize the limits of a transgenic model, this study provides valuable identification of in vivo
patterns which can be confirmed in future ApoE knock-in mice models and human studies.

These results refer solely to the effects of ApoE isoform differences, rather than Alzheimer’s

Disease. Similarly, these results represent the weighted average across the entire mouse brain.

We presume that some brain regions will have differential sensitivity. [14,22,34] Any claims

regarding Alzheimer’s disease are made solely to highlight similarities between current ApoE/

AD research and our observations to create a holistic mechanistic hypothesis.

Mice were randomly selected for replicate designation and timepoint based on availability.

They were all 6–8-month-old, retired breeders with no signs of disease or neurological dys-

function. There were no exclusions among this group. Specific cohort denominations and ani-

mal numbers can be found in Fig A in S1 File. Blinding was not used during any portion of

this experiment as it was necessary to compare groups at each point. Mice were housed

together in the same room of the facility at the same time. Mice had ad libitum access to water

and standard nutritional rodent feed (Teklad 8604) while housed in a temperature-controlled

environment of ~24˚C. This environment included a 12-hr circadian cycle. To initiate turn-

over rate measurements, mice received an intraperitoneal (IP) injection of sterile D2O 0.9% w/

v saline (35 μl/g body weight) calculated to increase internal D2O concentrations to an initial

5% of overall water weight (w/w). Mice were then given 8% D2O as the sole hydration source

for the remainder of the experiment. This was done to maintain overall internal water at 5%

D2O enrichment. Mice were sacrificed according to the following timepoints post IP injection:

day 0 (no D2O injection), hour 6, day 1, day 4, day 16, and day 32. Mice were euthanized via

CO2 asphyxiation followed by bilateral thoracotomy. Blood was collected via cardiac puncture

for D2O enrichment calculations. Brains were divided sagittally into respective hemispheres.

Brain and liver were flash frozen on blocks of solid CO2. Tissues were stored frozen at -80˚C

until processing.

Tissue preparation

Singular brain hemispheres and liver sections were homogenized in lysis buffer (25mM

Ammonium Bicarbonate treated with diethylpyrocarbonate and ThermoScientific Halt Prote-

ase & Phosphatase Inhibitor Cocktail) for 60 sec using a MP FastPrep-24 homogenizer.

Homogenized samples were centrifuged for 15 minutes at 14,000xg to separate them into
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cytosolic and membrane isolates. The membrane pellet was resuspended in lysis buffer and

centrifuged for 15 minutes at 14,000xg a total of three times to remove cytosolic components.

Each fraction was resuspended in 5% SDS. Aliquot concentration was measured via a Pierce

BCA Protein Assay Kit purchased from ThermoFisher Scientific, and 50 μg of protein were

prepared according to S-Trap documentation (cytosol and membrane fractions were prepared

separately). Proteins were digested with trypsin Lys/C overnight at 36˚C. Resultant peptides

were dehydrated in a ThermoScientific Savant SPD131DDA SpeedVac Concentrator and

resuspended at a final concentration of 1 μg/μL in buffer A (3% acetonitrile, 0.1% formic acid).

LC-MS

Samples were separated and measured via liquid chromatography-mass spectrometry

(LC-MS) on an Ultimate 3000 RSLC in connection with a Thermo Easy-spray source and an

Orbitrap Fusion Lumos. Peptides were pre-concentrated with buffer A (3% acetonitrile, 0.1%

formic acid) onto a PepMap Neo Trap Cartridge (particle size 5 μm, inner diameter 300 μm,

length 5 mm) and separated with an EASY-Spray HPLC Column (particle size 2 μm, inner

diameter 75 μm, length 25 mm) with increasing buffer B (80% acetonitrile, 0.1% formic acid)

gradient:

0–5 min, 0 to 5% B; 5–87 min, 5 to 22% B; 87–102 min, 22 to 32% B; 102–112 min, 32 to

95% B; 112–122 min, 95% B; 122–125 min, 95 to 2% B; 125 to 127 min, 2% B; 127–129 min, 2

to 100% B; 129–132 min, 100% B; 132–133 min, 100 to 2% B; 133–135 min, 2% B; 135–137

min, 2 to 100% B; 137–140 min, 100% B; 140–142 min, 100 to 0% B; 142–144 min, 0% B.

The MS-based data-dependent acquisition method was set to a 3 second cycle time. MS1

scans were acquired by the Orbitrap at a resolution of 120,000. Precursors with a charge> 1

and< 6 were selected for MS2 fragmentation. MS2 scans of CID precursor fragments were

detected with the linear ion trap at a scan rate of 33.333 Da/sec with a dynamic injection time.

CID collisions were set to 30% for 10ms. A 60 second dynamic exclusion window was enabled;

isotopes and unassigned charge states were excluded. The deuterium labeling information was

collected separately in an MS1-only acquisition with the Orbitrap at a resolution of 60,000 as

previously described by Naylor et al. [110]

Raw Data Processing for Peptide Identification and Label-free

Quantitation

Raw files were searched against the 2022 Uniprot/Swissprot mus musculus FASTA (containing

17144 entries) using Peaks Studio v.11 (Bioinformics Solutions Inc.) for label-free quantitation

(LFQ) analysis. During the data refinement step, the feature “associate feature with chimera

[DDA]” was selected to deconvolute scans with co-eluted isobaric peptides. The parent mass

error tolerance was set to ±15 ppm and the fragment mass error tolerance was set to 0.5 Da.

Cysteine carbamidomethylation was set as a fixed modification, and both methionine oxida-

tion and pyro-glu from glutamine were set as variable modifications in the search. Digest

mode was set to semi-specific for the trypsin-lysC enzyme mix allowing for� 3 missed cleav-

ages and the peptide length range was set to 6–45 amino acids. The false discovery rate (FDR)

for peptide matches was set to 1%, and protein ID significance was set to -10log(P-value)� 15

for each identified protein.

Peaks Studio (Bioinformics Solutions Inc.) was also used to search raw files for use in Deu-

terater [110] software. The raw files were searched against the 2021 Uniprot/Swissprot mus
musculus FASTA (containing 17144 entries). Peptide searches were performed using trypsin/

lysC semi-specific digest with a tolerance of ±20ppm and missed cleavages� 3. Carbamido-

methylation was set as a fixed modification and pyro-glu from glutamine and methionine
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oxidation were set as variable modifications. Within the Peaks Studio DB module, proteins

were identified with two or more unique peptides at an FDR of 2% and significance was set to

-10log(P-value)� 15 for each identified protein.

Protein ΔAbundance analysis

The group of mice used in this paper were divided into two male and two female groups for

analysis [79]. Each group produced a dataset for cytosolic proteins and another dataset for

membrane proteins. Please refer to the Experimental Design and Statistical Rationale section

for more information resulting in a total of eight datasets.

Data filtering, normalization, and quantitative calculations were performed independently

for each dataset following standardized metrics for data quality and analysis following the pro-

cess described by Aguilan et al. [111] Each Peaks Studio DB protein.csv output dataset contains

the proteins identified in the analysis and the expression values (relative abundance) for each

protein in each sample are labeled as “Area”. This output was filtered to retain only the top

proteins in each protein group and proteins with at most one missing protein “Area” value per

genotype (i.e., n– 1/genotype/dataset). Subsequently, protein “Area” values in the dataset

underwent log2 transformation. The distribution of these protein “Area” values was mean cen-

tered by subtracting by the average protein “Area” from each protein “Area” within the sample.

To ensure comparability across samples, the distribution width was also normalized between

samples by calculating the correlation slope between these total average protein “Area” values

across all samples and the individual sample values. Each protein “Area” in a sample was then

divided by the corresponding sample slope. For samples with a missing protein “Area” value,

imputation was carried out using the scikit-learn KNN imputer function module in python

with the two closest neighbors. [112]

Protein fold change (FC) values, which represent the relative change in protein abundance

values (“Area”) compared to a reference, were calculated, and used as a metric of change in

abundance (Δabundance). For this study, FCs were calculated for protein expression values in

ApoE2 mice and ApoE4 mice with ApoE3 expression values as reference, respectively. As per

Aguilan et al.’s methodology, an F-test was employed to assess the variance between protein

expression values before performing p-value calculations for statistical significance. To evalu-

ate the statistical significance of expression levels in each comparison, a two-sample indepen-

dent t-test (homoscedastic) was employed for proteins with an insignificant F-test result and a

two-sample independent t-test (heteroscedastic) for proteins with a significant F-test result.

Both the F-test and t-test calculations were conducted with the Scipy python package. [113]

Protein FC values were averaged across all datasets for each respective comparison. This

produced a single set of “Area” (expression value) FCs for each comparison. Please note that

both the ApoE2 vs ApoE3 (E2vsE3) comparison and the ApoE4 vs ApoE3 (E4vsE3) use the

same list of quantified proteins. As outlined by Van den Berg [114], protein FC values from

individual comparisons were range scaled using the following formula prior to ontology explo-

ration:

x0ij ¼
xij � �xi

ximax
� ximin

ð11Þ

Where x’ij, xij, �xi , ximax, and ximin are the scaled FC value, non-scaled FC value, mean FC,

largest FC, and smallest FC, respectively. Range scaling was selected because it captures relative

change in protein expression while considering the full range of values specific to the dataset.

These scaled FC values will be utilized in functional analyses as described in the Ontology-level
Calculations section below. The python script created for the steps outlined in this quantitative
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analysis can be found in the GitHub repository JC-Price/PublicProteomeDataAnalysis: scripts

for proteome data wrangling.

Protein ΔTurnover rate calculation

Protein turnover rate values were calculated using Deuterater[110] v5. This software uses an

accurate mass and time database to extract peptide isotope patterns from LC-MS (MS1) cen-

troided data utilizing feature identifications (e.g. retention time, mass, peptide ID, etc.)

obtained from MS/MS data (refer to the Raw Data Processing for Peptide Identification and
Label-free Quantitation section above).

Isotope patterns were extracted from MS1 raw data with an extraction retention time win-

dow of 1.5 min and an m/z error limit of� 30 ppm. The n-value represents the number of

available positions on a peptide where deuterium can replace hydrogen. In the theory genera-
tion step, peptides with data missing in an extracted file are removed, and the n-value is calcu-

lated for remaining extracted peptides based on known quantities for each amino acid

[115,116]. Subsequently, Fraction New measures the amount of turnover rate for each peptide

in a file by calculating changes in neutromer abundance and spacing [110]. These calculations

were performed using the average between M0 and the highest isotope peak for peptides meet-

ing specified criteria, including peptide n-values greater than 5, a minimum peptide sequence

length of 6, and a minimum allowed M0 change of 0.04. In the Rate Calculation stage, the data

from the Fraction New step is fitted to a kinetic rate curve using Eq 8 from our proteostasis

model. Turnover rates were calculated for peptides that met a specified criterion, including a

minimum of 3 non-zero peptide timepoints, and measurement deviation of less than 0.1, as

previously reported [86]. The asymptote value is assumed to be 1 in the first iteration of analy-

sis for proteins, but not for lipids where multiple pools of the same lipid are frequently

observed [117].

After the Deuterater [110] analysis, all proteins with a valid turnover rate value (Rsq� 0.6,

combined unique peptides > 1, combined rate > 0) grouped by allele cohort, and the average

turnover rate value was calculated for each protein in the cohort, respectively. These protein

turnover rate values were log2 transformed, and the protein turnover rate FC was calculated as

the difference of the log2 rates. The ApoE2 mice and ApoE4 mice were compared to the refer-

ence ApoE3 mice, resulting in a single set of protein turnover rate FCs for each comparison.

To standardize the protein turnover rate FCs, auto scaling [114] was applied, where x’ij, xij, �xi ,
and si are the scaled turnover rate FC value, non-scaled turnover FC rate value, mean turnover

FC rate and turnover rate FC standard deviation, respectively:

x0ij ¼
xij � �xi

si
ð12Þ

Auto scaling was implemented because it considers both the mean and standard deviation

to reduce the effects of outliers and variation in the data while preserving the ability to focus

on small changes. It is important to note that because of the signal to noise requirements fewer

proteins had valid turnover rate FC values than quantifiable abundances. Consequently, pro-

teins with turnover rate FCs represent a smaller subset population in comparison proteins

with expression value FCs calculated from “Area” values. These protein turnover rate values

were used for ontology analysis as outlined in the Ontology-level Calculations section below.

For further reference, the python script created to process the calculated_rates output from

Deuterater [110] can be found in the GitHub repository JC-Price/PublicProteomeDataAnaly-

sis: scripts for proteome data wrangling
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Ontology-level calculations

The StringDB [80] multiprotein tool was employed to calculate group FC values for function-

ally-related protein groups (ontologies) regardless of statistical significance. To streamline the

analysis and reduce the number of redundant term ID (ontologies), ontologies were selected

only from the following established: GO Process, GO Function, GO Component, KEGG, Reac-
tome, and WikiPathways. To quantify the representation of each ontology, the “observed gene

count” was divided by the “background gene count” to calculate the “Ontology_coverage (%)”

for each ontology. Only ontologies with�25% were included in this analysis. This latter crite-

rion ensures that the identified ontologies are sufficiently represented in the data (S4 and S5

Tables).

The “matching proteins in your network (labels)” was used to associate each observed pro-

tein in the ontology with the calculated “Area” FC and turnover rate FC, respectively, for both

the E2vsE3 and the E4vsE3 comparison. Next, the average protein “Area” FC and turnover

rate FC was calculated for each identified ontology by averaging the FC values of proteins

within that category. This step summarized the collective expression and turnover rate changes

of proteins within specific functional groups for each comparison.

To assess the statistical significance of the FC values within each ontology, a one-sample t-

test with null hypothesis (H0) stating the average ΔAbundance (Eq 3) for the ontology is equal

to 0, and the alterative hypothesis (Ha) indicating that it is not equal to 0. This statistical test is

used to determine whether the observed changes in protein expression for the ontology, as a

whole, were statistically significant. To account for multiple comparisons and maintain a con-

trolled false discovery rate (FDR), the Benjamini-Hochberg correction (BH-PV) was calculated

for the resulting p-values (FDR = 0.25). Ontologies with a BH-PV < 0.05 were considered sta-

tistically significant. In the case of highly similar ontology with significant changes, the ontol-

ogy with the most proteins was selected to represent the results. The Python code used to

analyze StringDB and calculate the FCs can be found in the GitHub repository JC-Price/Pub-

licProteomeDataAnalysis: scripts for proteome data wrangling. https://github.com/JC-Price/

PublicProteomeDataAnalysis
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