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Abstract

Accumulation processes, where many potentially coupled features are acquired over time,

occur throughout the sciences from evolutionary biology to disease progression, and partic-

ularly in the study of cancer progression. Existing methods for learning the dynamics of such

systems typically assume limited (often pairwise) relationships between feature subsets,

cross-sectional or untimed observations, small feature sets, or discrete orderings of events.

Here we introduce HyperTraPS-CT (Hypercubic Transition Path Sampling in Continuous

Time) to compute posterior distributions on continuous-time dynamics of many, arbitrarily

coupled, traits in unrestricted state spaces, accounting for uncertainty in observations and

their timings. We demonstrate the capacity of HyperTraPS-CT to deal with cross-sectional,

longitudinal, and phylogenetic data, which may have no, uncertain, or precisely specified

sampling times. HyperTraPS-CT allows positive and negative interactions between arbitrary

subsets of features (not limited to pairwise interactions), supporting Bayesian and maxi-

mum-likelihood inference approaches to identify these interactions, consequent pathways,

and predictions of future and unobserved features. We also introduce a range of visualisa-

tions for the inferred outputs of these processes and demonstrate model selection and regu-

larisation for feature interactions. We apply this approach to case studies on the

accumulation of mutations in cancer progression and the acquisition of anti-microbial resis-

tance genes in tuberculosis, demonstrating its flexibility and capacity to produce predictions

aligned with applied priorities.

Author summary

Many important processes in biology and medicine involve a progressive buildup of fea-

tures over time. These might be, for example, the accumulation of different mutations as

cancer progresses, or the evolution of bacteria to be resistant to more and more drugs.
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Here we introduce an algorithm called HyperTraPS-CT that uses data to learn the details

of how these features build up over time. The algorithm provides information on which

features affect each other, which come early and which come late, and what might happen

in the future. It is more flexible than several existing approaches, and can be used across

many different scentific situations; we demonstrate its use in learning about leukemia pro-

gression and tuberculosis drug resistance. This approach has the potential to help make

useful predictions about how new instances of these processes will evolve, about data

which can’t be observed due to technological limitations, and about possible mechanisms

that determine how features interact.

Introduction

Many important processes in the biological, medical, and physical sciences can be classed as

‘accumulation processes’ [1, 2], involving the serial stochastic acquisition or loss of discrete

features over time—from evolutionary dynamics [3–5] to disease progression [6–8]. Features

(also called traits, or characters, particularly in the evolutionary literature) in this context typi-

cally mark the presence or absence of a property of interest—for example, a particular muta-

tion in a cancer patient [2, 6], a given gene lost by a species [4], or a given disease symptom

presented by a patient [9]. Reconstructing the dynamics by which these processes occur can

inform our knowledge of the underlying mechanisms [4, 5], make predictions about unmea-

sured features and the likely future behaviour of systems in a known state [5, 8, 10–12], and

identify features of the system which determine (or are determined by) progress through accu-

mulation pathways [9, 13].

The study of the evolution of characters across phylogenetically related lineages has an

extensive history and associated literature, but general approaches suitable for large sets of

data and features remain challenging. Methods to infer phylogenetic trees, to infer evolution-

ary dynamics of characters on phylogenies, and to jointly infer both have been developed

(reviewed, for example, in [14] and [3] and included in famous software packages like phytools
[15] and corHMM [16]). Another branch of the scientific literature, which remains surpris-

ingly disconnected from the evolutionary picture, focusses on inferring accumulation dynam-

ics in cancer progression (recently reviewed in [2] and [6]; a summary of some approaches in

given in Table A in S1 Appendix). These approaches attempt to describe the acquisition of

coupled features—usually mutations—with time, with classic approaches including Markov

modelling of transitions between discrete states with disease observations [17]. Inference

methods based on Bayesian networks have played a particularly pronounced role in this field

[7, 18–23]. Traditionally (but not exclusively), the cancer literature considered independent,

cross-sectional observations of a limited number of binary features, constraining the possible

interactions between features to, for example, pairwise positive influences (but see below).

In an attempt to relax these restrictions, and to support cross-sectional, phylogenetic, and/

or longitudinal observations, ‘hypercubic transition path sampling’ or HyperTraPS was devel-

oped [4, 24]. HyperTraPS requires no assumptions about restricted states or independence of

feature acquisitions, and is naturally embedded in a Bayesian framework supporting prior

information and uncertainty quantification. A focus on transitions between states as the fun-

damental observation type, rather than individual observations, means that HyperTraPS has

always supported data embedded in trees and/or longitudinal sequences, as well as cross-sec-

tional samples. Polynomial rather than exponential scaling in the number of features, and at

most linear scaling in the number of observations, permits the efficient analysis of large sets of
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coupled features where other approaches struggle [4, 24]. This efficiency arises from a key

property of the approach: an algorithm conceptually similar to transition interface sampling or

forward flux sampling in statistical physics [25], focussing only on those pathways likely to cor-

respond to observed transitions. While pairwise positive and negative interactions (involving

L2 parameters) are the default target of inference in HyperTraPS, regularisation and model

selection approaches support a choice between different parameterisation structures for a

given dataset [24]. Prior to and following HyperTraPS, two related approaches—phenotypic

landscape inference [5] and HyperHMM (hypercubic hidden Markov modelling, [26])—

expanded the parameter space of accumulation models to allow arbitrary interactions between

sets of features (not just pairwise interactions), so that, for example, a combination of traits A,

B can influence trait C differently from the additive influence of A and B. HyperTraPS and

these aligned approaches have been used to explore cancer progression, identifying new path-

ways and interactions [24, 26], but their flexibility has also allowed their application in other

fields including the evolution of genomes [4, 27]; multi-drug resistance in tuberculosis [24,

28]; photosynthetic pathways [5, 29], and tool-use behaviour [13]; disease progression in

severe malaria [9]; and the behaviour of students in online learning [30]. Predictions from

these inferred models about unobserved features and future behaviours have been validated

both using withheld data [9] and independent laboratory experiments [5]. HyperTraPS is cer-

tainly not alone in this breadth of application; other approaches from accumulation modelling

have also been expanded into other applied fields, notably in the study of HIV drug resistance

[31, 32].

Independently of HyperTraPS, Mutual Hazard Networks (MHN) has been developed more

recently [6, 33], driving the cancer accumulation field forward—along with other powerful

advances including those based on Bayesian networks [1, 2, 34, 35], permutation analysis [36,

37], and accounting for tumour ‘phylogenetics’ (reviewed in [38]). MHN uses the same princi-

ple as the pairwise, L2, parameterisation of HyperTraPS to support pairwise positive and nega-

tive influences between traits (but does not support higher-order interactions). MHN has

recently been embedded in a framework, TreeMHN, allowing observations to be connected in

a tree [12], matching the native capacity of HyperTraPS to deal with phylogenetically embed-

ded and longitudinal data. To deal with larger sets of features, TreeMHN introduced a sam-

pling approach to the MHN picture, aligning with HyperTraPS’ sampling system.

One difference between these connected approaches is their picture of time. MHN and

TreeMHN, for example, contain an implicit sampling time that sets a continuous timescale for

the inferred dynamics; this feature has been a target of refinement and subsequent computa-

tional acceleration in [39]. HyperTraPS and HyperHMM consider only orderings, not timings,

of transitions—originally motivated by the absence of timing information in the evolutionary

and disease progression settings under study. In many evolutionary applications (and now

cancer progression) of accumulation modelling, however, imperfect timing information does

exist, in the form of (uncertain) branch lengths in the associated trees—either corresponding

to real time or to amounts of evolutionary change. The capacity to deal with uncertain timings

is also useful in cancer and disease progression, where observations are typically bounded by

inequalities: changes occur at some unknown time between two delineating observation times.

Here, we develop HyperTraPS-CT, an expansion and generalisation of HyperTraPS that

connects with absolute timings, either specified precisely or via a range of possible values,

allowing uncertainty in observation times to be naturally included. HyperTraPS-CT retains all

the existing strengths of HyperTraPS: scalability (having been used for over 120 pairwise-cou-

pled features in [30]); flexibility in data source (cross-sectional, longitudinal, phylogenetic);

the capacity for regularisation and model selection [24]; and a Bayesian implementation. New

components of HyperTraPS-CT include the ability to use precise and/or uncertain timing
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information; the ability to capture arbitrary positive and negative interactions between sets of

(not just pairwise) features (mirroring HyperHMM in [26]); and an expanded set of options

for predicting unobserved features in observations and future behaviours. We also introduce a

suite of visualisation approaches reporting the output of these inference processes, which can

readily be applied to other continuous-time models like MHN [33], CBN [22], and H-ESBCN

[35], with a flexible implementation (via command line and R) allowing efficient use of these

advances across platforms.

Methods

HyperTraPS-CT: Inferring timed evolutionary pathways on a hypercubic

transition network

We will work in a picture where observed states of a system are described by the presence or

absence of L binary traits. There are in total 2L different states (that is, unique patterns of pres-

ence or absence) which we will refer to with binary strings of length L, with 0 or 1 in the ith
position respectively corresponding to the absence or presence of the ith trait (Fig 1A). We

allow Poissonian transitions between states of the system with a characteristic rate: the rate of a

transition from s1 to s2 is ls1!s2
. In monotonic accumulation, where dynamics proceed by indi-

vidual changes of one trait at a time, ls1!s2
¼ 0 for all s2 that do not differ from s1 by an acqui-

sition of exactly one trait. For example, for L = 3, λ000!001 may be nonzero, but λ000!011 = 0.

Several early instances of HyperTraPS were designed to study systems where loss of traits,

rather than accumulation, was the driving dynamic (for example, the loss of genes in the

reductive evolution of mitochondrial DNA [4]). HyperTraPS can readily describe loss dynam-

ics as well as accumulation dynamics, in which case the description above is inverted: ls1!s2
¼

0 for all s2 that do not differ from s1 by a loss of exactly one trait. In either case, the network of

transitions between states takes a hypercubic structure (Fig 1B). Evolutionary trajectories of

the system are modelled as random walks from some initial state, undergoing transitions ran-

domly according to the rates of available transitions from the current state.

We consider datasets of the form D ¼ fai; bi; t1i; t2ig, consisting of a collection of N records

of ancestral state ai, descendant state bi, and a observation time window (τ1i, τ2i) (Fig 1A). This

window can be used to describe specified, uncertain, or relaxed constraints on observation

times (see below). To compute the likelihood of an observation in our dataset, and thus make

progress inferring the transition rates that are compatible with observations, we require the

probability P(b, τ1, τ2|a, 0; λ) that, if a system is in (ancestral) state a at time t = 0, it will be in

(descendant) state b at some time between t = τ1 and t = τ2, given a particular set of transition

rates λ. If it is computationally feasible to analyse all the paths leading from a to b, this proba-

bility can be computed, similar to MHN [33] (see S1 Appendix). However, if we are working

with many traits, the number of paths leading from a to b may be computationally unreason-

able to fully sample—particularly if this calculation is inside a loop, for example in a Bayesian

search over parameter space. In such cases, we need to employ a sampling scheme that cap-

tures the pathways that are most likely. We first define a state s as b-compatible if s has

acquired no features that b does not have (hence, bi = 1 for every i where si = 1; this definition

is inverted for loss dynamics). For example, in the case of feature acquisition, 011 is 001-com-

patible but not 100-compatible. The HyperTraPS algorithm [4] gives us a way of constructing

paths starting at a that are guaranteed to be b-compatible, and thus to end at b, allowing us to

avoid wasting computational time analysing paths that will not correspond to observations.

In Algorithm 1 we present an approach to estimate P(b, τ1, τ2|a, 0; λ), which we call Hyper-

TraPS-CT (hypercubic transition path sampling in continuous time). Eq 1 gives the central,
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general expression for the probability estimate (denoted P̂). Some special cases merit further

attention; we will treat the λ dependence as implicit for these. First, if a and b are identical, the

expression reduces to the exact form P(b, τ1, τ2|b, 0) = exp(−βbτ1) (Step 1 in Algorithm 1), simply

describing the probability that the system is still in state b after a time window τ1. Second, if τ1 =

0 and τ2 =1, we obtain the probability that, given that the system is in state a at t = 0, b is

encountered at any time in the future. Eq 1 then reduces to P̂ðb; 0;1ja; 0Þ ¼ 1

Nh

P
c2C aðcÞ, sum-

ming properties α(c) of path c over the set of paths C sampled by Nh independent random walk-

ers (in HyperTraPS(-CT), these random walkers are constrained to follow only b-compatible

paths—that is, paths that will contribute to the likelihood calculation—and the amount of con-

straint this entails is recorded and used in the likelihood estimation). This is exactly the quantity

reported by the original HyperTraPS algorithm, without considering continuous time. Third, if

τ1 = τ2 = τ, we enforce that the system must be in state b at an exact time τ after it is observed in

state a, corresponding to an exactly-specified time window between the two observations.

Fig 1. Outline of HyperTraPS-CT approach. (A) The relationship between observations is used to create a set of observed transitions. If observations are

independent (i)—for example, individual patients, or independent lineages—they can be treated individually by imposing an initial state. If they are

longitudinally or phylogenetically related (ii), transitions are inferred from the phylogeny with associated precise timings or uncertain time windows, or

with completely unspecified timings where no timing information is available. (B) A hypercubic transition network is used to describe evolutionary

pathways; Eq 1 can be used to estimate, using sampling, a likelihood of observations given a parameterisation of this network λ. (C) Different

parameterisations are explored; for a Bayesian analysis, MCMC and any prior information is used to sample from posterior parameterisations that have a

high associated likelihood given the data; for a maximum likelihood estimate the likelihood is optimised. (D) The identified parameterisation(s) can then be

used to report orderings (i), timescales (ii), pathway structures (iii), influences between features (iv) that are likely given the set of observations, and to make

predictions of unseen features and/or future behaviour (v).

https://doi.org/10.1371/journal.pcbi.1012393.g001
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Algorithm 1. Hypercubic transition path sampling in continuous time (HyperTraPS-CT).

Requires a start state a, end state b, time window τ1, τ2, and transition rates λ.

1. Compute escape rate from b, βb = ∑s λb!s. If a� b, compute P(b, τ1, τ2|b, 0) = exp(−βbτ1)

and terminate.

2. Initialise a set C of Nh trajectories at a.

3. For each trajectory c in C:

(a) Compute the probability of making a move to a b-compatible next step; record this

probability as α0(c).
(b) Record the sum of rates of processes escaping from the current state: bci

¼
P

s lci!s.

(c) If current state is a, set α(c)! α0(c), otherwise update α(c)! α(c)α0(c).
(d) Select one of the available b-compatible steps according to their relative weight.

Update trajectory (ci! ci+1) by making this move.

4. If current state (in all trajectories) is b go to 5, otherwise go to 3.

5. Record α(c) = α(c) for each path c. As in original HyperTraPS, P̂ða! bÞ ¼ N � 1
h

P
c aðcÞ.

Use recorded fbci
g to compute viðcÞ ¼ ð

Qn� 1

j¼1
bcj
Þ=
Qn� 1

j¼1;j6¼iðbcj
� bci

Þ.

6. Compute

P̂ðb; t1; t2ja; 0Þ ¼
1

Nh

X

c2C
aðcÞ

X

i

e� bbt1
viðcÞð1 � e� t1ðbci � bbÞÞ

bci
� bb

þ
viðcÞ
bci

e� bci t1 � e� bci t2
� �

 !

; ð1Þ

The derivation of Eq 1, Algorithm 1, and these specific results is provided in S1 Appendix,

along with further mathematical details. Briefly, we exploit two facts from the assumption of

Poissonian dynamics. First, the ‘arrival time’—the sum of the transition times through the

pathway c—follows a hypoexponential distribution, which can be integrated over all times in

the window from τ1 to τ2. Second, the ‘dwell time’—the time the system remains at b—follows

a simple exponential form; accounting for all patterns of arrival and dwell times then charac-

terises the probability of a given observation.

Given the estimated probability from Algorithm 1, we construct an approximate likelihood

associated with the dataset D: LðDjlÞ ’
Q

i P̂ðbi; t1i; t2ijai; 0; lÞ. This likelihood function now

enables us to perform inference of the transition networks λ most compatible with observed

data (Fig 1C). In S1 Appendix we present a Bayesian MCMC algorithm that produces poste-

rior distributions on transition rates given observations (Fig 1C and 1D) and naturally allows

prior information on the system to be included in the analysis. We also use a variety of test

cases to demonstrate that this approach can infer the true parameterisations of synthetic evolu-

tionary state spaces, and can accurately reconstruct the orderings and timescales of evolution-

ary events. In addition, we demonstrate how the inclusion of prior information about the

evolving system (for example, forbidding some transitions) can be used to increase efficiency

and refine the resultant posteriors. All code for these test cases is available at https://github.

com/stochasticbiology/hypertraps-ct, with illustrative examples at https://github.com/

StochasticBiology/hypertraps-ct/blob/main/docs/hypertraps-demos.pdf.

In Figs A-B in S1 Appendix we demonstrate a set of calculations and verification case stud-

ies for the principle of HyperTraPS-CT. The distribution of inferred timescales for an example

set of transitions matches the analytic result for Poisson dynamics under different parameteri-

sations (Fig B in S1 Appendix). The rates on transitions for a model involving a single, simple

pathway and a random set of transition rates across multiple pathways are well captured in the

inference process, with strong discrepancies only arising for a limited set of rare transitions

(Fig B in S1 Appendix). The time scaling of the likelihood estimation step is OðnL2NhÞ, where

n is number of observations [4]. Embedded in an inference process, Nh (controlling the
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stability of the likelihood estimate) and the number of likelihood calculations required may

vary according to convergence criteria, as we explore below.

Results

Basic outputs from HyperTraPS-CT

Fig 2 gives a first example of output from HyperTraPS-CT, initially using the L2 parameterisa-

tion as also used in mutual hazard networks (MHN, [33]). Here, the source data is generated

from a process supporting two competing accumulation pathways (as used in [24] and [26]).

One pathway involves progressive accumulation of feature 1, then 2, then 3, and so on. The

other pathway involves progressive accumulation of feature L, then L − 1, then L − 2, and so

on. Each progressive accumulation step takes 0.1 time units to occur.

Fig 2 demonstrates some outputs from inference for the L = 5 case. Fig 2A shows transitions

through the hypercubic state space inferred to occur with high probability, and their inferred

associated timescales. Fig 2B and 2C show maps combining the base rates of acquisition of

each feature, and how the acquisition of each feature influences the rate of each other feature.

Fig 2B follows the protocol of [12], representing the L2 model parameters as a matrix. The

Fig 2. Basic HyperTraPS-CT output for competing pathways. Italics refer to plot type from Table 1, where more

detail can be found for each. (A) Hypercubic transition network giving most probable inferred transitions,

demonstrating the two competing pathways (left, features 1, 2, 3, . . .; right, features 5, 4, 3, . . .). Widths of edges give

the probability flux through each edge; edge labels give the feature acquired and the range of associated timings for that

transition; node labels give states. (B) Influence matrix following the plot styling in [12], summary of posterior

distributions on the rates of the L2 parameterisation for this system. Diagonal elements give the base acquisition rates

for each feature; off-diagonal elements give the influence of an acquired feature (column) on the acquisition of another

feature (row). The opacity of each point reflects its posterior width: ‘precision’ here is max(0, 1 − CV) where CV is the

posterior coefficient of variation. The cross-repression of the first two steps, and promotion of the consequent pathway

steps, is clear. (C) Influence graph of inferred influences between features, reporting the elements of (B) filtered for low

CVs (hence with high posterior probability of being nonzero). (D) State probabilities with time: probabilities of

different states (heights of rectangular regions) at different snapshot times during system evolution (horizontal axis).

https://doi.org/10.1371/journal.pcbi.1012393.g002

PLOS COMPUTATIONAL BIOLOGY Flexible inference of accumulation pathways in cancer, disease progression, and evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012393 September 4, 2024 7 / 22

https://doi.org/10.1371/journal.pcbi.1012393.g002
https://doi.org/10.1371/journal.pcbi.1012393


Bayesian implementation of HyperTraPS-CT allows uncertainty to be quantified: here, a

parameter’s ‘precision’ is reported as max(0, 1 − CV) using the coefficient of variation of that

parameter’s posterior. Fig 2C provides a network representation mirroring Fig 2B, which we

can later generalise to the case where collections of features influence each other. Fig 2D gives

predicted states of the system at a collection of ‘snapshot’ observation times. Throughout these

plots, the two-pathway structure is clear, including in the specific pathways in Fig 2, the pat-

terns of base rates and cross-repression between features in Fig 2B and 2C, and the predicted

states of the system in Fig 2D.

Flexible inference with different data and model structures, optimisation,

regularisation, and uncertainty

Cross-sectional, longitudinal, and phylogenetic datasets. HyperTraPS-CT can naturally

handle cross-sectional data (imposing a given ‘ancestral state’ ai for each bi observation, for

example ai = 0L in the case of accumulation dynamics starting from an initial state with no

traits acquired), longitudinal data (decomposed into (ai, bi) pairs through the time course,

independent by the Markov property), and phylogenetically embedded data (ai correspond-

ing to ancestral nodes and bi to descendant nodes, with each (ai, bi) pair again Markov inde-

pendent). Fig 1 illustrates these cases. In this final case, a method for reconstructing ancestral

states from modern observations is typically required. If feature acquisitions are assumed to

be rare and irreversible events, this process is normally straightforward for accumulation

processes: we assume that an ancestor had acquired a feature if all its descendants have it,

otherwise we assume that the ancestor did not have the feature and any descendants possess-

ing it acquired it independently (the ancestral state is given by the bitwise AND operator

applied over descendants). This picture is readily inverted in the case of loss dynamics,

where the bitwise OR operator would apply. However, these simple rule-based pictures will

undercount instances of convergent evolution—where two descendant lineages indepen-

dently acquire (or lose) a feature relative to their common ancestor. For more complex

dynamics, tools from phylogenetic reconstruction like the Camin-Sokal [40] or Wagner [41,

42] methods can be used. In all cases, the (a, b) form for an observation—with an associated

time window, which may be infinite, wide, or precise (zero-width)—unifies the input data

structure.

Parameter structures: Zero, pairwise, setwise, or arbitrary interactions between fea-

tures. HyperTraPS-CT accepts a range of different parameter structures. The first trivial

case, only of applied use as a null hypothesis, is the zero-parameter case, where every feature is

acquired independently with the same rate. The next case (independent features) involves a

parameter for the ‘base rate’ of acquisition of each feature Fi, for a total of L parameters. The

next case (pairwise interactions) involves these base rates and L2 − L further interaction

parameters, describing how the acquisition of feature Fi influences the base rate of feature Fj.
With a total of L2 parameters, this setup was introduced by [17], and generalised to allow nega-

tive interactions in HyperTraPS [4] and published independently as mutual hazard networks

[33]. Extending those methods, we continue here, with an ‘L3’ parameterisation allowing pairs

of features Fi, Fj to have non-additive effects on the acquisition of feature Fk; an ‘L4’ parameter-

isation allowing triples Fi, Fj, Fk to have effects independent from their constituent pairs;

higher-order models can in principle also be applied. The limiting case is where each of the

L2L−1 edges on the hypercube have independent rates, used in HyperHMM [26] and corre-

sponding to the case where subsets of features of all possible sizes can have independent influ-

ences on a transition.
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HyperTraPS-CT allows inference using any of these model choices, with different capacities

for interactions between features. The case where every edge on the transition network has an

independent weight is likely to correspond to overfitting for reasonable cases. Here, individual

parameter values will not all be uniquely identifiable or informative, many different parame-

terisations may give the same likelihood, and the task more resembles machine learning (find-

ing a parameterisation that generates useful predictions) than parameter inference (identifying

interpretable values for given parameters). Conversely, assigning parameters based on individ-

ual features alone is likely to underfit data generated by processes where interactions between

features are important. Here, parameters will certainly take interpretable values, but may omit

important mechanistic information about interactions. The L2 case risks omitting information

about triplet interactions, the L3 case about quartets, and so on. Model selection and regulari-

sation (described below) can be used to find the optimal parameter structure for the details of

a given dataset.

In Fig 3A we give an example of how different parameter structures omit or capture differ-

ent mechanisms. The data in this example are generated from a process where pairs exert dif-

ferent influence on feature acquisitions than their constituent individual members.

Specifically, the accumulation pathway of the final three features is determined by whether

two, or three, of the first three features have been acquired.

As in [26], the pairwise-interaction picture (L2 here and in [24]; also mutual hazard net-

works [6, 12, 33]) cannot capture these higher-order interactions. Comparing Fig 3Ai with

3Aii, the L2 parameterisation is forced to assign nonzero probabilities to a range of pathways

that are not present in the generating model, because of the requirements of adjusting lower-

order rate parameters to estimate the influence of higher-order processes. The L3 parameteri-

sation (Fig 3Aiii) has parameters supporting the nonadditive influence of pairs of features on

acquisition rates—as in the generating model—and hence captures the dynamic structure. The

corresponding inferred network of interactions, generalising the matrix picture of Fig 2B, is

shown in Fig 3Av. The all-edges model in Fig 3Ai is comparable to the target of inference in

HyperHMM [26]; as such a highly-parameterised model will typically reflect overfitting, regu-

larisation can be used to prune extraneous parameters, leaving only those higher-order inter-

actions needed to describe the data (Fig 3Aiv and 3Avi; see next subsection).

Model regularisation. In addition to specifying a basic model structure from one of these

families, HyperTraPS-CT supports variable selection through regularisation. This can be per-

formed in several ways. First, stepwise parameter removal (as in [24]) where, after a model is

fitted, the parameters are progressively set to zero, with the parameter removed at each step

being the one that has least influence over the likelihood at that step. The minimum AIC (or

other criterion) parameterisation can then be chosen, retaining the set of interactions that are

necessary and sufficient to best describe the data (Fig 3Avi). Second, using a penalised likeli-

hood, where model complexity is included as a penalty in either the maximum-likelihood opti-

misation or the MCMC process (see below). The penalised complexity can either be the

number of nonzero parameters, following an information-criterion-like approach, or the mag-

nitude of parameter values, following a LASSO-like approach. This approach is used in the

tuberculosis and cancer case studies below (Figs 4 and 5). We generally found penalising the

number of nonzero parameters (akin to an AIC-like approach) to give reproducible and robust

results, but the best approach (and whether to penalise at all) will in general depend on the sci-

entific question.

Dataset size. HyperTraPS-CT’s sampling approach means that it does not suffer a combi-

natorial explosion of paths that must be considered as L increases. Although performing ade-

quate sampling to characterise large systems is still a challenge, it is not an insurmountable one

for some examples of reasonable size. HyperTraPS has been used successfully for> 120
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features [4, 30]. Here, we asked whether the algorithm could recover dynamic structure with

limited observations of large feature sets. To this end, we increased L in the double-pathway

model system above, and took exactly one observation from each transition on the associated

network. Fig 3B shows that although convergence takes some time, the continuous-time case

can readily identify dynamic patterns with 70 features with only 140 observations (Fig 3B);

other large L cases are shown in Fig D in S1 Appendix.

Maximum likelihood and Bayesian approaches. As HyperTraPS-CT is concerned with

the likelihood estimation for a particular parameterisation, the surrounding inference scheme

using this likelihood is flexible. Previous HyperTraPS work was based on a Bayesian picture

through Markov chain Monte Carlo (MCMC) [4] or auxiliary pseudo-marginal MCMC (APM

MCMC) [24, 43]. We now include approaches for more straightforward likelihood maximisa-

tion, including simulated annealing and stochastic gradient descent. These approaches return

Fig 3. Model structure, scaling, priors, and predictions with HyperTraPS. (A) (i-iv) Hypercubic transition networks for

different model parameterisations. Here, data are generated from a process where pairs of features influence the

acquisition of other features. Inferred transition networks are shown (edge widths give probabilities of transitions) for

several models: (i) every edge has an independent parameter; (ii) each feature may have positive or negative influence on

the basal rate of each other (as in original HyperTraPS and Mutual Hazard Networks); (iii) each pair of features may have

additional positive or negative influence on the basal rate of each other feature; (iv) as (i), but following regularisation to

remove unimportant edges. (v) Influence graph describing influences between features and pairs of features in the L3

model (iii), plotted as in Fig 2C, showing the effect of higher-order interactions. (vi) shows the progress of the

regularisation process in (iv), where the initial 384 parameters are progressively pruned (removing model complexity

without sacrificing likelihood) until the information criterion (here AIC) starts to increase as further removal of

parameters compromises the likelihood. (B) Feature acquisition orderings from inference of the competing-pathway

model for L = 70 features, using 2L observations, demonstrating the scalability of HyperTraPS-CT. The size of a point

reflects the inferred probability that a given feature (vertical axis) is acquired in a given step (horizontal axis) in the

accumulation process. The same double-pathway structure as before is used. (C) Hypercubic transition network from

inference of the competing-pathway model using priors to enforce an ordering on the basal rates for each feature: 1> 5

� (others). Initial fluxes are reweighted, reflecting the influence of this prior information. (D) Using learned hypercubes

for predictions. (i) Predicted features: predicting the values of hidden features in the observation 1????. Word cloud gives

the set of inferred underlying states, with word size corresponding to the probability of that particular state. Bar chart

gives the inferred probability that each feature in the underlying state takes the value 1. (ii) Predicted next step: Predicting

the next step from state 11000. Word cloud and bar chart both reflect the inferred next state to be encountered; the size of

the word, and height of the bar, give the corresponding probabilities.

https://doi.org/10.1371/journal.pcbi.1012393.g003
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a single point estimate for a high-likelihood parameterisation, but typically require substan-

tially less processor time than the Bayesian exploration of parameter space (Fig C in S1

Appendix).

The Bayesian setting allows prior information to be included in the inference process.

HyperTraPS-CT currently allows this prior information to be specified in the form of uniform

distributions on parameter values, allowing the scale and sign of individual rates and feature

interactions to be specified or constrained. A simple example is given in Fig 3C, where a prior

is used to constrain the basal rates for each feature in the accumulation process. This has the

direct posterior influence of rebalancing the probabilities of the initial steps in the accumula-

tion process, as well as shifting the posterior probabilities of later transitions.

No, uncertain, or precise timing observations. Representation of observation times as

time windows (which can have infinite, finite, or zero width) allows different degrees of uncer-

tainty in observation time to be captured. This is of particular use, for example, in phylogeneti-

cally embedded data, where the branch lengths connecting an ancestor to a descendant are

uncertain; or in cross-sectional snapshot data, where the time since the ‘root’ state is typically

unknown. The effects of increasing or decreasing the uncertainty of observation times in the

example system are demonstrated in Figs B and E in S1 Appendix; this ability is exploited in

the tuberculosis case study below.

Predictions of hidden features and future transitions. HyperTraPS supports prediction

of unseen features (for example, given an inferred transition network, what is most likely to

replace the ?s in 001101??0?) and future dynamics (for example, given an inferred transition

network, what is most likely to happen next to the state 001101010, and how long will it take?).

Simple illustrative examples are given in Fig 3D. These predictions may be useful in applied

settings: for example, if a new bacterial strain has some but not all of its drug resistance pheno-

types analysed, and clinicians require a prediction of which resistance will evolve next.

Visualisations. As part of the HyperTraPS-CT software implementation, we have

included a suite of visualisation procedures allowing interpretation of inference outputs

(described in Table 1). These include diagnostic traces of values during the optimisation or

MCMC process (Fig C in S1 Appendix); summaries of the inferred dynamics by probabilities

of different event orderings (Figs 3B and 4C, Figs B–F in S1 Appendix) and probabilities of dif-

ferent states over time (Figs 2D and 5D); full or truncated visualisations of the inferred transi-

tion graph with associated timings (Figs 2A, 3A, 3C, 4A and 5B, Figs E-F in S1 Appendix); and

visual reports of predictions from the inferred model (Fig 3D). Depending on the model struc-

ture chosen, matrices or graphs of influences between individual features (Figs 2B, 2C, 4B and

5C, Figs F-G in S1 Appendix) or sets of features (Fig 3Av, F in S1 Appendix) can also be

produced.

Taken together, these examples demonstrate the capacity of HyperTraPS-CT to work with

(i) different model structures (positive and negative pairwise/mutual hazard interactions,

influence of larger sets of features on accumulation dynamics, arbitrary logic interactions and

completely independent transitions between states); (ii) different data structures (cross-sec-

tional, phylogenetic, longitudinal data with absent, precise, or uncertain observation timings);

(iii) different inference approaches (maximum likelihood, Bayesian, different regularisations);

(iv) large datasets of many dozen features.

Cancer progression in acute myeloid leukemia

To demonstrate HyperTraPS’ capacity alongside state-of-the-art alternatives, we first look to

the cancer progression field, where accumulation modelling is well established [1]. For a com-

parison with a recent approach, itself compared positively with previous approaches, we use
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the single-cell genomic dataset of acute myeloid leukemia evolution from [44], previously ana-

lysed with TreeMHN [12]. This dataset consists of a set of trees linking ‘ancestral’ and ‘descen-

dant’ observations, represented as barcodes describing the presence/absence of a mutation in a

set of genes. Following ancestral state reconstruction on these trees, assuming a mutation-free

precursor root state, we used HyperTraPS-CT with penalised likelihood to infer the pathways

of mutation acquisition during cancer progression. In the absence of explicit timing informa-

tion in this dataset, we exploit the flexibility of our time window approach and simply assume

that transitions occur at some time between an infinitely distant previous horizon and the

moment of observation. Fig 4A shows a truncated set of most probable early accumulation

steps; Fig 4B shows an inferred map of interactions between mutations; Fig 4C shows the prob-

ability that a given mutation occurs at a given ordinal step through the accumulation process.

HyperTraPS-CT with penalised likelihood identifies many of the same features as

TreeMHN. The ordering of base rates of mutational changes is very comparable: DNMT3A
has the highest base rate, followed by IDH2, FLT3, NRAS, and NPM1, with the same collection

of genes following these. Sets of interactions between changes are also consistently identified,

with, for example, DNMT3A typically acting to promote the acquisition of other mutations

(except WT1); IDH2 having a more limited set of promotion partners; FLT3 acting to both

promote some mutations (NPM1, WT1, RUNX1) and suppress others (NRAS); many muta-

tions acting to promote the acquisition of NPM1 (except for suppressors RUNX1 and ASXL1),

and more features. The relative magnitudes of the inferred interactions are also largely consis-

tent between the two approaches, with, for example, the influence of FLT3 on NRAS being the

strongest inferred suppression, and the influences of IDH2 and ASXL1 on SRSF2 among the

strongest inferred promotions.

The agreement with TreeMHN here (and behaviour in the simple case studies above) is

positive support that HyperTraPS-CT provides a consistent way of estimating progressive

Table 1. Visualisations used throughout the article. The names of each type are given in italics in the captions of figures where they appear.

Visualisation type Examples in article Description

Hypercubic transition
network

2A, 3Ai-iv, 3C, 4A, 5B, E and F

in S1 Appendix

The inferred transition network for the system. Nodes are states, edges are transitions corresponding to

one feature acquisition. Edge thickness gives the probability of each transition in one traversal of the

network (transition probability × source state occupancy). Edge labels (sometimes omitted for clarity)

give the feature acquired and (where applicable) the time window of the transition.

Influence matrix (for L2

model)

2B, 4B, F in S1 Appendix The bare rates of acquisition of each feature (on-diagonal elements), and how the presence of each other

feature influences this base rate (off-diagonal elements). Element i, j for i 6¼ j describes how the base rate

of acquisition of i is influenced by the presence of feature j.
Influence graph (for L2 or

L3 models)

2C, 3Av, 5C, F and G in S1

Appendix

How the presence of individual features (for both L2 and L3 models) or pairs of features (for the L3

model) influence the base rate of acquisition of other features. An arrow from A to B denotes the

influence that the presence of A has on the acquisition of B. For the L2 case, this provides the same

information as the off-diagonal elements of the influence matrix above.

State probabilities with
time

2D, 5D The probability that the system is in a given state at a given time. Probabilities are the height of each

rectangular region (‘motif’) corresponding to the labelled state

Feature acquisition
orderings

3B, 4C, B-F in S1 Appendix Various visualisations of the ordering in which features are acquired. ‘Bubble’ plots give the probability

(circle size) that feature i is acquired at time j. The motif-style plots report the same information using

the height of rectangular regions (‘motifs’). Histogram plots show the probability of feature acquisition

as a function of time. The time series version visualises the (continuous) times at which each feature is

acquired as the system accumulates more (progressing up the vertical axis).

Predicted features 3Di Predicted values of hidden features, given an inferred model. A word cloud gives the set of inferred

underlying states, with word size corresponding to the probability of that particular state. A bar chart

gives the inferred probability that each feature in the underlying state takes the value 1.

Predicted next step 3Dii Predicted next step from a given state, given an inferred model. The size of words in a word cloud, and

heights of the corresponding bars, give the probabilities of each state.

https://doi.org/10.1371/journal.pcbi.1012393.t001
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accumulation dynamics with real as well as synthetic data. We next looked to a system where

its ability to handle uncertain continuous timing data could be demonstrated.

Acquisition of antimicrobial resistance genes in tuberculosis

To this end, we next used HyperTraPS-CT to explore an evolutionary question of pronounced

global health importance—the evolution of antimicrobial resistance—in Mycobacterium tuber-
culosis, using a Russian study [45]. We used the curated data used in [24] where a set of bacte-

rial isolates, related via a known phylogeny, have barcodes corresponding to the presence/

absence of resistance to each of ten drugs (Fig 5A). These drugs are referred to by three-letter

codes: INH (isoniazid); RIF (rifampicin, rifampin in the United States); PZA (pyrazinamide);

Fig 4. Accumulation of mutations driving cancer progression. (A) Hypercubic transition network showing the truncated set of inferred high-probability

transitions between states in the cancer progression system. Transitions are labelled by acquired feature; only transitions with a posterior probability over

0.006 are plotted. The system proceeds from the leftmost point (no features acquired) and each step to the right corresponds to the acquisition of one

feature. Edge widths give probabilities for each transition. (B) Influence matrix showing of base acquisition rates and positive and negative pairwise

influences between features (corresponding network plot in Fig G in S1 Appendix). As in Fig 2B, diagonal elements give base rates, and off-diagonal

elements give the influence of an acquired feature (horizontal axis) on the acquisition rate of another feature (vertical axis). (C) Feature acquisition
orderings using a ‘motif’ plot showing the probability (height of a given rectangular region) that a particular mutation is acquired at a given ordinal step

(horizontal axis) in an accumulation process.

https://doi.org/10.1371/journal.pcbi.1012393.g004
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EMB (ethambutol); STR (streptomycin); AMI (amikacin); CAP (capreomycin); MOX (moxi-

floxacin); OFL (ofloxacin); and PRO (prothionamide). We used HyperTraPS-CT with penal-

ised likelihood to learn the pathways of accumulating multi-drug resistance. We reconstructed

ancestral states on the phylogeny using the maximum parsimony approach, assuming irrevers-

ible accumulation dynamics. The branch lengths on the phylogeny (Fig 5A) do not correspond

to absolute timings but to a measure of evolutionary change, estimated from independent

genomic data [24, 45]. We first assume that this estimated phylogeny is precise, and use a con-

tinuous time inference picture precisely specifying observation time as the branch length b for

Fig 5. Inference of the dynamics of anti-microbial resistance evolution in tuberculosis. (A) Dataset from [45],

consisting of a phylogeny connecting observations of drug resistance presence/absence (grey and white pixels

respectively). The horizontal scale bar gives a genetic distance of d = 0.01 in the original data, interpreted as a value of

Δt = 103d = 10 in the time ordinate for this analysis. (B) Hypercubic transition network giving inferred high-probability

transitions between states in the TB AMR system. Transitions are labelled by the drug to which resistance is acquired in

that step, and inferred likely mutational ‘timescale’. Edge width gives the probability of a transition; only transitions

above a threshold probability of 0.05 are plotted. (C) Influence graph from the L2 (mutual hazards) picture, describing

inferred positive and negative influences (directions 1 (blue) and -1 (red) respectively) between resistance acquisitions.

Only influences with a posterior coefficient of variation under 0.3 are plotted. (D) State probabilities with time as a motif

plot describing probabilities of different observed states (heights of corresponding rectangular regions) in the inferred

evolutionary dynamics. Further outputs of the inference process are shown in Fig F in S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1012393.g005
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each transition (τ1 = τ2 = b in Eq 1). The time ordinate here is then intepretable as genetic dis-

tance between nodes on the phylogeny, scaled by 103 for clarity. The inference results are

shown in Fig 5.

Beginning with the inferred accumulation pathways on the hypercubic transition network

(Fig 5B), resistance to INH, then RIF/STR in either order, then likely EMB is the dominant

pathway. This highest-probability pathway matches observations from discrete-time inference

in [24] and [26] (also shown in Fig F in S1 Appendix). However, accounting for the continuous

‘time’ picture suggests another mode which is less prominent in the discrete-time picture: the

early acquisition of STR resistance, followed by INH, then RIF. This pathway emerges in the

continuous time picture because, although STR resistance is less common than INH or RIF

resistance in the dataset, the transitions involving early STR resistance occur on a shorter time-

scale. This information is of course excluded from discrete-time pictures.

Following these early steps, pathways become more branched, with a collection of compet-

ing routes and corresponding timescales visible in Fig 5B and 5D. Generally PRO and PZA

resistances are likely acquired at intermediate stages, and MOX, OFL, CAP, AMI at later

stages. The modal final resistance acquisition sequence is PZA-CAP-AMI. The general order-

ing of these resistances agrees with [24], but the relatively strong support for AMI (not CAP)

as the final resistance step again emerges because of the timings of the associated observations.

The map of interactions (Fig 5C) gives a collection of positive interactions between features,

and one negative interaction (PRO repressing RIF acquisition).

What if we cannot assume the phylogeny linking these observations is precisely known?

If branch lengths are uncertain, the associated observation times for an ancestor-descendant

transition are also subject to uncertainty. To demonstrate how HyperTraPS-CT can allow

for such uncertainty, we set τ1 = 0, τ2 = b instead of τ1 = τ2 = b above. In this way, the obser-

vation of the descendant state at some time between 0 and b is required, rather than pre-

cisely at b. The corresponding outputs are shown in Fig F in S1 Appendix. The same

dynamics are recovered but with substantially increased uncertainty on transition time-

scales and fewer robustly supported interactions, reflecting the additional uncertainty in the

system.

We also used the model flexibility in HyperTraPS-CT to explore evidence for feature

interactions beyong the pairwise cases identified in Fig 5. To this end, we used the L3 model

(allowing nonadditive influence of feature pairs on other feature acquisitions) with penalised

likelihood on the same tuberculosis dataset. Fig F in S1 Appendix shows that some nonaddi-

tive influences of feature pairs on acquisition rates were identified with confidence: for

example, a combination of RIF and OFL positively influences the rate of acquisition of

MOX.

Prediction of unobserved and future behaviours in accumulation dynamics

The inferred dynamics here can be used, for example, to provide predictions about the likely

next drug resistance to evolve from a given observed state (as in Fig 3Dii), and to predict phe-

notypic features from an imperfectly sampled new observation (as in Fig 3Di). Both of these

predictive statements could be of conceivable applied use. A prediction that resistance to a

given drug is likely to occur next might suggest the use of a different drug (one with lower

and/or later acquisition propensity). In cases where phenotypic assays of drug resistance are

challenging (requiring researcher time and resources), the predictions of unmeasured drug

resistances could be used as a (clearly imperfect) substitute.

To test the capacity of HyperTraPS-CT to make such predictions, we split the transition set

for the tuberculosis case study into 75:25 training:test subsets, and used the training subset to
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produce posteriors on the hypercubic model. We did this 75:25 split ten independent times to

guard against accidents of sampling: the following results are amalgamated across these

instances. To address the first predictive task, using the unseen test data, we identified transi-

tions where the ‘ancestral’ and ‘descendant’ states differed by one acquired feature, and asked

whether acquisition of that inferred feature was among the most probable predicted steps from

the ancestral state. In the majority of cases, the true acquisition was the most or next-most

likely step predicted by the trained model, with the most-likely predicted step being clearly

most common (Fig 6A).

We next artificially obscured a random set of features in the test data and attempted to

predict their values based on the remaining features and the model inferred from the training

data (Fig 6B). For each obscured feature F we recorded P(F = 1), the posterior probability

that it would take value 1, from the inferred model. With a ‘strictness’ parameter Δ, we

assigned a prediction of 1 for features with P(F = 1) > 0.5 + Δ, a prediction of 0 for P(F = 1)

< 0.5 − Δ, and no prediction otherwise. As Δ changes from 0 to 0.5 we thus require stronger

posterior evidence for making a prediction. Fig 6B shows the case for Δ = 0, where 86% of

predictions were correct; the general behaviour of prediction accuracy against proportion of

assigned predictions is shown in Fig 6C. Enforcing stricter criteria for assigning a prediction

readily amplifies accuracy over 95% at the cost of roughly a quarter fewer confident

predictions.

Taken together, HyperTraPS-CT has demonstrated both compatibility with existing

approaches for the study of cancer progression and in synthetic case studies, and the ability to

exploit timing information to refine estimates of evolutionary dynamics in the study of anti-

microbial resistance. At the same time, its flexibility will allow a range of scientific questions to

be explored across other applied fields. These include the role of higher-order interactions

between features in determining accumulation behaviour, and (with approaches to compare

inferred transition graphs [28]) the similarities, differences, and modulating factors of accu-

mulation dynamics in different samples.

Fig 6. Predictions of future and unobserved features in tuberculosis multi-drug resistance evolution. (A) Following

training, predictions were made for the next accumulation step in a set of withheld test observations (see text). For each

observation, each possible step from the precursor state was ranked by predicted probability. The plot shows the

predicted ranking of the true acquisition (1 predicted to be most likely) across test observations. (B) Prediction of

artificially obscured features in test data. The ‘barcode’ background shows the full test data, the points correspond to an

artificially obscured feature that was predicted from the trained model, coloured by whether the prediction was correct

or not. 86% of predictions were correct in this example. (C) More generally, a parameterised choice can be made about

whether to assign a confident prediction based on its posterior probability. This plot shows how the proportion of

correct predictions increases as this ‘strictness’ criterion is increased, at the cost of a higher proportion of observations

without an assigned prediction.

https://doi.org/10.1371/journal.pcbi.1012393.g006

PLOS COMPUTATIONAL BIOLOGY Flexible inference of accumulation pathways in cancer, disease progression, and evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012393 September 4, 2024 16 / 22

https://doi.org/10.1371/journal.pcbi.1012393.g006
https://doi.org/10.1371/journal.pcbi.1012393


Discussion

We have introduced a continuous timescale to hypercubic transition path sampling (Hyper-

TraPS), a flexible approach to inferring the dynamics of accumulaton models. We have also

generalised the parameter structures used in the underlying model so that arbitrarily high

orders of interaction between feature sets can be captured by the inference process, and intro-

duced a panel of new options for predictions, inclusion of prior knowledge, optimisation

approaches, regularisation, and visualisation. Higher-order interactions have previously been

shown to have explanatory power in, for example, ovarian cancer progression [26], and limited

higher-order interactions between drug resistances are observed here in the tuberculosis case

study. We hope that the regularisation and model selection approaches we provide here will

help explore potentially useful model structures in other contexts.

A question of causality arises in considering the inferred interactions and influences

between features. In several biological settings, some features may be expected to act as ‘driv-

ers’ (actively influencing others) and some as ‘passengers’ (subject to, but not exerting, influ-

ence). Mutations in cancer progression are a clear example [46]. In the network of influences

between features inferred with accumulaiton modelling, one would expect ‘passengers’ to be

identified with few outgoing edges (no influences on other features) and ‘drivers’ to be identi-

fied with more outgoing edges (influencing several other features). But population-level effects

and combinations of different fitness influences from different features can complicate this

identification, making it important to consider inferred influences through the lens of a partic-

ular evolutionary model for the process under study [2].

We have shown that the consideration of continuous timing information can lead to differ-

ences in the outcome of inference—as demonstrated by the ordering of streptomycin (STR)

resistance in the tuberculosis case study. Features that are less represented in a dataset, but

which are associated with rapid acquisition times when they do appear, will tend to be assigned

later acquisition orderings in explicitly or implicitly discrete-time approaches. Timing infor-

mation can help resolve these dynamics—but is typically uncertain, as feature acquisitions can

occur anywhere between two sampling events. We have outlined and demonstrated one

approach by which such uncertainty may be addressed—through including a time window of

controlled length during which an observation may be made. This approach corresponds to a

particular error model—a uniform distribution over possible observation times. Generalising

this model to include different distributions over observation times constitutes a target for

future work. The robustness of our approach can also be tested by artificially perturbing the

source dataset and assessing the influence of these perturbations on the posteriors [4].

As with other approaches, the posteriors that HyperTraPS initially produces reflect an

‘umbrella’ picture of accumulation dynamics, combining evidence from observations that may

have been subjected to different selective pressures and environmental conditions [4, 24]. This

umbrella picture reflects coarse-grained posterior knowledge of accumulation pathways given

all observations—in a sense, describing the distribution of belief about a putative new sample

about which we have no further information. Refinement of these umbrella posteriors to a

finer-grained picture is possible by including information about the context of different sam-

ples. Previous examples include the broader taxonomy of an individual in evolutionary

dynamics [5], level of patient risk in disease progression dynamics [9], and an individual’s

ecology in behavioural dynamics [13]. In such cases, observed multimodality in the umbrella

posteriors can sometimes be accounted for (at least partly) by a natural distinction between

data subsets from differently categorised observations, informing about mechanistic influences

on the accumulation process. Heterogeneity amongst the entities of study is also a consider-

ation for these accumulation models. For example, tumours are internally heterogeneous, and
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individual cells within a sampled tumour may have different mutational profiles [34, 35, 47,

48]. As discussed in [2], these methods can still be applied to bulk samples of these heteroge-

neous cases (although single-cell observations are clearly more powerful), but the interpreta-

tion must be altered accordingly—inferences now apply not to within-cell dynamics, but to

the observed mixture of states.

In some contexts, the properties of some observed states may not be completely known.

Uncertainty in descendant observations (and hence anywhere in cross-sectional experimental

design) does not challenge our approach, which readily supports a ‘missing data’ flag in any

number of features for such observations. However, uncertainty in ancestral states in the longi-

tudinal or phylogenetic context poses a larger technical challenge [4]. Our approach can always

be applied using a method originally called ‘phenotypic landscape inference’: uniform, unbi-

ased sampling with likelihoods estimated by tracking the number of states compatible with

uncertain observations (essentially using brute force sampling to estimate the left-hand side of

Eq 1), as originally implemented in [5]. However, the question of how to most efficiently sam-

ple evolutionary paths from an uncertain origins will be addressed in future research.

In case where ancestral states are not directly observed, the question of how to reconstruct

evolutionary transitions arises. As described in Methods, for simple evolutionary dynamics a

parsimony-like assumption can be used, where ancestors are assumed to possess a feature if

and only if both descendants possess it. Parallel acquisitions (or losses) of features in sister line-

ages are thus undercounted. Camin-Sokal [40] or Wagner [41, 42] methods for reconstructing

ancestral states could be used, but for large problems could give rise to a large set of putative

transition sets to consider, dramatically increasing the complexity of the problem. A simpler

remedy for this undercounting would be to assume the (likely incorrect) opposite: that each

feature present in each observation reflects an independent acquisition (in other words, no fea-

tures are inherited from ancestors). Any inferences that are consistent across these two differ-

ent pictures can then be regarded as robust with respect to either under- or over-counting of

parallel acquisitions. However, in many cases, the initial parsimony picture is compatible with

the biological context of the evolutionary process.

HyperTraPS by its nature is a sampling approach, and does not have the native capacity for

exact calculations of transition path probabilities as found in other approaches including

MHN [33] and HyperHMM [26]. For small systems, the likelihoods estimated from this sam-

pling approach are effectively indistinguishable from the exact results (Fig B in S1 Appendix),

and the precision of this estimation can be controlled (at the expense of computational time)

by the number of sampled paths Nh. The inevitable expansion of pathway and parameter space

as the number of features L increases means that sampling approaches are currently used even

when using MHN for large systems [12]. However, the necessarily random nature of the sam-

pling underlying HyperTraPS must be considered in its responsible interpretation; conver-

gence of results from different random number seeds, for example, should be assessed as a

‘safety check’. On a related note, cases will clearly exist in accumulation modelling where dif-

ferent parameterisations may have equal abilities to reproduce observations. The Bayesian

embedding of HyperTraPS, and the approaches for regularisation and model comparison we

suggest here, can be used in such cases where identifiability is challenged, to allow reporting of

the flexibility and constraints on different mechanistic parameters under different model

structures.

As approaches for accumulation modelling, traditionally grounded in cancer statistics, gain

more and more features in common with evolutionary biology methods (including connec-

tions with trees/phylogenies, and continuous time), it is worth reiterating that methods for dis-

crete Markov dynamics on trees have existed in the evolutionary literature for decades [49–

51]. The Mk (Markov k-state) model is well established in evolutionary biology and any
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discrete Markovian model on a phylogeny (including a ‘star’ phylogeny, corresponding to

independent instances / cross-sectional observations) can in principle be viewed as a subset of

this picture [16]. Recent work has exploited this connection to allow inference of reversible

accumulation dynamics, albeit for small numbers of features [52]. In accumulation modelling

the focus is typically on features and their relationships, rather than states and their relation-

ships, and the different dependency structures (pairwise interactions, logic interactions, and so

on) are often explicitly encoded in accumulation models in a way that would be less straight-

forward to extract—and potentially impossible to infer in reasonable computational time—

from an Mk model picture. But the connections between the disciplines will be worth explor-

ing in future developments.

Supporting information

S1 Appendix. Mathematical derivations, validation, development, and additional results

for HyperTraPS-CT.

(PDF)
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6. Schill R, Klever M, Rupp K, Hu YL, Lösch A, Georg P, et al. Reconstructing Disease Histories in Huge

Discrete State Spaces. KI-Künstliche Intelligenz. 2024; p. 1–11.

7. Beerenwinkel N, Schwarz R, Gerstung M, Markowetz F. Cancer evolution: mathematical models and

computational inference. Systematic Biology. 2015; 64:e1. https://doi.org/10.1093/sysbio/syu081

PMID: 25293804

8. Colijn C, Jones N, Johnston I, Yaliraki S, Barahona M. Towards precision healthcare: context and math-

ematical challenges. Frontiers in Physiology. 2017;. https://doi.org/10.3389/fphys.2017.00136 PMID:

28377724

9. Johnston IG, Hoffmann T, Greenbury SF, Cominetti O, Jallow M, Kwiatkowski D, et al. Precision identifi-

cation of high-risk phenotypes and progression pathways in severe malaria without requiring longitudi-

nal data. NPJ digital medicine. 2019; 2(1):63. https://doi.org/10.1038/s41746-019-0140-y PMID:

31312723

10. Diaz-Colunga J, Diaz-Uriarte R. Conditional prediction of consecutive tumor evolution using cancer pro-

gression models: What genotype comes next? PLoS computational biology. 2021; 17(12):e1009055.

https://doi.org/10.1371/journal.pcbi.1009055 PMID: 34932572

11. Diaz-Uriarte R, Vasallo C. Every which way? On predicting tumor evolution using cancer progression

models. PLoS computational biology. 2019; 15(8):e1007246. https://doi.org/10.1371/journal.pcbi.

1007246 PMID: 31374072

12. Luo XG, Kuipers J, Beerenwinkel N. Joint inference of exclusivity patterns and recurrent trajectories

from tumor mutation trees. Nature Communications. 2023; 14(1):3676. https://doi.org/10.1038/s41467-

023-39400-w PMID: 37344522

13. Johnston IG, Røyrvik EC. Data-driven inference reveals distinct and conserved dynamic pathways of

tool use emergence across animal taxa. Iscience. 2020; 23(6). https://doi.org/10.1016/j.isci.2020.

101245 PMID: 32629611

14. Revell LJ, Harmon LJ. Phylogenetic comparative methods in R. Princeton University Press; 2022.

15. Revell L. phytools: an R package for phylogenetic comparative biology (and other things). Methods In

Ecology And Evolution. 2012; 3:217. https://doi.org/10.1111/j.2041-210X.2011.00169.x

16. Boyko JD, Beaulieu JM. Generalized hidden Markov models for phylogenetic comparative datasets.

Methods in Ecology and Evolution. 2021; 12(3):468–478. https://doi.org/10.1111/2041-210X.13534
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