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Abstract

Dimension reduction tools preserving similarity and graph structure such as t-SNE and

UMAP can capture complex biological patterns in high-dimensional data. However, these

tools typically are not designed to separate effects of interest from unwanted effects due to

confounders. We introduce the partial embedding (PARE) framework, which enables

removal of confounders from any distance-based dimension reduction method. We then

develop partial t-SNE and partial UMAP and apply these methods to genomic and neuroim-

aging data. For lower-dimensional visualization, our results show that the PARE framework

can remove batch effects in single-cell sequencing data as well as separate clinical and

technical variability in neuroimaging measures. We demonstrate that the PARE framework

extends dimension reduction methods to highlight biological patterns of interest while effec-

tively removing confounding effects.

Author summary

Powerful tools such as t-SNE and UMAP can be used to visualize biological patterns in

medical data, including brain imaging and gene expression. However, these visuals can be

influenced by unwanted patterns. We introduce the partial embedding (PARE) frame-

work, which separates biological patterns from unwanted influences. We then develop

partial t-SNE and partial UMAP and apply these methods to genomic and neuroimaging
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data. We first show that the PARE framework can remove technical artifacts in single-cell

gene expression data. Then, we show that PAREs can reduce unwanted scanner-related

bias in brain imaging data. We demonstrate that the PARE framework highlights biologi-

cal patterns of interest while effectively removing unwanted effects.

1 Background

Dimension reduction tools such as principal coordinates analysis (PCoA), t-distributed sto-

chastic neighbor embedding (t-SNE), and uniform manifold approximation and projection

(UMAP) are widely employed for exploration of high-dimensional data. These methods all

identify lower-dimensional embeddings in Euclidean space that preserve information in the

original space. These methods have been demonstrated to reveal complex patterns including

cell lineages in single-cell RNA sequencing (scRNA-seq) data [1] and neurodevelopmental

changes in brain volumetric data [2]. However, in their current form, these methods do not

account for covariates and are known to be substantially influenced by confounders such as

batch [3].

Researchers have developed several extensions of dimension reduction tools that are

designed for removal of confounding effects. For principal component analysis (PCA),

researchers developed PCA with adjustment for confounding variation [4]. Adjusted PCoA

(aPCoA) examines residuals from a linear model on principal coordinates, which are orthogo-

nal to specified confounding variables [5]. Projected t-SNE orthogonalizes the embeddings at

each iteration of the t-SNE optimization to adjust for batch effects [6]. Another method

addresses batch effects by using t-SNE to construct a reference embedding based on one batch

and then projects observations from other batches onto the reference [7]. To date, adjustment

for confounders in distance-based dimension reduction methods has required modification of

each framework to address this specific problem. Furthermore, many methods including

UMAP have not been extended to address confounding.

We develop the partial embedding (PARE) as a generalizable framework for removing nui-

sance effects from any distance-based dimension reduction method. We achieve this by using

the covariate-adjusted dissimilarities from aPCoA as inputs into dimension reduction meth-

ods. When the original distances are Euclidean, we can achieve identical results by treating

adjusted principal coordinates as input data (see Methods). We refer to these covariate-

adjusted dimension reduction results as partial embeddings (PAREs). These PAREs preserve

pairwise distances from the original space while removing confounding effects. PAREs can be

produced from a broad class of dimension reduction methods including t-SNE [8], UMAP [9],

Laplacian Eigenmaps [10], diffusion map embeddings [11], LargeVis [12], TriMap [13], For-

ceAtlas2 [14] and others. Specifically, we apply the PARE framework to t-SNE and UMAP to

develop partial t-SNE (p-t-SNE) and partial UMAP (p-UMAP).

2 Methods

Our PARE framework enables removal of confounders from any dimension reduction method

that utilizes pairwise dissimilarity values computed between subjects. We start by introducing

some notation. Let y1, y2, . . ., yn be multivariate observations from samples i = 1, 2, . . ., n,

which can be features from genomics, neuroimaging, or any type of multivariate data. Let

D = (dij)n×n denote the sample dissimilarity matrix computed on these observations yi, where
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dij = d(yi, yj) and d is a chosen dissimilarity function. We define the doubly-centered dissimi-

larity matrix G = (I − 11T)A(I − 11T) where A ¼ � 1

2
d2
ij

� �

n�n
.

2.1 Adjusted principal coordinates analysis

We first review a traditional dimension reduction method called principal coordinates analysis

(PCoA), which finds coordinates in Euclidean space that optimally preserve dissimiliarites

from the original space. The classical solution finds these coordinates via eigendecomposition

of G [15]. Decomposing G = UΛUT, these coordinates are given by Z = UΛ1/2. Under Euclid-

ean dissimilarities, the principal coordinates Z preserve the exact distances from the original

space. If the original dissimilarities are non-Euclidean, Z may contain imaginary coordinates.

Adding a constant to every pairwise dissimilarity can produce coordinates in Euclidean space

[16].

In adjusted principal coordinates analysis (aPCoA), a linear model is used to remove the

effect of nuisance covariates from the principal coordinates [5]. Let X be an n × p design matrix

of nuisance covariates with corresponding projection matrix H = X(XTX)−1XT. aPCoA first

assumes a linear model with respect to the nuisance covariates in the space of principal coordi-

nates. Then, aPCoA regresses out these nuisance covariates yielding covariate-adjusted coordi-

nates E = (I −H)Z. Their corresponding dissimilarity matrix is referred to as the covariate-

adjusted dissimilarity matrix Δ = EET = (I −H)G(I −H). aPCoA has been demonstrated to

yield data visualizations while accounting for confounding by examining the first two covari-

ate-adjusted coordinates [5].

Under certain conditions, aPCoA assumes the same model as multivariate distance matrix

regression (MDMR; [17–19]). When the original dissimilarity metric is Euclidean, MDMR is

equivalent to testing a linear association between principal coordinates and the covariates

using a psuedo-F statistic [17]. For other dissimilarity metrics, MDMR tests using the covari-

ate-adjusted dissimilarity matrix from aPCoA as the denominator of the psuedo-F statistic.

This equivalence suggests that aPCoA targets nuisance associations detectable via MDMR,

which are known to include complex nonlinear associations in the original space [17–19].

2.2 Partial embeddings

We develop the partial embedding (PARE) framework for deconfounded dimension reduction

by removing the effect of confounders from pairwise dissimilarities. We use the covariate-

adjusted dissimilarity matrix Δ = (δij)n×n = (I −H)G(I −H) as an input into any distance-based

dimension reduction method, which include t-SNE [8] and UMAP [9] among others. This

framework extends aPCoA by enabling removal of nuisance effects from a broader class of

dimension reduction methods. For example, UMAP defines affinities based on dissimilarity

metrics d as vij = vj|i + vi|j − vj|ivi|j where

vjji ¼ exp½ð� dðyi; yjÞ � riÞ=ti�

and ρi are the dissimilarity to the nearest neighbor of yi and τi are normalizing factors com-

puted based on dissimilarities among a chosen number of nearest neighbors. A PARE for

UMAP can be formulated via the adjusted affinities

vPAREjji ¼ exp½ð� dij � riÞ=ti�:

For Euclidean distances, dimension reduction methods can instead take the principal coor-

dinates as inputs. As examples, we highlight how t-SNE and UMAP can be equivalently formu-

lated in terms of principal coordinates. t-SNE measures similarity in the original space as
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affinities pij ¼
pjjiþpijj

2n under a Gaussian kernel where

pjji ¼
expð� k yi � yj k2=2s2

i Þ
P

k6¼iexpð� k yi � yk k2=2s2
i Þ
;

k�k is the Euclidean norm, and σi are chosen to yield a specified perplexity value for each obser-

vation. UMAP using Euclidean distances defines similarities using a locally adaptive exponen-

tial kernel as vij = vj|i + vi|j − vj|ivi|j where

vjji ¼ exp½ð� k yi � yj k � riÞ=ti�:

Let zi denote the principal coordinate vector for observation i. For Euclidean distances in

the original space, the principal coordinates have identical pairwise distances such that kzi −
zjk = kyi − yjk. Then the t-SNE and UMAP affinities can be written in terms of principal coor-

dinates as

pjji ¼
expð� k zi � zj k2=2s2

i Þ
P

k6¼iexpð� k zi � zk k2=2s2
i Þ
;

vjji ¼ exp½ð� k zi � zj k � riÞ=ti�:

We develop PAREs for any dimension reduction method based on Euclidean distances by

instead taking adjusted principal coordinates ei = (I −H)zi as input data. These adjusted coor-

dinates preserve dissimilarities while removing unwanted effects due to the nuisance covari-

ates X. We outline the steps in constructing PAREs using Euclidean distances below:

1. Obtain principal coordinates Z from the original data from the Euclidean distance matrix D
as described in subsection 2.1.

2. Using a linear model, residualize Z with respect to nuisance covariates X to obtain adjusted

coordinates E = (I −H)Z, where H = X(XTX)−1XT.

3. Input the adjusted coordinates E to any dimension reduction method based on Euclidean

distances.

Obtaining these adjusted coordinates only requires eigendecomposition of the original dis-

similarity matrix followed by residualization using a linear model. Both steps are implemented

via multiple packages in R, Python, MATLAB, and other programming languages.

For our investigation, we apply our PARE framework to t-SNE and UMAP using Euclidean

distances to develop p-t-SNE and p-UMAP. We use R (version 4.1.1) implementations for

t-SNE and UMAP in the packages Rtsne (version 0.15) and umap (version 0.2.7.0). Through-

out our applications, we choose the perplexity as 10 for t-SNE and the number of nearest

neighbors as 15 for UMAP.

3 Materials

3.1 Ethics statement

Written consent was obtained from all subjects involved in this study. Genomic data from [20]

(8569 cells, inDrop protocol), [21] (1050 cells, SMARTer), [22] (2122 cells, CEL-Seq2), and

[23] (2133 cells, SMART-Seq2) all were approved by their corresponding IRBs. For the

NAIMS traveling subject data, we received written informed consent from all participants,

which was approved by the University of Pennsylvania’s institutional review board (IRB).
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ADNI obtained all written IRB approvals and met all ethical standards in the collection of

data. The following are the ethics committees and IRB boards that provided approval. The Eth-

ics committees/institutional review boards that approved the ADNI study are: Albany Medical

Center Committee on Research Involving Human Subjects Institutional Review Board, Boston

University Medical Campus and Boston Medical Center Institutional Review Board, Butler

Hospital Institutional Review Board, Cleveland Clinic Institutional Review Board, Columbia

University Medical Center Institutional Review Board, Duke University Health System Institu-

tional Review Board, Emory Institutional Review Board, Georgetown University Institutional

Review Board, Health Sciences Institutional Review Board, Houston Methodist Institutional

Review Board, Howard University Office of Regulatory Research Compliance, Icahn School of

Medicine at Mount Sinai Program for the Protection of Human Subjects, Indiana University

Institutional Review Board, Institutional Review Board of Baylor College of Medicine, Jewish

General Hospital Research Ethics Board, Johns Hopkins Medicine Institutional Review Board,

Lifespan—Rhode Island Hospital Institutional Review Board, Mayo Clinic Institutional

Review Board, Mount Sinai Medical Center Institutional Review Board, Nathan Kline Institute

for Psychiatric Research & Rockland Psychiatric Center Institutional Review Board, New York

University Langone Medical Center School of Medicine Institutional Review Board, North-

western University Institutional Review Board, Oregon Health and Science University Institu-

tional Review Board, Partners Human Research Committee Research Ethics, Board

Sunnybrook Health Sciences Centre, Roper St. Francis Healthcare Institutional Review Board,

Rush University Medical Center Institutional Review Board, St. Joseph’s Phoenix Institutional

Review Board, Stanford Institutional Review Board, The Ohio State University Institutional

Review Board, University Hospitals Cleveland Medical Center Institutional Review Board,

University of Alabama Office of the IRB, University of British Columbia Research Ethics

Board, University of California Davis Institutional Review Board Administration, University

of California Los Angeles Office of the Human Research Protection Program, University of

California San Diego Human Research Protections Program, University of California San

Francisco Human Research Protection Program, University of Iowa Institutional Review

Board, University of Kansas Medical Center Human Subjects Committee, University of Ken-

tucky Medical Institutional Review Board, University of Michigan Medical School Institu-

tional Review Board, University of Pennsylvania Institutional Review Board, University of

Pittsburgh Institutional Review Board, University of Rochester Research Subjects Review

Board, University of South Florida Institutional Review Board, University of Southern, Cali-

fornia Institutional Review Board, UT Southwestern Institution Review Board, VA Long

Beach Healthcare System Institutional Review Board, Vanderbilt University Medical Center

Institutional Review Board, Wake Forest School of Medicine Institutional Review Board,

Washington University School of Medicine Institutional Review Board, Western Institutional

Review Board, Western University Health Sciences Research Ethics Board, and Yale University

Institutional Review Board.

3.2 Human pancreatic cell scRNA-seq data

We apply PAREs to human pancreatic cell scRNA-seq data to remove batch and donor effects

from data collected across four separate studies with varying number of cells and RNA-seq

protocol. We include RNA-seq data from [20] (8569 cells, inDrop protocol), [21] (1050 cells,

SMARTer), [22] (2122 cells, CEL-Seq2), and [23] (2133 cells, SMART-Seq2). We treat each

study as a separate batch and treat each donor as distinct across studies. We follow a pre-

processing pipeline proposed in [24]. First, we use Scran (release 3.15) in R to perform log-

normalization and selection of highly variable genes (HVGs) using the counts data from each
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study. Genes that are not present in all four studies were removed from further evaluation. We

then perform normalization by computing size factors across pools of cells, then obtaining fac-

tors for each cell via a deconvolution approach [24]. Within each study, locally weighted scat-

terplot smoothing (LOESS) is applied to model the mean-variance relationship among genes.

We then use a weighted arithmetic mean of mean and variance statistics across studies to select

2,000 HVGs. We remove cells labelled as “unclear”, “none”, “unclassified” or “co-expression”.

After preprocessing, our human pancreatic cell dataset is comprised of 13,369 cells with four

batches, 26 donors, and 13 cell types.

We apply p-t-SNE and p-UMAP to remove batch effect or donor effects in the embeddings.

We compare p-t-SNE to other methods that simultaneously remove confounding effects and

obtain lower-dimensional representations including projected t-SNE for batch correction

(BC-t-SNE; [6]) and Adjustment for Confounding factors using Principal Coordinate

Analysis (AC-PCoA; [25]), proposed in their original paper. For BC-t-SNE, we set the perplex-

ity at 10 to be similar to our p-t-SNE approach. For AC-PCoA, we compare AC-PCoA fol-

lowed by t-SNE to p-t-SNE with respect to study across varying numbers of coordinates for

both methods. Due to computational complexity of AC-PCoA, we perform these comparisons

in a dataset consisting of human pancreatic cell scRNA-seq data from three donors: donor

ACCG268 from [21] (136 cells), donor AZ from [23] (63 cells), and donor D28 from [22]

(181 cells).

In this setting, our method is also comparable to two-stage approaches where batch correc-

tion is performed prior to dimension reduction. These approaches include Combatting Batch

Effects (ComBat; [26]), fastMNN [27], and Harmony [28] which are all widely employed and

have been compared recently [29–31]. For our analyses, we compare p-t-SNE and p-UMAP to

performing ComBat, fastMNN, or Harmony followed by t-SNE or UMAP. ComBat is run

using the R implementation in the ComBatHarmonization package (github.com/Jfortin1/

ComBatHarmonization). fastMNN is run with default settings using the batchelor package

version 1.19.1 in R. Harmony is performed with default settings on the top 20 principal com-

ponents using the harmony package version 1.2.0.

We compare our methods visually and numerically using the local inverse Simpson’s index

(LISI; [28]) and the average sillouette width (ASW; [32]). Recent work has demonstrated that

these metrics can effectively evaluate performance of modern batch correction methods [29,

30]. For measuring integration of cells across batches, we compute LISI for batch (bLISI),

which captures the effective number of batches in a local neighborhood around each cell. We

also examine LISI computed for cell type (cLISI), which captures the number of neighboring

cell types and decreases as the separation between cell types increases. We compute bLISI

and cLISI across a range of perplexity values, which capture different neighborhood sizes.

Additionally, we compute the ASW for batch (bASW), which is a distance-based statistic that

compares the average distance of one cell to cells of its own batch versus other batches. Lower

bASW indicates better batch correction performance. For cell type, we similarly compute

ASW for cell type (cASW) where higher cASW indicates better separation between cell types.

3.3 ADNI cortical thickness dataset

We apply PAREs to brain cortical thickness data from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) to distinguish technical and biological variability. The data for this study

consist of baseline scans which are processed using the ANTs longitudinal single-subject tem-

plate pipeline [33] with code available on GitHub (github.com/ntustison/CrossLong). The

ADNI study obtained written informed consent from all participants. Further details for this

preprocessing pipeline can be found in [34].
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The full sample consists of 505 subjects, 213 of whom are imaged on scanners manufac-

tured by Siemens, 70 by Philips, and 222 by GE. The sample has a mean age of 75.3 (SD 6.70)

and is comprised of 278 (55%) males, 115 (22.8%) Alzheimer’s disease (AD) patients, 239

(47.3%) late mild cognitive impairment (LMCI), and 151 (29.9%) cognitively normal (CN)

individuals. We apply p-t-SNE and p-UMAP to separate effects of diagnosis and scanner.

Quantitatively, we evaluate our methods using the ASW and LISI for manufacturer and diag-

nosis. Higher manufacturer LISI (mLISI) and lower manufacturer ASW (mASW) indicate bet-

ter batch adjustment performance. Lower diagnosis LISI (dLISI) and higher diagnosis ASW

(dASW) indicate better separation between diagnosis groups.

3.4 NAIMS traveling subjects study

To examine if PAREs can identify technical variability not visible in t-SNE and UMAP embed-

dings, we apply our PAREs to a study of patients with multiple sclerosis (MS) with multiple

scan-rescan images across four different sites in the North American Imaging in Multiple Scle-

rosis (NAIMS) Cooperative. These sites include the University of Pennsylvania (Penn), the

Brigham and Women’s Hospital (BWH), the National Institutes of Health (NIH), and the

Johns Hopkins University (Hopkins). Nine of the eleven participants are scanned at all four

study centers. The mean age of our 11 participants (4 male, 7 female) at time of enrollment

was 38 (range 29–47).

A standardized high-resoution 3-tesla (3T) MRI brain scan protocol developed by the

NAIMS Cooperative was performed at each site [35]. Images were acquired on Siemens Skyra

(BWH, NIH), Siemens Prisma (Penn), and Philips Achieva (Hopkins) scanners. Each partici-

pant had two scans acquired on the same day at each visit to the study center.

Prior to automated segmentation, images undergo bias correction via nonuniform intensity

normalization (N4ITK; [36]) and FLAIR images are rigidly aligned to the corresponding

T1-weighted image within a given scan session. Brain extraction is performed using Multi-

Atlas Skull Stripping (MASS; [37]) and intensity normalization is performed using White-

Stripe [38]. White matter and gray matter volumes are estimated using Joint Label Fusion

(JLF; [39]), a segmentation method that leverages information from several atlases via

weighted voting. These JLF volumes are used as inputs into t-SNE, UMAP, and our PARE

methods. We use PAREs to identify scanner effects independently of within-subject similari-

ties. We additionally evaluate our methods using the ASW and LISI for site and subject. Lower

site LISI (bLISI) and higher site ASW (bASW) indicate greater separation between sites. Lower

subject LISI (sLISI) and higher subject ASW (sASW) indicate greater separation between

subjects.

4 Results

4.1 Case study 1: Human pancreatic cells

We first apply PAREs to analyze scRNA-seq data from human pancreatic cells across four pub-

lished studies, treated as separate batches [20–23]. We observe clear batch effects in the origi-

nal t-SNE and UMAP visualizations along with a lack of integration among several cell types

(Fig 1). Applying p-t-SNE and p-UMAP to remove batch effects considerably reduces separa-

tion by batch both visually and numerically (Fig 2), as measured by increases in bLISI and

decreases in bASW for p-UMAP (UMAP median bASW = 0.22 for UMAP, p-UMAP w.r.t.

study median bASW = =0.06). Remaining batch differences can partially be explained by

donor effects, since PAREs with respect to donor show greater visual integration across

batches and higher bLISI. PAREs also achieve greater distinction of cell types as measured by

decreases in cell type LISI (cLISI, Fig 2). Comparing p-t-SNE to the existing projected t-SNE
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for batch correction (BC-t-SNE; [6]), we find that BC-t-SNE achieves greater batch integration

but obscures important biological patterns that separate cell types (median cLISI increases

from 1.22 in t-SNE to 1.32 in BC-t-SNE). Compared to batch correction using ComBat,

fastMNN, or Harmony followed by dimension reduction, p-t-SNE and p-UMAP w.r.t. study

Fig 1. Partial embeddings remove batch and donor effects in single-cell RNA-sequencing measurements aggregated from four studies.

Embeddings and partial embeddings are compared in data from 13,369 human pancreatic cells. The original counts data is log-normalized and reduced

to 2,000 highly variable genes. Local inverse Simpson’s index and average silhouette width are computed for each cell for batch (bLISI, bASW) and cell

type (cLISI, cASW) with the median, 2.5% quantile, and 97.5% quantile shown. Higher bLISI and lower bASW indicate greater integration across

batches. Lower cLISI and higher cASW indicate greater separation between cell types. Partial t-SNE (p-t-SNE) and partial UMAP (p-UMAP) adjust for

either batch or donor effects. We compare our new methodology to the existing projected t-SNE for batch correction (BC-t-SNE). All t-SNE

embeddings have a perplexity of 10 and UMAP embeddings use 15 nearest neighbors.

https://doi.org/10.1371/journal.pcbi.1012241.g001
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demonstrate comparable performance but fastMNN+t-SNE and fastMNN+UMAP outper-

form other methods (Figs A and B in S1 Text). In a subset of three donors, we additionally

compare p-t-SNE to AC-PCoA+t-SNE, showing comparable performance across varying

numbers of coordinates (Fig C in S1 Text). We finally show in Fig 3 that effective results can

be achieved by computing a subset of principal coordinates, which is less computationally

intensive. In scRNA-seq data, we demonstrate that PAREs can effectively isolate biological var-

iability from unwanted sampling effects in scRNA-seq data.

4.2 Case study 2: Brain cortical thickness

We next apply PAREs to brain cortical structure measurements to separate biological effects

from scanner-related artifacts in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

study. In the ADNI study, researchers previously identified diagnosis-related atrophy in corti-

cal structure and notable batch effects due to differences in scanner properties across study

sites [34, 40]. In Fig 4A, we observe that the original embeddings display both of these effects.

However, the confounding scanner effects result in the overlap among images acquired on a

Siemens scanner and those from patients with an Alzheimer’s disease (AD) diagnosis. To spe-

cifically investigate differences between people with and without AD, we demonstrate that

PAREs adjusted for scanner manufacturer maintain diagnosis effects while obscuring scanner

influence (Fig 4A). PAREs are also used to examine scanner effects without the influence of

diagnosis effects, highlighting known differences among scanners in the ADNI study.

Fig 2. Quantitative comparisons via local inverse Simpson’s index show that partial embeddings outperform across multiple perplexity values.

Local inverse Simpson’s index for batch (bLISI) and cell type (cLISI) are computed on log-normalized single-cell RNA-sequencing data from 13,369

human pancreatic cells across four studies. The original embeddings and partial embeddings are compared across perplexity values, which capture

different neighborhood sizes around each cell. Higher bLISI corresponds to better batch adjustment performance and lower cLISI indicates greater

separation between cell types. We compare our new methodology to the existing projected t-SNE for batch correction (BC-t-SNE).

https://doi.org/10.1371/journal.pcbi.1012241.g002
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4.3 Case study 3: Traveling subject brain volumetric data

Finally, as a proof of concept, we use PAREs to identify scanner effects in brain white matter

and gray matter volumes collected as part of a multi-site traveling subjects study of multiple

sclerosis (MS). The study involves eleven MS patients with multiple scans across four major

imaging centers. We include Siemens images with distortion correction, which was designed

to reduce differences with the Philips scanner at Johns Hopkins University (Hopkins). Origi-

nal t-SNE and UMAP embeddings clearly separate white matter and gray matter volumetric

measurements by subject regardless of site (Fig 4B). However, these original embeddings do

not capture other types of variability, including potential site effects. We apply p-t-SNE and

p-UMAP to remove subject effects and discover deviation of images acquired on the Philips

scanner at Hopkins from those acquired on Siemens scanners at other sites (Fig 4B). Here, we

show that PAREs can identify technical variability in neuroimaging measures that could not

be detected in the original embeddings.

5 Discussion and conclusion

We propose the PARE framework, which extends any distance-based dimension reduction

method to adjust for confounders. Our analyses demonstrate that PAREs can be used to target

specific patterns in high-dimensional data by removal of confounders. We demonstrate that

Fig 3. Partial embeddings estimated using fewer principal coordinates. Partial embeddings of single-cell RNA-sequencing are estimated using

varying numbers of principal coordinates. Each dimension reduction method takes a subset of adjusted or unadjusted principal coordinates. The

dimension of this subset is varied across figure columns. Partial t-SNE (p-t-SNE) and partial UMAP (p-UMAP) adjust for batches.

https://doi.org/10.1371/journal.pcbi.1012241.g003
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our proposed PAREs are able to remove batch effects in scRNA-seq exploration, emphasize

diagnosis-related changes in brain cortical structure, and identify scanner effects in brain volu-

metric measurements. For dimension reduction based on Euclidean distances, our PARE

framework relies solely on PCoA and linear regression, which are both widely available and

computationally efficient. While we only investigate PAREs built on t-SNE and UMAP, this

framework can be readily applied to a broad class of dimension reduction methods based on

distances from the original space.

We note several limitations of the current manuscript. First of all, PARE is limited to

exploratory data visualization and cannot address confounding effects in further analyses. We

do not recommend PAREs to be used in place of the original data in downstream analyses or

claim that PAREs preserve all data properties, since distance-based embeddings in general

have been demonstrated to distort properties of the original data [41]. For removal of con-

founding from downstream analyses, the use of an adjusted dissimilarity matrix has been pre-

viously explored and demonstrated to reduce confounding in nonparametric analyses while

preserving data properties [25]. As an alternative for batch correction, harmonization methods

have been extensively used to reduce batch-related confounding in visualization and

Fig 4. Partial embeddings separate biological and technical variability in brain cortical thickness measurements (a) and regional volumes (b)

across two multi-site neuroimaging studies. Embeddings and partial embeddings are compared visually and numerically using the local inverse

Simpson’s index (LISI) and average silhouette width (ASW). (a) visualizes cortical thickness data from the Alzheimer’s Disease Neuroimaging Initiative,

from which we include 505 participants. These participants are diagnosed as cognitively normal (CN), having late mild cognitive impairment (LMCI),

or having Alzheimer’s disease (AD). Participants are acquired across scanners with three distinct manufacturers. Higher manufacturer LISI (mLISI)

and lower manufacturer ASW (mASW) indicate better batch adjustment performance. Lower diagnosis LISI (dLISI) and higher diagnosis ASW

(dASW) indicate better separation between diagnosis groups. (b) shows results from a traveling subjects study of eleven multiple sclerosis (MS) patients

with multiple images across four study sites. The Hopkins site uses a Philips scanner while the three other sites use Siemens scanners. Lower site LISI

(bLISI) and higher site ASW (bASW) indicate greater separation between sites. Lower subject LISI (sLISI) and higher subject ASW (sASW) indicate

greater separation between subjects.

https://doi.org/10.1371/journal.pcbi.1012241.g004
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downstream analyses [29–31]. Compared to harmonization followed by dimension reduction,

we find that PAREs can underperform fastMNN followed by t-SNE or UMAP. However,

PAREs have several use cases beyond batch adjustment since PAREs can handle continuous

confounding variables and multiple confounders. Throughout our case studies, we perform

computational evaluations using the neighborhood-based LISI and distance-based ASW statis-

tics, which are two separate approaches for evaluating separation between categories. In our

scRNA-seq analyses, the LISI and ASW generally provide congruent results. However, we note

that there are other statistics which will be considered in future studies, including several met-

rics that have been compared to the LISI and ASW across a larger number of scRNA-seq data-

sets [29, 30].

The PARE framework opens several new directions for methodological development.

Future investigations can examine how the PARE framework performs for extensions of meth-

ods not considered in this article. For Euclidean distances, PAREs are constructed from the

residuals of a linear model, but other models including linear mixed models and general addi-

tive models could also be considered for longitudinal and non-linear effects. Extensions of the

PARE framework can also readily incorporate multiple complex data types by integrating at

the level of principal coordinates, suggested in a recently proposed multimodal regression

model [42]. Furthermore, PAREs can be extended to examine data types independently of one

another by projection of dissimilarity matrices [43]. In summary, the PARE framework is able

to remove nuisance effects in any distance-based dimension reduction tool. Our framework

enables discovery of notable patterns in complex high-dimensional data and introduces a

foundation for future methodological research.
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7. Poličar PG, Stražar M, Zupan B. Embedding to Reference T-SNE Space Addresses Batch Effects in

Single-Cell Classification. Machine Learning. 2021 Aug.

8. van der Maaten L, Hinton G. Visualizing Data Using T-SNE. Journal of Machine Learning Research.

2008; 9(Nov):2579–605.

9. McInnes L, Healy J, Melville J. UMAP: Uniform Manifold Approximation and Projection for Dimension

Reduction. arXiv:180203426 [cs, stat]. 2020 Sep.

10. Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neu-

ral Computation. 2003 Jun; 15(6):1373–96. https://doi.org/10.1162/089976603321780317

11. Coifman RR, Lafon S, Lee AB, Maggioni M, Nadler B, Warner F, et al. Geometric Diffusions as a Tool

for Harmonic Analysis and Structure Definition of Data: Diffusion Maps. Proceedings of the National

Academy of Sciences. 2005 May; 102(21):7426–31. https://doi.org/10.1073/pnas.0500334102 PMID:

15899970

12. Tang J, Liu J, Zhang M, Mei Q. Visualizing Large-scale and High-dimensional Data. In: Proceedings of

the 25th International Conference on World Wide Web. WWW’16. Republic and Canton of Geneva,

CHE: International World Wide Web Conferences Steering Committee; 2016. p. 287–97.

13. Amid E, Warmuth MK. TriMap: Large-scale Dimensionality Reduction Using Triplets. arXiv:191000204

[cs, stat]. 2022 Mar.

14. Jacomy M, Venturini T, Heymann S, Bastian M. ForceAtlas2, a Continuous Graph Layout Algorithm for

Handy Network Visualization Designed for the Gephi Software. PLOS ONE. 2014 Jun; 9(6):e98679.

https://doi.org/10.1371/journal.pone.0098679 PMID: 24914678

15. Gower JC. Some Distance Properties of Latent Root and Vector Methods Used in Multivariate Analysis.

Biometrika. 1966; 53(3/4):325–38. https://doi.org/10.1093/biomet/53.3-4.325

16. Cailliez F. The Analytical Solution of the Additive Constant Problem. Psychometrika. 1983 Jun; 48(2):

305–8. https://doi.org/10.1007/BF02294026

17. McArdle BH, Anderson MJ. Fitting Multivariate Models to Community Data: A Comment on Distance-

Based Redundancy Analysis. Ecology. 2001; 82(1):290–7. https://doi.org/10.1890/0012-9658(2001)

082%5B0290:FMMTCD%5D2.0.CO;2

18. Anderson MJ. A New Method for Non-Parametric Multivariate Analysis of Variance. Austral Ecology.

2001; 26(1):32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

19. Schork NJ, Zapala MA. Statistical Properties of Multivariate Distance Matrix Regression for High-

Dimensional Data Analysis. Frontiers in Genetics. 2012; 3. https://doi.org/10.3389/fgene.2012.00190

PMID: 23060897

20. Baron M, Veres A, Wolock SL, Faust AL, Gaujoux R, Vetere A, et al. A Single-Cell Transcriptomic Map

of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. Cell Systems.

2016 Oct; 3(4):346–60.e4. https://doi.org/10.1016/j.cels.2016.08.011 PMID: 27667365

21. Lawlor N, George J, Bolisetty M, Kursawe R, Sun L, Sivakamasundari V, et al. Single-Cell Transcrip-

tomes Identify Human Islet Cell Signatures and Reveal Cell-Type-Specific Expression Changes in Type

2 Diabetes. Genome Research. 2017 Feb; 27(2):208–22. https://doi.org/10.1101/gr.212720.116 PMID:

27864352

PLOS COMPUTATIONAL BIOLOGY PARE: Removal of confounding effects from any distance-based dimension reduction method

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012241 July 10, 2024 13 / 15

https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/nbt.4314
https://doi.org/10.3389/fninf.2016.00009
http://www.ncbi.nlm.nih.gov/pubmed/27014049
https://doi.org/10.1093/biostatistics/kxx053
https://doi.org/10.1093/biostatistics/kxx053
http://www.ncbi.nlm.nih.gov/pubmed/29121214
https://doi.org/10.1073/pnas.1617317113
http://www.ncbi.nlm.nih.gov/pubmed/27930330
https://doi.org/10.1093/bioinformatics/btaa276
http://www.ncbi.nlm.nih.gov/pubmed/32339223
https://doi.org/10.1093/bioinformatics/btaa189
https://doi.org/10.1093/bioinformatics/btaa189
http://www.ncbi.nlm.nih.gov/pubmed/32176244
https://doi.org/10.1162/089976603321780317
https://doi.org/10.1073/pnas.0500334102
http://www.ncbi.nlm.nih.gov/pubmed/15899970
https://doi.org/10.1371/journal.pone.0098679
http://www.ncbi.nlm.nih.gov/pubmed/24914678
https://doi.org/10.1093/biomet/53.3-4.325
https://doi.org/10.1007/BF02294026
https://doi.org/10.1890/0012-9658(2001)082%5B0290:FMMTCD%5D2.0.CO;2
https://doi.org/10.1890/0012-9658(2001)082%5B0290:FMMTCD%5D2.0.CO;2
https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
https://doi.org/10.3389/fgene.2012.00190
http://www.ncbi.nlm.nih.gov/pubmed/23060897
https://doi.org/10.1016/j.cels.2016.08.011
http://www.ncbi.nlm.nih.gov/pubmed/27667365
https://doi.org/10.1101/gr.212720.116
http://www.ncbi.nlm.nih.gov/pubmed/27864352
https://doi.org/10.1371/journal.pcbi.1012241


22. Muraro MJ, Dharmadhikari G, Grün D, Groen N, Dielen T, Jansen E, et al. A Single-Cell Transcriptome

Atlas of the Human Pancreas. Cell Systems. 2016 Oct; 3(4):385–94.e3. https://doi.org/10.1016/j.cels.

2016.09.002 PMID: 27693023

23. Segerstolpe Å, Palasantza A, Eliasson P, Andersson EM, Andréasson AC, Sun X, et al. Single-Cell
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