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Abstract
This study combines experimental techniques and mathematical modeling to investi-
gate the dynamics of C. elegans body-wall muscle cells. Specifically, by conducting volt-
age clamp and mutant experiments, we identify key ion channels, particularly the L-type
voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which
are crucial for generating action potentials. We develop Hodgkin-Huxley-based models
for these channels and integrate them to capture the cells’ electrical activity. To ensure
the model accurately reflects cellular responses under depolarizing currents, we develop
a parallel simulation-based inference method for determining the model’s free parame-
ters. This method performs rapid parallel sampling across high-dimensional parameter
spaces, fitting the model to the responses of muscle cells to specific stimuli and yield-
ing accurate parameter estimates. We validate our model by comparing its predictions
against cellular responses to various current stimuli in experiments and show that our
approach effectively determines suitable parameters for accurately modeling the dynam-
ics in mutant cases. Additionally, we discover an optimal response frequency in body-wall
muscle cells, which corresponds to a burst firing mode rather than regular firing mode.
Our work provides the first experimentally constrained and biophysically detailed muscle
cell model of C. elegans, and our analytical framework combined with robust and efficient
parametric estimation method can be extended to model construction in other species.

Author summary
Despite the availability of many biophysical neuron models of C. elegans, a biologically
detailed model of its muscle cell remains lacking, which hampers an integrated
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understanding of the motion control process. We conduct voltage clamp and mutant
experiments to identify ion channels that influence the dynamics of body-wall mus-
cle cells. Using these data, we establish Hodgkin-Huxley-based models for these ion
channels and integrate them to simulate the electrical activity of the muscle cells. To
determine the free parameters of the model, we develop a simulation-based inference
method with parallel sampling that aligns the model with the muscle cells’ responses
to specific stimuli. Our method allows for swift parallel sampling of parameters in high
dimensions, facilitating efficient and accurate parameter estimation. To validate the
effectiveness of the determined parameters, we verify the cells’ responses under different
current stimuli in wild type and mutant cases. Furthermore, we investigate the optimal
response frequency of body-wall muscle cells and find that it exhibits a frequency con-
sistent with burst firing mode rather than regular firing mode. Our research introduces
the first experimentally validated and biophysically detailed model of muscle cells in
C. elegans. Additionally, our modeling and simulation framework for efficient para-
metric estimation in high-dimensional dynamical systems can be extended to model
constructions in other scenarios.
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Introduction
The nematode C. elegans provides a highly accessible model due to its relatively simple neu-
ronal network, consisting of far fewer neurons and synapses compared to more complex
organisms [1]. In addition, due to its genetic simplicity and the ease of performing gene
manipulations, this species also serves as an ideal platform for studying specific genes or
mutations within a simple system, such as its locomotory circuits [2–4]. Furthermore, the
connectome of C. elegans has been comprehensively mapped at the cellular level [2,5], pro-
viding a valuable and unique resource for both experimental investigations and neuronal net-
work modeling. Despite its simplicity, the C. elegans neuronal network possesses remarkable
computational efficiency and versatility. This enables the nematode to execute a diverse array
of behaviors, including movement, feeding, sleeping, and mating [6–9]. Moreover, this species
is capable of adapting its behavior in response to environmental changes and various stim-
uli, such as hunger, sex, or stress [7,10,11]. These characteristics make C. elegans an invalu-
able model for researching specific neural systems—such as motor, feeding, and olfactory
systems—and for understanding the specific cellular elements involved in these functions.

The long-standing perception in neuroscience posits that nematodes are exceptional in
their absence of neuronal action potentials [12]. This has been primarily shaped by early elec-
trophysiological studies conducted on the parasitic nematode Ascaris suum [13]. These studies
demonstrate that the motor neurons of Ascaris suum exhibit only graded electrical properties
and synaptic transmission, without any evidence of the typical action potentials observed in
many other species [12–15]. Additionally, the C. elegans genome lacks voltage-gated sodium
channel genes [16], a feature not commonly seen in many species, which is thought to cor-
relate with the absence of action potentials in nematode neurons. However, recent discover-
ies have challenged this notion by revealing the presence of digital signals within C. elegans.
Surprisingly, neuroscientists have detected calcium-mediated spikes in C. elegans, exhibiting
features resembling the hallmark characteristics of action potentials seen in other species [12,
15,17–26]. Notably, these have been observed in specific interneurons [24], and various
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sensory and motor neurons [12,25,26], with pharyngeal and body-wall muscles also display-
ing calcium-dependent action potentials at frequencies between 3–10 Hz [17,23,27].

Concurrently, the development of computational models has significantly advanced the
understanding of C. elegans neuronal physiology. One area of focus is macroscopic network
modeling, which has yielded several important insights. For example, a forward locomotion
modeling has revealed that AVB premotor interneurons can induce bifurcations in B-type
motor neuron dynamics [28]. Furthermore, proprioceptive interactions among neighbor-
ing B-type motor neurons synchronize the frequency of body movements [9,28,29]. Mean-
while, detailed electrophysiological single-neuron models are essential for elucidating neu-
ronal transmission and electrical responses at the molecular level. For instance, an olfactory
neuron AWA has been shown to encode natural odor stimuli through regenerative all-or-
nothing action potentials [12]. These detailed models are also crucial for investigating the
roles of specific ion channels in various cells. Notably, T-type calcium currents facilitated
by CCA-1 channels play a critical role in eliciting the depolarization of the motor neuron
RMD [25]. Similarly, the electrophysiological model of pharyngeal muscle cells has demon-
strated that the strong hyperpolarization after each spike is mediated by potassium channels
EXP-2 [26,30,31]. Despite the availability of many biophysical neuron models of C. elegans,
a biologically detailed model of its muscle cell remains lacking, which hampers an integrated
understanding of intellectual behaviors of motion control. Therefore, there remains a need
for detailed mathematical models that accurately characterize the electrophysiological data of
these body-wall muscle cells.

In this study, we perform electrophysiological experiments and develop Hodgkin-Huxley
type models to capture the underlying mechanism for action potential generation for body-
wall muscle cells [32–35]. Specifically, utilizing voltage clamp techniques, we construct
detailed current dynamics for each ion channel based on our experimental data. These ion
currents are subsequently used to develop a well-constrained biophysical model of electri-
cal activity in body-wall muscle cells. To determine the free parameters in the model, we
develop a parallel simulation-based inference method to fit the responses of body-wall muscle
cells under specific current stimuli [36–38]. This method is based on a Bayesian framework
and can efficiently explore high-dimensional parameter spaces. It identifies high-probability
regions of parameter space that are consistent with experimental data, thereby quantifying
parameter uncertainty. We then validate the model’s accuracy by comparing its responses to
various current stimuli with corresponding experimental data. Additionally, our approach
effectively determines suitable parameters for accurately modeling the dynamics in channel
mutants and responses in sodium-ion-free solutions. We also explore the optimal response
frequency of body-wall muscle cells, finding that it corresponds to a burst firing mode rather
than a regular firing mode. Our modeling approach and framework provide detailed cur-
rent dynamics for each ion channel and facilitate efficient parametric estimation in high-
dimensional dynamical systems, which can be extended to model construction of different
cell types in other species.

The structure of this paper is organized as follows: Section 2 details the electrophysiol-
ogy experimental setup and explains the use of voltage clamp experimental data to establish
the corresponding ion channel model. It then introduces an algorithm designed to efficiently
search high-dimensional parameter spaces to determine the model’s optimal parameters.
The results obtained are analyzed in Section 3 from both numerical and biological perspec-
tives. Section 4 concludes with a summary and discussion, as well as possible future research
directions.
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Materials and methods
Electrophysiology
Recordings from dissected C. elegans body-wall muscles were conducted following established
protocols [23]. Specifically, adult hermaphrodites aged one day were immobilized on slides
with adhesive, and the body-wall muscles were exposed through lateral incisions. We then
assessed the integrity of the anterior ventral body muscle and the ventral nerve cord using
differential interference contrast (DIC) microscopy. Muscle cells were subsequently patched
using fire-polished borosilicate pipettes with a resistance of 4-6 MΩ (World Precision Instru-
ments, USA). We recorded membrane currents and potentials in a whole-cell configuration
using a Digidata 1440A and a MultiClamp 700A amplifier, coupled with Clampex 10 software
for acquisition and Clampfit 10 for data processing (Axon Instruments, Molecular Devices,
USA). The data were digitized at a rate of 10-20 kHz and filtered at 2.6 kHz. Using Clampex,
we determined cell resistance and capacitance by administering a 10-mV depolarizing pulse
from a holding potential of –60mV, enabling the calculation of Ca2+ and K+ current densi-
ties (pA/pF). Leak currents were not subtracted in these measurements. For recording mem-
brane potentials and K+currents: The pipette solution contains (in mM): K-gluconate 115;
KCl 25; CaCl2 0.1; MgCl2 5; BAPTA 1; HEPES 10; Na2ATP 5; Na2GTP 0.5; cAMP 0.5; cGMP
0.5, pH7.2 with KOH, ∼320 mOsm.The extracellular solution consists of (in mM): NaCl 150;
KCl 5; CaCl2 5; MgCl2 1; glucose 10; sucrose 5; HEPES 15, pH7.3 with NaOH, ∼330 mOsm.
For recording voltage-dependent Ca2+ currents: The pipette solution contained (in mM ):
CsCl 140; TEA-Cl 10; MgCl2 5; EGTA 5; HEPES 10, pH7.2 with CsOH, ∼320 mOsm.The
extracellular solution contained (in mM): TEA-Cl 140; CaCl2 5; MgCl2 1; 4-AP 3; glucose 10;
sucrose 5; HEPES 15, pH7.4 with CsOH, ∼330 mOsm.

While the primary goal of these recordings was to measure membrane currents and poten-
tials under controlled conditions, we observed some minor muscle twitches during the exper-
iments. However, these movements did not significantly impact the data quality. Due to the
high electrode seal resistance (above GΩ) between the glass pipette and the cell membrane,
there was minimal disruption to the recordings, and no compensation for motion artifacts
was necessary. This level of stability ensured that the spontaneous firing we observed reliably
reflected the underlying muscle electrical activity.

Conductance-based model description
In this section, we present the mathematical formulation of our biophysical model. Our
model is based on the Hodgkin-Huxley type formulation, which proves to be a power-
ful computational approach that accurately reproduces the spiking times and membrane
voltage waveform of biological neurons in response to current injections [32–35]. The
Hodgkin-Huxley type model we construct encompasses a spectrum of ion channels present in
C. elegans, including the L-type voltage-gated calcium channel EGL-19, voltage-gated potas-
sium channel SHK-1, and Ca2+-gated potassium channel SLO-2, along with non-specific pas-
sive currents (Leak) [39,40]. According to the conservation of current, the membrane voltage
dynamics can be described by:

Iext = Cm
dV
dt
+ Itotal, (1)

where Iext is the external applied current and Itotal contains all the considered ionic currents

Itotal = IEGL-19 + ISHK-1 + ISLO-2 + ILeak. (2)
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The ionic currents IEGL-19, ISHK-1, and ILeak are governed by a generalized formulation:

Iion = gionma
ionh

b
ion (V – Eion), (3)

wheremion and hion are voltage-dependent activation and inactivation gating variables,
respectively. Both gates can be in either an open or closed state. The variablesmion and hion
represent the probability of an activation or inactivation gate being in the open state, respec-
tively. For each ion channel, the parameters a and b represent the number of activation and
inactivation gates, respectively. The parameter gion represents the maximal conductance, while
Eion denotes the reversal potential of the specific ion channel. The gating variables follow the
dynamics described by first-order differential equations:

dx
dt
= x∞(V) – x𝜏x(V)

, x∈ {mion ,hion}, (4)

where x∞(V) represents the steady state and 𝜏x(V) represents the voltage-dependent time
constant.

Meanwhile, there are also ion channels characterized by ligand and voltage regulated cur-
rents, e.g., calcium-regulated channel SLO-2. These models are elucidated by specialized mod-
els as follows. We modify the model from previous studies [25,41,42] to describe the kinet-
ics of ISLO-2, which requires the binding of two calcium ions to open the channel. The ionic
current takes the form of

ISLO-2 = gSLO-2z3∞(V)p2 (V – EK)

dp
dt
= 𝜙

p∞ ([Ca2+]i) – p
𝜏p ([Ca2+]i)

,

(5)

where [Ca2+]i is the intracellular calcium concentration, and

p∞ = 𝛼 [Ca2+]
2
i /(𝛼 [Ca

2+]2i + 𝛽) , 𝜏p = 1/(𝛼 [Ca2+]
2
i + 𝛽) . (6)

Here, 𝛼 = 58 ms–1mM–2 and 𝛽 = 0.09 ms–1 are rate constants [25,43,44]. Additionally, the
parameter z∞ in Eq. 5 is the voltage-dependent equilibrium value.

Due to the dependence of the gating variable p on [Ca2+]i, it is imperative to undertake an
estimation of [Ca2+]i. The calculation is performed using the following differential equation:

d [Ca2+]i
dt

= – ICa
2FAd

– 𝛾 ⋅ ([Ca2+]i – [Ca
2+]r) , (7)

where [Ca2+]r is the resting intracellular calcium concentration. The parameter d denotes
the depth of a proximal shell adjacent to the cell’s surface, which encompasses an area A. The
Faraday constant F indicates the charge per mole and the parameter 𝛾 represents the recovery
rate for calcium ions [45,46].

We initially establish an estimated range for the model parameters. There are two meth-
ods to estimate these parameters. The first method involves fitting experimental voltage clamp
data from various ion channels, which helps determine a subset of the model’s parameters.
Due to individual cell variability, the model parameters for different cells exhibit a range of
values. Since voltage clamp experiments for different ion channels are conducted on different
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cells, solely fitting the voltage clamp data to determine all parameters does not accurately cap-
ture the cells’ voltage responses to current injection, which is the primary focus of our model.
Consequently, we consider the maximum conductance of each ion channel and the cell mem-
brane capacitance as free parameters. The initially estimated range of these parameters is then
incorporated into a parallel simulation-based inference technique to estimate the probability
distributions of parameters, fitting the response of body-wall muscle cells to specific external
current stimuli.

Parallel simulation-based inference
Simulation-based inference (SBI) is a powerful statistical inference approach aimed at esti-
mating parameters of a simulation model based on observed data in experiment [38,47,48].
This method has demonstrated considerable efficacy in numerous real-world applications,
spanning a diverse array of scientific domains, including population genetics, neuroscience,
epidemiology, climate science, astrophysics, and cosmology [38,47,49–51]. However, the
challenge in our study lies in navigating a high-dimensional parameter space, which renders
existing algorithms computationally intensive and time-consuming. To address this, we devise
a parallelized version of SBI capable of efficiently exploring high-dimensional parameter
spaces through GPU acceleration.

Before introducing the algorithm, we first present the experimental dataset used in our
study. We generate four spike trains using four constant current stimuli of 15 pA, 20 pA,
25 pA, and 30 pA. One of them is selected as the training dataset, with the remaining three
spike trains serving as the test datasets.

Algorithm 1 Parallel Simulation-Based Inference
1: Input:
2: Observed data: xo; Prior distribution: p(𝜃)
3: Neural network posterior estimator: q𝜓(𝜃 ∣ x)
4: Number of maximum rounds: R
5: Sample number for each round: Nr
6: Tolerance for convergence: 𝜖
7: Output: Posterior distribution: p(𝜃 ∣ xo)
8: Randomly initialize neural network parameters 𝜓
9: p̃1(𝜃) ∶= p(𝜃)
10: N ∶= 0
11: for r = 1 to R do
12: for i = 1 to Nr do
13: Sample 𝜃N+i ∼ p̃r(𝜃)
14: Simulate xN+i ∼ p(x ∣ 𝜃N+i)
15: end for
16: N←N +Nr
17: Train neural network q𝜓(𝜃 ∣ x)← argmin

𝜓
∑N

j=1L(𝜃j, xj)

18: p̃r+1(𝜃) ∶= q𝜓(𝜃 ∣ xo)
19: if DKL(p̃r+1(𝜃) ∥ p̃r(𝜃)) < 𝜖 then break
20: end for
21: return p(𝜃 ∣ xo)← q𝜓(𝜃 ∣ xo)

Our algorithm is outlined in Algorithm 1. Based on the experimental data, we provide
approximate intervals for the model’s parameter values, choosing a uniform prior distribu-
tion p(𝜃) within these intervals. We then extract the essential features from the experimen-
tal data, as shown in Table 1, which we refer to as the observed data xo. Our objective is to
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Table 1. Brief explanation of model summary statistics. AP = action potential; V =membrane potential. On the
left, we detail the statistics utilized for training all model posteriors. On the right, we describe an additional set of
statistics exclusive to the baseline posterior estimate. This baseline is employed for method comparison in Table 2.
Statistics set Additional set
Feature Explanation Feature Explanation
APC AP count APC (T1/4) AP count of first 1/4
latency Latency of 1st AP APA Amplitude of 1stAP
𝜇 (V) Mean of V ISI Inter-spike-interval
Var (V) Variance of V CVISI CV of ISI
𝜇 (Vrest) Mean resting V 𝜎 (Vrest ) Standard deviation of resting Vm

https://doi.org/10.1371/journal.pcbi.1012318.t001

determine a posterior distribution of the parameters 𝜃. This is achieved through the Maxi-
mum a Posteriori (MAP) method, which yields the distribution p(𝜃 ∣ x). By conditioning on
the observed data x = xo, we ultimately obtain p(𝜃 ∣ xo). The algorithm operates over mul-
tiple rounds, beginning with the initial round. In this round, with the simulation number
N =N1, we sample N parameter values from the prior distribution p(𝜃), denoted as 𝜃i ∼ p(𝜃)
for i = 1, 2,⋯,N. These sampled values are then used to run simulations, a process known to
be time-consuming, especially for large N. To mitigate this, we leverage GPU parallel compu-
tation to vectorize, parallelize, and utilize just-in-time compilation for the entire simulation
process, using the BrainPy software [52,53]. The outputs of the model simulations, specifi-
cally the generated voltage curves, are summarized by key features, denoted as xi and detailed
in Table 1. This summarization step is also vectorized and processed on the GPU.The result-
ing N parameter-data pairs, represented as (𝜃i, xi) for i = 1, 2,⋯,N, are used to train a neural
network posterior estimator q𝜓(𝜃 ∣ x), where 𝜓 denotes the neural network parameters. The
neural network learns the posterior probability based on a masked autoregressive flow (MAF)
method [54]. MAF transforms a simple base distribution, typically a Gaussian, into a com-
plex target distribution through a series of autoregressive and invertible transformations. The
network parameters 𝜓 are optimized by minimizing the objective function∑N

j=1L (𝜃j, xj),
where

L (𝜃j, xj) = – log q𝜓 (𝜃j ∣ xj) . (8)

Finally, the trained neural network posterior estimator: q𝜓(𝜃 ∣ x) is applied to the observa-
tion data xo, yielding the posterior distribution q𝜓(𝜃 ∣ xo). This constitutes the initial round
of inference. In subsequent rounds, samples from the obtained posterior distribution con-
ditioned on the observed data, p̃r+1(𝜃) = q𝜓(𝜃 ∣ xo), are used to simulate a new training set.
This new training set is then combined with the previous dataset to retrain the network. This
process repeats for a specified number of rounds or until the Kullback-Leibler (KL) diver-
gence [55] between successive posterior distributions falls below a predefined threshold
𝜖, indicating convergence. The KL divergence measures how one probability distribution
diverges from a second, expected probability distribution, thus a lower value suggests the
distributions are more similar. As the key part of our algorithm includes the Expectation-
Maximization (EM) algorithm, its convergence can be theoretically guaranteed based on the
EM algorithm’s convergence, given that the number of simulation trials is sufficiently large.
Specifically, as the total number of simulations N increases, the estimated posterior q𝜓(𝜃 ∣
xo) will eventually converge to the posterior distribution conditioned on the observed data
p(𝜃 ∣ xo) [49,56].

Given the high dimensionality of the parameter space in our study, the algorithm requires
a substantial number of model simulations to yield satisfactory results. The original SBI
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algorithm, due to computational time and hardware limitations, could only perform a lim-
ited number of model simulations in each round. This necessitated multiple rounds for the
algorithm to converge. Our parallel SBI algorithm improves upon previous methodologies
by utilizing GPU-based vectorization and parallelization, enabling a significant number of
model simulations to be performed concurrently in each round within a brief timeframe. This
enhancement accelerates the algorithm’s convergence, thereby reducing the number of rounds
required. Consequently, this reduction in rounds decreases the number of neural network
training sessions, thereby lowering computational costs and reducing execution time.

Results
Our experimental observations indicate that body-wall muscle cell spikes exhibit a stereotyp-
ical shape characterized by a fast upstroke, followed by a rapid downstroke and afterhyperpo-
larization, as shown in Fig 1A. These spikes can display “burst” and “regular” firing modes. In
this section, we develop a biologically detailed model of the body-wall muscle cells and inves-
tigate the physiological mechanisms underlying our experimental observations. In particular,
we analyze the roles of individual ionic currents within the overall cell dynamics.

Body-wall muscle cells fire all-or-nothing action potentials
To explore the biophysical underlying mechanisms of the C. elegansmotor circuits, we have
conducted an electrophysiological survey of body-wall-muscle cells in C. elegans. Classic
whole-cell configuration, by using a Digidata 1440A and a MultiClamp 700A amplifier, was
made to record the isolated voltage activated K+ currents and voltage-gated Ca2+ currents
from the muscle cells as shown in Fig 1B.

It is well-established that voltage-dependent potassium channels, triggered by depolariza-
tion, play a crucial role in terminating action potentials. Therefore, it is imperative to investi-
gate all potassium channels involved in regulating the electrical activity of body-wall muscle
cells. Fig 1C provides a comprehensive overview of the currents associated with voltage-gated
potassium channels expressed in C. elegans. Mutant voltage clamp currents exhibit significant
findings: a marked decrease in current response in shk-1(lf)mutants and a moderate reduc-
tion in slo-2(lf)mutants, and only nominal alterations in other mutant varieties (Figs 1C, 1D
and S1 Fig). These observations suggest that the SHK-1 channel plays a central role as the pri-
mary voltage-gated potassium channel responsible for repolarizing action potentials, while
the SLO-2 channel contributes minimally to this repolarization process.

Our previous work [23] established that the action potentials of C. elegans body-wall mus-
cle cells are calcium-dependent. To further explore the primary channels influencing the elec-
trophysiological activity of these muscle cells, we conduct voltage clamp experiments. Because
egl-19 null animals are embryonically lethal, two viable, recessive alleles with partial loss-of-
function, n582 and ad1006, are examined. Fig 1E illustrates altered kinetics in egl-19mutants,
indicating that EGL-19 is responsible for eliciting muscle cell action potentials.

These findings highlight the voltage-dependent Ca2+ channel EGL-19, in conjunction with
K+ channels SHK-1 and SLO-2, collectively contribute to the generation of action potentials
in C. elegans body-wall muscle cells.

Modeling channel dynamics based on experimental data
Based on the previous discussion in Sec. Materials and methods, the parameters for the SHK-
1 channel model are determined using voltage clamp experimental data. As shown in Fig 2A,
we perform numerical curve fitting for each voltage clamp protocol, where the voltage is held
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Fig 1. Electrophysiological characterization of C. elegans body-wall muscles. (A) The graphical representation of C. elegans body-wall muscle cells, with
their electrical activities recorded from experiments in a wild-type animal. The green schematic is an illustration of the C. elegans. The red traces represent an
in vivo recording of spontaneous action potentials under baseline conditions, with no external current stimulation (0 pA during recording), showcasing both
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“burst” and “regular” firing patterns. A zoomed-in view of a single spike is shown in the inset, highlighting the distinct contributions of these ion channels.
(B) An equivalent circuit diagram of the muscle model, illustrating the key electrical components and parameters of the body-wall muscle model. (C) Voltage
clamp currents of the potassium channels. The top section of each column illustrates the currents in different mutants, while the bottom section depicts the
ionic currents obtained by subtracting the corresponding mutant currents from the total wild type (WT) currents, highlighting a significant decrease in shk-
1(lf) and a slight reduction in slo-2(lf)mutants. (D) Steady-state current density variations in different potassium channel mutants as a function of cell voltage.
(E) Voltage clamp calcium currents of wild-type(black) and mutants, specifically egl-19(n582,lf) (green) and egl-19(ad1006,lf) (purple). The protocol involving
voltage steps from -60 mV to +40 mV in 10 mV increments, a holding potential of Vh = –60 mV. Details on the mutants are provided in the main text.

https://doi.org/10.1371/journal.pcbi.1012318.g001

Fig 2. Results of SHK-1 potassium channels model. (A) Upper Panel: The curve fitting for the SHK-1 channel.
Experimental data (wild-type minus SHK-1 mutants) displayed in light red, sourced from shk-1(lf)mutants in Fig 1C,
with blue lines representing the fitting results. Lower Panel: The protocol involving voltage steps from 0 mV to +100
mV in 20 mV increments, a holding potential of Vh = –60 mV, and step duration of 100 ms. (B) The steady-state
activation curve alongside the experimental data (illustrated with blue line and red dots) extracted from panel A. (C)
The activation time constant function.

https://doi.org/10.1371/journal.pcbi.1012318.g002

constant. Through this process, we obtain appropriate values for 𝜏n and n∞ at specific volt-
ages, with the results presented in Fig 2A. Subsequently, these values are further analyzed
to establish the voltage-dependent functions 𝜏n(V) and n∞(V), as demonstrated in Fig 2B
and 2C.

Next, we focus on modeling the calcium channel EGL-19. To address the variability in
experimental data for calcium channels across different individuals, we analyze the current-
voltage (I-V) relationship of calcium currents from multiple individual cells. We then calcu-
late the mean and standard error, as illustrated in Fig 3B. We determine model parameters
based on both voltage clamp experimental data in Fig 1E and the I-V relationship in Fig 3B,
with the final results presented in Fig 3A and 3B. Subsequently, we obtain the parameters 𝜏m,
𝜏h,m∞, and n∞ at specific voltages. Based on these values, we establish the functional forms
for the gating variablesm and h, as illustrated in Fig 3C and 3D.

The calcium-regulated potassium channels SLO-2 are characterized by their intricate
dynamics, influenced by both calcium ion concentration levels and voltage amplitude, as
modeled previously. Determining numerous parameters solely from voltage clamp data is dif-
ficult. Therefore, our methodology predominantly relies on using the parallel SBI method to
fit the model to action potential traces observed in body-wall muscle cells subjected to specific
electrical stimuli, ensuring precise parameter estimation.

The model of leak current for the C. elegans body-wall muscle cells is

ILeak = gLeak (V – ELeak ), (9)

where ELeak corresponds to the reversal potential of the channel and gLeak is the leak conduc-
tance that can be estimated in experiment by assuming the cell is a linear integrator [57].

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1012318 January 27, 2025 10/ 25

https://doi.org/10.1371/journal.pcbi.1012318.g001
https://doi.org/10.1371/journal.pcbi.1012318.g002
https://doi.org/10.1371/journal.pcbi.1012318


i
i

“pcbi.1012318” — 2025/1/27 — 16:33 — page 11 — #11 i
i

i
i

i
i

PLOS COMPUTATIONAL BIOLOGY Biophysical modeling and experimental analysis

Fig 3. Results of EGL-19 calcium channel model. (A) Estimation of calcium currents across voltage steps is represented using distinct colors. The blue line, serving
as a representative trace, illustrates the response at a 0mV voltage clamp, whereas the red line depicts the corresponding experimental trace under the same clamp
conditions. (B) The normalized current-voltage relationship for EGL-19, depicting both experimental (red) and simulation (blue) results (Error bar: Standard Error of
the Mean). (C) Fitting results for the time constant functions of gating variables. Red dots represent experimental data, while the blue and orange lines represent the
gating variablesm and h, respectively. (D) Steady-state functions of gating variables.

https://doi.org/10.1371/journal.pcbi.1012318.g003

By combining experimental measurements of the four aforementioned ion channels and
considering individual cell variability, we can initially estimate the confidence intervals for
the corresponding parameters of these ion channels. However, in the case of C. elegans, the
generation of action potentials may involve additional channels. In the following discus-
sion, we will integrate ion channel candidates mentioned in previous studies on motor neu-
rons and muscle cells, alongside numerical modeling methods, to identify these additional
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ion channels. Furthermore, we will use our designed parallel algorithm of simulation-based
inference method to accurately determine the parameter ranges for all these channels.

The resulting 7-dimensional HH type model. We note that when the model contains
only the four previously mentioned ion channels, the action potentials exhibit premature
repolarization compared to experimental data, as shown in S2 Fig. Additionally, the resting
potential deviates from that observed in the experimental data. To address these issues, we
introduce a potassium ionic current, denoted as Kr, which serves as an early-phase inhibitory
current, and the NCA sodium leak channel, which has a conserved role in determining the
neuronal resting membrane potential in our model [58].

The final 7-dimensional HH type model for body-wall muscle cells is given by the
following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Iext = Cm
dV
dt
+ ISHK-1 + IEGL-19 + ISLO-2 + IKr + INa + ILeak

dx
dt
= x∞–x

𝜏x , x∈ {m,h,n, p, q}

d [Ca2+]i
dt

= – ICa
2FAd

– 𝛾 ⋅ ([Ca2+]i – [Ca
2+]r) .

(10)

The six ionic currents in our model are shown in the following:

ISHK-1 = gSHK-1 ⋅ n4 ⋅ (V – EK)
IEGL-19 = gEGL-19 ⋅m2 ⋅ h ⋅ (V – ECa)
ISLO-2 = gSLO-2z3∞(V)p2 (V – EK)
IKr = gKr(1 – q)q∞(V) (V – EK)

INa = gNa ⋅ (V – ENa)
ILeak = gLeak ⋅ (V – ELeak ) ,

(11)

where gx(x = SHK-1, EGL-19, SLO-2,Kr,Na, Leak) and Ex(x =K, Ca, Na, Leak) denote the
maximal ionic conductance and the reversal potential for each respective current. Addi-
tionally, n, p and q correspond to the activation gating variables for ISHK-1, ISLO-2 and IKr,
respectively. Them and h represent the activation and inactivation gating variables for IEGL-19,
respectively.

As detailed in Sec. Materials and methods, we determine the free model parameters as
illustrated in Fig 4E. These parameters include maximal conductance values (gEGL-19, gSHK-1,
gSLO-2, and gLeak), membrane capacitance (Cm), and voltage shift value (Vth). For more details
on the voltage shift, please refer to S1 Appendix. To measure the differences between the
model-generated spike train and the experimental data, we calculate five features of the volt-
age trace in Fig 4A (red curve), as listed in Table 1. These features provide a comprehensive
representation of neuronal activity. Specifically, the action potential count and latency of the
first spike indicate neuronal excitability and response speed, respectively, while the mean
and variance of the voltage reflect overall activity. The resting potential serves as a baseline
indicator of the neuron’s physiological state. Furthermore, these features are also suitable
for GPU parallelization and vectorized computation, thereby enhancing computational effi-
ciency. Additionally, we utilize our newly-developed SBI method to efficiently explore the
high-dimensional parameter space, as described in the Sec. Materials and methods. By lever-
aging the computational power of A100 GPUs and parallel computing, this approach signif-
icantly enhances the speed of parameter sampling in high-dimensional spaces. This method
outperforms the original SBI method by two orders of magnitude in terms of runtime and
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Fig 4.Detailed results of model fitting in C. elegans body-wall muscle cell. (A–D) Presentation of elicited spike trains across varying stimulation currents from
15 pA to 30 pA, increasing in 5 pA steps. The simulation results are depicted with blue curves, juxtaposed against red curves representing actual experimental data.
(E) Cornerplot showing the marginal and pairwise marginal distributions of the 6-dimensional posterior based on five voltage features, including spike count, mean
resting potential, time to initial spike, etc. (Table 1). The posterior distribution effectively includes the true parameters within a region of high probability, with the
red lines indicating our chosen final values. (F) Spike trains induced by a steady 3.2 pA current, revealing two distinct firing modes in body-wall muscles: “burst” and
“regular.” (G) The pslo-2 gating variable’s behavior, which is modulated by both calcium ion concentration and voltage.

https://doi.org/10.1371/journal.pcbi.1012318.g004

also maintains an accuracy comparable to benchmarks, as demonstrated in Table 2. The final
results are depicted in S1 Table. The simulated curves now demonstrate consistency in action
potential frequency, amplitude, and resting potential when compared to the experimental
curves, as shown in Figs 4A–4D.

As illustrated in Fig 4F and 4G, the potassium channel SLO-2 plays a crucial role in mod-
ulating two distinct firing modes in body-wall muscle cells. With an increase in calcium ion
concentration, SLO-2 inhibits action potentials. Due to its relatively slow activation time, the
channel allows the cell to continue firing, resulting in two distinct firing modes under con-
stant current input: the “burst” and “regular” firing modes. These findings are consistent with
experimental observations, as shown in Fig 1A.
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Table 2. Performance of Simulation-Based Inference (SBI) and its GPU-parallelized version (mean ± standard
deviation across various simulation setups). Training times are reported in minutes and simulation times, defined
as the time required to establish N pairs (𝜃n, xn) through model simulation, are reported in seconds. The last column
(KL) measures the Kullback-Leibler (KL) divergence to estimate the accuracy of posterior approximations. As no
ground truth data is available for our model, the GPU-parallelized version of SBI is employed to estimate the pos-
terior. We utilize a substantially larger set of summary statistics as detailed in Table 1, and the number of samples
drawn from the prior distribution has been increased to 2× 105. The differences in performance metrics highlight the
efficiency gains with GPU parallelization, particularly in reduced simulation times across all simulation counts and
dimensions. The mean and standard deviation are obtained across all 10 runs.

Training Dataset Dataset Training Time
Method Size (million) Dimensions Preparation (s) (min) KL
SBI 0.02 6 236± 30.74 3.81± 0.18 0.32± 0.11

0.05 7 1432± 132.34 22.32± 1.12 1.21± 2.04
0.1 8 5589± 765.84 49.42± 2.64 4.62± 0.85

SBI (GPU parallel) 0.02 6 10.15± 2.83 2.51± 0.14 0.31± 0.14
0.05 7 12.42± 3.01 15.08± 0.64 1.19± 0.31
0.1 8 14.98± 3.74 36.15± 1.84 4.53± 0.62

https://doi.org/10.1371/journal.pcbi.1012318.t002

Prediction of dynamics in mutants and different extracellular solutions
To delve deeper into the dynamical properties of body-wall muscle cells, we investigate how
mutants and alterations in extracellular solutions significantly impact the dynamics of our
model.

To study the role of egl-19 in action potential generation, we use two viable, recessive, par-
tial loss-of-function (lf) alleles, n582 and ad1006, as egl-19 null mutants are embryonically
lethal. Both egl-19(n582) and egl-19(ad1006) are mutations in the same gene, leading to dys-
function of the egl-19 channel. Despite some differences in their effects on calcium currents,
these alleles exhibit similar phenotypes in terms of muscle function, including flaccid paraly-
sis, slow movement, feeble pharyngeal pumping, and defective egg-laying. These shared phe-
notypic traits have been previously described in the literature [42]. We then use our model to
explore the impact of these mutations on action potentials in body-wall muscle cells.

In studying the egl-19(ad1006,lf)mutants, a substantial decrease in calcium current ampli-
tudes is observed, as illustrated in Fig 1C. To replicate these experimental findings, our sim-
ulation incorporates a reduction in the maximum conductance for the calcium ion channel
EGL-19. This modification results in a notable reduction in action potential amplitudes, a
finding that our experiments have confirmed. Specifically, under a 30 pA current injection,
the average action potential amplitude in egl-19(ad1006,lf)mutants is approximately half that
of wild-type cells, while the inter-spike interval (ISI) is significantly prolonged, as illustrated
in the bar graph in Fig 5B and 5C. Notably, the mutant model agrees with the shape of action
potentials under constant current injections, as shown in Fig 5A–5C.

While the egl-19(ad1006,lf)mutants exhibit reduced current amplitudes, another aspect
of calcium channel dynamics is revealed in the study of egl-19(n582,lf)mutants. Namely,
experimental data indicate an increase in the activation time constants of the EGL-19 chan-
nel, denoted as 𝜏m in these mutant models, as shown in Fig 1C. Our simulations, depicted in
Fig 5D and 5E, replicate this observation by increasing the 𝜏m values several-fold. As shown
in Fig 5F, with each incremental increase in 𝜏m, it approaches 𝜏n. When 𝜏m is increased 20-
fold, it surpasses 𝜏n throughout most of the firing voltage range. This adjustment significantly
reduces the firing rate of the cells compared to wild-type, even leading to a marked inability to
generate action potentials, as illustrated in Fig 5D and 5E. Similarly, under the same current
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Fig 5. Analysis of EGL-19 mutant dynamics. (A) Left panel: Experimental (grey) and simulated (blue) voltage
responses of C. elegansmuscle cells from egl-19(ad1006,lf)mutants under a constant input current of 30 pA. Exper-
imental traces from four mutants are shown, demonstrating significant variability among individuals. Right panel:
Overlay of individual action potentials from different mutants (grey), aligned with simulated spikes (blue), extracted
from the traces on the left. (B-C) Statistical comparison of action potential measurements between wild-type
(WT) and egl-19(ad1006,lf)mutants. The average amplitude and inter-spike intervals in egl-19(ad1006,lf)mutants
are significantly different than those in WT. Amplitude (mean± SEM): WT(exp), 59.61± 0.35mV; WT(sim),
59.19 ± 2.31mV; ad1006(exp), 29.98 ± 0.92mV; ad1006(sim), 32.81 ± 0.04mV. Inter-spike interval: WT(exp),
53.28 ± 6.39ms; WT(sim), 48.81 ± 1.29ms;ad1006(exp), 168.51 ± 11.22ms; ad1006(sim), 116.58 ± 0.12ms. The
number of animals recorded per genotype:WT ∶ n = 6; ad1006(exp) ∶ n = 4. (D) Comparison of experimental voltage
responses from egl-19(n582,lf)mutants and simulated data with an altered time constant 𝜏m (5.5-fold). (E) Simulated
voltage responses with an altered time constant 𝜏m (20-fold) compared to egl-19(n582,lf)mutants that did not exhibit
action potentials. Data from four mutants are displayed in grey, with the simulated trace shown in green. (F) Time
constants 𝜏m (in blue), 𝜏n (in red), with altered 𝜏m simulations (5.5-fold in yellow, 20-fold in green).

https://doi.org/10.1371/journal.pcbi.1012318.g005

injection conditions in experiments, we observe that egl-19(n582,lf)mutants rarely fire, with
only a few neurons sparsely spiking, as shown in Fig 5D and 5E. These results demonstrate
that our model accurately reflects the experimental findings.
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When substituting extracellular sodium ions (Na+) with N-methyl-D-glucamine (NMDG),
notable changes occur in the inter-spike-intervals of muscle cells. In our quest to pinpoint
the channels responsible for these observations, we scrutinize the voltage clamp data pertain-
ing to all ion channels involved in action potential generation. The removal of extracellular
sodium ions first leads to a cessation of the NCA sodium leak current. Our investigation fur-
ther reveals that the SLO-2 channel exhibits an increased steady-state value in the absence of
Na+ compared to the normal condition. The slo-2 encodes a subunit of the K+ channel that
is modulated by calcium and chloride ion concentrations [39]. The absence of extracellular
Na+ induces a shift in the dynamics of the SLO-2 channel, contributing to the altered action
potentials. After calibrating the SLO-2 and NCA channel parameters in our model by modify-
ing the maximum conductance of SLO-2 and setting the NCA current to zero, we find that the
simulation results closely align with the experimental data, as shown in Fig 6A. A statistical
comparison between the simulation and experimental results is provided in Fig 6B and 6C.

Frequency preferences of body-wall muscle model
The behavioral states in animals are often characterized by network oscillations with spe-
cific frequencies, as documented in various studies [59–62]. Neuroscientists have exten-
sively explored how different neuronal types within these networks react to oscillatory inputs,
meticulously recording responses to sinusoidal stimuli at preferred frequencies [59]. Building
on this foundation, we investigate the response of body-wall muscle cells to oscillatory input
patterns.

To provide a comprehensive understanding of these responses, we use a ZAP current as
our oscillatory input. The ZAP current is particularly useful because it covers a broad range
of frequencies, allowing us to systematically examine how the muscle cells respond to differ-
ent oscillatory inputs. By applying a ZAP current with a linear frequency sweep from 0.01 to
30 Hz to our model [63], we can observe the cells’ behavior across this spectrum.

The ZAP current is governed by

IZAP = Imax sin(2𝜋f(t) ⋅ t), (12)

where f(t) represents the frequency range swept by the ZAP function. For f(t), we utilize a
linear chirp function:

f(t) = fmin + (fmax – fmin) ⋅ t/T. (13)

To effectively estimate impedance magnitude, we transform current (I) and voltage (V)
recordings from the time domain into the frequency domain using fast Fourier transforms
(FFTs). The impedance (Z) is calculated by taking the ratio of the FFT of the voltage to the
FFT of the current, as represented by

Z = FFT(V)
FFT(I)

= Zreal + iZimag. (14)

The impedance magnitude is then expressed as a function of frequency, forming an
Impedance–Magnitude (IM) profile, as illustrated in Fig 7B. Notably, the body-wall muscle
cells of C. elegans exhibit a distinct preferred frequency at around 4.7 Hz. To compare with
experimental data, we perform a statistical analysis of inter-spike intervals across 10 spike
trains recorded from three wild-type C. elegans individuals, as shown in S5 Fig. While the dis-
tribution is not perfectly bimodal, there is a noticeable gap in the distribution. We set a 200
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Fig 6. Investigating the impact of potassium channel SLO-2 on neuronal dynamics in a sodium-ion-free environ-
ment. (A) Left panel: Voltage traces recorded experimentally (gray) fromWT in response to a 30 pA input current
applied for 2 seconds, alongside corresponding simulated traces (blue) in a sodium-ion-free solution. Right panel:
Overlay of individual action potentials (grey), aligned with simulated spikes (blue), extracted from the traces on left.
(B,C) Statistical comparison between experimental (exp) and simulated (sim) data. Amplitude: exp, 45.66 ± 1.37mV;
sim, 54.55 ± 0.79mV. Inter-spike-interval: exp, 129.33 ± 10.30ms; sim, 154.17 ± 11.01ms. The number of animals
recorded: n = 4. Error bars represent the standard error of the mean (SEM).

https://doi.org/10.1371/journal.pcbi.1012318.g006

ms threshold based on this separation, providing a reasonable cutoff to differentiate between
burst and regular firing patterns. Additionally, we apply an extra criterion to define burst
activity based on the reference [64]: a burst event is accompanied by a sustained depolariza-
tion phase (platform phase) with a voltage above –18 mV, as shown in Fig 7C. The choice of
–18 mV is based on our analysis of the afterhyperpolarization (AHP) trough potential dis-
tribution of each spike, as shown in S5 Fig. Therefore, in a burst event, the burst duration is
defined as the period between the membrane potential rising above –18 mV before the first
spike and decreasing back to –18 mV after the last spike. In cases where the membrane poten-
tial consistently remains above –18 mV, the burst duration is determined by the inflection
point prior to the first spike as the onset and the inflection point following the last spike as the
offset. This dual criterion—combining ISI and depolarization plateau—ensures a precise iden-
tification of burst events, distinguishing them from random spike occurrences. Ultimately,
we find that the preferred frequency of around 4.7 Hz, corresponds to a burst firing mode, as
depicted in Fig 7C. These high-frequency bursts are critical for generating the necessary force
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A B

C

4.

Fig 7. Analyzing frequency preferences in the body-wall muscle cell model. (A) The 100-second ZAP current
injection (represented by the black trace) is applied to the body-wall muscle cell model with a constant amplitude and
a linearly varying frequency. The corresponding power spectra are shown in the lower panel, indicated by the blue
line. (B) The graph of impedance magnitude as a function of frequency for the body-wall muscle cells, determined by
the ratio FFT(V)/FFT(I). (C) A representative spontaneous action potential curve in WT cells, showing both “burst”
and “regular” firing modes. The firing rates of cells in the “burst” firing mode are calculated. Statistical analysis of data
obtained from 3WT cells shows a “burst” mode frequency of 4.8± 1.05 Hz and a “regular” firing mode frequency
below 2 Hz.

https://doi.org/10.1371/journal.pcbi.1012318.g007

and coordination for effective movement. While the undulation frequency of C. elegans dur-
ing locomotion is barely exceeds 2 Hz for swimming animals and is even slower during crawl-
ing on agar plates, these observed undulation frequencies do not directly correspond to the
firing rates of individual muscle action potentials. Instead, these behaviors are driven by the
coordinated activity of multiple muscle groups, leading to rhythmic, clustered action potential
firing within individual muscle cells. These rhythmic bursts can occur at higher frequencies,
ranging from 3.4 Hz to 6.5 Hz [65,66]. Moreover, the burst firing is often driven by plateau
potentials in motor neurons, which modulate neurotransmitter release in a graded manner,
enabling sustained and synchronized muscle activation during locomotion [40,67].

Discussion
This study advances the understanding of the neurophysiology of C. elegans body-wall mus-
cle cells by integrating detailed computational models with empirical data analysis. Our bio-
physical model effectively captures the main features of electrical dynamics in wild-type
cells. Moreover, it predicts alterations in the dynamic properties of C. elegans body-wall mus-
cle cells across various mutants and in sodium-ion-free solutions. Our work also provides a
parallel SBI algorithm using GPU vectorization and parallelization, which allows for exten-
sive and efficient exploration of the model’s parameter space. Notably, our algorithm can be

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1012318 January 27, 2025 18/ 25

https://doi.org/10.1371/journal.pcbi.1012318.g007
https://doi.org/10.1371/journal.pcbi.1012318


i
i

“pcbi.1012318” — 2025/1/27 — 16:33 — page 19 — #19 i
i

i
i

i
i

PLOS COMPUTATIONAL BIOLOGY Biophysical modeling and experimental analysis

scaled to simulate not just individual neurons or muscles, but networks of cells, as detailed
in the S2 Appendix. Additionally, by linking model dynamics with physiological functions,
we identify a distinct preferred frequency in C. elegans body-wall muscle cells. This optimal
frequency induces a burst firing mode, which may significantly enhance the force of muscle
contractions.

To improve the performance of our algorithm, we integrate both experimental and numer-
ical approaches. Experimentally, we conduct investigations by reviewing the literature [23,42,
68,69] and employing gene manipulation and electrophysiology experiments. Accordingly, we
identify the ion channels that influence the dynamics of body-wall muscle cells and select the
key channels to incorporate into our model. From the algorithmic standpoint, we implement
three strategies to enhance convergence and improve the accuracy of parameter estimation.
First, we initialize prior distributions that encompass the full physiological range of ion chan-
nel kinetics, enabling the model to explore a sufficiently broad parameter space. Second, we
estimate certain parameters for each ion channel separately based on voltage-clamp exper-
imental data. Consequently, we only need to estimate the rest few parameters for each ion
channel, thereby facilitating algorithm convergence. Lastly, we develop effective statistics to
capture the dynamics we aim to replicate. These statistics—including action potential counts,
latency to the first action potential, mean and variance of membrane potentials, mean resting
membrane potentials, and mean inter-spike intervals—serve to reduce the complexity of the
high-dimensional output while preserving key electrophysiological characteristics.

In studying the locomotion of C. elegans, experimental findings indicate that their move-
ment is regulated by a network of excitatory cholinergic (A- and B-types) and inhibitory
GABAergic (D-type) motor neurons along the nerve cord, which innervate the muscle cells
lining the worm’s body [29,70]. Additionally, a series of interneurons indirectly regulate
the worm’s movement by modulating motor neurons and proprioception [29,71]. Current
research predominantly focuses on modeling the neurons involved and investigating the
underlying physiological mechanisms, with comparatively less emphasis on body-wall muscle
cells [72–76]. However, muscle cells play a crucial role in locomotion as they integrate neu-
ronal inputs and deliver all-or-nothing electrical outputs to drive movement. The biophys-
ically detailed model we developed characterizes the physiological mechanisms underlying
body-wall muscle cells, providing insights for further exploration of the interactions between
motor neurons and muscle cells. On the other hand, our modeling framework can serve as a
solid foundation for future explorations in modeling other neurons within C. elegans. Previ-
ous work on neuron model parameter estimation, such as those conducted on various types
of neurons in the mouse visual cortex by the Allen Brain Project [77] and on neuron models
in the electric fish Apteronotus [78], has employed parameter estimation methods based on
several evolutionary algorithms, including Differential Evolution, Dual Annealing, and Par-
ticle Swarm Optimization [79–81]. We apply all these algorithms to the parameter tuning of
our model and compare their running times, as shown in S4 Fig. Specifically, in the task illus-
trated in Fig 4E, we estimate 6-dimensional parameters and set the algorithms to stop when
the relative error fell below 0.01. These algorithms converge more slowly, often taking several
hours and requiring hundreds of iterations to stop, which is consistent with previous stud-
ies [82,83]. In contrast, our method demonstrates significantly faster convergence, requir-
ing only 3 iterations, representing more than an order-of-magnitude improvement in speed.
Additionally, our method provides a probabilistic framework for estimating uncertainty in
parameter inference. This is beneficial in the presence of biological variability and experimen-
tal noise, as demonstrated by the variability observed among body-wall muscle cells in this
study.
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In conclusion, our biophysical model presented here may shed light on the underlying
mechanisms for electrical activities in C. elegans body-wall muscle cells and offer a gener-
alized framework for detailed modeling in the study of the C. elegans locomotion system.
Future directions may include utilizing this modeling framework to develop detailed biophys-
ical models for various motor neurons within the C. elegansmotor circuits. This will enable
a more thorough investigation into the interactions between motor neurons and muscle cells
during locomotion, enhancing our understanding of the system’s complexity.

Supporting information
S1 Fig. Voltage clamp currents of the additional potassium channels.The top section of
each column illustrates the currents in different mutants, while the bottom section depicts the
ionic currents obtained by subtracting the corresponding mutTIF currents from the total wild
type (WT) currents. Only nominal alterations are observed in these two mutants, shl-1(lf) and
slo-1(lf).
(TIF)

S2 Fig. Elicited spike trains across varying stimulation currents with four primary ion
channels. (A-D)These figures present elicited spike trains under varying stimulation currents,
ranging from 15 pA to 30 pA in increments of 5 pA. The simulation results are shown in blue,
compared to red curves representing experimental data.
(TIF)

S3 Fig. Posterior distribution.The corner plot displays the marginal and pairwise marginal
distributions of the 6-dimensional posterior over gap junction parameters J12, J23,… , J56.
The true parameter values, marked by red lines, are successfully captured within the high-
probability regions of the posterior distribution.
(TIF)

S4 Fig. Performance comparison of four optimization methods. (A) Comparison of run-
ning time (in minutes) among four optimization methods for solving the same task in Fig 4E:
parallel simulation-based inference (P-SBI), dual annealing (DA), differential evolution (DE),
and particle swarm optimization (PSO). The bars represent the average running time across
10 trials, with error bars indicating the standard deviations. (B) Relative error convergence of
four optimization methods, plotted as a function of the logarithm of iterations. The relative
error is calculated as ||xo–x̂o||2

||xo||2
, where xo is the target solution and x̂o is the estimation. The algo-

rithms stop when the relative error falls below 0.01; P-SBI achieves a solution with a relative
error less than 0.01 in just 3 iterations.
(TIF)

S5 Fig. Spike train analysis of body-wall muscle cells. (A) This panel shows the inter-spike
interval (ISI) distribution derived from spike trains of multiple body-wall muscle cells. The
x-axis represents the ISI in seconds, and the y-axis indicates the number of occurrences for
each interval. (B) This panel presents the distribution of afterhyperpolarization (AHP) trough
potentials derived from the same spike trains. The x-axis represents the membrane potential
(mV), while the y-axis shows the frequency of occurrences within each potential range.
(TIF)

S1 Appendix. Equations used in the model simulations.
(PDF)

S2 Appendix. Network model parameter tuning.
(PDF)
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S1 Table. Model parameters.
(PDF)

S1 Data. The relevant experimental data in the paper.
(ZIP)
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