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Abstract

Emerging infectious diseases with zoonotic potential often have complex socioecological

dynamics and limited ecological data, requiring integration of epidemiological modeling with

surveillance. Although our understanding of SARS-CoV-2 has advanced considerably since its

detection in late 2019, the factors influencing its introduction and transmission in wildlife hosts,

particularly white-tailed deer (Odocoileus virginianus), remain poorly understood. We use a

Susceptible-Infected-Recovered-Susceptible epidemiological model to investigate the spill-

over risk and transmission dynamics of SARS-CoV-2 in wild and captive white-tailed deer pop-

ulations across various simulated scenarios. We found that captive scenarios pose a higher

risk of SARS-CoV-2 introduction from humans into deer herds and subsequent transmission

among deer, compared to wild herds. However, even in wild herds, the transmission risk is

often substantial enough to sustain infections. Furthermore, we demonstrate that the strength

of introduction from humans influences outbreak characteristics only to a certain extent. Trans-

mission among deer was frequently sufficient for widespread outbreaks in deer populations,

regardless of the initial level of introduction. We also explore the potential for fence line interac-

tions between captive and wild deer to elevate outbreak metrics in wild herds that have the low-

est risk of introduction and sustained transmission. Our results indicate that SARS-CoV-2

could be introduced and maintained in deer herds across a range of circumstances based on

testing a range of introduction and transmission risks in various captive and wild scenarios.

Our approach and findings will aid One Health strategies that mitigate persistent SARS-CoV-2

outbreaks in white-tailed deer populations and potential spillback to humans.
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Author summary

Novel zoonotic diseases persist and evolve in both human and non-human hosts, posing

challenges for human and animal health. SARS-CoV-2, the virus responsible for the

COVID-19 pandemic in humans, has been detected in white-tailed deer (Odocoileus virgi-
nianus) yet we have limited understanding of its introduction and transmission within

deer populations. Here, we use epidemiological models to describe SARS-CoV-2 intro-

duction and transmission patterns within wild and captive white-tailed deer populations.

We found that captive deer herds faced a higher risk of spillover of SARS-CoV-2 from

humans and higher transmission rate compared to wild deer. Despite these differences in

wild and captive contexts, we found that transmission in both wild and captive contexts

often resulted in persisting circulation of SARS-CoV-2. This circulation was determined

by deer-deer transmission in both wild and captive contexts, rather than by high rates of

introduction from humans. Outbreaks in wild populations were greater when these ani-

mals could interact with captive deer populations circulating SARS-CoV-2. SARS-CoV-2

appears to circulate in both captive and wild deer across a range of circumstances. Our

findings help to inform how to best mitigate the introduction and spread of SARS-CoV-2

in deer, with benefits to protecting human health.

Introduction

Many emerging infectious diseases in animal populations are transmissible between animals

and humans, representing a public health threat [1,2]. These diseases are called zoonoses and

pose One Health challenges, meaning closely linked human, animal, and ecosystem health

challenges that often require coordinated, multi-disciplinary action in the face of socioecologi-

cal complexity and limited data [3,4]. Epidemiological models are powerful in understanding

and responding to One Health challenges posed by zoonoses. Using the best-available science,

epidemiological models can project the behavior of zoonotic disease spread across a range of

possible conditions, quantify transmission risk between various host species, and examine the

drivers influencing the introduction and transmission of zoonotic pathogens in wildlife hosts

[5]. These exploratory inferences are particularly valuable with emerging infectious diseases

and can complement monitoring efforts documenting the spatiotemporal distribution of

infections [6,7].

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the subgenera Sarbecov-
iruses, subfamily Orthocoronavirinae, is a zoonotic virus that poses One Health challenges

around the globe [8,9]. SARS-CoV-2 infection can result in severe respiratory disease (known

as COVID-19) and death in humans, yet in wildlife species SARS-CoV-2 severity is highly var-

iable. Since it was first documented in humans in late 2019, the number of known SARS-CoV-

2 hosts has increased and includes a range of companion and wild animals, including wild and

captive white-tailed deer (Odocoileus virginianus; hereafter deer)[10,11]. Transmission of

SARS-CoV-2 can occur between humans, humans and animals, and between animals [12,13].

Each of these transmission pathways is concerning from a public health perspective for several

reasons. First, SARS-CoV-2 circulating in human and non-human hosts can persist, recom-

bine, and evolve into novel variants that change the properties of this pathogen [14–17]. Sec-

ond, non-human hosts can act as a reservoir for SARS-CoV-2, posing risks of SARS-CoV-2

persisting outside of human hosts [18,19]. Lastly, SARS-CoV-2 may spill back to humans from

non-human hosts as a potentially more virulent form of SARS-CoV-2 [12]. Collectively, these
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concerns have given rise to surveillance programs of SARS-CoV-2 in wild and captive white-

tailed deer across North America [20].

Two introduction pathways may have led to the transmission of SARS-CoV-2 from

humans to deer, a process commonly referred to as ‘spillover’. First, wild and captive deer

could have been exposed to SARS-CoV-2 via direct interactions between humans and deer

that are nearby. This direct pathway likely is a result of the aerosolized transmission of

SARS-CoV-2 from humans to deer, given the tissue tropism in the upper respiratory tract

of both species [21,22]. Direct interactions between humans and deer are possible in some

areas of North America where deer are habituated to humans to the point where proximity

or even contact is possible [23]. Human-deer interactions are also common in captive set-

tings, ranging from facilities and herd management activities to exposition opportunities

for visitors. Second, deer could have been exposed to SARS-CoV-2 indirectly through con-

taminated surfaces, feed, water, or through intermediate animal hosts [24]. While this indi-

rect pathway has been postulated, evidence of transmission through this pathway does not

currently exist.

Like SARS-CoV-2 spillover from humans to deer, the spread of SARS-CoV-2 within a

white-tailed deer population could also occur via direct and indirect pathways. Transmission

between deer could occur given various social interactions in wild and captive settings, includ-

ing various agonistic and mating behaviors [25,26]. Direct transmission of SARS-CoV-2

between deer might include aerosolized and fluid transmission. Aerosolized transmission of

SARS-CoV-2 between deer could occur within captive facilities where deer densities are high

or in wild settings when deer are near one another. Fluid exchange could also lead to the trans-

mission amongst deer given social behaviors such as allogrooming in seasonal social groups

[27]. Indirect transmission of SARS-CoV-2 between deer may be possible through fomites,

such as contaminated surfaces or feed, however, as previously mentioned, evidence of indirect

transmission between deer is lacking.

Although our knowledge of SARS-CoV-2 has greatly increased over the last three years, fac-

tors influencing the introduction and transmission of SARS-CoV-2 in wildlife hosts and spill-

over risk remain poorly understood. Therefore, we develop a SIRS (Susceptible-Infected-

Recovered-Susceptible) epidemiological model and apply it to wild and captive deer popula-

tions in a range of scenarios to address the following five objectives:

Objective 1: Evaluate human-deer (introduction) and deer-deer transmission (spread) in wild

and captive deer scenarios to understand the role of pathways in disease dynamics;

Objective 2: Examine potential ranges of average prevalence, persistence, and incidence pro-

portion of SARS-CoV-2 outbreaks in deer in wild and captive scenarios;

Objective 3: Understand the sensitivity of prevalence, persistence, and incidence proportion

to introduction and spread across all scenarios;

Objective 4: Test if SARS-CoV-2 outbreaks in deer require continual introduction from

humans or just a single introduction event;

Objective 5: Identify how contact between deer in captive and wild scenarios through fence

line interactions can influence SARS-CoV-2 prevalence and persistence system-wide.

Collectively, this study provides insights into the dynamics of SARS-CoV-2 outbreaks in

white-tailed deer populations and provides evidence for different mechanisms of spillover and

persistence.
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Methods

General approach and terms

We modeled SARS-CoV-2 transmission between humans and white-tailed deer, and among

deer in several scenarios, including two types of captive facilities and wild deer in rural and

suburban environments. We estimated direct (aerosolized) transmission rates from humans to

deer as causing initial deer infections (human-to-deer, hereafter HtD). We estimated direct

(aerosolized and fluid pathways) transmission rates within wild and captive deer populations

following introduction from humans (deer-to-deer, hereafter DtD). We used these transmis-

sion rates to estimate two important epidemiological parameters (Objective 1). The introduc-

tion of a pathogen, such as SARS-CoV-2 into deer populations, can be quantified as the

common Force-Of-Infection metric from humans to deer (FOIHD; Fig 1) [28]. Then, SARS-

CoV-2 transmission within a deer population can be quantified by the basic reproductive met-

ric, R0, or the number of new infections, in a completely naive population, originating from

one infectious deer over the duration of its infection, with values greater than one indicating

sustained infection throughout a population and values less than one indicating pathogen

fade-out. (Fig 1, 28].

We projected the outbreak of infections across 120 days in each scenario to incorporate fall

deer behavior (September-December). We focused on the fall season as deer reproductive

behavior results in increased DtD contact rates and multiple hunting seasons and seasonal cap-

tive activities could increase HtD interactions. We used these fall projections to estimate the

prevalence, persistence, and incidence proportion of SARS-CoV-2 in various types of simu-

lated white-tailed deer populations (Fig 1; Objective 2). We used our simulated data to investi-

gate the interaction between epidemiological parameters (introduction and transmission) and

outbreak characteristics in deer populations (prevalence, persistence, and incidence

Fig 1. The three stages of zoonotic spillover from humans to persistence in white-tailed deer. In each stage outlined above, we describe the stage, illustrate

the concept, and define the metric we use to characterize each stage across multiple scenarios of deer in wild and captive environments. We consider the

introduction of SARS-CoV-2 into white-tailed deer populations through aerosolized transmission from an infected human, quantified as the Force-Of-

Infection (FOIHD). Transmission occurs as an infected deer (orange circle) interacts with susceptible deer (gray circles), transmitting SARS-CoV-2 through

aerosols and fluid over the course of the animal’s infectious period (γ). When the individual recovers from its infection (gold circle), it will have stemmed

several secondary infections (orange circle), quantified as the basic reproductive number (R0 = 4). Depending on the magnitude of FOIHD and R0 (dashed

arrows), an outbreak of infections may occur across a deer population. Average prevalence in the Fall season is averaged across daily values (dark line) and

incidence proportion can be calculated through the projected fall season (dotted line). This outbreak will either persist or fade determined by the deterministic

steady state of the set of ODE equations considered in this study, referred to here as equilibrium (x-axis). The image of a human hand-feeding a deer was

created with the assistance of DALL-E 2.

https://doi.org/10.1371/journal.pcbi.1012263.g001
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proportion; Objective 3). We contrasted outbreak dynamics from continuous introduction

from humans, compared to those from a single, initial infection event with no further intro-

duction from humans (Objective 4). Finally, we ran the 120-day projection for wild and cap-

tive populations connected through a single-layer fence to explore how interactions between

captive and wild deer may influence the prevalence and persistence of SARS-CoV-2 in both

populations (Objective 5).

Epidemiological model

To understand SARS-CoV-2 transmission between humans and deer and within deer popula-

tions, we developed a two-host (captive and wild deer) Susceptible-Infected-Recovered-Sus-

ceptible (SIRS) model (Fig 2, 5]. We considered two primary introduction pathways, including

aerosolized SARS-CoV-2 transmission in shared airspace, and fluid transmission from sputum

or other contagious discharges upon direct contact. For DtD transmission, we integrated both

transmission pathways, while for HtD transmission, we estimated aerosolized transmission

only. Humans were included as a source of infection, but human disease dynamics were not

modeled as a response to disease dynamics in deer.

Fig 2. A conceptual diagram of the Susceptible-Infectious-Recovered-Susceptible (SIRS) epidemiological model used for this simulation study.

Objectives that focused on specific captive or wild scenarios had no deer-deer fence line transmissions, preventing transmission between captive or wild

populations. Objective 5 focused on how fence line transmission in captive-wild systems influence outbreak dynamics on both sides of the fence.

https://doi.org/10.1371/journal.pcbi.1012263.g002
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We made several assumptions either inherent in our SIRS approach or that incorporate pat-

terns documented in the relevant literature. We assume that: transmission rates are additive;

transmission rates are the same for naïve susceptible deer and recovered deer that have lost

temporary immunity and are again susceptible; DtD transmission rates in wild scenarios and

captive scenarios mimic wild conditions and are intermediate between frequency- and den-

sity-dependent transmission [29]. DtD transmission rates in intensive captive scenarios and

across fence lines, and HtD transmission rates in all scenarios are constant and frequency-

dependent, based on available data; DtD transmission rates via fluids only occurs when an

infected and a susceptible individual are in proximity, including along fence lines; human

prevalence is constant across each 120-day projection; there is homogenous mixing within

captive and wild deer populations; recovery from infection and loss of immunity do not differ

between captive and wild deer; there is no viral evolution; there is no disease-induced mortality

[22]; there is no spillback from deer to humans (or at least, such spillback does not affect the

disease dynamics in the deer population); and deer populations are closed, with no births,

deaths, immigration, or emigration. On this last assumption, we recognize that many deer are

harvested in the season we chose to simulate. We assume that harvest is random within the

population such that the proportion of individuals within the various disease compartments of

the SIRS model are unaffected.

The SIRS model was specified with a system of six ordinary differential equations (ODE)

[5], and we derived rates for aerosolized and fluid transmission. We tracked the fractions of a

population that are susceptible (s), infected (i), and recovered (r), rather than the number of

individuals in each compartment. Human prevalence is fixed and not explicitly modeled in

this study (iH). In the equations that follow, our notation includes superscripts to indicate the

mode of transmission, including: “Aero”, to indicate transmission by aerosols; and “DC” to

indicate transmission via fluid exchanged through direct contact. We use subscripts to indicate

the individuals in a particular transmission interaction: transmission between wild deer

(WW); transmission between captive and wild deer (CW); transmission between captive deer

(CC); transmission from humans to wild deer (HW); and transmission from humans to cap-

tive deer (HC). We derived transmission rates as the product of HtD and DtD proximity rates

and infection probabilities from previous studies. We used expert-elicitation to estimate any

parameters unavailable in the literature. For more detail about parameter estimation, see the

Scenario Descriptions section below.

Ordinary differential equation

Three ODEs describe the disease dynamics in the wild deer population, with the change in the

fraction of the wild population that is susceptible (sW) given by

dsW
dt
¼ arW � sW b

Aero
WWiW þ b

DC
WWiW þ b

Aero
CW iC þ b

DC
CWiC þ b

Aero
HW iH

� �
; ð1Þ

the change in the fraction of the wild population that is infected (iW) given by

diW
dt
¼ sW b

Aero
WWiW þ b

DC
WWiW þ b

Aero
CW iC þ b

DC
CWiC þ b

Aero
HW iH

� �
� giW; ð2Þ

and the change in the fraction of the wild population that is recovered (rW) given by

drW
dt
¼ giW � arW ; ð3Þ

where α is the immunity loss rate; β is the transmission rate specific to the infectious and
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susceptible host recipient type (e.g., wild or captive deer) and interactions (i.e., aerosolized or

direct contact); and γ is the recovery rate from infection (Fig 2).

Three additional ODEs describe the disease dynamics in captive deer, with the change in

the fraction of the captive population that is susceptible (sC) given by

dsC
dt
¼ arC � sC b

Aero
CC iC þ b

DC
CC iC þ b

Aero
CW iW þ b

DC
CWiW þ b

Aero
HC iH

� �
; ð4Þ

the change in the fraction of the captive population that is infected (iC) given by

diC
dt
¼ sC b

Aero
CC iC þ b

DC
CCiC þ b

Aero
CW iW þ b

DC
CWiW þ b

Aero
HC iH

� �
� giC; ð5Þ

and the change in the fraction of the captive population that is recovered (rC) given by

drC
dt
¼ giC � arC: ð6Þ

We monitored proportions through these projections to reduce assumptions about popula-

tion size in either wild or captive settings. We note that we summarized these continuous

changes into discrete, daily S, I, and R compartment sizes for our analysis for ease of

interpretation.

Aerosolized transmission

Aerosolized transmission rates between a host i and recipient j (b
Aero
ij ) can be described as

b
Aero
ij ¼ oij∗sAero ð7Þ

where ωij is the proximity rate between host-recipient(i,j) type (human-wild deer, human-cap-

tive deer, wild deer-wild deer, captive deer-captive deer, wild deer-captive deer, captive deer-

wild deer); and σAero is the probability of infection from aerosols.

We define proximity ωij as the frequency per day that host i and recipient j are within 1.5

meters (m) of each other, drawn from existing social distancing guidelines for humans which

range from 1–2 meters [30,31]. We estimate the proximity rate for wild deer, ωWW, based on a

contact rate model developed by Habib et al. [32] for chronic wasting disease in white-tailed

deer that permits density- or frequency-dependent transmission as well as intermediate cases

that blend these two standard transmission processes. This rate applies to deer-deer transmis-

sion in most scenarios, including cases with and without attractants (e.g., bait, supplemental

feed). We apply this model for captive circumstances that mimic natural conditions. It is given

by

oij ¼ k
NW

ð1� qÞ

AW

� �

∗rattractant ð8Þ

where κ is a scaling constant; q is a concavity scaling constant of the density-contact rate rela-

tionship ranging from 0–1, which allows an intermediate blend of density-dependence to fre-

quency-dependence, respectively [32]; NW is the total population size; AW is the area inhabited

by the population; ρattractant is the adjustment for the presence of an attractant (ρattractant = 1

indicates no attractants present; ρattractant> 1 indicates attractants present).

All other proximity rates, including captive-captive deer (ωCC), captive deer-wild deer

(ωCW), human-wild deer (ωHW), and human-captive deer (ωHC) were not explicitly modeled,

and instead were drawn from parametric distributions.
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The probability of infection, σAero, given proximity, is a function of the instantaneous dose

received and a Wells-Riley dose-response relationship given by

sAero ¼ 1 � e� yQ ð9Þ

where θ is the species-specific rate of infection from 1 quantum of SARS-CoV-2; and Q is the

dose (quanta) received by a single contact with an infected individual. Buonanno et al. [33]

defines a quantum as “the dose of airborne droplet nuclei required to cause infections in 63%

of susceptible human individuals.” Therefore, θ> 1 corresponds to 1 quantum causing infec-

tion in>63% of susceptible individuals, and θ< 1 corresponds to 1 quantum causing infection

in<63% of susceptible individuals [33–35].

To estimate the dose received by a susceptible individual (Q) we modeled (1) the emission

of SARS-CoV-2 from an infectious individual (ERq) and (2) the resulting concentration of

SARS-CoV-2 in a designated airspace around an infectious individual, considering viral emis-

sion and viral loss. First, an infected individual emits virions at a particular rate (ERq; quanta/

hr) as the product of the viral load in its exhalation (Cv; RNA copies/ml), a conversion factor

(Ci; quanta/RNA copy), the inhalation/exhalation rate (IR; m3/hr), and the exhaled droplet vol-

ume concentration (Vdrop; ml droplets/m3 exhaled) [36] given by

ERq ¼ Cv∗Ci∗IR∗Vdrop: ð10Þ

We then use the emission rate to model the instantaneous concentration of virions (C;

quanta/m3) in a well-mixed airspace (Vair; m3) around an infected individual (ERq; quanta/hr).

We assumed that the airspace around an infected individual was a half-sphere with a radius of

1.5 m, or 7.07 m3. We account for viral loss as the sum of air exchange (AER; hr-1), settling (s;
hr-1), and inactivation (λ; hr-1)[33]. Thus, the instantaneous concentration is given by

C ¼
ERq

ðAERþ sþ lÞ∗Vair
: ð11Þ

When a susceptible individual enters the contaminated airspace surrounding an infectious

individual, the dose (Q; quanta) is the product of the inhalation rate of the susceptible individ-

ual (IR; m3/hr), the concentration of virions in the fixed volume (C; quanta/m3), and the dura-

tion of contact (tcontact; hr) given by

Q ¼ IR∗C∗tcontact: ð12Þ

Fluid transmission

We model fluid transmission rate for deer conditional on proximity with another deer (Eq 8).

Fluid transmission rates between a host and recipient (b
DC
ij ) are given by

b
DC
ij ¼ oij∗εDC∗sDC ð13Þ

where ωij is the proximity rate between host-recipient(ij) type (wild deer-wild deer, captive

deer-captive deer, captive deer-wild deer); εDC is the probability of direct contact conditional

on proximity; and σDC is the probability of infection from direct contact.

The probability of infection, σDC, given contact, was modeled similarly to Eq 9, as a log-

logistic function of dose and the reciprocal probability of infection given exposure to a single

dose, k [37]. The dose received is a product of the transferred sputum volume given contact,

Vsputum, and viral concentration in sputum, Cv given by

sDC ¼ 1 � e� ððCv�VsputumÞ=kÞ ð14Þ
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where Cv is the viral concentration in sputum (in plaque-forming units; PFU); Vsputum is the

volume of sputum transferred given contact; and k is the reciprocal of the probability of a sin-

gle PFU causing infection.

Scenario descriptions

We estimated HtD and DtD transmission and outbreak characteristics in four scenarios: (1)

wild deer in a rural setting, (2) wild deer in a suburban setting, (3) captive deer in an outdoor

ranch, and (4) captive deer in an intensive facility (Fig 2). These scenarios span a range of pos-

sible habitat or captive facility conditions, deer densities, and proximity rates with humans;

although each of these variables is a continuous metric, we discretized the scenarios to make

them easier to interpret.

Below, we present parameter estimates used in each simulation (Table 1). For parameters

that were unavailable in the literature, we conducted expert elicitation using the IDEA protocol

and a four-point elicitation process [38,39]. We included 11 experts on two separate panels:

one focused on SARS-CoV-2 virology and another on deer behavior in captive and wild set-

tings. The estimates for 13 parameters we solicited from experts are listed in Table 1. Elicita-

tion methods, the elicitation questions for each panel, and individual (anonymous) and

aggregated probability distributions are reported in S1 and S2 Files and S1–S13 Figs. For study

Objectives 1 to 4, fence line transmission was fixed at zero to capture outbreak dynamics

within these specific scenarios. This transmission rate was restored for the final study objective

exploring the influence of linked scenarios across fence lines in outbreak dynamics.

Wild deer in a rural setting–Wild deer are free-ranging in an area with a rural human den-

sity (3.1 humans/km2; 15th percentile of U.S. counties with<100 humans/km2 overlapping

white-tailed deer range; [45–47]. We assumed that deer interacted with humans during regu-

lated hunting either using still-hunting, or ground blind or tree stand tactics but were not har-

vested. We also assumed that baiting and backyard feeding were illegal but may still occur. We

calculated wild DtD proximity rates using a population density of 10 deer/km2 for an area with

26% wooded habitat [32]. For aerosol transmission,we assumed that proximity rates for deer

approaching within 1.5m of each other were equal to Habib et al.’s [32] estimated proximity

rate of deer approaching within 25m of each other. HtD transmission was derived by estimat-

ing the rate and duration of human-deer proximity events and a fixed human prevalence of

5% (Table 1). Wild deer in a rural setting had the lowest rate and duration of these human-

deer proximity events (Table 1). We calculated and applied air-exchange rates (AER; 4-hr)

based on a 15-minute residence time drawn from a range of published values for forest airflow

studies (Table 1)[43,44].

Wild deer in a suburban setting–Wild deer are free-ranging in an area of suburban human

density (100 humans/km2)[45]. DtD proximity rates were derived using the same parameters

as used in the rural scenario, and the AER value used was the same as in the rural scenario

(Table 1). Wild deer in a suburban setting experience higher HtD transmission rates, driven

by higher HtD proximity rates and longer duration of proximity events, relative to wild deer in

a rural setting (Table 1).

Captive deer in an outdoor ranch–We considered captive deer in an outdoor ranch facility typ-

ical of a managed, fenced hunting reserve. We assumed that deer stocking densities resulted in

the same DtD proximity rates as were estimated in wild scenarios, with an increase in proximity

rates due to supplemental feeding (Table 1). We used the same AER value as in wild settings as

these captive individuals reside outside. We assume HtD proximity rates are the same as those

estimated for the “wild deer in a suburban setting” scenario, but the typical duration of these

proximity events is longer in this scenario, reflecting those typical of a captive facility (Table 1).
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Table 1. Model parameter estimates for SARS-CoV-2 Susceptible-Infected-Recovered-Susceptible (SIRS) ordinary differential equations (ODE).

Equations Variable Definition (units) Captive Wild Source

Outdoor

ranch

Intensive

facility

Rural Suburban

1, 3, 4, 6 α Immune loss rate (day-1; log-normal) μ = 4.72, σ = 0.63 This study, expert

elicited

2, 3, 5, 6 γ Recovery rate (day-1) 1/6 days [21]

1, 2, 4, 5 IH Human Prevalence (%) 5% Assumed and

fixed

8 κ Proximity rate scaling adjustment (unitless) 11.35 NA 11.35 11.35 [32]

8 q Proximity rate concavity scaling constant (unitless) 0.34 NA 0.34 0.34 [32]

8 Nw Number of deer per unit area (Aw) 1000 NA 1000 1000 [32]

8 Aw Area for intermediate density-dependence (km2) 100 km2 NA 100 km2 100 km2 [32]

8 ρattractant Adjustment for the presence of an attractant (bait, feed,

etc.; log-normal)

μ = 3.47, σ =

0.23

NA NA NA This study, expert

elicited

- ωHW Human-deer proximity rate (events/120 days; log-

normal)

μ = 0.57, σ =

0.95

μ = 2.52, σ =

1.13

μ = -1.59, σ
= 1.70

μ = 0.572, σ =

0.951

This study, expert

elicited

- ωCC Deer proximity rate in captivity (events/day; log-

normal)

NA μ = 3.47, σ =

0.91

NA NA This study, expert

elicited

- ωWC Wild-captive deer proximity rate along fences (events/

day, only included for Objective 4)

0.00072 direct contacts/day / σDC [40,41]

9 θ Quanta SARS-CoV-2 dose-response in deer (1/quanta

required for ID63; log-normal)

μ = 0.28, σ = 0.27 This study, expert

elicited

10 Ci Conversion from SARS-CoV-2 RNA copies to quanta 0.0014 quantum/RNA copy [36]

10 Cv—

human

Concentration of SARS-CoV-2 in human sputum (RNA

copies/ml)

μ = 5.6 log10 RNA copies/ml, σ = 1.2 log10 [33]

10,14 Cv—deer Concentration of SARS-CoV-2 in deer sputum (RNA

copies/ml; log-normal)

μ = 0.22, σ = 0.34; proportional to Cv—human This study, expert

elicited

10 IR—

human

Inhalation rate for humans, standing (m3/hr) 0.53 m3/hr [36]

10, 12 IR—deer Inhalation rate for deer, breathing (m3/hr) 0.85 m3/hr [42]

10 Vdrop Droplet volume concentration (speaking; ml/m3) 0.01 ml/m3 [36]

11 Vair Volume of shared airspace with 1.5m radius (m3) 7.07 m3 This study,

calculated

11 AER Air exchange rate (-hr) 4-hr 1-hr 4-hr 4-hr [43,44]

11 s SARS-CoV-2 settling rate (-hr) 0.24-hr [33]

11 λ SARS-CoV-2 inactivation rate (-hr) 0.63-hr [33]

12 tcontact Duration of proximity event between human and deer

(minutes; log-normal)

μ = 1.79, σ = 1.15 μ = -0.36, σ
= 0.98

μ = 0.432, σ =

0.929

This study, expert

elicited

12 tcontact Duration of proximity event between deer (all proximity

types; minutes; log-normal)

μ = 1.55, σ = 1.27 This study, expert

elicited

13 εDC Probability of deer making direct contact (logit-normal) μ = -1.46, σ = 0.71 This study, expert

elicited

14 k Dose-response function for plaque-forming units (PFU

required for ID63)

410 [37]

14 Vsputum Volume of sputum transferred between individuals on

contact (μl)

100 μl Fixed

Equations refer to in-line equation numbers. Mean and standard deviation (μ and σ), along with error distribution are listed for expert-elicited estimates (S1–S13 Figs).

Parameters which do not apply to particular scenarios are indicated (NA).

https://doi.org/10.1371/journal.pcbi.1012263.t001

PLOS COMPUTATIONAL BIOLOGY Modeling SARS-CoV-2 outbreaks in white-tailed deer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012263 July 12, 2024 10 / 27

https://doi.org/10.1371/journal.pcbi.1012263.t001
https://doi.org/10.1371/journal.pcbi.1012263


Captive deer in an intensive facility–The last scenario considered was captive deer in a cap-

tive breeding or exposition facility. Deer in this type of facility were predominantly indoors at

high stocking densities and low indoor air exchange rates (AER; 1-hr). Both DtD and HtD

proximity rates and duration were highest in this scenario (Table 1).

Objective 1: Differences in human-to-deer and deer-to-deer transmission across scenarios–We

quantified the strength of HtD transmission in each scenario using Force-Of-Infection calcula-

tions from humans to deer (FOIHD; Eq 15). These FOI calculations are based on HtD transmis-

sion rates (b
Aero
HD ; Eq 7) and human prevalence (iH) and equate to the proportion of susceptible

deer infected by infectious humans per day.

FOIHD ¼ b
Aero
HD iH ð15Þ

We also report the probability of at least one HtD transmission per 1,000 deer (N) over the

fall season (t = 120 days), using a constant hazard model (Eq 16)[48].

pðHtDjFOIHD;N; tÞ ¼ 1 � ðe� FOIHDtÞ
N

ð16Þ

We quantified the strength of DtD transmission for each scenario using the number of sus-

ceptible deer infected by a single infectious deer, R0, derived from the sum of aerosol and fluid

transmission rates over the recovery period from infection (γ; Eq 17). Again, R0 values greater

than one indicate sustained transmission throughout a population, and values less than one

indicate pathogen fade-out.

R0 ¼
b
Aero
ij þ b

DC
ij

g
: ð17Þ

We compared FOIHD, p(HtD), and R0 estimates across scenarios to evaluate differences in

the potential for SARS-CoV-2 to be transmitted from humans to deer and then spread

amongst deer. All calculations were conducted in R [49]. We summarized the sensitivity of

FOIHD and R0 to expert-elicited parameters (S14 and S15 Figs). We focused on expert-elicited

parameters for these sensitivities as these parameters had the greatest uncertainty in our calcu-

lations. We did not present sensitivity of p(HtD) to expert-elicited parameters as p(HtD) was

derived from FOI.

Objective 2: Average prevalence, persistence of infection, and incidence proportion in each sce-
nario–We used the six ODEs for the SIRS model, parameters estimated from the literature or

expert elicitation, and derived transmission parameters to project continual SARS-CoV-2

introduction and spread across each scenario of interest (Table 1). From these projections, we

calculated the proportion of individuals in the wild, captivity, or in both settings that were sus-

ceptible, infectious, or recovered. We ran 1,000 iterations for each of the four scenarios. Each

iteration had a randomly drawn parameter set, where we randomly drew one value from each

parameter distribution during each iteration, resulting in 1,000 parameter sets used to project

outbreaks in each scenario (Table 1). Parameters that were constant across scenarios did not

vary between parameter sets which ensured that any observed variation was due to differences

across scenarios, and not sampling variation from repeated random draws from error

distributions.

We projected the proportional size of each SIRS compartment for 120 days for each itera-

tion, using the ODE solver ode() from the deSolve package in R [49,50]. We estimated the aver-

age daily prevalence of deer in each scenario during the 120-day projection. We determined if

SARS-CoV-2 would persist beyond the 120-day projection for each iteration using the run-
steady() function from the rootSolve package [51,52] to estimate the deterministic stable state

from the SIRS ODE equation. We assigned each iteration a logical value if infectious
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compartment at equilibrium was >0.1% for each iteration (at least 1 deer infected out of 1

000). We estimated mean probability of persistence and 95% binomial confidence intervals

using the binom.confint() function with the exact method from the binom package for each

scenario [53]. Finally, we tracked the incidence proportion, or cumulative proportion of the

population infected over the 120 days during these simulations for wild and captive deer (Eqs

18 and 19). This incidence proportion could exceed 1, indicating that all individuals in the

population were infected at least once.

Incidence proportionW

¼
X120

t¼1
sW;t� 1ðb

Aero
WWiW;t� 1 þ b

DC
WWiW;t� 1 þ b

Aero
CW iC;t� 1 þ b

DC
CWiC;t� 1 þ b

Aero
HW iHÞ ð18Þ

Incidence proportionC

¼
X120

t¼1
sC;t� 1ðb

Aero
CC iC;t� 1 þ b

DC
CC iC;t� 1 þ b

Aero
CW iW;t� 1 þ b

DC
CWiW;t� 1 þ b

Aero
HC iHÞ ð19Þ

We summarized these three measures across iterations in each scenario with the median

value and 80% confidence intervals. These include median average prevalence, median proba-

bility of persistence, and median incidence proportion.

Objective 3: Sensitivity of prevalence, persistence and incidence proportion to spillover and
spread–We tested the sensitivity of prevalence, persistence, and incidence proportion of

SARS-CoV-2 in white-tailed deer to different levels of spillover (FOI) and spread (R0). After

each iteration, we categorized outcomes by one of the following spread categories: unsustained

spread (R0<1), low, sustained spread (1< R0� 3), medium, sustained spread (3 < R0� 5),

and high, sustained spread (R0> 5). We used the stat-smooth() function from the ggplot2

package [54] to visualize trends between HtD transmission, as quantified by FOI, and outbreak

metrics for each spread category.

Objective 4: SARS-CoV-2 outbreaks in deer from a single introduction event–We tested

whether a SARS-CoV-2 outbreak can occur following a single spillover event, in contrast to

the continual introduction modeled above for the other objectives. We simulated this intro-

duction as an initial event that resulted in 0.1%, 1e-4%, and 1e-7% prevalence in deer at the

start of the 120-day projection, with no further introduction from humans. We compared dif-

ferences in prevalence, persistence, and incidence proportion between these initial spillover

simulations and the continuous spillover simulation investigated for the other objectives.

Objective 5 Effects of fence line interactions between wild and captive deer on SARS-CoV-2
prevalence and persistence on either side of the fence–We extended our SIRS model to allow

fence line interactions between captive and wild deer. To do this we projected outbreaks for

paired captive -wild scenarios separated by a fence, using combinations of the two captive and

two wild scenarios and associated parameters described above (n = 4 combinations; hereafter

systems). We added fence line contact probability and allowed all individuals to interact along

fence lines, enabling proximity and direct contact (Table 1).

Results

Objective 1: Differences of introduction and spread for white-tailed deer

across settings

The risk of introduction of SARS-CoV-2 from humans to deer varied within and across sce-

narios (Eqs 15 and 16, respectively; Fig 3 and Table 2). Median FOIHD estimates were 1244-,

85-, and 19-times higher in the intensive facility, outdoor ranch, and wild deer in suburban

scenarios, respectively, relative to median FOIHD estimates for rural, wild deer (Table 2).
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Fig 3. Variation in Force-Of-Infection from humans-to-deer (FOI), probability of at least 1 human-to-deer (HtD) transmission, and basic

reproductive numbers (R0) across the four scenarios considered in this study. Human Force-Of-Infection is log10 transformed and presented as

odds of HtD transmission per deer, per day. The basic reproductive number threshold between unsustained and sustained transmission from deer-

to-deer is indicated with a horizontal line (R0 = 1). Box plots depict the minimum, first quartile, median, third quartile, and maximum, with outliers

depicted as single points.

https://doi.org/10.1371/journal.pcbi.1012263.g003

Table 2. Median metrics and 80% confidence intervals for simulated SARS-CoV-2 outbreaks in white-tailed deer in four scenarios.

Scenario FOIHD p(HtD, 1:1000) R0 Average prevalence Persistence Incidence proportion

Intensive facility 0.0112% 100.0% 6.91 7.2% 95% 150%

(0.0017–0.0915%) (86.4–100.0%) (0.84–43.15) (0.39–11.7%) (94.0–96.0%) (8.0–245%)

Outdoor ranch 0.0007% 56.1% 1.83 4.2% 69% 85%

(1e-4–0.005%) (9.7–99.7%) (0.31–8.83) (0.003–8.8%) (65.9–71.5%) (0.06–183%)

Wild, rural <0.0001% 1.1% 0.97 0.001% 47% 0.03%

(0–0.0001%) (0.1–11.2%) (0–6.6%) (43.9–50.2%) (0–138%)

Wild, suburban 0.0002% 17.7% (0.17–4.36) 0.01% 49% 0.30%

(0–0.001%) (3.5–66.3%) (4e-4–6.9%) (45.6–51.9%) (0.01–142%)

Metrics include: the proportion of susceptible deer infected by humans, per day (Force-Of-Infection from humans-to-deer, FOIHD); the probability of at least 1 in 1,000

deer becoming infected from a human during the fall season (probability of human-to-deer transmission, p(HtD, 1:1,000)); the number of susceptible deer infected by

an infected deer (R0); the average daily prevalence during the fall season (average prevalence); the probability of SARS-CoV-2 persisting beyond the simulated fall season

(Persistence); and the total proportion of the population infected during the fall season (incidence proportion).

https://doi.org/10.1371/journal.pcbi.1012263.t002
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FOIHD was highly sensitive to the frequency and duration of proximity between humans and

deer (S14). Median probabilities of at least one HtD transmission per 1000 deer ranged from

100%, 56.1%, 17.7%, and 1.1% in the intensive facility, outdoor ranch, wild suburban, and wild

rural scenarios, respectively (Table 2). There was high uncertainty around risk of introduction

in each scenario, with detectable differences between the intensive facility and wild deer in

rural setting using 80% confidence intervals (Table 2).

SARS-CoV-2 transmission between deer (R0; Eq 18) was greater in captive scenarios rela-

tive to wild scenarios, with most iterations sustaining transmission of SARS-CoV-2 among the

deer population (Table 2). Transmission in both wild scenarios were nearly identical, with

51.3% of iterations resulting in R0 values too small to sustain transmission of SARS-CoV-2 (R0

<1; median R0 = 0.97; Table 2). R0 values were highly variable in each scenario leading to no

detectable differences with 80% confidence (Table 2). R0 was sensitive to several parameters,

including duration of a deer-deer proximity event, the concentration of SARS-CoV-2 in deer

sputum, and SARS-CoV-2 dose-response in deer (S15). R0 in captive, intensive facilities was

sensitive to deer-deer proximity rate due to the uncertainty around the aggregate estimate

from expert elicitation (S15).

Objective 2: Average prevalence, persistence of infection, and incidence

proportion in each setting

Simulated outbreaks of SARS-CoV-2 were variable across scenarios, with higher average prev-

alence, probability of persistence, and incidence proportion in captive scenarios relative to

wild scenarios (Table 2 and Fig 4). Intensive facilities had the highest average prevalence, prob-

ability of SARS-CoV-2 persistence, and incidence proportion, followed by the outdoor ranch

scenario and both wild scenarios (Table 2). Median outbreak metrics in both wild scenarios,

while much lower than captive scenarios, were slightly elevated in the suburban setting com-

pared to the rural setting (Table 2). Overall, there was high variability in these metrics in each

scenario, with non-overlapping 80% confidence for the probability of persistence in the inten-

sive facility, outdoor ranch, and wild scenarios (Table 2 and Fig 4).

Objective 3: Sensitivity of prevalence, persistence and incidence proportion

to spillover and spread

When we partitioned the relationship between FOIHD and outbreak characteristics, we found

evidence that sensitivity to FOIHD differs depending on how quickly SARS-CoV-2 transmits

(R0, Fig 5). When deer-deer transmission is too low to sustain SARS-CoV-2 infections (R0

<1), high FOIHD is required for non-zero average prevalence and incidence proportion during

the projection, and for a high probability of infections persisting (Fig 5). As deer-deer trans-

mission reaches self-sustaining levels (1< R0<3), the role of FOIHD has a greater influence on

average prevalence, persistence, and incidence proportion (Fig 5). As R0 continues to increase

to medium (3< R0� 5) and high spread (R0> 5), the sensitivity of prevalence and incidence

proportion to FOIHD diminishes, and persistence is no longer sensitive to changes in FOIHD.

(Fig 5).

Objective 4: SARS-CoV-2 outbreaks in deer from a single introduction

event

Differences in outbreak characteristics exist between continual introduction of SARS-CoV-2

from humans and a single, initial introduction (Fig 6). However, these differences vary

depending on the size of the initial introduction and the scenario and uncertainty prevented
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high confidence in these differences. If an initial, single introduction resulted in 0.1% preva-

lence in any context, the average prevalence and incidence proportion were slightly greater

than the average prevalence and incidence proportion when SARS-CoV-2 was continuously

introduced. However, probability of persistence decreased in all scenarios except for wild deer

in a rural setting, where probability of persistence would increase with this initial prevalence

compared to when SARS-CoV-2 was continuously introduced. With an initial prevalence of

0.0001%, all scenarios showed median average prevalence and incidence proportion similar to

or slightly lower than when SARS-CoV-2 was continuously introduced. The probability of per-

sistence was consistent with those estimated for an initial 0.1% prevalence. Finally, with an ini-

tial prevalence of 1e-7%, the lowest tested, all scenarios showed decreases in average

prevalence, probability of persistence, and incidence proportion relative to other continuous

or initial infection conditions. However, even at this low level of initial infection, deer in the

intensive facility scenario had median average prevalence and median incidence proportion

that were comparable to when SARS-CoV-2 was continuously introduced, albeit with greater

variability.

Fig 4. Distributions of average prevalence, persistence probability, and incidence proportion values during the 120-day fall projection in each

scenario of interest. 1000 simulations were run for each scenarioBox and whisker plots depict the minimum, first quartile, median, third quartile,

and maximum, with outliers depicted as single points. Error bars for persistence represent 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1012263.g004
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Objective 5: Effects of fence line interactions between wild and captive deer

on SARS-CoV-2 prevalence and persistence on either side of the fence

When fence line interactions occurred between all combinations of captive and wild scenarios,

wild deer had a higher prevalence and incidence proportion of SARS-CoV-2 during the fall

Fig 5. The relationship between human-to-deer Force-Of-Infection and (A) average SARS-CoV-2 prevalence, (B) persistence of SARS-CoV-2, and (C)

the incidence proportion during the fall, dependent on the degree of transmission from deer-to-deer (R0). Points indicate metrics for each iteration

simulated, with point color and shading indicating a particular scenario. Fitted lines indicate trends in the data, fitted with a log-normal or logistic-regression

for prevalence and persistence, respectively. Transmission categories included unsustained transmission (R0<1), low, sustained transmission (1< R0� 3),

medium, sustained transmission (3< R0� 5), and high, sustained transmission (R0> 5).

https://doi.org/10.1371/journal.pcbi.1012263.g005
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projection compared to simulations without fence line interactions (Objective 2; Table 3).

These increases were highly variable depending on the captive and wild conditions. The proba-

bility for persistence did not increase for wild deer when fence line interactions occurred, and

captive deer did not experience an increase in any metric (Table 3). Of the four systems, fence

line interactions had the greatest effect when dividing captive deer in an intensive facility and

wild deer in a rural setting. In this system during the 120-day projection, the average preva-

lence in wild deer increased by approximately 122% (median), and the incidence proportion

of the wild deer in a rural setting increased from 1e-5 to 0.278 (median, Table 3). Smaller

Fig 6. Variation of average prevalence, persistence, and incidence proportion during the 120-day fall projection. Error bars for persistence represent 95%

confidence intervals. Plots are faceted by scenario, with variation in outbreak characteristics displayed for continuous introduction from humans, and various

degrees of initial, single introductions with no continuous introduction from humans. Box plots depict the minimum, first quartile, median, third quartile, and

maximum, with outliers depicted as single points.

https://doi.org/10.1371/journal.pcbi.1012263.g006

Table 3. Increases in prevalence, persistence, and incidence proportion of SARS-CoV-2 outbreaks with simulated systems with deer in captive and wild scenarios

interacting across fence lines.

System Median increase in

prevalence (80% CI)

Median proportional increase in

prevalence

(80% CI)

Mean increase in probability of

persistence

(80% CI)

Median increase in incidence

proportion (80% CI)

Wild Captive Wild Captive Wild Captive Wild Captive

Outdoor ranch

and wild, suburban

0.002

(0–0.143)

0

(0-8e-4)

0.46%

(0.01–104%)

0.0028%

(3e-4-0.0294)

0.001

(1e4-0.004)

0 0.044

(0–3.21)

5e-4

(0–0.016)

Intensive facility

and wild, suburban

0.013

(0–0.554)

0

(0-1e-4)

15.37%

(0.38–562%)

<1e-04%

(0–0.0013)

0.006

(0.003–0.011)

0 0.231

(7e-4-11.62)

0

(0–0.002)

Outdoor ranch

and wild, rural

0.004

(0–0.557)

0

(0-8e-4)

4.47%

(0.08–3094%)

9e-04%

(0–0.019)

0.015

(0.010–0.021)

0 0.081

(0–10.95)

1e-4

(0–0.016)

Intensive facility

and wild, rural

0.016

(0–1.105)

0

(0-1e-4)

184.35%

(1.17–20655%)

0%

(0–0.001)

0.019

(0.014–0.026)

0 0.301

(7e-4-21.72)

0

(0–0.001)

CI = confidence interval.

https://doi.org/10.1371/journal.pcbi.1012263.t003
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increases were estimated in the intensive facility and wild deer in a suburban system (Table 3).

We estimated similar patterns when considering systems with fence line interactions between

outdoor ranch facilities and wild deer, albeit smaller in magnitude (Table 3).

Discussion

Our study demonstrates the potential for variable, yet widespread risk of SARS-COV-2 intro-

duction and spread across white-tailed deer populations in North America. Our findings indi-

cated that epidemiological conditions and the proximity rates of white-tailed deer may lead to

sustained transmission. We estimated sustained infections in wild and captive populations

across a wide range of Force-Of-Infection rates from both continual spillover from humans

and an initial spillover event. We also demonstrated that wild deer may experience higher

prevalence, persistence, and incidence proportion of SARS-CoV-2 infections when sharing a

fence line with captive facilities. These results complement ongoing, retrospective surveillance

efforts across a range of captive and wild contexts by revealing the spillover risk of SARS-CoV-

2 from infected humans and the risk of transmission between deer [20, 55]. More broadly, our

approach provides a framework for using epidemiological modeling to evaluate the risks of

outbreaks and sustained infections of SARS-CoV-2 and other zoonotic diseases in wildlife

hosts in a variety of contexts.

Despite lower risks of introduction and transmission, SARS-CoV-2 was still able to trans-

mit and sustain itself in wild scenarios. If R0 was less than one, indicating unsustainable trans-

mission, our two wild scenarios did not have sufficient FOIHD to sustain infections. However,

when R0 increased above one, wild scenarios showed rapid increases in average prevalence and

incidence proportion, and a high probability of SARS-CoV-2 persisting into the future. Our

findings generally match those reported by Hewitt et al. [55], who used surveillance data from

wild deer across the United States of America to estimate infection rates and prevalence, and

estimated R0 greater than 1 in most of counties monitored across 27 states. In short, our results

indicate that there may be broad circumstances where wild deer populations could face

repeated introduction and sustained transmission of SARS-CoV-2.

Both captive scenarios showed a higher risk of introduction and a higher rate of transmis-

sion, resulting in higher prevalence and persistence relative to wild scenarios. Our findings

conform to the available literature on the introduction and transmission of SARS-CoV-2 in

captive populations. Roundy et al. [56] reported 94.4% seropositivity for one captive herd and

0% seropositivity in two other captive herds, one of which housed axis (Axis axis) and fallow

deer (Dama dama). This contrast could indicate a difference in transmission from humans, as

stocking conditions may increase the transmission of the virus. Our study also indicated differ-

ent epidemiological dynamics in systems where captive and wild deer may interact through

fence lines compared to systems without these interactions. However, despite the vulnerabili-

ties of captive conditions to rapid transmission of SARS-CoV-2, we emphasize that the pat-

terns of outbreaks in facilities and increased risk of fence line transmission are likely to vary

through space and time. Our captive scenarios did not focus on single facilities with a particu-

lar herd size, but rather a pool of captive individuals. Introduction and transmission within

individual facilities may be so rapid that a localized infection results in SARS-CoV-2 running

out of susceptible hosts and the outbreak extinguishing itself. Spillover to wild populations

through fence line interactions during localized outbreaks remain a risk for these individual

facilities, though the risk of spillover from wild to captive facilities appears low.

White-tailed deer encounter a wide range of conditions across North America making it

challenging to capture this variability in a single analysis. The four scenarios evaluated here are

indicative of processes typical of both wild and captive conditions. Our analysis focused on
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temporal patterns of SARS-CoV-2 introduction and spread across wild and captive white-

tailed deer, yet spatial variation undoubtedly plays a role. We did not make our simulations

spatially explicit, as we felt that our global approach met our objectives to better understand

infection dynamics across typical conditions. Additionally, integrating a spatial component to

this study would require specific spatial conditions and assumptions that either generalize

across large geographic extents, or limit inferences to conditions in a specific locality. We feel

these are important next steps given our inferences from this study and will aid in our under-

standing of the reported spatial and temporal heterogeneities of SARS-CoV-2 cases in white-

tailed deer [10,19,24,57].

We were required to make several assumptions in our parameterization of the SIRS models

that may have influenced our inferences. First, we used Watanabe et al.’s [37] reported infec-

tion probability for SARS-CoV in mice by intranasal exposure to estimate transmission of

SARS-CoV-2 through fluid when deer make physical contact. We join other simulation studies

that use this parameter estimate to calculate direct contact probability through fluid transfer

and acknowledge the uncertainty of this parameter given it has not been quantified in the liter-

ature [58]. Second, we used the stable-state equilibrium of the SIRS model to infer the persis-

tence of SARS-CoV-2. We acknowledge that this assumes that parameter values are not

stochastic and do not change past the simulated fall season. Seasonal changes in white-tailed

deer behavior are well-documented and affect introduction and spread for multiple pathogens

in deer, as with other host-pathogen systems [59–61]. Third, parameters used to derive trans-

mission risk between deer in our simulations did not vary by sex. Ongoing monitoring of

SARS-CoV-2 in wild white-tailed deer populations indicate higher infection probability and

seropositivity in male white-tailed deer, likely driven by sex-specific behaviors [55,62]. We

believe that our inferences are robust with our integration of uncertainty around derived

parameter estimates and the patterns of prevalence and persistence values documented in mul-

tiple studies monitoring ongoing infections [17].

Despite a growing number of studies of SARS-CoV-2 in white-tailed deer, there is no con-

sensus on how SARS-CoV-2 is introduced into deer populations. This is a key detail in mitigat-

ing the introduction and transmission of SARS-CoV-2 in a prolific wildlife species that can

interact with humans in both wild and captive contexts. In this study, an initial outbreak had

to infect less than 10e-7% of deer for there to be an observable decrease in average prevalence,

probability of persistence, and incidence proportion compared to those observed during con-

tinual spillover. These results indicate that an initial introductory event, even at a low rate,

could result in an outbreak in both captive and wild settings. While introduction through aero-

solized transmission from humans to deer is presumed to be most probable, our findings indi-

cate that indirect sources of infection could play a role through a single transmission event.

Infection from contaminated fomites or wastewater could initiate an outbreak given sufficient

dose received by an individual. However, further research remains into the risk posed by these

sources.

Sustained SARS-CoV-2 infections in this prolific wildlife species frequently interacting with

humans in captive and wild settings creates a One Health challenge that affects human, animal,

and ecosystem health. SARS-CoV-2 has demonstrated its ability to spread in wild and captive

white-tailed deer populations across much of North America. The outbreak dynamics reported

in this study indicate the ease by which the virus can be introduced and sustained in this non-

human species. Surveillance studies indicate that multiple lineages of SARS-CoV-2 have been

introduced and broadly circulated in white-tailed deer populations [10,13,19], with evidence

of spillback from deer to humans [14,63]. Our modeling approach provides a foundation to

evaluate risks to human, animal, and ecosystem health posed by zoonotic diseases, and to test

potential interventions to meet this and other One Health challenges.
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Supporting information

S1 File. Expert elicitation methods.

(DOCX)

S2 File. Descriptions of settings for Deer Ecology panel expert elicitation.

(DOCX)

S1 Fig. Responses by experts on the Virology panel to Question 1 to estimate immunity

loss rate (α). Consider a healthy individual white-tailed deer that was recently infected with

SARS-CoV-2 and has since recovered (i.e., the individual is no longer shedding infectious viri-

ons). Assume that, with recovery, this individual is temporarily immune to reinfection by

SARS-CoV-2 if they were to be exposed to the virus by a dose otherwise sufficient to cause

infection. However, after some period, this individual will lose their immunity and become

susceptible to infection again. After how many days can this individual deer be reinfected with

SARS-CoV-2 after it has fully recovered from an infection? (A) fitted log-normal probability

distributions for answers provided by individual experts, and (B) the aggregated log-normal

distribution of answers across experts (black line). The aggregate log-normal distribution has a

median of 112.6 days (80% confidence interval: 50.5–251.4 days; grey range along x-axis).

(TIF)

S2 Fig. Responses by experts on the Virology panel to Question 2 to estimate viral load in

deer sputum (Cv-deer). Consider a white-tailed deer infected with SARS-CoV-2 from which

you can collect a sputum sample. What is the ratio of the average viral load of a deer compared

to the average viral load in an infected human’s sputum sample? (A) fitted log-normal proba-

bility distributions for answers from individual experts, and (B) the aggregated log-normal dis-

tribution of answers across experts. The aggregate log-normal distribution has a median viral

load of 1.24 that found in humans (80% confidence interval: 0.80–1.93; grey range along x-

axis). The vertical lines in both (A) and (B) refer to a ratio of 1, that corresponds to no differ-

ence between viral loads in deer and human sputum.

(TIF)

S3 Fig. Responses by experts on the Virology panel to Question 3 to estimate aerosolized

dose-response relationship for deer and SARS-CoV-2 (θ). For humans, θ = 1, corresponding

to a 1 quantum dose successfully infecting 63% of susceptible individuals, or HID63. Based on

your expertise and knowledge of the literature, what do you expect the r value to be for the

average, healthy white-tailed deer? (A) fitted log-normal probability distributions for answers

from individual experts, and (B) the aggregated log-normal distribution of answers across

experts. The aggregate log-normal distribution has a median dose-relationship of 1.32 (80%

confidence interval: 0.93–1.87; grey range along x-axis). The vertical line indicates the human

dose-response relationship, θ = 1.

(TIF)

S4 Fig. Responses by experts on the Deer Ecology panel to Question 4 to estimate the dura-

tion of deer staying in proximity of each other (<1.5m; tcontact)—Given that two individual

deer are in proximity (within 1.5 m of each other), how long do you expect these individu-

als to stay in proximity on average (minutes)? (A) fitted log-normal probability distributions

for answers from individual experts, and (B) the aggregated log-normal distribution of answers

across experts. The aggregate log-normal distribution has a median duration of 4.72 minutes

(80% confidence interval: 0.93–24.11 minutes; grey range along x-axis).

(TIF)
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S5 Fig. Responses by experts on the Deer Ecology panel to Question 5 to estimate the prob-

ability of direct contact given proximity (εDC). Given that two deer are in proximity (within

1.5m of each other), what is the probability that these individuals make direct contact? (A) fit-

ted logit-normal probability distributions for answers from individual experts, and (B) the

aggregated logit-normal distribution of answers across experts. The aggregate logit-normal

distribution has a median direct contact probability of 0.19 (80% confidence interval: 0.09–

0.37; grey range along x-axis).

(TIF)

S6 Fig. Responses by experts on the Deer Ecology panel to Question 6 to estimate the influ-

ence of baiting or supplemental feeding (ρattractant). If an individual deer has 17 proximity

events with other deer each day in the absence of baiting, how many proximity events do you

expect an individual deer to have with other wild deer in the presence of an attractant (bait,

food, or other product intended to attract deer)? (A) fitted log-normal probability distributions

for answers from individual experts, and (B) the aggregated log-normal distribution of answers

across experts. The aggregate log-normal distribution has a median 32.2 proximity events per

day when an attractant is present (80% confidence interval: 24.1–43.0). Relative to 17 proxim-

ity events in the absence of baiting, this aggregate distribution estimates an increase in proxim-

ity events by 1.90-fold when an attractant is present (80% confidence interval: 1.42–2.53; grey

range along x-axis).

(TIF)

S7 Fig. Responses by experts on the Deer Ecology panel to Question 7 to estimate the rate

of a deer in proximity to a human in a rural setting (ωHW−rural). Given the conditions out-

lined above [S2 File], how many times do you expect an individual deer to come into proxim-

ity with a human during the fall months (1 September– 31 December)? (A) fitted log-normal

probability distributions for answers from individual experts, and (B) the aggregated log-nor-

mal distribution of answers across experts. The aggregate log-normal distribution has a

median of 0.20 proximity events per deer, per fall in a rural setting (80% confidence interval:

0.02–1.80; grey range along x-axis).

(TIF)

S8 Fig. Responses by experts on the Deer Ecology panel to Question 8 to estimate the dura-

tion of deer staying in proximity of a human in a rural setting (<1.5m; tcontact-HW,

rural). Given that a human and a deer come into proximity in a rural setting (within 1.5m of

each other), how long do you expect these individuals (human and deer) to stay in proximity

on average (minutes)? (A) fitted log-normal probability distributions for answers from indi-

vidual experts, and (B) the aggregated log-normal distribution of answers across experts. The

aggregate log-normal distribution has a median proximity duration of 0.70 minutes in a rural

setting (80% confidence interval: 0.20–2.46 minutes; grey range along x-axis).

(TIF)

S9 Fig. Responses by experts on the Deer Ecology panel to Question 9 to estimate the rate

of a deer in proximity to a human in a suburban setting (ωHW−suburban). Given the condi-

tions outlined above [S2 File], how many times do you expect an individual deer to come into

proximity with a human during the fall months (1 September– 31 December)? (A) fitted log-

normal probability distributions for answers from individual experts, and (B) the aggregated

log-normal distribution of answers across experts. The aggregate log-normal distribution has a

median of 1.77 proximity events per deer, per fall in a suburban setting (80% confidence inter-

val: 0.52–6.00; grey range along x-axis).

(TIF)
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S10 Fig. Responses by experts on the Deer Ecology panel to Question 10 to estimate the

duration of deer staying in proximity of a human in a suburban setting (<1.5m; tcontact-

HW, suburban). Given that a human and a deer come into proximity in a suburban setting

(within 1.5m of each other), how long do you expect these individuals (human and deer) to

stay in proximity on average (minutes)? (A) fitted log-normal probability distributions for

answers from individual experts, and (B) the aggregated log-normal distribution of answers

across experts. The aggregate log-normal distribution has a median proximity duration of 1.54

minutes in a suburban setting (80% confidence interval: 0.47–5.07 minutes; grey range along

x-axis).

(TIF)

S11 Fig. Responses by experts on the Deer Ecology panel to Question 11 to estimate the

rate of a deer in proximity to a human in an intensive captive setting (ωHC). How many

times do you expect an individual deer in a captive facility to come into proximity with a

human (within 1.5m of each other) during the fall months (1 September– 31 December)? (A)

fitted log-normal probability distributions for answers from individual experts, and (B) the

aggregated log-normal distribution of answers across experts. The aggregate log-normal distri-

bution has a median of 12.44 proximity events per deer, per fall in an intensive captive setting

(80% confidence interval: 2.92–53.08; grey range along x-axis).

(TIF)

S12 Fig. Responses by experts on the Deer Ecology panel to Question 12 to estimate the

duration of deer staying in proximity of a human in a intensive captive setting (<1.5m;

tcontact-CW). Given that a human and a deer come into proximity in a captive setting (within

1.5m of each other), how long do you expect these individuals (human and deer) to stay in

proximity on average (minutes)? (A) fitted log-normal probability distributions for answers

from individual experts, and (B) the aggregated log-normal distribution of answers across

experts. The aggregate log-normal distribution has a median proximity duration of 5.98 min-

utes in an intensive captive setting (80% confidence interval: 1.36–26.16 minutes; grey range

along x-axis).

(TIF)

S13 Fig. Responses by experts on the Deer Ecology panel to Question 13 to estimate the

rate of a deer in proximity to another deer in an intensive captive setting (<1.5m; ωCC).

Given these captive conditions, how many times do you expect an individual deer to be in

proximity with another deer in a day on average (within 1.5m of each other)? (A) fitted log-

normal probability distributions for answers from individual experts, and (B) the aggregated

log-normal distribution of answers across experts. The aggregate log-normal distribution has a

median proximity rate of 32.15 events per day in an intensive captive setting (80% confidence

interval: 9.97–103.61 events per day; grey range along x-axis).

(TIF)

S14 Fig. Sensitivity of Force-Of-Infection (FOI) to expert-elicited parameters. Each row

corresponds to a scenario, and each column corresponds to a parameter included in the calcu-

lation of FOI. Points indicate each iteration’s draw of each parameter and resulting derived

parameter (FOI), with a trend line fitted to summarize the sensitivity of FOI to the range of

drawn parameter values. Point and error bars on the top of each plot indicate the mean and

95% confidence intervals of the aggregate parameter distribution from expert elicitation.

(TIF)
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S15 Fig. Sensitivity of basic reproductive number (R0) to expert-elicited parameters. Each

row corresponds to a scenario, and each column corresponds to a parameter included in the

calculation of R0. Points indicate each iteration’s draw of each parameter and resulting derived

parameter (R0), with a trend line fitted to summarize the sensitivity of R0 to the range of drawn

parameter values. Point and error bars on the top of each plot indicate the mean and 95% con-

fidence intervals of the aggregate parameter distribution from the expert elicitation exercise.

Deer-deer proximity rates for captive, outdoor ranch, wild, suburban, and wild, rural scenarios

were drawn from Habib et al.’s (2014) [32] contact rate model, with less uncertainty compared

to expert-elicited proximity rates in the captive, intensive facility scenario.

(TIF)
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