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Abstract

Genome-scale metabolic models (GSMMs) offer a holistic view of biochemical reaction net-

works, enabling in-depth analyses of metabolism across species and tissues in multiple con-

ditions. However, comparing GSMMs Against each other poses challenges as current

dimensionality reduction algorithms or clustering methods lack mechanistic interpretability,

and often rely on subjective assumptions. Here, we propose a new approach utilizing logisi-

tic principal component analysis (LPCA) that efficiently clusters GSMMs while singling out

mechanistic differences in terms of reactions and pathways that drive the categorization.

We applied LPCA to multiple diverse datasets, including GSMMs of 222 Escherichia-

strains, 343 budding yeasts (Saccharomycotina), 80 human tissues, and 2943 Firmicutes

strains. Our findings demonstrate LPCA’s effectiveness in preserving microbial phyloge-

netic relationships and discerning human tissue-specific metabolic profiles, exhibiting com-

parable performance to traditional methods like t-distributed stochastic neighborhood

embedding (t-SNE) and Jaccard coefficients. Moreover, the subsystems and associated

reactions identified by LPCA align with existing knowledge, underscoring its reliability in dis-

secting GSMMs and uncovering the underlying drivers of separation.

Author’s summary

GSMMs are comprehensive representations of all the biochemical reactions that occur

within an organism, enabling insights into cellular processes. Our study introduces LPCA

to explore and compare these biochemical networks across different species and tissues

only based on the presence or absence of reactions, summarized in a binary matrix. LPCA

analyzes these binary matrices of specific biochemical reactions, identifying significant

differences and similarities. We applied LPCA to a range of datasets, including bacterial

strains, fungi, and human tissues. Our findings demonstrate LPCA’s effectiveness in dis-

tinguishing microbial phylogenetic relationships and discerning tissue-specific profiles in

humans. LPCA also offers precise information on the biochemical drivers of these
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differences, contributing to a deeper understanding of metabolic subsystems. This

research showcases LPCA as a valuable method for examining the complex interplay of

reactions within GSMMs, offering insights that could support further scientific investiga-

tion into metabolic processes.

Introduction

GSMMs are mathematical representations of species- or context-specific metabolic reaction

networks [1] and have been successfully applied to study diseases [2–4], optimize bioprocesses

[5–8], or investigate metabolic differences across species [9–11]. To compare different

GSMMs, dimensionality reduction techniques can be applied to the results of simulations,

such as flux balance analysis [12]. The flux distributions or growth rates can be predicted for

different environmental conditions and serve as input for principal component analysis

(PCA). PCA of growth rates was used to suggest potential auxotrophies [9, 11]. While this

approach has become a well established method for comparing GSMMs, it necessitates the

incorporation of preassumed environmental data. Another challenge is that the predicted

growth rates can be similar even in different environments, which might lead to a reduced dis-

criminative capacity. One potential remediation is to focus solely on simulated growth rates

from selected environmental conditions exhibiting significant variation across GSMMs; how-

ever, this mandates the integration of subjective parameters or thresholds.

Alternative methods analyze binary matrices derived from the presence or absence of reac-

tions in the models. Jaccard coefficients [13] are often utilized to measure similarity between

GSMMs, visualized through heatmaps to identify clusters of similar models. However, this

method lacks insight into specific pathways driving heterogeneity. t-SNE analysis [10, 14],

while effective in clustering GSMMs consistently, requires specific prerequisites, such as dis-

tance metrics, and hyperparameters, which might result in erroneous clustering outcomes

[15–17], and may lack reproducibility due to its non-deterministic nature. Additionally, it

does not provide a straightforward identification of key variables driving clustering. In con-

trast, PCA allows the calculation of loadings representing reactions contributing most to prin-

cipal components. This enables further analysis by grouping loadings based on gene ontology

terms, pathways, or subsystems. However, PCA’s direct application to binary data is not suit-

able [18] because it relies on variance and covariance calculations, assumptions of continuous

distribution, and linear relationships, which are better suited for continuous datasets rather

than binary datasets [19]. Thus, as GSMMs become increasingly complex, the need for auto-

mated tools to identify the underlying reactions and pathways driving clustering grows, mak-

ing simultaneous comparison and factor identification essential.

To address the limitations of existing methods, we use LPCA for classifying GSMMs (see

Fig 1). LPCA is an adaption of classic PCA to analyze heterogeneity in binary data [18, 20]. In

a classic PCA, continuous data is transformed to a new coordinate system such that the great-

est variance lies on the first coordinate. Landgraf and Lee introduced LPCA [21], which

extends traditional PCA to handle binary data. They reinterpret PCA as a method for project-

ing data into a lower-dimensional space while maintaining proximity to the original data. For

Gaussian data, this involves a straightforward projection, and minimizing squared error. How-

ever, for binary data, LPCA projects natural parameters derived from a Bernoulli model while

minimizing Bernoulli deviance.

LPCA has been used with other biological data, such as binary genomics data [18], but not

for the comparison of GSMMs. Here we show that LPCA enables efficient clustering based
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solely on the presence or absence of reactions. Additionally, using LPCA, reactions were iden-

tified as contributing most to clustering, demonstrating its advantages over existing methods

like t-SNE and Jaccard coefficients. Furthermore, we identify key subsystems that differentiate

GSMMs clusters, a feature not achievable with current methods. We validate our approach by

reconstructing phylogenetic associations. Overall, we provide an alternative for streamlined

subsystem analysis that elucidates variations across GSMMs.

Methods

LPCA on binary reaction matrices

Unless otherwise stated, LPCA was performed on the differential binary pan-reaction matrix,

ΔX, using the logisticPCA function from the “logisticPCA” package (v0.2) [21] in R

(v4.3.1). Due to the large dimensions of the binary matrices, partial decomposition was chosen,

as recommended in the “logisticPCA” package documentation. This approach involves com-

puting only a few eigenvalues instead of all of them, thereby speeding up the computation

process.

The binary data matrix ΔX (N × R) consists of N rows, where every row represents one con-

text- or species-specific GSMM, and R columns represent the reactions. LPCA minimizes the

Bernoulli deviance D, which quantifies the difference between the binary data matrix ΔX, and

the LPCA reconstruction bY, representing the estimated natural parameters of the Bernoulli

model,

min
μ;U

DðDXjbΘÞ ¼ � 2
XN

n¼1

XR

r¼1

DXn;r
bYn;r � log½1þ expðbYn;rÞ� ð1aÞ

Fig 1. Schematic workflow of applying LPCA to binary reaction matrices derived from GSMMs. (Created with BioRender.com).

https://doi.org/10.1371/journal.pcbi.1012236.g001
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with

bY ¼ 1NμT þ ðY � 1NμTÞUUT; ð1bÞ

Θ ¼ mð2DX � 1N1
T
RÞ; ð1cÞ

with a tunable parameter m that, in default mode, is automatically selected by the

logisticPCA function. Y (N × R) denotes the matrix of natural parameters from the satu-

rated model. A saturated model in the context of binary data and Bernoulli distributions is one

in which the estimated probabilities exactly match the observed data ΔX. The results from the

logisticPCA function include the mean parameter vector μ (R × 1) and the loading matrix

U (R × i), where i belongs to the number of principal components. U and μ are solved such

that the Bernoulli deviance D is minimized.

The principal component scores S (N × i) are then obtained from U and μ within the

logisticPCA by:

S ¼ ðΘ � 1Nm
TÞU ð2Þ

The set of loadings U�,r across all principal components i for a reaction r represents a load-

ing vector.

We refer to a loading vector containing loadings for the first two principal components as

reaction-centric loading vector. These reaction-centric loading vectors can be added to LPCA

score plots as arrows to visualize how each reaction contributes to the clustering.

To avoid overwhelming complexity in visualization, we introduce subsystem-centric load-

ing vectors as proxies. For each principal component i, we compute the average loading across

all reactions r within subsystem j, denoted as

avg Uj
i

� �
¼

1

Rj

XRj

r¼1

UðjÞi;r : ð3Þ

Here, Rj is the number of reactions in subsystem j, and UðjÞi;r is the loading of principal com-

ponent i for reaction r within the subsystem j.
The average loading vectors for the first two principal components were visualized in the

LPCA plots.

To rank the contributions of the subsystems to the principal components, we compute the

Euclidian norm of the subsystem-centric loading vectors across the first two principal compo-

nents

javg Ujð Þj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

i¼1

avgðUj
iÞ

2

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2

i¼1

1

Rj

XRj

r¼1

UðjÞi;r

v
u
u
t : ð4Þ

As an alternative ranking measure, we first calculate the Euclidian norm of every reaction-

centric loading vector, and then the average as

avgjUjj ¼
1

Rj

XRj

r¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

i¼1

UðjÞi;r
� �2

s

; ð5Þ

where the inner sum traverses over the first two principal components.

Both measures were employed to identify key subsystems responsible for driving the

observed differentiation.
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Data sources, collection and pre-processing

Differential binary pan-reaction matrix, ΔX. We acquired GSMMs and metabolic

reconstructions from four distinct sources as outlined below. For each dataset, we generated a

binary “pan-reaction” matrix X 2 {0, 1}N×R, where each of the N rows corresponds to a GSMM

and each of the R columns represents a reaction, using COBRApy (v0.26.3) [22]. These matri-

ces indicate whether individual reactions are present (1) or absent (0) within species-specific

GSMMs or context-specific reconstructions and provide a comprehensive overview of the

reactions present across all the GSMMs. To simplify the matrices, we removed columns con-

taining only 1 or 0. We refer to the resulting data as the differential binary reaction matrix ΔX
of the pan-GSMM or the pan-reconstruction.

• Escherichia. We used 222 GSMMs of Escherichia species reconstructed by Monk [9], grown

across 570 environmental conditions. The resulting pan-GSMM contains 3342 reactions,

each present in at least one strain. Of these, 1688 reactions are not consistently present across

all strains, which thus form the differential matrix ΔXEscherichia 2 {0, 1}222×1688.

During our analysis, we discovered that the reaction labeled as “PRCOA1” is associated with

“Cholesterol degradation” [23] rather than its initial association with “Histidine Metabo-

lism” [9]. Consequently, we established a new subsystem named “Cholesterol degradation”,

reassigning “PRCOA1” and related reactions based on BiGG annotations. Subsequently, we

recalculated the LPCA and subsystem-centric loadings to reflect this adjustment.

• Firmicutes. We used 2943 GSMMs of the phylum Firmicutes from the Agora2 dataset [14]

forming a differential matrix ΔXFirmicutes 2 {0, 1}2943×5267.

• Fungi. We used 343 GSMMs of fungi reconstructed by Lu et al. [10] based on previous

sequencing data [24]. The resulting pan-GSMM contains 4599 reactions, each present in at

least one strain. Of these, 2519 reactions are not consistently present across all strains, form-

ing the differential matrix ΔXFungi 2 {0, 1}343×2519.

• Human. We used normalized gene expression data from 50 healthy tissue samples [25] and

30 cancer tissue samples [26] sourced from the Human Protein Atlas [25, 26] to generate

context-specific genome-scale metabolic reconstructions. Reactions were taken from the lat-

est iteration of the human metabolic model, “Human1” [27], with gene expression consid-

ered for normalized transcripts per million (nTPM) values exceeding 0.2. To avoid bias from

gap-filling, only reactions with gene assignments were included in the context-specific

reconstruction. The resulting pan-reconstructions contained 7975 reactions. Of these, 2390

reactions are not consistently present across all reconstructions, which thus form the differ-

ential matrix ΔXHuman 2 {1, 0}80×2390.

Additional computational analyses

t-SNE on binary reaction matrices. Binary reaction datasets from context-specific

GSMMs were analyzed by Hamming-distance based t-SNE calculation using the R package

“Rtsne” (v0.16) [28]. For plotting, only the first two t-SNE values were considered.

Jaccard coefficients on binary reaction matrices [29]. Jaccard coefficients were calcu-

lated based on binary reaction pairwise between context-specific GSMMs using:

JðA;BÞ ¼
jDXA;∗ \ DXB;∗j

jDXA;∗ [ DXB;∗j
ð6Þ
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where J(A, B) is the Jaccard coefficient between differential reactions of GSMMs A and B, con-

sisting of reactions ΔXA,�, and ΔXB,�, respectively. |ΔXA,� \ ΔXB,�| is the intersection of reac-

tions between GSMMs A and B, and |ΔXA,� [ ΔXB,�| is union of reactions between GSMMs A
and B.

Principal component analysis. Escherichia. For visual comparison, the PCA plot based

on simulated growth rates from environmental conditions was reproduced for Escherichia
strains from [9]. To obtain a similar clustering, a correlation matrix was computed, and PCA

was performed using the princomp function in R.

Phylogenetic analysis. Escherichia. Proteins from genomic sequences (downloaded from

Enterobase—v1.1.5 [30]) were predicted using “prodigal” (v2.6.3) [31], followed by phyloge-

netic comparison using “OrthoFinder” (v2.5.5) [32]. The phylogenetic tree was then plotted

using the “ape” package (v5.7–1) [33] in R.

Fungi. The phylogenetic tree was reproduced using the “ape” package [33] based on a New-

ick file published by Shen et al [24].

Cophenetic correlation coefficient. We used the cophenetic correlation coefficient [34]

to examine similarity between LPCA scores, and phylogenetic trees, where possible. Initially,

we computed the pairwise distances among LPCA scores using both Euclidean and Manhattan

metrics. These distances were then subjected to hierarchical clustering, resulting in the forma-

tion of dendrograms. The obtained dendrograms were compared using the cophenetic correla-

tion coefficient by applying the cophenetic, and cor functions in R. Due to the inherent

non-deterministic nature of t-SNE, a comparison based on the cophenetic correlation coeffi-

cient is not meaningful.

Subsystem analysis using multinomial logistic regression. A multinomial logistic

regression (MLR) model, using the multinom function (“nnet”, v7.3–19), was applied to cal-

culate the contribution of specific reactions to pre-defined clusters of GSMMs (i.e. phyloge-

netic clades/tissue types). Parameter estimates were derived for each reaction, reflecting their

relative contributions to the cluster membership. To quantify the aggregate influence of reac-

tions within biological subsystems, we calculated the Euclidean norm of the parameter esti-

mates for each reaction, which provides a measure of the reaction’s importance. These values

were then averaged by subsystem, offering a subsystem-level perspective on the factors driving

the clustering of metabolic models following:

avgjbj
j ¼

1

Rj

XRj

r¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X12

c¼1

b
j
c;r

� �2

s

; ð7Þ

where β is the coefficient for reaction r in subsystem j, for one of the 12 clades c. Rj is the num-

ber of reactions in subsystem j. Before plotting, subsystems were normalized by dividing every

subsystem by the highest value from MLR and LPCA.

Results and discussion

Comparison of 222 strain-specific GSMMs from the genus Escherichia
We used LPCA to analyze 222 strain-specific GSMMs of the genus Escherichia [9]. Both the

differential binary pan-reaction matrix ΔX (Fig 2A) and the full binary pan-reaction matrix

(S1 Fig) were subjected to LPCA, and showed similar clustering behavior. Overall, seven sub-

clusters were identified, three of which were exclusively associated with E. albertii strains (blue

in Fig 2A), two with E. fergusonii strains (red in Fig 2A, red), and the remaining two consist of

E. coli, S. dysenteriae, S. flexneri, as well as Clades II to VIII (orange in Fig 2A). While E. coli
strains did not segregate from Shigella species, they tended to accumulate on one side of the
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two subclusters within the orange ellipse. In contrast, Clades II to VIII gathered on the oppo-

site side.

LPCA aligns with established GSMM classification methods and phylogenetic analy-

sis. To validate our LPCA analysis, we compared it with t-SNE analysis (see Fig 2B) and a Jac-

card coefficient analysis (see Fig 2C). Overall the three methods showed similar clustering

behavior.

Fig 2. LPCA (a), t-SNE (b) and Jaccard coefficients (c) derived from a binary reaction matrix from differential reactions in 222 Escherichia GSMMs.

In panels (a) and (b), points represent individual GSMMs, with different genera indicated by distinct symbols and colors. The top row in panel (c) uses

these same colors to indicate the corresponding genera. Circles in panel (a) highlight clusters of E. albertii strains (blue), E. fergusonii strains (red), and a

mixed cluster of E. coli, S. dysenteriae, S. flexneri, and Clades II to VIII (orange). Labeled arrows in panel (a) denote subsystem-centric loading vectors

from LPCA (refer to the results and methods section for definitions).

https://doi.org/10.1371/journal.pcbi.1012236.g002
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• t-SNE analysis found two distinct clusters for E. albertii (blue in Fig 2B), contrasting the

three clusters identified by LPCA. Additionally, t-SNE identified only one cluster for E. fer-
gusonii (red in Fig 2B), as opposed to two clusters observed with LPCA. Both LPCA and t-

SNE identified two identical clusters for E. coli (orange in Fig 2B). However, t-SNE provided

better resolution for the remaining clades compared to LPCA.

• Ten permutations of the sample order resulted in substantial variability in the t-SNE-derived

coordinates, highlighting the sensitivity of this method. In contrast, the scores obtained from

the LPCA approach remained remarkably stable across the same number of permutations

(compare S5 Fig).

• Hierarchical clustering of pairwise Jaccard coefficients revealed two distinct clusters for E.
albertii, two clusters for E. fergusonii, and two mixed clusters comprising E. coli and the

remaining clades (Fig 2C).

Again, clustering patterns remained essentially consistent across all methods when using

the full binary pan-reaction matrix instead of the differential matrix (compare Fig 2 with S1

Fig).

Next, we tested if the clustering by LPCA aligns with a phylogenetic analysis (S3 Fig). We

compared LPCA scores with a whole-genome based phylogenetic tree using the cophenetic

correlation coefficient [34]. LPCA scores showed a good cophenetic correlation with the phy-

logenetic tree when Manhattan distances (0.61) were used to calculate the pairwise distance

between scores. The correlation weakened when using Euclidean distance. This drop in corre-

lation with Euclidian distance (0.37) is expected as it is more suited for continuous data rather

than binary data. Consequently, we suggest that Manhattan distances derived from LPCA

scores effectively conserve phylogenetic relations.

Finally, when comparing LPCA to standard PCA using simulated growth rates under differ-

ent environmental conditions, we observe a better separation of GSMMs, especially between

E. coli and E. albertii (S2 Fig).

LPCA pinpoints key metabolic subsystems distinguishing GSMM clusters. To identify

the factors driving the observed clusters, we analyzed subsystem-centric loading vectors

derived from LPCA, as described in Eq (2) in the Methods section. These vectors aim to mea-

sure the contribution of the entire metabolic subsystem (like glycolysis, etc.) rather than indi-

vidual reactions. We find that cluster separation was predominantly influenced by (the top)

five subsystems: “Murein Biosynthesis”, “Murein Recycling”, “Anaplerotic Reactions”,

“Exchange”, and “Histidine Metabolism” (Fig 2A). Notably, when employing a different rank-

ing method based on (4) rather than (3), four out of these five driver subsystems remained

consistent (see S1 Table), underscoring their robust impact on the clustering.

The subsystem “Exchange” consists of only one reaction: Methylmalonate-semialdehyde

dehydrogenase (“MMSAD3”). Its presence in this list is unexpected given that the Escherichia
GSMMs were reconstructed to compare 570 environmental conditions. Thus, the correspond-

ing exchange systems should be universally present in all models, regardless of genetic evi-

dence. According to BiGG annotation, “MMSAD3” is indeed categorized as exchange but is

associated with propanoate metabolism according to KEGG. We suspect that “MMSAD3”

might have been incorrectly assigned.

“Murein Recycling” and “Murein Biosynthesis” are known to be highly conserved subsys-

tems among Escherichia strains, with 88% of the reactions being shared across all Escherichia
strains [9]. The highest loading values were obtained for D-alanyl-D-alanine dipeptidase

(“ALAALAD” from the “Murein Recycling” subsystem), which is conserved in 82% E. colis, in

100% Shigellas, and in 2% Clades II to VIII. In contrast, “ALAALAD” is completely absent in
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the more distinct clades, E. albertii and E. fergusonii. D-alanyl-D-alanine dipeptidase (vanX) is

responsible for cleaving D-alanyl-D-alanine dipeptide. This enzyme allows bacteria to use D-

alanine as a carbon source and modify peptidoglycan structures [35]. Intriguingly, modifica-

tions in these peptidoglycan precursors, such as the substitution of D-alanyl-D-alanine with

D-alanyl-D-lactate, confer resistance to the antibiotic vancomycin, which targets terminal D-

alanyl-D-alanine residues to prevent crosslinking [35, 36].

In further exploring the capabilities of LPCA, we analyzed the set of differential reactions

within the “Histidine Metabolism” subsystem when contrasting the clades E. albertii and E.
coli, as an example. We noted virtually identical loading values for the reactions “HISDr”,

“URCN”, and “IZPN” (S2 Table). These reactions detail the stepwise breakdown of histidine

into N-formimidoyl-L-glutamate via urocanate and 4-imidazolone-5-propanoate. This path-

way was found to be twice as prevalent in E. albertii strains (25%) compared to E. coli strains

(12%). This differential trait suggests that at least certain E. albertii strains might possess the

metabolic capability to utilize histidine as a source of carbon and nitrogen.

One particular reaction, “PRCOA1”, prevalent in 61% of E. albertii-specific GSMMs,

appeared as a significant difference, see S2 Table. However, we found that this reaction might

be misallocated to “Histidine Metabolism”. According to the BiGG database [37], “PRCOA1”

converts CoA-20-hydroxy-cholest-4-en-3-one C5 side chain to Androst-4-ene-3,17-dione,

and belongs to “Cholesterol degradation”, rather than “Histidine Metabolism” (see reaction-

centric loadings in S2 Table). Thus, we newly introduced the so far missing subsystem “Cho-

lesterol degradation”, reassigned “PRCOA1” (and associated reactions according to KEGG),

and repeated LPCA (see Fig 2A) as well as computing the subsystem loadings new. This time

“Cholesterol degradation” replaced “Histidine metabolism” among the top five driving subsys-

tems. The results from Fig 2 suggest that LPCA is capable of distinguishing between phyloge-

netically distant species by analyzing their sets of differential reactions. Additionally, the

loading values from LPCA help identify the key drivers for the observed separation between

species and may also hint at misannotations. Unlike other methods, this identification happens

simultaneously with the computation of LPCA scores, offering insights into both the extent of

metabolic differences and the specific distinctions driving them.

MLR reveals subsystems contributing to phylogenetic classification. To validate our

interpretation of the subsystem-centric loadings from LPCA, we used a MLR model to inde-

pendently evaluate the contribution of each reaction to phylogenetic clades (see Methods for

details). By grouping the reaction-centric parameters by subsystem (see Methods 6), we

observed different subsystems to be the most influential drivers for separation in comparison

to LPCA-derived subsystem-centric loadings. As displayed in Fig 3, “Pentose Phosphate Path-

way”, “Lipopolysaccharide Biosynthesis / Recycling”, “Pentose and Glucuronate Interconver-

sions”, “Murein Biosynthesis”, and “Anaplerotic Reactions” are the five most important

subsystems, responsible for the separation of clades. Two subsystems are shared between MLR

and LPCA within the top five subsystems: “Murein Biosynthesis”, and “Anaplerotic Reac-

tions”. Moreover, “ALAALAD” is again the most influential reaction within the subsystem

“Murein Biosynthesis” in MLR. Additionally, it seems that a lower number of subsystems may

impact the clustering, since 8 subsystems have a normalized value above 0.5 in MLR, while

only 4 subsystems have a normalized value above 0.5 in LPCA. Normalized values in MLR and

LPCA were obtained by dividing every subsystem-centric value by the maximum value. While

MLR can pinpoint key determinants of a pre-defined categorization, LPCA provides a notable

benefit through the detection of possibly new (sub)clusters. Such subclusters could reveal met-

abolic distinctions that might be missed when exclusively depending on the primary phyloge-

netic categorization. Moreover, LPCA allows for the identification of the orientation of

reaction- or subsystem-centric loadings, an analysis unachievable with MLR.
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Comparison of 343 yeast-specific GSMMs from the subphylum

Saccharomycotina
We applied LPCA to the set of differential reactions extracted from 343 yeast-specific GSMMs

[10], mostly obtained through a recent sequencing effort [24], see Fig 4a. Similar to the LPCA

analysis of GSMMs for Escherichia (see above), our findings reveal a clustering of species with

closer phylogenetic relationships. However, when considering the first two principal components,

the separation is less pronounced for yeast, accounting for only 27% of the variance, in contrast

to 34% for Escherichia species. In the phylogenetic tree S6 Fig, similar clades were observed to

group into closely related clusters as in the LPCA plot Fig 4A. Notably, the Lipomycetaceae clade

(purple) was distinctly isolated from other clades. In contrast, clades with closer phylogenetic rela-

tionships formed subclusters. In particular, the Saccharomycodaceae-specific GSMMs (green)

constituted a distinct cluster, despite their close phylogenetic relation to Saccharomycetaceae.
Again, our analysis identified the top five subsystems critically contributing to cluster sepa-

ration: “Glycerolipid metabolism”, “Phagosome”, “Nitrogen metabolism”, “Fructose and man-

nose metabolism”, and “Peroxisome”. However, comprehensively examining these pathways

Fig 3. Impact of subsystems derived from LPCA and MLR for Escherichia GSMMs. MLR: contribution of subsystems to

phylogenetic classification normalized to the maximum value. LPCA: subsystem-centric loadings normalized to maximum loading

(refer to methods section for details).

https://doi.org/10.1371/journal.pcbi.1012236.g003
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in yeast (as we did above for Escherichia) faces two major challenges challenges (i) limited

knowledge on fungal metabolism—yeast and other fungi remain relatively understudied com-

pared to mammalian and prokaryotic cells [38]; and (ii) a significant proportion of reactions

(>50%) are in the subsystem “Unassigned” in the current dataset.

Comparison of healthy and cancerous tissues

Previous studies have demonstrated the effectiveness of PCA in distinguishing between healthy

and cancerous tissues using transcriptomic data [39, 40]. Here, we replicated this finding using

Fig 4. LPCA (a), t-SNE (b), and Jaccard coefficients (c) derived from a binary reaction matrix from yeast-specific GSMMs. In panels (a) and (b),

points represent individual GSMMs, with different genera indicated by distinct symbols and colors. The top row in panel (c) uses these same colors to

indicate the corresponding genera. Circles in panel (a) highlight a cluster of the Lipomycetaceae clade (purple), and the Saccharomycodaceae (green).

Labeled arrows in panel (a) denote subsystem-centric loading vectors from LPCA (refer to the results and methods section for definitions).

https://doi.org/10.1371/journal.pcbi.1012236.g004
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normalized gene expression data taken from the Human Protein Atlas [25, 26], see S7 Fig.

When restricting the analysis to genes annotated within the generic “Human1” reconstruction,

the distinction became less evident, see S7 Fig. Further narrowing the analysis to genes derived

from the annotations in context-specific GSMMs (see Methods for details) resulted in the loss

of differentiation (S7 Fig). This outcome may be attributed to the notably fewer genes (561) in

these models compared to the broader set in “Human1” (containing 2897 metabolic genes).

We explored if LPCA could recover the differentiation between healthy and cancerous tissues

using the differential set of reactions in these GSMMs. Indeed, Fig 5A indicates the feasibility

of such recovery via LPCA.

Fig 5. LPCA (a), t-SNE (b), and Jaccard coefficients (c) derived from a binary reaction matrix from context-specific reconstructions from

healthy and cancerous tissues. In panels (a) and (b), points represent individual reconstructions, with reconstructions from healthy (blue squares)

and cancerous tissues (red triangles). The top row in panel (c) uses these same colors to indicate the corresponding tissue. t-SNE appears less effective

in identifying outliers (red open triangle, and blue open circles) compared to LPCA and Jaccard coefficients. Labeled arrows in panel (a) denote

subsystem-centric loading vectors from LPCA (refer to the results and methods section for definitions).

https://doi.org/10.1371/journal.pcbi.1012236.g005
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Again, in comparison to t-SNE (Fig 5B) and Jaccard coefficients (Fig 5C) suggests that both

t-SNE and LPCA can distinguish healthy from cancerous reconstructions. However, t-SNE

appears less effective in identifying outliers (Fig 5, red, unfilled triangle) compared to LPCA

and Jaccard coefficients. In addition, two healthy tissue samples (Fig 5, blue, unfilled circles)

tended to cluster with reconstructions from cancer tissues, showing a more pronounced clus-

tering when using LPCA compared to t-SNE. LPCA facilitates a clearer interpretation of the

underlying factors, aiding in the identification of differences between context-specific

GSMMs.

When analyzing the LPCA-derived subsystem-centric loadings, “Linoleate Metabolism”

emerged as a crucial subsystem for distinguishing between context-specific GSMMs. Within

this subsystem, the reaction “MAR02438” exhibited the highest loading value and is associated

with the genes PTGS1 or PTGS2. These genes play a pivotal role in prostaglandin synthesis and

are linked to the vascular endothelial-derived growth factor (VEGF) signaling pathway, critical

for angiogenesis [41]. PTGS2 holds significant importance in cancer research. Inhibitors tar-

geting the enzyme COX2, encoded by the PTGS2 gene, such as celecoxib, have demonstrated

cancer-retarding properties [42].

Another important insight came from the subsystem “Ascorbate and alderate metabolism”,

which was found to be top-ranked in subsystem-centric loadings. It consists of only one reac-

tion-centric loading (“MAR08346”), pointing towards healthy tissue samples (Fig 5A), which

indicates a higher presence in healthy tissues than cancerous tissues. The reaction describes

the reversible conversion of “L-gulonate” to “L-gulono-1,4-lactone” in the endoplasmic reticu-

lum and is catalyzed by the enzyme “Regulacin” (RGN). Besides its metabolic role, RGN is

involved in calcium homeostasis, antioxidant defense, apoptosis, and cell proliferation [43].

Recently, RGN has been identified to be downregulated in several cancer cells [44] and that

survival of cancer patients is positively correlated with a higher expression level of RGN [45].

In the “Human1” GSMM [27], “L-gulonate” can be converted to “L-gulono-1,4-lactone”

(RGN, endoplasmic reticulum), “glucuronate” (AKR1A1, endoplasmic reticulum), or to

“3-dehydr-L-gulonate” (CRYL1, cytoplasm). High CRYL1-expression has been shown to

increase survival rate at least in clear cell renal cell carcinoma patients, while CRYL1 silencing

led to increased cell migration and proliferation [46]. In contrast, AKR1A1 was found to be

upregulated in many cancer cells and is associated with drug resistance [47]. Since AKR1A1
catalyzes the final conversion step from “D-glucose” to “L-gulonate” via “glucuronate”, while

RGN, and CRYL1 are downregulated, an accumulation of “L-gulonate” might emerge in

cancerous cells and could be further investigated. This finding is supported by the subsystem

analysis using MLR (Fig 6), where the subsystem “Ascorbate and alderate metabolism” is

ranked on top as well. Further top-ranked subsystems from MLR include “Terpenoid back-

bone biosynthesis”, “Metabolism of other amino acids”, “Tricarboxylic acid cycle and glyoxy-

late/dicarboxylate metabolism”, and “Phosphatidylinositol phosphate metabolism”, none of

them shared with the top-ranked subsystems from LPCA, being “Linoleate metabolism”, “Pan-

tothenate and CoA biosynthesis”, “Vitamin E metabolism”, and “Sulfur metabolism”.

Analysis of 2943 Agora2-derived Firmicutes species

Finally, we applied LPCA to a subset (Firmicutes) of the Agora2 dataset, after creating a binary

reaction matrix, containing 5267 differential reactions from 2943 species-specific GSMMs.

The three main orders (Bacillales, Eubacteriales, and Lactobacillales) formed subclusters

regardless of the applied method (Fig 7). Incomplete subsystem assignments within the

GSMMs prevented the determination of meaningful subsystem-centric loadings. This under-

scores the significance of accurate subsystem assignments when utilizing LPCA for GSMMs.
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We assessed the run time for LPCA, t-SNE, and Jaccard coefficients. While t-SNE and Jac-

card coefficients finished in 0.31 h and 1.26 h, respectively, LPCA took 20 h on an “AMD

EPYC 7542 32-Core Processor”, 96 cores, 406 GB RAM. While LPCA offers valuable insights

into GSMMs at the subsystem and reaction levels, its longer runtime may pose challenges for

huge datasets and could benefit from further optimization.

Conclusion

Here we introduced LPCA to simultaneously compare and analyze multiple GSMMs to iden-

tify similarities and differences in metabolic capabilities across multiple species and strains.

LPCA extends standard PCA to binary data sets. Thus, it allows us to analyze the presence or

absence of biochemical reactions across GSMMs. Our approach not only confirmed the estab-

lished phylogenetic relationships but also demonstrated the robustness of LPCA in delineating

Fig 6. Impact of subsystems from LPCA and MLR for human reconstructions. MLR: contribution of subsystems to phylogenetic classification

normalized to the maximum value. LPCA: subsystem-centric loadings normalized to maximum loading (refer to methods section for details).

https://doi.org/10.1371/journal.pcbi.1012236.g006
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clustering patterns. Utilizing LPCA on the set of differential reactions across GSMMs provides

distinct advantages:

1. Enhanced Clade Discrimination: Unlike PCA relying on simulated growth rates from var-

ied environmental conditions, LPCA exhibited clear separation of distinct clades. This

method mitigates bias by solely assessing reaction presence in GSMMs, rather than subjec-

tively selecting environmental conditions for growth rate simulations.

2. Subsystem Identification: In contrast to t-SNE and Jaccard coefficients, our LPCA approach

provides precise information on drivers that govern separation and enables an efficient

Fig 7. LPCA (a), t-SNE (b) and Jaccard coefficients (c) derived from a binary reaction matrix from 2943 Firmicutes species-GSMMs. In panels (a)

and (b), points represent individual GSMMs, with different genera indicated by distinct symbols and colors. The top row in panel (c) uses these same

colors to indicate the corresponding genera. The clustering of rows and columns in panel (c) was performed using the default hierarchical clustering

settings (refer to methods section for details).

https://doi.org/10.1371/journal.pcbi.1012236.g007
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subsystem analysis by grouping reactions based on their loading values. This may also sup-

port curation efforts and metabolic subsystem analysis.

3. Comparison to MLR: While MLR can identify driving factors, LPCA offers a significant

advantage by simultaneously identifying potential subclusters. These subclusters may indi-

cate metabolic variations that could be overlooked when relying solely on the initial phylo-

genetic classification. Additionally, the direction of reaction- or subsystem-centric loadings

can be determined with LPCA, which is not possible with MLR.

4. Transcriptome-based Equivalence: Our findings showcased the ability of LPCA to recover

cluster patterns observed in transcriptome-based PCA plots solely from genome-scale met-

abolic reconstruction and/or GSMMs.

Here, our focus was on grouping reactions by standard biochemical subsystems such as gly-

colysis, etc. However, LPCA can be extended to group reaction-centric loadings by any other

pathways of interest. This expansion could complement recently developed tools designed to

facilitate metabolic pathway analysis [48, 49]. In addition to other methods for feature selec-

tion from omics datasets [50–52], PCA loadings have been established as an effective method

for this purpose, facilitating the identification of biologically significant features with high vari-

ance across different conditions or phenotypes [53]. LPCA loadings could be used in a similar

way with respect to GSMMs. While LPCA is limited to binary datasets, our study demonstrates

its effectiveness with binary reaction datasets derived from GSMMs, highlighting its potential

to guide further research and pathway analysis in GSMMs. By identifying reactions with high

LPCA loading values, we have pinpointed those that play pivotal roles in GSMMs, suggesting

targets for further experimental and computational investigation. Integrating this approach

with prior to other omics analyses could ultimately provide a more comprehensive under-

standing of metabolic pathways.

Supporting information

S1 Fig. LPCA (a), t-SNE (b) and Jaccard coefficients (c) derived from a binary reaction

matrix from pan-reactions in 222 Escherichia GSMMs. In panels (a) and (b), points repre-

sent individual GSMMs, with different genera indicated by distinct symbols and colors. The

top row in panel (c) uses these same colors to indicate the corresponding genera. Circles in

panel (a) highlight clusters of E. albertii strains (blue), E. fergusonii strains (red), and a mixed

cluster of E. coli, S. dysenteriae, S. flexneri, and Clades II to VIII (orange). Labeled arrows in

panel (a) denote subsystem-centric loading vectors from LPCA (refer to the results and meth-

ods section for definitions). The clustering of rows and columns in panel (c) was performed

using the default hierarchical clustering settings (refer to methods section for details.

(TIF)

S2 Fig. PCA based on simulated growth rates from 222 Escherichia species-specific

GSMMs across 570 different environmental conditions [9]. While E.fergusonii GSMMs

could be well separated based on simulated growth rates, the remaining clades seem to be less

separatable.

(TIF)

S3 Fig. Phylogenetic tree of 222 Escherichia species based on whole genomes. Genomes

were obtained from Enterobase [30]. Phylogenetic relations were obtained from OrthoFinder

[32] based on coding genes. E.coli, E.albertii, and E.fergusonii formed distinct clades.

(TIF)
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S4 Fig. Reaction-specific loadings, grouped by subsystem from differential reactions. The

reaction “ALAALAD” (Murein Biosynthesis) was found to be a major driving factor for sepa-

ration. “PRCOA1” (Cholesterol degradation) was found to be incorrectly assigned to “Histi-

dine metabolism” in the original GSMMs.

(TIF)

S5 Fig. LPCA scores (a) and t-SNE (b) results using the differential reaction dataset from

Escherichia-GSMMs, performed 10 times. While LPCA scores showed reproducible cluster-

ing, t-SNE resulted in a more diffuse clustering.

(TIF)

S6 Fig. Phylogenetic tree of yeast-species taken from [24]. Whole-genome based phyloge-

netic comparison of strains results in more distinct separation of clades, compared to LPCA

scores, t-SNE or hierarchical clustering based on Jaccard similarity.

(TIF)

S7 Fig. PCA of transcriptomes from (a) whole transcriptomes, (b) “Human1” metabolic

genes, and (c) selected genes from context-specific reconstructions. While clustering

between healthy and cancer tissue could be conserved based on whole transcriptomes (a) and

metabolic genes (b), it was not possible based on the genes from the context-specific recon-

structions (c).

(TIF)

S1 Table. Top-ranked subsystems driving cluster separation in 222 Escherichia strains in

LPCA. Subsystems were ranked either according to the magnitude of the average loadings per

subsystem for the first two principal components, |avg (Uj)|, or according to the average mag-

nitude of the loadings per subsystem, avg |Uj|, see Eqs (2) and (3), respectively. † not within

the top five in this ranking. ‡ not present in the original set of subsystems.

(XLSX)

S2 Table. Reaction-centric loadings of the subsystem “Histidine metabolism” † In the orig-

inal models, “PRCOA1” was associated with “Histidine metabolism”. We reassigned

“PRCOA1” to the newly created metabolic subsystem “Cholesterol degradation”. See text and

S1 Table for details.

(XLSX)
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Writing – original draft: Leopold Zehetner.

Writing – review & editing: Leopold Zehetner, Diana Széliová, Barbara Kraus, Juan A. Her-
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