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Abstract

Neuromechanical studies investigate how the nervous system interacts with the musculo-

skeletal (MSK) system to generate volitional movements. Such studies have been sup-

ported by simulation models that provide insights into variables that cannot be measured

experimentally and allow a large number of conditions to be tested before the experimental

analysis. However, current simulation models of electromyography (EMG), a core physio-

logical signal in neuromechanical analyses, remain either limited in accuracy and conditions

or are computationally heavy to apply. Here, we provide a computational platform to enable

future work to overcome these limitations by presenting NeuroMotion, an open-source simu-

lator that can modularly test a variety of approaches to the full-spectrum synthesis of EMG

signals during voluntary movements. We demonstrate NeuroMotion using three sample

modules. The first module is an upper-limb MSK model with OpenSim API to estimate the

muscle fibre lengths and muscle activations during movements. The second module is Bio-

Mime, a deep neural network-based EMG generator that receives nonstationary physiologi-

cal parameter inputs, like the afore-estimated muscle fibre lengths, and efficiently outputs

motor unit action potentials (MUAPs). The third module is a motor unit pool model that trans-

forms the muscle activations into discharge timings of motor units. The discharge timings

are convolved with the output of BioMime to simulate EMG signals during the movement.

We first show how MUAP waveforms change during different levels of physiological param-

eter variations and different movements. We then show that the synthetic EMG signals dur-

ing two-degree-of-freedom hand and wrist movements can be used to augment

experimental data for regressing joint angles. Ridge regressors trained on the synthetic

dataset were directly used to predict joint angles from experimental data. In this way, Neuro-

Motion was able to generate full-spectrum EMG for the first use-case of human forearm

electrophysiology during voluntary hand, wrist, and forearm movements. All intermediate

variables are available, which allows the user to study cause-effect relationships in the
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complex neuromechanical system, fast iterate algorithms before collecting experimental

data, and validate algorithms that estimate non-measurable parameters in experiments. We

expect this modular platform will enable validation of generative EMG models, complement

experimental approaches and empower neuromechanical research.

Author summary

Neuromechanical studies investigate how the nervous system and musculoskeletal system

interact to generate movements. Such studies heavily rely on simulation models, which

provide non-measurable variables to complement the experimental analyses. However,

the simulation models of surface electromyography (EMG), the core physiological signal

widely used in neuromechanical analyses, are limited to static conditions. We bridged this

gap by proposing NeuroMotion, the first full-spectrum EMG simulator that can be used

to generate EMG signals during voluntary movements. NeuroMotion integrates a muscu-

loskeletal model, a neural network-based EMG generator, and advanced motoneuron

models. With representative applications of this simulator, we show that it can be used to

investigate the variabilities of EMG signals during voluntary movement. We also demon-

strate that the synthetic signals generated by NeuroMotion can be used to augment experi-

mental data for regressing joint angles. We expect the functionality provided by

NeuroMotion, which is provided open-source, will stimulate progress in neuromechanics.

Introduction

Human neuromechanics is the discipline that combines neuroscience and biomechanics to

reach a fundamental understanding of the interactions between the nervous, muscular, and

skeletal systems during human movements [1]. It allows us to uncover the functions and

mechanisms of the nervous system under the production of movements [2, 3] by studying the

movements from the perspective of their neural control [4]. Neuromechanical investigations

are also important for developing decoding methods by providing the link between neural

activities and behaviours. The decoding methods can be used to identify human intent from

neural signals generated during a specific behaviour (neural interfaces). Neuromechanical

studies have therefore allowed us to address problems ranging from motor control [4], rehabil-

itation engineering [5], and human-machine interfaces [6].

Due to the complex interplay of the nervous, muscular, and skeletal systems, researchers

have used multiple simulation tools to explore certain aspects of human neuromechanics. A

series of models that describe the neuron structures and functions have been proposed, includ-

ing the classical Hodgkin-Huxley model [7]. At a macro scale, several analytical and numerical

electromyogram (EMG) models have been used to study the electrical outputs produced by

skeletal muscles upon activations of populations of neurons [8–11]. In parallel, multiple simu-

lation platforms, such as OpenSim [12, 13] and MuJuCo [14, 15], have been widely used to

study human body movements during dynamic simulations in biomechanical studies. How-

ever, the electrical outputs are rarely simulated together with the biomechanical system during

voluntary movements.

OpenSim allows the users to include EMG signals as an additional input for better estimat-

ing the musculo-tendon dynamics and parameters but not to forwardly generate EMG signals

during a movement [12]. Fuglevand’s model has been widely used to study muscle force,
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motoneuron activities, and EMG signals but is limited to isometric contractions [16]. A recur-

rent neural network has been recently used as a black box to convert motions to the down-

sampled and smoothed muscle activities, without knowing the internal parameters of the

system [17]. This inhibits using the model to study cause-effect relations between system

parameters or to validate algorithms that require internal information. For instance, validating

adaptive decomposition algorithms requires knowing the firing status of each motoneuron.

One primary reason for the lack of an integrated and precise EMG simulator feasible for vol-

untary movements is the absence of models that link EMG generation to movement biome-

chanics. Another reason is that current advanced EMG models are not efficient enough to

adapt to the non-stationary physiological parameters during voluntary movements. These two

challenges have been addressed by our recently released EMG model, BioMime [18], which is

a conditional generative model that takes the physiological parameters as inputs and outputs

the dynamic motor unit action potential (MUAP) signals efficiently.

Using BioMime as a key module, here we propose NeuroMotion, an open-source EMG

generative model that replicates the full-spectrum generation of electrophysiological signals

during voluntary movements. EMG signals are produced by the mixed convolutions of the

MUAPs (electrical potential templates generated when one motoneuron is activated) and

spike trains (continuous discharge timings of a motoneuron) of all active motor units during a

movement. Correspondingly, NeuroMotion consists of three modules. The first module is an

upper-limb musculoskeletal (MSK) model with OpenSim API for defining and visualising the

movement and estimating the muscle fibre lengths and muscle activations during the move-

ment. The muscle fibre lengths are then utilised by the second module, BioMime, to simulate

the dynamic MUAPs during the movement. The third module is a motor unit pool model that

receives the neural inputs derived from the muscle activations and outputs stimulations to

each muscle in the format of spike trains. An overview of NeuroMotion is shown in Fig 1.

With NeuroMotion, users can synthesise large EMG datasets under a vast repertoire of hand

and wrist movements with all intermediate variables available. One potential application is to

fast iterate regression and classification algorithms on a synthetic dataset before collecting

experimental data (this data augmentation example will be used later in the Results). Another

application is the validation of information extraction algorithms (e.g., EMG decomposition

algorithms) when experimental data lacks the ground truth. Data, codes, and instructions are

available at https://github.com/shihan-ma/NeuroMotion.

Methods

Overview

NeuroMotion is a surface EMG generative model that is designed to simulate EMG signals

during voluntary human upper limb movements. NeuroMotion takes the kinematics of

human hand, wrist, and forearm as inputs and outputs the synthetic surface EMG signals that

explain the myoelectric activities responsible for the movement. Three modules are incorpo-

rated to complete this full-spectrum simulation, including an upper-limb MSK model with

OpenSim API, BioMime, and a Motor Unit Pool model. Intermediate variables (changes in

physiological parameters, MUAPs, and spike trains) are available in this hierarchical and mod-

ular simulation. Details of the three key modules are described in Section Core modules. An

overview of the workflow of NeuroMotion is shown in Fig 1.

Core modules

MSK model with OpenSim. OpenSim is an open-source software platform that is used

for modelling and analysing neuromusculoskeletal systems [12, 13]. With this platform,
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researchers can build MSK models, simulate dynamic movements, and perform motion analy-

sis for biomechanical studies that advance movement science. Here, we use OpenSim as a

bridge between movements and physiological system states for three purposes: (1) to define

and visualise movements of MSK models, (2) to track the changes in muscle fibre lengths dur-

ing the movement, and (3) to predict the muscle activations across muscles.

Since we mainly focus on simulating EMG signals from the human forearm during hand,

wrist, and forearm movements, we chose the ARMs Wrist and Hand Model [19] (ARMs in

abbreviation) from the large database of opens-source OpenSim models as the MSK model

used in NeuroMotion. The original ARMs model includes 23 degrees of freedom (DoFs),

including the full DoFs of finger movements and the flexion/extension and radial/ulnar devia-

tion DoFs for the wrist. We added the pronation/supination DoF to the source files of ARMs

model such that a full range of hand, wrist, and forearm movements could be simulated.

The MSK model in NeuroMotion can be customised to the subject’s anthropometry in

three ways. First, a fully personalised MSK model can be created by acquiring medical images

of the MSK system and building physics-based models. This process requires considerable

skills and manual interventions, but has been facilitated by the advancement of automatic tools

[20, 21] and associated machine learning methods [22]. A more practical approach, which is

automated in OpenSim, is to scale each segment in the ARMs model by minimising the dis-

tances between the virtual markers placed on ARMs model and the real markers placed on the

subject. The ARMs model can also be manually scaled by anthropometric measurements.

Fig 1. Overview of NeuroMotion. A) NeuroMotion provides an integrated generative model to simulate forearm surface EMG signals during

voluntary hand and wrist movements. B) The movements are defined by the kinematics of an upper limb MSK model. Muscle fibre lengths during the

movement are estimated by OpenSim and imported into BioMime to simulate dynamic MUAPs, which are the continuously changing electrical

potential templates generated by the activations of the motor units. The other physiological parameters, including the current source propagation

velocity and motor unit depth, can be estimated from muscle fibre length and imported to BioMime as well. Neural inputs to each muscle, which can be

derived from the normalised muscle activations from OpenSim or set by the users, are further transformed into spike trains by the Motor Unit Pool

model. Surface EMG signals are finally calculated as the summation of the convolution of the dynamic MUAPs and the spike trains among all active

motor units.

https://doi.org/10.1371/journal.pcbi.1012257.g001
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The movement defined by the user can be visualised and investigated in the OpenSim GUI.

Muscle-tendon lengths during the movement are related to the joint angles and are tracked

and extracted using the OpenSim built-in functions. Assuming tendons to be rigid at constant

slack length, the muscle fibre lengths are deduced and imported into BioMime to generate the

dynamic MUAPs. Furthermore, the individual muscle activations responsible for the move-

ment are estimated with the built-in Static Optimization tool in OpenSim. Static Optimisation

solves the inverse dynamics by minimising the cost function of muscle activations under the

constraints of muscle activation-to-force conditions. The exported muscle activations are fur-

ther normalised and imported into the Motor Unit Pool model to act as the neural input to the

motoneuron pools, according to the linearity properties of the motoneuron pools [23]. Open-

Sim’s built-in tools have been integrated into NeuroMotion by its Python API.

BioMime. After OpenSim captures the changes in a biomechanical system from the joint

kinematics, BioMime is used to simulate the corresponding MUAPs during the movement.

BioMime is a deep conditional generative model that simulates electrical potential fields given

a set of physiological parameters [18]. A schematic of BioMime’s training and inference pipe-

line is shown in Fig 2. Learning from the outputs of its teacher numerical model [10], BioMime

captures the relations between the physiological parameters and the MUAP templates and

essentially replicates the biophysical properties of the volume conductor of the forearm. When

the time-varying parameters during a movement are imported into BioMime, the output will

change accordingly. Therefore, BioMime can be used to generate a sequence of MUAP tem-

plates during any movement as long as the parameter changes are available and plausible. The

computational cost to simulate a movement in high temporal resolution is extremely low

given BioMime’s ultra-fast inference speed (0.287 seconds per muscle per condition [18]).

The public BioMime model was trained on a dataset generated by a numerical model with a

specific forearm anatomy. Therefore, the BioMime model can be regarded as a subject-specific

surrogate model of the volume conductor with this forearm anatomy. The user can keep this

well-trained model or train their individual BioMime. Detailed instructions on how to train

BioMime can be found in https://github.com/shihan-ma/BioMime. The newest version of Bio-

Mime supports changes in seven physiological parameters, including the conductivity of the

fat layer and the fibre number, depth and medial-lateral position, innervation zone, conduc-

tion velocity, and fibre length of each motor unit (Details in the supplementary of [18]). Some

of these parameters can be measured experimentally. For example, the location and the fibre

length of a motor unit could be estimated by using ultrasound [24, 25]. The location of the

innervation zone and the muscle fibre conduction velocity can be estimated, for example by

using high-density EMG recordings [26, 27]. Some parameters can also be obtained from the

Fig 2. Schematic of BioMime. BioMime is a conditional generative model trained in an adversarial way. The generator takes the specified conditions

and latent features of MUAPs as the inputs and outputs the simulated MUAP signals. The latent features can be encoded from existing MUAPs or

sampled from a prior distribution. The discriminator distinguishes real samples from fake samples conditioned on the specified parameters. Only the

generator is used in NeuroMotion.

https://doi.org/10.1371/journal.pcbi.1012257.g002
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synthetic movement of the MSK model. As described in Section MSK model with OpenSim,

muscle fibre length can be estimated by OpenSim. The depth of a motor unit territory and the

motor unit conduction velocity can be approximated from the muscle fibre length under some

assumptions (see Section Estimate parameter changes).

As a conditional generative model trained in an adversarial manner, BioMime has an

encoder-decoder structured generator and a discriminator. During the inference, only the gen-

erator is required. BioMime can be used to generate new MUAPs by morphing an existing

MUAP or by sampling from a prior distribution. The difference is that by morphing an exist-

ing MUAP, the output MUAPs keep the properties of the input MUAP that are separated

from the seven physiological parameters, while these properties are sampled from a prior dis-

tribution by sampling. When these latent properties are obtained, MUAPs that change under

dynamic movements can be simulated by passing the latent and the changing physiological

parameters into the decoder. Since the seven parameters explain the bulk of variations of the

MUAP templates of the specific subject [8, 9, 28], the difference between the MUAPs gener-

ated by morphing or by sampling is small. NeuroMotion supports both of these two strategies

and provides a dataset of MUAPs paired with their physiological parameters for generation

under the morphing pattern.

Motor unit pool. The purpose of including the motor unit pool model in NeuroMotion is

twofold: (1) to initialise the properties of the motor units within one muscle, and (2) to simu-

late the motoneuron activities and generate their spike trains. In NeuroMotion, we imple-

mented two types of motor unit pool models, the classical Fuglevand’s model proposed in [16]

and a cohort of leaky fire-and-integrate (LIF) neuron models adapted from [29].

The properties of the motor units in the two models are initialised following the rules

below. In both models, the motor unit size (number of muscle fibres within each unit) is pro-

portional to the amplitude of the motor unit twitch force [16, 30], and the summation of the

motor unit sizes meets the expected total number of fibres in one muscle (Eq 1). In the classical

model, the peak twitch force is exponentially distributed while in the LIF-based model, the

twitches are distributed following the linear-exponential function in Eq 2. Eq 2 was derived

from experimental measurements in the literature on human forearm muscles [16, 31, 32] fol-

lowing the method described in [29]. The total number of fibres in one muscle was estimated

as the ratio between muscle physiological cross-sectional area and the average fibre cross-sec-

tional area for typical human forearm muscles [16, 33]. In the classical Fuglevand’s model, the

conduction velocity is normally distributed within the common range and then sorted from

small to large to be positively related to the motor unit size. In the LIF-based model, we

adapted the mathematical relationships between the axonal conduction velocity and the neu-

ron surface area from [34] to estimate the fibre conduction velocity. In both models, the depth

and medial-lateral positions of motor units are uniformly distributed within the muscle terri-

tories. The innervation zone and fibre length are normally distributed within the common

ranges.

MNsize ¼
f twðjÞ

PN
k¼1

f twðkÞ
� Nf ; j 2 ½1;N� ð1Þ

where f twðjÞ is the estimated twitch force of the jth motor unit in the population, N the number

of motor units, and Nf the total number of fibres in one muscle.

f twðjÞ ¼ 0:81 � ð18:51 �
j
N
þ 104:10

j
N

4:83

Þ; j 2 ½1;N� ð2Þ
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In both models, the motoneurons innervating a muscle are sequentially recruited in terms

of the intensity of the neural input. The smallest motor unit is first recruited with the lowest

impulse response amplitudes. Once recruited, the motoneuron starts to fire regularly. The fir-

ing rates of the recruited motor units increase with the input to the motoneuron pool until the

peak firing rates are reached. The two models both predict the specific discharge behaviour

(spike trains) of the motoneurons from the intensity of the neural input. Specifically, the firing

state of a motor unit is decided by the recruitment threshold of the motor unit in the classical

Fuglevand’s model [16]. The recruitment thresholds are exponentially distributed such that

few motor units have high thresholds and many motor units have low thresholds. In the LIF

model-based approach, each LIF model captures the complex nonlinear MN dynamics by

using a parallel combination of a leaky resistor and a capacitor. A spike is generated when the

transmembrane voltage reaches a certain threshold, followed by a refractory during the action

potential. With physiologically realistic distributions of the electrophysiological properties and

a further interpolation between the motoneuron-specific electrophysiological properties sup-

ported by experimental data [29] in the LIF model, the predictions of both models are consis-

tent with the onion skin theory [35] and Henneman’s size principle of sequential motoneuron

recruitment [36].

Toolbox functions

In this section, we introduce the basic functions provided by NeuroMotion to define the

movement of the ARMs model (Section Define movement), track the changes in physio-

logical parameters (Section Estimate parameter changes), set common drives to motoneu-

ron pools (Section Set neural inputs to motoneuron pools), and define the structure of

motor unit pools (Section Configure motor unit pools). Python code examples for each

function are displayed.

Define movement. Movements are simulated by using the ARMs model in NeuroMotion.

A python class MSKModel was implemented to handle the related functions. NeuroMotion

supports three approaches to defining the movement of the ARMs model. The most basic way

is by assigning joint angles to each DoF by using the function ‘load_mov’ (Fig 3A). The joint

angles can be obtained from motion capture data (like in [37]) or be measured from sensors

(as by data glove and angle sensors). There are 24 DoFs in the ARMs model and each can be

changed separately within a predefined range. NeuroMotion automatically checks whether

each input joint angle is within the correct range. It is possible that a movement defined by a

set of joint angles is not feasible even though each joint angle is reasonably assigned. For exam-

ple, a combination of joint angles may result in a sudden and unlikely change in muscle fibre

lengths. We encourage the users to visualise the movement in OpenSim GUI and to check if

there are such aberrations. The motion file required by OpenSim can be generated from joint

angles by using the function ‘write_mov’ in NeuroMotion (Python code example at Line 10 in

Code Block 1).

The second way to define a movement is by interpolating between predefined poses. Neuro-

Motion provides eight default poses, including hand open/grasp, wrist flexion/extension, wrist

radial/ulnar deviation, and forearm pronation/supination (Fig 3B). Users can define their cus-

tomised poses by creating new poses in OpenSim GUI. A movement can be simulated by set-

ting one pose at each stage from the predefined poses and setting the durations of each

transition (Python code example at Lines 1-5 in Code Block 1). The eight default poses can be

combined before interpolation by concatenating the names of the poses, e.g., ‘open+flex’

means hand open and wrist flexion at the same time. The joint angles are summed after the

combination. Users may want to define the movement directly from the motion capture data,
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as the third way displayed in Fig 3C. This is possible with OpenSim GUI. The users need to

place virtual markers at the same anatomical positions on the MSK model as the experimental

positions. Then the MSK model can be scaled and the movement can be driven by the motion

capture data.

Estimate parameter changes. BioMime can simulate MUAPs during the changes in

seven physiological parameters. Users can import the parameters measured during an experi-

ment. If these physiological parameters are not available from the experiment, NeuroMotion

provides an alternative method to approximate some of the parameters. Muscle fibre lengths

during a movement of the MSK model can be estimated by using the Muscle Analysis Tool in

Fig 3. Illustration of the function of movement definition in NeuroMotion. The MSK models are driven by the joint angles in OpenSim.

NeuroMotion provides three ways to define a movement. A) The most basic way to define a movement is by setting the joint angles directly. In this

example, the ARMs model is driven by the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints of the five digits. B) Eight default

poses are provided. Users can combine these poses and interpolate between them to simulate a smooth movement. C) Motion capture data can be

used to drive the MSK model. Markers should be aligned between experimental and simulation settings.

https://doi.org/10.1371/journal.pcbi.1012257.g003

6 ms_labels = ['ECRB', 'ECRL', 'PL', 'FCU', 'ECU', 'EDCI', 'FDSI']

7 msk.sim_mov(fs, poses , durations)

8 ms_lens = msk.mov2len(ms_labels=ms_labels)

9 changes = msk.len2params ()

10 msk.write_mov('./res/mov.mot')

1 # build msk model and simulate a movement

2 msk = MSKModel ()

3 poses = ['default ', 'default+flex', 'default ']

4 durations = [2] * 2 # 2 seconds for each transition

5 fs = 5 # 5 Hz

Code Block 1. Example python codes for defining a wrist flexion movement by interpolation and for acquiring changes in

physiological parameters.

https://doi.org/
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OpenSim. Two more parameters can be approximated from the muscle fibre length changes.

Under the assumption of constant muscle volumes during a movement [11], the cross-sec-

tional area of a muscle changes inversely with the muscle fibre length. Then the conduction

velocity can be tracked since it is positively correlated with the cross-sectional area of muscle

volumes. If the location of a motor unit consistently changes with the radius of the cross-sec-

tion, the depth of the motor unit can be estimated as well. Therefore, changes in three physio-

logical parameters can be estimated during a movement. These changes can be obtained by

using the function of ‘len2params’ in NeuroMotion (Python code example at Line 9 in Code

Block 1).

Set neural inputs to motoneuron pools. Activations that trigger muscle contractions are

often represented by spike trains. The spike trains are generated by motoneurons by trans-

forming the input they receive and are convolved with the MUAP templates to generate the

interference EMG signals. It still remains a challenge to decode the real neural input to moto-

neurons from experimental EMG data, and thus it is difficult to set these inputs to their true

values during a movement.

NeuroMotion provides three ways to set the input to each motoneuron pool. First, the user

can set predefined and commonly used activation profiles, which include constant, trapezoi-

dal, triangular, and sinusoidal activations. The amplitude and duration of each type of activa-

tion can be easily changed. Second, as described in Section MSK model with OpenSim, muscle

activations during a movement can be estimated by OpenSim with the Static Optimisation

Tool. The muscle activations are then normalised to the activations during the maximum vol-

untary contractions and used as the neural inputs to the muscles. Third, NeuroMotion pro-

vides the interfaces for the user to set the muscle activations by the outputs of their algorithms,

for example, using the normalised EMG signals recorded during experiments or the signals

derived from muscle synergies [38].

Configure motor unit pools. NeuroMotion organises the motor unit pool structures by

providing a python class MotoneuronPool. This class parameterises the electrical and

mechanical properties of a motor unit pool, of which each property can be easily custom-

ised. Fundamental properties include the motor unit size, conduction velocity, motor unit

positions, innervation zones, and fibre lengths. In the implementation of classical Fugle-

vand’s model, the motor unit recruitment threshold, the minimum and maximum firing

rate of each motor unit, variability of the inter-pulse intervals, and motor unit twitch force

and contraction time can be manually assigned. In the LIF-based model, the motoneuron-

specific parameters, such as the resistance, capacity, and time constant, are set given the

mathematical descriptions in [29]. Example Python codes that define a classical motor unit

pool model, define the input to motoneurons and calculate the spike trains are shown in

Code Block 2.

Users may prefer using the classical Fuglevand’s model as it is more conceptually simple

with fewer parameters. The LIF-based model might be preferred as it provides a more

physiological way to predict the discharge activities based on the physiological dynamics

of motoneuron membrane charging and discharging and allows a finer control of moto-

neuron properties by providing more controllable parameters. Users could also add

their self-developed models, for example the Izhikevich neuron model [39], into

NeuroMotion.

Results

NeuroMotion provides the input, output, and all intermediate variables to the users, including

the joint kinematics and the muscle fibre lengths during a movement, the neural input to each
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motoneuron pool, the neural commands to the muscles in the format of spike trains, the

dynamically changing MUAPs, and the interference surface EMG signals. Given the above

information, NeuroMotion can be used to analyse the impact of a specific parameter on the

EMG signals and to provide synthetic datasets for data augmentation and validations of EMG-

related algorithms. Here we displayed the variations of MUAPs during dynamic contractions

and compared the similarities between MUAPs within and across muscles. A case study was

provided in which the synthetic dataset generated by NeuroMotion was used to augment an

experimental dataset for improving the accuracy in estimating joint angles from EMG signals.

Synthetic MUAPs during dynamic contractions

MUAPs when one, two, and three parameters change. NeuroMotion allows researchers

to estimate the changes in muscle fibre length, conduction velocity, and motor unit depth dur-

ing the movement of the ARMs model (Sections MSK model with OpenSim and Estimate

parameter changes). Here, we gave examples of the simulated MUAPs during a wrist flexion

and extension movement (Fig 4A) with four levels of parameter changes, including changing

only muscle fibre length, changing muscle fibre length and conduction velocity, changing

muscle fibre length and motor unit depth, and changing all three parameters. One representa-

tive MUAP from the ulnar head of Flexor carpi ulnaris (FCU(u)) and its changes over time are

displayed in Fig 4B. By changing the muscle fibre length, the duration of the MUAPs slightly

varied. Changing the conduction velocity also influenced the duration of the MUAP while

changing the motor unit depth had a more substantial impact on the waveforms. Changes due

to the three physiological parameters during the movement are visualised in Fig 4C, 4D and

4E, respectively.

MUAPs across poses. We then proceeded to study how MUAPs from different muscles

change across movements. Three basic movements were simulated by using the tools

described in Section Define movement, including sequences of hand-open to hand-grasp,

hand-open to wrist flexion and extension, and hand-open to radial and ulnar deviations. We

1 # test motor unit pool model

2 mn_pool = MotoneuronPool(num_mu , rr , rm , rp, pfr1 , pfrd , mfr1 , mfrd ,

ge, c_ipi , frs1 , frsd) # parameters that define the motor unit

recruitment and firing pattern

3 # properties

4 config = edict({

5 'num_fb ': 25000,

6 'depth ': [20, 30],

7 'angle ': [20, 30],

8 'iz': [0.5, 0.1],

9 'len': [0.5, 0.1],

10 'cv': [4, 0.5]

11 })

12 properties = mn_pool.assign_properties(config , True)

13 # define neural input

14 fs = 2048 # Hz

15 duration = 6 # s

16 ext = np.linspace(0, 1.0, fs * duration)

17 # Force and twitches

18 mn_pool.init_twitches(fs)

19 mn_pool.init_quisistatic_ef_model ()

20 # spike trains

21 _, spikes , fr, ipis = mn_pool.generate_spike_trains(ext)

Code Block 2. Example python codes for defining a motor unit pool model and for setting the neural input to the pool.

https://doi.org/
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visualised the changes in MUAPs from six superficial muscles. As shown in Fig 5, only the

lengths of digitorum muscles (extensor digitorum, ED and flexor digitorum superficialis, FDS)

changed during hand grasp and open movement. As a result, MUAPs from ED and FDS dis-

played large variations while MUAPs from the other muscles maintained their waveforms con-

stant. All six muscles were activated during the flexion and extension movement. Therefore,

the duration, amplitude, and waveform of the MUAPs from the six muscles all changed consis-

tently with the movement. The digitorum muscles (ED and FDS) and palmaris longus (PL)

muscle contributed less to the radial and ulnar deviations, and thus MUAPs from these three

muscles showed fewer variations during wrist deviations.

In-muscle and cross-muscle MUAP similarities. Muscles within the forearm have small

volumes. Thus, MUAPs within a single forearm muscle might have similar waveforms due to

the overlapping motor unit territories. We studied the similarities between MUAPs within a

single muscle, across pairs of muscles, and across joint angles during a wrist flexion and exten-

sion movement. The similarity was evaluated by the normalised mean square error (NMSE),

which is defined by the mean square error between two MUAPs divided by their averaged

Fig 4. Changes in the MUAPs of one representative motor unit in FCU(u) during a wrist flexion/extension movement. A) Sequence of the

movement. B) MUAPs generated by NeuroMotion. The MUAPs in the first row were morphed using the muscle fibre length profiles output by the

ARMs model using OpenSim, the second row using muscle fibre length and conduction velocity, the third row using muscle fibre length and motor

unit depth, and the fourth row using all three parameters. C) Normalised muscle fibre length profiles from the ARMs model. D) Normalised

conduction velocity. E) Normalised motor unit depth.

https://doi.org/10.1371/journal.pcbi.1012257.g004
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power. The MUAPs were first cropped to a sub-grid where all channels had the maximum

amplitude above 75% of the average across channels.

The similarities between MUAPs of three muscles, an extensor (Extensor carpi radialis bre-

vis, ECRB) and two heads of one flexor (Flexor carpi ulnaris ulnar and humeral heads, FCU(u)

and FCU(h)), are shown by the confusion matrices in Fig 6. MUAPs within the same muscle

generally showed higher similarity than MUAPs across different muscles. MUAPs within the

two heads of the FCU muscle were more similar than MUAPs within the FCU and a more dis-

tant muscle ECRB. Different MUAPs within the same muscle (off-diagonal) could have similar

waveforms since multiple combinations of physiological parameters can contribute to similar

MUAPs and different MUAPs may overlap in their territories due to the small muscle volume

in the forearm.

We were also interested in how movements influence the similarities of the MUAPs and

whether the changes in the similarities during the movement are consistent across MUAPs

within each muscle. Fig 7 shows the similarities between MUAPs morphed during a wrist flex-

ion/extension movement and their baseline shapes (MUAPs at zero joint angles). MUAPs

were gradually morphed away from their baseline shapes when the joint flexion or extension

angle increased. The similarities of MUAPs across joint angles were consistent within the

Fig 5. Changes in MUAPs during three movements. One representative MUAP was chosen from each of the six muscles and was consistently

morphed during three movements. The first row: normalised muscle fibre length profiles from the ARMs model during grasp-open, flexion-extension,

and radial-ulnar deviation. The second to the seventh rows: MUAPs transformed during the three movements in the six muscles. The colours from

dark blue to light green indicate the time frames from the beginning to the end of the movement. For each MUAP, a subgrid of three channels were

chosen for display, which was consistent across the three movements.

https://doi.org/10.1371/journal.pcbi.1012257.g005
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MUAPs of each muscle with small variances. MUAPs in extensors showed higher levels of dis-

similarity during wrist extension than during wrist flexion, and the opposite for MUAPs in

flexor muscles.

Synthetic EMG signals for data augmentation

Simulation process. The synthetic EMG signals generated by NeuroMotion can be used

to augment experimental datasets for myoelectric control. In this preliminary case study, we

simulated hand and wrist movement following the experiments in [40]. In the experiments, six

subjects performed two motor tasks with self-selected speeds, including wrist flexion/extension

and MCP flexion/extension movements. Five trials were performed for each task. The duration

of each trial was 15 seconds. Six EMG sensors (Delsys Trigno Wireless, Delsys Inc.) were

placed on the six forearm muscles according to SENIAM guidelines [41]. The six muscles

include flexor carpi radialis (FCR), flexor digitorum superficialis (FDS), flexor carpi ulnaris

(FCU), extensor carpi ulnaris (ECU), extensor digitorum (ED), and extensor carpi radialis

longus (ECRL). Proper positioning of each EMG sensor was chosen by physically palpating the

muscle during sustained isometric contraction and visually confirming the EMG signal. The

surface EMG signals were recorded at 2000 Hz and the wrist and MCP joint angles at 40 Hz.

The EMG signals were normalised by the maximum EMG signals during maximum volun-

tary contractions and then used as the neural inputs to the corresponding muscles to produce

spike trains. The joint angles were used to drive the ARMs model, where the output muscle

fibre lengths were imported to BioMime to simulate dynamic MUAPs. Note that the latent

representation was initialised for each motor unit by randomly sampling from the Normal

Fig 6. Similarity and dissimilarity between MUAPs within/across muscles in confusion matrices. Deeper colours in the first and the third columns

indicate a lower normalised mean square error (NMSE) and higher similarity. Black denotes NMSE> 0.2 (less similar) and white NMSE< 0.2 (more

similar) in the second and the fourth columns. The left two columns show similarity between MUAPs within single muscles while the right two

columns show similarity between MUAPs across two muscles.

https://doi.org/10.1371/journal.pcbi.1012257.g006
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distribution and then fixed during the simulation. This ensures that the MUAPs are only

changed by the physiological parameters during the movement. Finally, the synthetic EMG

signals were simulated by convolving the spike trains and the MUAPs. We simulated a total of

320 channels of surface EMG for all trials of the six subjects. The simulated channels are uni-

formly placed around the forearm and cover the majority of the forearm muscles. Six channels

were selected for each subject by matching the coordinates between the experimental elec-

trodes and the simulated electrodes. We also checked the amplitudes of the selected channels

during specific movements. For instance, the signals collected by channels placed on the flex-

ors should have a higher amplitude during wrist flexion compared to the amplitude during

wrist extension. Root mean square (RMS) values were computed from 200-ms intervals with

50-ms overlapping. Each RMS segment was labelled with the two joint angles.

Case studies of data augmentation. We investigated whether the simulated signals have

practical uses, for example, to augment the experimental dataset in this case study. The

assumption here is that even though the modules used in the simulation were not customised

to each subject, given the common patterns of muscle activation during movements, the simu-

lated EMG signals could capture the general characteristics of each movement that would be

useful for regressing the joint angles. We show that the synthetic EMG signals are of practical

use in two ways.

First, we trained ridge regressors on the synthetic dataset from each trial of each subject.

The trained regressors were directly applied to regress the joint angles from the experimental

data of the same subject and the same trial. We observed that for each of the subjects, there

was at least one trial, in which the joint angles predicted by the regressors trained on the syn-

thetic data were highly consistent with the experimental joint angles. The Pearson correlation

coefficients (PCC) are 0.52 ± 0.14 (mean and standard deviation across subjects) and

0.61 ± 0.14 for regressing the wrist and MCP angles, respectively. Taking one subject as an

example, we found consistent regression results when the simulation was repeated five times.

As might be expected, we found that the data produced by NeuroMotion closely matched the

real data when the regressors trained on the synthetic data performed well on the real data. An

example of the regression results is shown in Fig 8. To account for the fact that the joint angles

mainly consist of low-frequency components, we estimated a lower bound of such predictions

by comparing the predictions with the randomly shuffled ground truth labels. An extreme case

Fig 7. Similarity between MUAPs across joint angles during a wrist flexion/extension movement. The joint angles were normalised between -1.0

(flexion) and 1.0 (extension). MUAPs at zero flexion/extension were used as the baseline shapes, which were compared with the continuously morphed

MUAPs during the movement to calculate the NMSE (dissimilarity metric, higher values indicate higher differences). NMSEs were averaged within

each muscle at each time step, with the variances shown by the green shaded area.

https://doi.org/10.1371/journal.pcbi.1012257.g007

PLOS COMPUTATIONAL BIOLOGY NeuroMotion: From Movement to EMG

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012257 July 3, 2024 14 / 22

https://doi.org/10.1371/journal.pcbi.1012257.g009
https://doi.org/10.1371/journal.pcbi.1012257


is that if the joint angles are constant, shuffling the labels of joint angles will not affect the pre-

diction accuracy. The random shuffling was repeated ten times for each trial. The PCC

between the prediction and the randomly shuffled angles has a large variance and contains

both negative and positive values, resulting in an averaged PCC around zero (−0.14 ± 3.68).

The PCC between the predictions and the ground truth joint angles is significantly higher than

the PCC between the prediction and the randomly shuffled angles following the Student’s t-

test (p< 0.005).

Second, we show that the synthetic data can be potentially used to augment the experimen-

tal data to improve the regression accuracy. Specifically, we randomly selected two trials of

experimental data and two trials of synthetic data to form a new training dataset. The ridge

regressors trained on this augmented dataset were tested on one trial of the experimental data,

which was different from the trials in the training dataset. For all six subjects, we were able to

augment the experimental data with data generated by NeuroMotion such that the resultant

regressor performed better than a regressor trained on the experimental data alone. The per-

formance of the regressor was significantly improved when trained on these augmented data-

sets (Student t-test with p< 0.05). The PCC of training on the augmented dataset versus

training on the full experimental dataset is 0.77 ± 0.08 versus 0.75 ± 0.08 for wrist and

0.72 ± 0.06 and 0.66 ± 0.07 for MCP.

Discussion

We have presented NeuroMotion, which provides the first open-source simulator for neuro-

mechanical investigations by modelling the electrical outputs during voluntary human move-

ments. With the three key modules, NeuroMotion provides a wealth of functions that give full

freedom to users to simulate signals by using the default settings or by customising the config-

urations. All input, intermediate, and output variables are available in this hierarchical and

full-spectrum simulation, indicating multiple potential usages of NeuroMotion.

Rich variances of MUAPs during dynamic contractions

NeuroMotion provides three ways to define the movement of the ARMs model. The easiest

way is to interpolate between (the combinations of) the eight default poses. Examples in Figs 4

Fig 8. Representative results of using NeuroMotion’s output to train regression algorithms. A) The regressors trained on the synthetic dataset could

predict wrist and MCP joint angles from the experimental data. The ground truth joint angles are displayed in black and the predictions in blue. B) The

simulated six-channel EMG signals (blue) and the experimental signals (black) of the same trials in A. C) the RMS extracted from the simulated signals

(blue) and the experimental signals (black) of the same trials in A.

https://doi.org/10.1371/journal.pcbi.1012257.g008
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and 5 showed simulations of MUAPs by using the interpolation tools. Physiological parame-

ters were smoothly changed during the movement, which resulted in a continuous variation of

MUAP waveforms. The variations of synthetic MUAPs are similar to the variations of MUAPs

observed during experiments in a qualitative way [42–44]. For example, the shortening of

muscle fibres or increase of conduction velocity during natural muscle contractions reduced

the duration of a MUAP; MUAPs of muscles that contribute less to a movement showed fewer

variations (PL in wrist deviation).

Compared with the limited muscles studied under a few discretised joint angles during

experiments, NeuroMotion can simulate MUAPs from eight forearm superficial muscles

under any voluntary movements in a high temporal resolution. Such functionality allows users

to test the assumptions made in the simulations (e.g., changes in parameters) or study the rich

variances of MUAPs within or across muscles as displayed in Fig 6. The ability of NeuroMo-

tion to generate dynamic MUAPs consistent with muscle functionalities demonstrates its

superiority to previous models that either adapted the classical cylindrical model to discretised

stages [45] or empirically transformed the MUAP waveforms [46]. We expect that NeuroMo-

tion will meet the demand for providing synthetic EMG signals during dynamic muscle con-

tractions for validating adaptive decomposition algorithms [42]. For example, NeuroMotion

was used in [47] to generate data during wrist flexion and extension at constant forces. The

simulated data were used to test the online learning EMG decomposition algorithm.

We also showed that the generated MUAPs were muscle-specific with low similarity across

different muscles (Fig 6). The variations of MUAPs during a movement were consistent within

muscle but different across muscles (Fig 7). When the wrist flexion/extension angle increased,

MUAPs were gradually transformed and deviated away from their initial version, leading to an

increasing difference (higher NMSE). The similarity at each joint angle showed small variances

across MUAPs within each muscle, which indicates that deformations of fibres within one

muscle are similar. MUAPs from flexors experienced more variations during flexions while

MUAPs from extensors showed more variations during extensions. This observation fits well

with the fact that flexors/extensors manifest a more drastic contract during flexions/exten-

sions. These results evidence the potential of using NeuroMotion to investigate the variations

of MUAPs within/across muscles during voluntary movements.

Potential as a test-bed for cause-effect studies and data augmentation for

regression analysis

With access to all inputs, outputs, and internal parameters in NeuroMotion, users can study

cause-effect relationships between the joint kinematics, neural inputs, physiological parame-

ters, muscle forces, MUAPs, spike trains, and surface EMG signals. As a simple demonstration

of such studies, we showed how MUAP changes differently with one to three physiological

parameters changed during a wrist flexion/extension movement (Fig 4). Coupled with experi-

mental MUAPs observed at the same muscle under discretised movements, such simulations

will help test the assumptions made in Section Estimate parameter changes and elucidate the

contributions of the physiological parameters to the MUAPs. Another example displays the

transformations of MUAPs under three wrist-and-hand movements (Fig 5). This allows the

investigation of how MUAP changes when the commonly used forearm DoFs are activated,

which will further provide insights into designing and improving current adaptive decomposi-

tion algorithms.

NeuroMotion can also be used to study the “inverse” relations between the outputs and the

inputs of the system, for example, to pre-train algorithms that regress joint angles from EMG

signals and to augment the experimental dataset. Here we provide a preliminary study to show
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that ridge regressors trained on the synthetic dataset can be potentially applied to regress joint

angles from experimental signals. Furthermore, we observed that the performance of some

regressors could be improved when trained on the augmented dataset. These findings are con-

sistent with the perspective of using synthetic datasets to augment the limited actual dataset

and facilitate algorithm training [10, 48]. One important observation is that the effectiveness of

data augmentation is correlated with subjects. This is expected, as the BioMime module in

NeuroMotion only captures the geometry of one specific anatomy from the database, which

may deviate from the anatomy of the specific subjects. We discuss this limitation in the next

section in more detail.

We also observed that the variance of the augmentation performance across trials for one

subject could be large. One possible reason is that we used the normalised EMG signals

recorded on each muscle as the neural input, which largely affects the properties of the syn-

thetic EMG signal. Electrode shifts across trials, misalignment between the electrodes and

muscles, and crosstalk due to the volume conduction all make the accurate estimation of neu-

ral inputs challenging. Moreover, the perspective that motor neurons are controlled in the

group of muscles is being challenged by new experimental findings that motor neurons are

controlled in clusters that might distribute across muscles [49]. In this case, it is even more dif-

ficult to accurately group motor neurons into clusters and estimate the neural inputs to the

clusters. Even though, we found that synthetic signals of some channels (muscles) constantly

show a higher correlation with their experimental counterparts. This can be explained by the

muscle’s location, i.e., some muscles are easier to find by palpation. For example, for channels

that collect signals from ED and ECRL, the PCC is above 0.7 for wrist regression and above

0.90 for MCP regression. The PCC is lower for slender muscles that are difficult to separate

from other muscles (0.40 for PL muscle for wrist angle regression). All these uncertainties of

experimental signals relate to the general reasoning behind building forward models like Neu-

roMotion. The flexibility provided by NeuroMotion allows the investigation of the actual rela-

tionship between the neural input and the joint kinematics, for instance, by adjusting the

neural inputs to make the synthetic EMG signals more similar to the experimental data under

the same protocols. This will in turn give insights into the real relations between joint kinemat-

ics and neural inputs during voluntary movements.

Limitations and future directions

As the first integrated open-source generative model to simulate EMG signals during volun-

tary movements, NeuroMotion still has some limitations that should be noted. With its modu-

lar structure, the intrinsic limitations of NeuroMotion come from the three modules, of which

the error is trackable but aggregates in the computation of the predicted EMG signals.

First, the current BioMime model in NeuroMotion is used as a replica of a specific volume

conductor but not a universal one. Therefore, there are errors introduced when NeuroMotion

is used to simulate signals for specific subjects. A related limitation is that the locations of the

electrodes are fixed (10 × 32 channels around the forearm) and cannot be specified. This can

be addressed by training a subject-specific BioMime with different electrode configurations.

Building a universal BioMime model that can be adapted to specific subjects and allows ran-

dom samplings of electrical potentials on the surface is also in our future work.

Second, the accuracy of the estimated muscle fibre length will affect MUAP generation, as

the muscle fibre lengths are the inputs to the BioMime module to indicate physiological

parameter changes. Forearm muscle fibre length is very difficult to estimate experimentally,

although some algorithms can predict lower limb muscle fascicle length by tracking the end-

points in the recorded ultrasound images [50]. In NeuroMotion, the muscle fibre lengths are
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derived from the geometrical muscle-tendon lengths computed with the ARMs model in

OpenSim. Under the assumption that the tendons are rigid and at constant slack length [51],

the method does not account for the dynamic changes in muscle fibre lengths to achieve the

physiological force equilibrium between the muscle and the extensible tendon. The simplifica-

tion of neglecting the compliance of tendons, taken for computational convenience and

modelling simplicity, may be a source of error when estimating muscle fibre lengths, as quanti-

fied in [51], and discussed for forearm muscle-tendon systems in [52].

Third, the accuracy of the spike trains estimated from the Motor Unit Pool module is

affected by both the neural inputs to the module and the module itself. The neural inputs esti-

mated from the muscle activations computed by the OpenSim’s Static Optimisation tool are

sensitive to the aforementioned inaccuracies in muscle fibre length [13] and the intrinsic limi-

tations of Hill-type muscle modelling [53]. This includes multiscale modelling simplifications

[54], physiological and numerical instabilities [55], and limited phenomenological modelling

of the muscle’s activations dynamics [53, 56, 57]. The Static Optimisation method also com-

putes muscle activations, and hence, neural inputs without considering the concurrent dynam-

ics of the proprioceptive, spinal and propriospinal circuits and reflexes during voluntary

movement. These concurrent dynamics can be modelled and were demonstrated to have

effects in the simulation of neuromuscular and musculoskeletal function [58–63]. The deaffer-

ented approach taken in the present study does not consider the sensory feedback related to

passive changes of fibre length, which would result in inaccuracies in the estimated muscle

fibre lengths and muscle activations and thus simulated EMG as well. The EMG-informed esti-

mation of neural inputs (used in Section Synthetic EMG signals for data augmentation) is sen-

sitive to the normalisation and the experimental settings, for example, the electrode placement

and crosstalk [64]. Inaccuracy in the estimated spike trains also comes from the limitations of

motor unit pool models. The two models used in NeuroMotion are designed for isometric

contractions and do not consider changes in motor neuron discharge patterns associated with

voluntary movement [16, 29, 44]. These models are also not complex enough to physiologically

describe the intrinsic discharge properties and mechanisms of motor neurons (e.g., the non-

linear transformation of common synaptic inputs into total dendritic membrane current dis-

cussed in [65]).

Even with all the limitations of each module, the modular structure of NeuroMotion allows

it to be improved with the emergence of new measuring and modelling approaches in the

EMG field. For example, in vivo measurements of muscle activations, muscle fibre length, and

other physiological parameters would contribute to a more accurate estimation of neural

inputs and MUAPs. More complex modellings of motor neuron pools could account for non-

linearities in spiking dynamics and afferent feedback activities. We would expect NeuroMo-

tion to be frequently updated with the advancements in each module and be validated in

future by comparing the synthetic signals with the experimental data.

Conclusion

We proposed NeuroMotion, an open-source EMG simulator that generates surface EMG sig-

nals during human forearm movements. For the first time, NeuroMotion provides a core

resource for the neuromechanics community to address the problem of simulating physiologi-

cal electrical outputs during biomechanical movements and allows a full-spectrum simulation

from movements to neural commands and EMG signals. All intermediate variables (kinemat-

ics, dynamic MUAPs, spike trains) are available during the simulation, which makes the

model flexible to use for the users’ purposes. We demonstrated that one potential application

is to use synthetic data to augment the experimental data for training regression algorithms.

PLOS COMPUTATIONAL BIOLOGY NeuroMotion: From Movement to EMG

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012257 July 3, 2024 18 / 22

https://doi.org/10.1371/journal.pcbi.1012257


We would expect that with the functionality and extensibility provided by NeuroMotion, users

can customise the way they utilise NeuroMotion that will ultimately yield progress in the neu-

romechanics fields.
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