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Abstract

Ripples are a typical form of neural activity in hippocampal neural networks associated with

the replay of episodic memories during sleep as well as sleep-related plasticity and memory

consolidation. The emergence of ripples has been observed both dependent as well as inde-

pendent of input from other brain areas and often coincides with dendritic spikes. Yet, it is

unclear how input-evoked and spontaneous ripples as well as dendritic excitability affect

plasticity and consolidation.

Here, we use mathematical modeling to compare these cases. We find that consolidation

as well as the emergence of spontaneous ripples depends on a reliable propagation of activ-

ity in feed-forward structures which constitute memory representations. This propagation is

facilitated by excitable dendrites, which entail that a few strong synapses are sufficient to

trigger neuronal firing. In this situation, stimulation-evoked ripples lead to the potentiation of

weak synapses within the feed-forward structure and, thus, to a consolidation of a more gen-

eral sequence memory. However, spontaneous ripples that occur without stimulation, only

consolidate a sparse backbone of the existing strong feed-forward structure.

Based on this, we test a recently hypothesized scenario in which the excitability of den-

drites is transiently enhanced after learning, and show that such a transient increase can

strengthen, restructure and consolidate even weak hippocampal memories, which would be

forgotten otherwise. Hence, a transient increase in dendritic excitability would indeed pro-

vide a mechanism for stabilizing memories.

Author summary

Sequential activity of place cells in hippocampus has been found to be replayed during

sleep. Such replay is believed to aid the consolidation of episodic memories. We here

investigate replay of memories encoded by a feed-forward structure within a recurrent

network as well as associated synaptic plasticity. Hereby, we vary both the external stimu-

lation that triggers replay-sequences, as well as the excitability of active dendrites. With

stimulation and highly excitable dendrites, we observe reliable replays and potentiation of
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both weak and strong synapses along the feed-forward structure. Without stimulation but

with highly excitable dendrites, spontaneous replays emerge and only sufficiently strong

synapses are further potentiated. Without highly excitable dendrites, the memory decays.

However, with an intermediate period of increased dendritic excitability, the memory can

be sufficiently restructured and strengthened to exhibit spontaneous replays and consoli-

dation, even at lower dendritic excitability levels. These results indicate that a transient

increase in dendritic excitability provides a mechanism both for restructuring and stabiliz-

ing hippocampal memories.

Introduction

While animals explore their environment, place cells in the hippocampus give rise to sequen-

tial activity. Later on, during sleep and rest phases, this sequential activity is replayed, often in

a time-compressed fashion [1, 2]. Such replays mostly occur during hippocampal activity com-

plexes called sharp-wave ripples (SWRs) [3, 4]. SWRs and the associated replay of sequential

activity patterns are believed to be essential for hippocampus-dependent memory consolida-

tion [5–7]. Accordingly, the suppression of SWRs impairs [8] and their enhancement strength-

ens this kind of memory [9]. As an underlying mechanism, it is hypothesized that ripple

activity provides a good basis for further synaptic plasticity, which then consolidates the mem-

ories. Hereby, both synaptic potentiation [10] as well as synaptic depression [11] have been

associated with SWR activity.

The mechanism how SWRs are evoked and especially whether SWR-activity emerges spon-

taneously or whether it depends on input from other brain areas, is not completely clear. On

the one hand, in vivo experiments indicate that input, for example from CA3, is driving SWRs

in CA1 [12–14]. On the other hand, also slice preparations lacking this kind of input exhibit

spontaneous SWRs [15–17]. Thus, both input-evoked and spontaneous ripples might coexist

in the same network. Given the link between ripples and memory, we here want to clarify

whether spontaneous and input-evoked SWRs have similar or different effects on plasticity

and memory consolidation.

Moreover, also the active integration and depolarization of dendrites plays a critical role in

SWR and the induction of synaptic plasticity [10, 18, 19]. For instance, dendrites exhibiting

synaptic plasticity at their synapses have an increased excitability [20–23], which led to the

hypothesis that dendrites hosting newly learned memories are more excitable and, thus, are

primed for consolidation [24]. Following this hypothesis, we also examine the role of non-lin-

ear dendritic integration and its temporal changes for the neural activities and synaptic plastic-

ity during SWRs—both spontaneous and input-evoked.

To better understand the interplay between all discussed processes, we rely on mathemati-

cal models.

A replay of sequential activity is commonly observed in models with temporally asymmetric

Hebbian learning and can occur both as a consequence of cueing the first sequence element

[25, 26], but also during spontaneous activity [27, 28]. In these models, correlated firing of

neurons coding for one sequence element triggers the firing of neurons coding for the next

sequence element. If neural activities are sparse, these populations can be non-overlapping,

which effectively gives rise to a feed-forward structure through which activity propagates. This

propagation, however, does not necessarily imply the presence of ripple-like oscillatory behav-

ior. Another line of modeling studies has investigated oscillatory activities in recurrent net-

works. Ripple-like oscillations can, on the one hand, originate from an interconnected
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inhibitory population, which then gates the activity of excitatory cells (inhibition-first models,

[29–32]). On the other hand, also recurrent connections between excitatory cells, in interac-

tion with the excitatory-inhibitory feedback loop, may be the reason for ripple activity (excita-

tion-first models, [32–35]). The latter mechanism typically relies on fast propagation of

activity between the excitatory cells, which may happen due to electrical coupling through

gap-junctions [32–36] or due to fast non-linear dendritic integration [36]. In the brain, most

likely a mixture of all of these variants may be prevalent [37]. Note that in many computational

models, ripple generation relies on the presence of external stimulation signals (but see [36,

38]), although some studies included other brain areas, which generate these inputs (other hip-

pocampal areas, cortex, thalamus), and investigated the interrelation of activities between the

brain areas [39, 40] as well as the learning related changes of these activities [41].

We base our work on a well-established computational model [42] that integrates active

dendrites and explains learning, replay of memories and SWRs. In this model, episodic

(sequence) memories are encoded by feed-forward structures which—upon replay—exhibit

ripple-like activity triggering synaptic plasticity. Based on this model, in this study, we system-

atically vary the dendritic excitability as well as the putative input from other brain areas and

evaluate the impact on the structure of the memory representations.

We find that the emergence of ripple-associated sequence replay and synaptic plasticity

depends on reliable propagation of activity through the memory-related feed-forward struc-

ture, which, in turn, is enhanced by highly excitable dendrites. Under these conditions, net-

works with spontaneous and evoked ripples exhibit very different patterns of synaptic

plasticity: In networks with spontaneous ripples and no input only a subset of the connections

within the feed-forward structure stays strong and undergoes further LTP. Hence, a reduced

backbone of the feedforward-structure remains. In networks that are also stimulated externally,

initially weak synapses between neurons of the feed-forward structure are also potentiated.

These synapses partly connect neurons with distant place fields, which were previously multi-

ple steps apart in the feed-forward structure. Thereby, a generalized representation of the place

field order in the feedforward structure emerges. We then demonstrate that a transient increase

in dendritic excitability after learning—in combination with external stimulation—leads to a

restructuring of the memory representation such that it gets reactivated even when dendrites

become less excitable later-on. Thus both of the above mechanisms could be employed to con-

solidate and stabilize hippocampal sequence memories, as hypothesized in [24].

Materials and methods

In order to built on previous results on forming sequence memories and the emergence of

replay and ripple-activity, the model presented in the following as well as the value of the

parameters largely follow Jahnke et al. [42] and are justified therein. The amendments that

have been introduced in this work are explicitly laid out at the end of this section.

Neuron model

We use conductance-based leaky integrate-and-fire neurons, whose membrane potential fol-

lows

tm
duiðtÞ
dt
¼ urest � uiðtÞ þ RmIiðtÞ þ ziðtÞ;

where urest = −65 mV is the resting potential, τm = 16 ms or 8 ms the membrane time constant

for excitatory and inhibitory neurons respectively and Rm = 40 MO the membrane resistance.

The term zi(t) is Gaussian white noise with hzi(t)i = 0 and hziðtÞzjð~tÞi ¼ s2dijdðt � ~tÞ, with
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σ = 3 mV. Ii is the current influx into neuron i, which is calculated as

IiðtÞ ¼
X

j

gi;jðtÞ � ðEj � uiÞ þ Iden þ IBG:

Here, IBG = 0.38 nA is the constant background current and Iden depicts currents from active

dendritic processes (see below). The first term describes the current through synapses, which

are characterized by their conductance gi,j and reversal potential Ej of the respective synapse,

which is either Eex = 0 mV or Einh = −70 mV depending on the type of the presynaptic neuron

j. The conductances evolve according to

tg
gi;j
dt
¼ � gi;j

with τg = 3 ms, and are increased by wi,j after each presynaptic spike with a conduction delay

dsyn = 3 ms, where wi,j(t) is the synaptic weight of the respective synapse.

If the membrane potential exceeds a threshold θ = −45 mV, it is reset to −65 mV and in-

flowing currents are not considered throughout a 3ms refractory period.

Active dendrites

We further include the possibility of dendritic spikes, if a sufficiently strong input occurs. For

this, we check whether the sum of all excitatory conductances exceeds a threshold gthres within a

time window of 2 ms. The threshold is set at 7.27 nS for the networks with enhanced dendritic

excitability and 10.17 nS in the networks without. If that threshold is exceeded, a dendritic

spike current is emitted, which takes the shape

Iden ¼ Yðt � ts;i � ddenÞ
X3

k¼1

Ak exp ð� ðt � ts;i � ddenÞ=tkÞ

with amplitudes A1 = −55 nA, A2 = 64 nA and A3 = −9 nA as well as time-constants τ1 = 0.2 ms,

τ2 = 0.3 ms and τ3 = 0.7 ms. Note that we calculate Iden only relative to the last dendritic spike at

time ts;i.

Network structure

We simulate a network comprising 480 neurons, which are separated into 80 inhibitory and

400 excitatory neurons. All neurons are sparsely connected through synapses with 8% proba-

bility between excitatory neurons (ex!ex), 10% between excitatory and inhibitory neurons

(ex!in, in!ex) and 2% between inhibitory neurons (in!in). Weights are initially drawn

from Gaussian distributions with means μex!ex = 0.7 nS, μex!in = 1.0 nS, μin!ex = 2.5 nS, and

μin!in = 2.0 nS as well as standard deviations σex!ex = 0.16 nS, σex!in = 0.1 nS, σin!ex = 0.25

nS, and σin!in = 0.2 nS. Synapses between excitatory neurons undergo spike-timing-depen-

dent plasticity and synaptic scaling (see below).

Sequence memory. In order to exert better control over the feed-forward structure that

has been demonstrated to emerge in the network during learning [42], we initialize networks

with a predefined feed-forward structure. For this, we assume the excitatory cells with indices

100 to 330 correspond to place fields along a linear track (colored cells in Fig 1A). The connec-

tions emerging from neurons with indices from Mstart = 100 to Mend = 299 are increased or

decreased by a factor corresponding to a spatial kernel shown in Fig 1B. The kernel shape is
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estimated from [42]:

Dwkernel
i;j ¼

1

Afw
� e�

i� j
21 � e�

i� j
14

h i
wi;j; if i � j and Mstart � i; j < Mend;

1

Abw
� � e�

j� i
42 þ e�

j� i
28

h i
wi;j; if i < j and Mstart � i; j < Mend;

8
>><

>>:

where Afw = 7.4 � 10−3 and Abw = 0.2 are normalization constants for the strengthening of the

feed-forward connections and the weakening of the backward connections, respectively.

Synaptic plasticity and scaling

The synaptic weights of connections between excitatory neurons evolve according to a spike-

time dependent plasticity rule that depends on the time distance between pre- and post-synap-

tic spikes Δt in a smooth fashion (Fig 1C):

Dwi;j ¼ ZSTDP:

Aþ � kðDt; tþ;0Þ � A� � kðDt; t� ;0Þ
� �

exp � Dt
tSTDP

� �
; if Dt � 0;

Aþ � exp Dt
tþ;0

� �
� A� � exp Dt

t� ;0

� �
; if Dt < 0;

8
>><

>>:

with kðDt; t0Þ ¼ 1þ Dt tSTDPþt0
tSTDP �t0

. Here, ηSTDP = 0.12 is the learning rate, τSTDP = 3 ms, τ+,0 = 1

ms and τ−,0 = 20 ms are the time-constants and A+ = 1.2 nS and A− = 1.0 nS the amplitudes of

the STDP-window.

Moreover, these synapses undergo synaptic scaling [43]. For this, we apply:

Dwi;j ¼ � ZSC viðwi;j=g∗Þ
2

every 10 ms, where ZSC ¼ 10� 3nS � Hz� 1 is the scaling rate, g� = 1.0 nS is a normalization fac-

tor, and vi is the current firing rate of the neuron estimated from the spike count in a moving

window of length 500 ms. The non-linear dependence on wi,j is necessary to counteract run-

away potentiation due to the positive feedback between synaptic weights and post-synaptic

activity that occurs for many Hebbian synaptic plasticity rules [43], like the STDP rule used in

this study.

Fig 1. Schematics of the model used to investigate ripple activity and plasticity. (A) A predefined excitatory feed-

forward structure was embedded in an excitatory-inhibitory network and its evolution with and without stimulation as

well as with different sensitivities of nonlinear dendrites was tested. (B) Factor applied to the synaptic weights within

the feed-forward structure depending on the index difference between post- and presynaptic neuron (spatial kernel).

(C) Weight change depending on time difference between post- and presynaptic spikes (STDP-curve)

https://doi.org/10.1371/journal.pcbi.1012218.g001
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Simulation paradigms

Initially, we compare four cases of networks: (i) networks without external stimulation and

low dendritic excitability; (ii) networks without external stimulation and high dendritic excit-

ability; (iii) networks with external stimulation and low dendritic excitability and (iv) networks

with external simulations and high dendritic excitability.

When ripple activity is evoked by external stimulation, e.g. from another brain area, we

stimulate a group of 50 neurons at the beginning of the feed-forward structure by scaling the

noise with a sine-wave with an amplitude of 0.714, an offset of 1.071 and a varying frequency

between 9 Hz and 14.5 Hz (changed every 500 ms).

For each of these cases, we simulate the above described network for 262 s. Hereby, we start

by simulating the network without active dendrites for 1 s for equilibration. Then, we simulate

the network for another 31 s without plasticity to gather statistics on the activity. Then a 200 s

period with plasticity is simulated, after which plasticity is turned off again for 30 s to gather

statistics on the activity. At this time-point plasticity has usually converged to a stationary

value such that activity and connectivity after plasticity can be further investigated.

Secondly we simulate a plastic network which progresses between the described states.

Here again we simulate a 1 s initialization period, followed by 199 s with active dendrites with

enhanced excitability and external stimulation. Then, external stimulation is switched off, and

the network is simulated for another 200 s. Finally, also the dendritic excitability is decreased

and the network is simulated for another 200 s. Connectivity is tracked over time and espe-

cially each time before switching to another network state.

Continuous Wavelet transform

To identify ripple like activity, we evaluate the spectral power in different frequency bands. For

this, we used a continuous wavelet transform with the complex Morlet wavelet using the PYWA-

VELETS package [44] and applied it to the summed activity of all cells. In specific, we analyzed

frequencies from 70 to 300 Hz with wavelet scaling factors between 2.7 and 12, bandwidth

B = 2.0 and center frequency constant C = 0.8 [45, 46].

Reduced model

In a reduced model of the feed-forward structure, we investigate activity propagation using a

single post-synaptic neuron receiving input from a varying number Nneur of pre-synaptic neu-

rons. The spike trains of these neurons all have the same pairwise correlation coefficient c and

firing rate r, which is varied throughout the experiments, and are generated using the multi-

interaction method described in [47]. The parameters of the reduced model are the same as for

the large-scale network simulations, if not stated otherwise. The reduced model is simulated

for 30 s and the number of spikes, dendritic spikes and the change of synaptic weights are

tracked.

Comparison to Jahnke et al., 2015 [42]

In the following, we shortly list the main differences of the model used here and [42], which

mainly arose due to the fact that we focus here on understanding the long-term consolidation

of memories, which requires more computational resources for simulations.

• No simulation of learning: In this study we wanted to focus on the consolidation during

sleep. Therefore, we wanted a to have more control over the weights in the memory structure

after learning and decided to not explicitly simulate the learning process. Instead, we

encoded the learned memory into the initial synaptic weights. For the weight changes, we
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drew inspiration from the strongest memory structure reported in [42], approximating the

weights with a double-exponential kernel function (Fig 1B).

• No spatial structure: For simplicity, we chose to not simulate the spatial distribution of the

neurons to obtain their conduction delays, but assume fixed, homogeneous delays for the

signal transduction between each pair of neurons.

• Synaptic plasticity: We use a modified version of the STDP-rule from [42] and added synap-

tic scaling to prevent run-away potentiation due to repeated replays, which we encountered

without.

• Network size: For fast and efficient exploration, we reduced the number of neurons in the

network to 480.

• Inhibitory neurons: For simplicity and more efficient simulation, spiking threshold and con-

ductance decay have been adapted to the excitatory ones. To make up for the slower dynam-

ics, the fraction of inhibitory neurons has increased from 10% to 20% of the excitatory

neurons.

• Background input: Instead of Poisson inputs to each neuron, we use a fixed background cur-

rent and Gaussian white noise driving the membrane voltage to speed up simulation. Both

were tuned to obtain asynchronous irregular activity.

Results

We study the emergence of ripples and corresponding changes in connectivity in a recurrent

network model with active dendrites, spike-time dependent plasticity and synaptic scaling. As

our focus lies on the interplay between sleep-like activity and synaptic plasticity, we start our

simulations after learning and initialize our sequential memory as a potentiated feed-forward

structure in the network (Fig 1A and 1B), matching the one found in [42]. Hereby, two key

components are varied: On the one hand, we investigate networks with a periodic external

stimulation at the beginning of the feed-forward structure (sketched in Fig 1A), which suppos-

edly evokes activity propagation (i.e., replays), as well as networks without this stimulation, in

which replays can only emerge via the spontaneous activity of the network. This stimulation

may correspond to inputs from other brain areas that arise through typical activity in sleep,

but also to an optogenetic stimulation that has been used in some experiments [48, 49]. On the

other hand, we varied the excitability of the dendrites, which ultimately regulates how likely a

neuron spikes in response to an incoming spike and, thus, the likelihood that activity is propa-

gated in the feed-forward structure. For simplicity, we initially chose to investigate one low-

excitability and one high-excitability configuration in our simulations, which were chosen

such that the high-excitability network exhibits spontaneous replays of the sequential memory

represented by the feed-forward structure and the low one does not.

Thus, we investigate four network configurations: (i) low-excitability without stimulation

(orange in Fig 2), (ii) low-excitability with stimulation (red) (iii) high-excitability without

stimulation (blue) and (iv) a high-excitability with stimulation (green).

Temporal evolution of network activity with spontaneous and input-

evoked ripples

As a first step, we examined the neuronal activity before, during and after a sleep-like or rest

period in each of these configurations. For this, we first simulated a 30 s initialization period
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during which plasticity was switched off. Secondly, we observed the evolution of activities

when plasticity is switched on for 200 s, which we will refer to as the rest phase. Thirdly,

another 30 s phase without plasticity is simulated to gather activity statistics.

We first assessed the mean firing rates emerging for all neurons in the different networks

and find that both low-excitability configurations show similar low firing rates, whereas the

Fig 2. Ripple activity for spontaneous and stimulated replays. (A) Time-course of the mean firing rate for all neurons in different network configurations. (B-C)

Absolute value of continuous wavelet transform coefficient over relevant frequency range averaged over 30 s before (B) and after rest phase (C). Ripple frequency is

about 150 Hz. (D-F) Top panel: mean rates of feed-forward (gray) and inhibitory (red) neuron populations and all neurons (green). Middle panel: time-dependent

continous wavelet transform. Bottom panel: Spike raster-plots of the different configurations at different time points. Left: before rest phase; Middle: rest phase;

Right: after rest phase. Yellow boxes mark neurons with additional stimulation. (D) Low-excitability network with stimulation. (E) High excitability network

without stimulation. (F) High excitability network with stimulation.

https://doi.org/10.1371/journal.pcbi.1012218.g002
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stimulated ones retain a slightly elevated firing rate throughout and after the rest phase (Fig

2A). After plasticity is switched on, a drop in the activity in all networks occurs. This drop

could be an indication that the initialized feed-forward structure representing a freshly learned

memory is not completely stable. The unstimulated low-excitability network did not show

replay activities and also has no power in the corresponding ripple-frequency bands around

150 Hz (orange, Fig 2C), such that we did not further investigate this model variant. However,

examining the activities in the stimulated, low-excitability network on a finer scale (spike ras-

ter plots in Fig 2D), we observe a periodic replay activity in the network initialization phase,

which is likely due to the periodic stimulation and spans over the whole feed-forward structure

(grey area in Fig 2D, left, Fig A:A in S1 Appendix). At the beginning of the rest phase, we see

that the replay activity becomes sparser (Fig 2D, middle), while after the rest phase only the

stimulated neurons are periodically activated, but the activity does not propagate to the rest of

the feed-forward structure (Fig 2D, right, and 2A). Accordingly, the quality of sequence replays

declines strongly over time (Fig A:B in S1 Appendix).

Moreover, the decline in propagation also becomes visible in the frequency spectrum of

overall network activity (Fig 2C): Whereas initially, the stimulated low-excitability network

exhibits a peak in the ripple-associated frequencies around 150 Hz (left panel), this peak van-

ishes after the rest phase (right panel).

In contrast, the high-excitability networks show pronounced peaks for ripple frequencies

both during initialization and after the rest phase. In terms of the mean firing rate, the unsti-

mulated, high-excitability network exhibits a slightly lower rate during initialization but a

much larger drop during the rest phase. When assessing the activity of the unstimulated net-

work on a detailed level, we initially find frequent activity propagation along the feed-forward

structure (Fig 2E, left, and Fig A:C in S1 Appendix). In contrast to the stimulated networks,

this propagation starts spontaneously somewhere within the structure and propagates to the

end (see Fig A:C, panel i in S1 Appendix). These (partial) replays become sparser during the

rest phase (Fig 2E, middle and right), which also entails a decline in ripple frequency power

(Fig 2C). However, as the activity still propagates to the end of the feed-forward structure in a

temporally ordered fashion (Fig A:C in S1 Appendix), the quality of sequence replay remains

high (Fig A:D in S1 Appendix).

In comparison, the stimulated high-excitability network initially exhibits both complete

replays at the times of the periodic simulations as well as spontaneous replays that occur

between the input-evoked replays (Fig 2F, left). During the rest phase, these spontaneous

replays become sparser, while the evoked replays persist (Fig 2E, middle and right). In contrast

to the stimulated low-excitability network, the propagation of the activity keeps reaching the

end of the feed-forward structure, which explains the much higher mean firing rate. Hence,

the combination of spontaneous and input-evoked ripples leads to stable ripple propagation

along the feed-forward-structure inducing reliable replay. Yet, at the end of the rest phase,

activity seems to propagate to the end of the feed-forward structure much faster, by skipping

some neurons, such that the order of spiking does not correspond to the sequence anymore

(Fig A:E in S1 Appendix), which entails a decrease in replay quality (Fig A:F in S1 Appendix).

Taken together, we thus find that a high dendritic excitability aids the propagation of activ-

ity within the feed-forward structure and is a key factor for the emergence of spontaneous

sequence replays and, thus, ripple activity.

Restructuring of memory representations is different for spontaneous and

input-evoked ripples

In the next step we examine the evolution of the synaptic weights for different configurations.
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The initial feed-forward structure that represents a (sequential) memory was constructed

by mapping each neuron to a place field along a linear track and strengthening the connections

to neurons further down the track using a spatial-distance dependent kernel (Fig 1B, compare

Fig 3A–3C, green curves).

In the same way, we can average the weights of connections with neurons that have the

same spatial distance along the track and assess the resulting weight kernels after rest phase

(red curves). For the stimulated, low-excitability network, we find that the weights along the

feed-forward structure are strongly decreased (Fig 3A), explaining why a propagation of activi-

ties is not taking place anymore (Fig 2D, right). This also becomes evident when assessing the

weight change depending on the pre- and postsynaptic index (Fig 3D), in which the spatial dis-

tance between place cells corresponds to the distance to the main diagonal. We see that most

of the weight changes are negative and occur in the feed-forward structure—that is below the

main diagonal.

Overall, most synaptic weights in the stimulated, low-excitability network decrease over

time (Fig 3G), implying that the memory representation is lost.

In contrast, in the unstimulated high-excitability network, we find that connections to

close-by cells in the feed-forward structure remain at a higher level on average (Fig 3B).

Fig 3. Synaptic weight changes induced by rest phase for different network configurations. (A-C) Synaptic weights before (green curve and points) and after rest

phase (red curve and points) depending on the distance between place fields of post- and presynaptic neuron within the feed-forward structure. (D-F) Change of the

synaptic weights during the rest phase depending on pre- and postsynaptic neuron index. Neurons 100–300 represent the feed-forward structure with strong initial

synaptic weights above the main diagonal (dashed line). (G-I) Time courses for individual synaptic weights (initial weight indicated by trace color). Dashed lines mark

the threshold for non-linear dendritic integration.

https://doi.org/10.1371/journal.pcbi.1012218.g003
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When examining the individual weight changes, we find that the connections at these dis-

tances split into two populations, one of which is potentiated beyond its initial level,

whereas the other population decays. Accordingly, when examining the weight change

depending on pre- and postsynaptic neuron index, we find large positive and negative

changes close to the main diagonal, and mostly negative changes further away (Fig 3E). The

origin of the two population becomes evident, when examining the initial weight of the con-

nections: almost exclusively initially strong synapses being above a certain threshold (Fig

3H, dotted line) are potentiated, whereas those below the threshold decay. Thus, in the

unstimulated high-excitability case, only the strongest synapses of a memory are potentiated

by the rest phase and, thus, consolidated such that in the end a sparse backbone of the mem-

ory remains.

In the stimulated high-excitability network, on the other hand, a strong distinction in the

temporal evolution of initially weak or strong weights is missing (Fig 3I). Accordingly,

potentiated synapses can be found also for connections to more distant place fields (Fig 3C)

and, hence, further away from the main diagonal (Fig 3F). Whereas initially, mostly strong

synapses potentiate, also very weak synapses can undergo strong potentiation throughout

the rest phase. Thus, the feed-forward structure recruits and strengthens existing weak syn-

apses at larger distances, thereby making replay more reliable and speeding up the replay

(compare Fig 2F, middle and right; Fig A:E in S1 Appendix), which is in strong contrast to

the sparsification of the memory structure in the unstimulated network. The large distance

synapses, however, make the replay less ordered leading to a decrease of replay quality (Fig

A:F in S1 Appendix).

Intuitively, these phenomena can be explained by the fact that the synaptic weight deter-

mines the probability with which a postsynaptic neuron spikes after a presynaptic spike. Due

to the synaptic delays and the integration window of the active dendrites, a postsynaptic

spike that is being triggered this way, would have a temporal difference of around 6ms,

which entails synaptic potentiation according to the STDP rule (Fig 1C). Thus, the probabil-

ity of triggering such a postsynaptic spike regulates the balance between synaptic potentia-

tion and depression, which ultimately determines whether a synapse will grow or decay over

time. For the unstimulated, high-excitability network, most replays evolve from individual

spikes within the feed-forward structure. Hence, the postsynaptic spiking probability is

tweaked only by a single spiking presynaptic neuron and the weight of the respective connec-

tion and the initial weight of that connection essentially determines whether it is potentiated

or not. On the other hand, further down the feed-forward structure or in the stimulated case,

multiple presynaptic neurons may spike at the same time and collectively trigger a postsyn-

aptic spike, such that the potentiation of each individual synapse does not depend solely on

its initial weight.

Analysis of activity propagation and plasticity

To provide a better understanding of the influences of different parameters on observed net-

work dynamics, we study plasticity and the propagation of activity within the feed-forward

structure in a reduced model. We consider a single postsynaptic neuron, which receives input

from N presynaptic neurons that are located one “stage” further up the feed-forward structure

(Fig 4A). This model allows us to control all initial synaptic weights to the post-synaptic neu-

ron as well as the correlation in the firing of the presynaptic neurons.

We started with one presynaptic neuron and a single synapse. We quantified the influence

of both its starting weight and the dendritic excitability, as evaluated by the current threshold

for nonlinear dendritic activity on the final synaptic weight after 30 s. At low dendritic
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Fig 4. Results from a reduced model of plasticity dynamics in feed-forward structure. (A) Reduced model for studying parameter dependency of potentiation at a

single postsynaptic neuron within a feed-forward structure with N neurons at every stage. (B-C) Change in synaptic weight as measured by conductance g0 (color-coded)

of a single synapse with Poisson input with 5 Hz (B) or 10 Hz (D) for different initial weights (y-axis) and thresholds for non-linear dendritic integration (x-axis).

Potentiation is additionally highlighted with red bounding boxes. Green dashed lines highlight the dendritic thresholds for low and high excitability. (C) Number of

dendritic spikes within the simulations from panel B. Large weight changes occur only in the regimes where dendritic spikes are prevalent. The smallest weights for which

potentiation occurs increase for increasing dendritic thresholds. Above a certain initial weight, depression is observed, which can be attributed to synaptic scaling. Hence,

there is a stable fixed point at a high synaptic weight, corresponding to a consolidated connection. The transition between LTP and LTD occurs at smaller weights, when

cells are more active. (E-F) Dependency of weight change on initial weight (y-axis), correlation between pre-synaptic Poisson spike trains (x-axis) and the number of such

spike trains (columns, N indicated in title). For the conditions of the spontaneously active network (panel E), positive weight change occurs already for medium weights

and for small numbers of presynaptic neurons and small correlation, whereas networks with low excitability need higher correlations or weights (panel F).

https://doi.org/10.1371/journal.pcbi.1012218.g004
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thresholds, small weights undergo weak depression (Fig 4B), because there is almost no post-

synaptic spiking and, hence, no plasticity. Intermediate weights undergo potentiation

whereas very high weights undergo depression (Fig 4B). In more detail, when the weight is

strong enough to trigger postsynaptic firing, it will likely be potentiated by spike-timing

dependent plasticity. As non-linear dendritic integration facilitates post-synaptic firing, the

dendritic threshold has a strong influence on this. In particular, the minimal initial weight

that exhibits potentiation increases with the dendritic threshold. When tracking the fraction

of postsynaptic spikes that were preceded by a dendritic spike (Fig 4C), it becomes evident

that potentiation only occurs when the initial weight is strong enough to trigger dendritic

spikes. On the other hand, too strong weights will make the postsynaptic neuron fire too

often. In this case the weight will decrease due to synaptic scaling. Thus, as predicted analyti-

cally in [43], the quadratic weight dependence of our scaling rule entails a stable upper fixed

point for the synaptic weight. For spiking plasticity models, as used here, this stable fixed

point becomes a stationary value around which the weight fluctuates: while pre-post-spike

pairs slightly increases the weight, scaling decreases it in between. Fig 4B demonstrates, that

also for our model there is such a stationary value between 7.5 nS and 8 nS to which all suffi-

ciently strong synapses will converge (there is potentiation for initial weights below and

depression above this value). We also observe such an upper fixed point in the network simu-

lations with a slightly higher value (Fig 3H and 3I). Note, that this stationary value is inde-

pendent of the dendritic excitability. However, the fixed point vanishes when it lies below

the dendritic threshold (here between 7.27 nS and 8.72 nS). In that case, the synapse cannot

trigger dendritic or postsynaptic spiking and only decreases over time. When repeating the

simulation with an increased presynaptic rate, we obtain a slightly higher fixed point for the

weight (between 8 nS and 8.5 nS; Fig 4D) in agreement with the above described analytical

results [43]. The lower boundaries for potentiation are again determined by the dendritic

excitation and not affected by the higher input rate.

We conclude that the potentiation of memories in feed-forward structures, where each

postsynaptic neuron receives only inputs from one presynaptic one, strongly depends on the

initial synaptic weight. Feed-forward structures, where each neuron only connects to one

active presynaptic neuron will only potentiate high initial weights whereas connections with

low weights decay, such that the memory representation becomes sparser. This is likely the

case in the (unstimulated) high-excitability network.

However, as explained above, the feed-forward structures entail that there are often multi-

ple presynaptic neurons that can be expected to fire at the same time or at least in a correlated

manner. To investigate the influence of such correlated firing, we again selected two distinct

dendritic sensitivities (Fig 4, green dashed regions), and vary the number of presynaptic neu-

rons as well as the (instantaneous) correlation of their spike-trains along with the initial

weight. We then evaluated the average weight change of the respective synapses. Here, with

increasing number of presynaptic inputs, the correlation and the initial synaptic weights that

trigger potentiation can be smaller (Fig 4E and 4F). This is explainable by the fact that den-

dritic spiking is determined by the in-flowing current in a short time interval and hence only

depends on the product of weight and number of synchronously arriving spikes, whereas the

expectation value of the latter is the product of the correlation and the number of inputs. As a

consequence, feed-forward structures where each neuron connects to multiple synchronously

active presynaptic neurons can potentiate (consolidate) also small synapses. As the external

stimulation introduces such synchronous firing right from the start of a replay sequence, the

stimulated high-excitability network potentiated a broad range of synapses and, thereby,

strengthens its feed-forward structure.
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Transient increase in dendritic excitability reshapes and stabilizes

memories

Taken together, the above results show that reliable activity propagation and related synaptic

potentiation are possible for enhanced dendritic excitability, but also for a lower dendritic

excitability in combination with strong synaptic weights. This fits well with the hypothesis that

memories are primed for consolidation by a transient increase of dendritic excitability after

learning [24]: Such a transient increase—maybe in combination with external stimulation—

could potentiate and strengthen a freshly learned feed-forward-structure further such that it

will afterwards have sufficiently strong weights to exhibit spontaneous replays and, thus,

remain potentiated after the dendritic excitability returns to its normal level (Fig 5A–5D).

We tested this in a simulation with three phases: First, we run the network for 200 s with

enhanced dendritic excitability and stimulation. As expected, we observe further strengthening

and the potentiation of weak synapses within the feed-forward structure during this phase (Fig

5F and 5G). Second, we switch off the stimulation and run the network for another 200 s.

Here, strong synapses are further strengthened, whereas intermediate and small weights decay

(Fig 5F and 5H). Finally, we also decrease the dendritic excitability back to normal, low values.

Whereas a few more synapses are decaying, the majority of synapses remains strong for

another 200 s (Fig 5F and 5G). In contrast, when assessing the evolution of the initial feed-for-

ward structure under normal dendritic excitability without the first two phases (Fig 5E), all

weights decay. Hence, the transient increase in dendritic excitability (and the external stimula-

tion) can indeed make a memory strong enough to undergo spontaneous reactivations and

remain stable throughout the third phase. Thus, phases with enhanced dendritic excitability

contribute to restructuring the memory and stabilize or rather consolidate it.

Discussion

In summary, we have shown that fast replays of a sequential memory encoded by a feed-for-

ward structure can lead to different patterns of synaptic plasticity, where the excitability of

nonlinear dendrites plays a strong role. Dendrites with low excitability entail less reliable prop-

agation of activity through the feed-forward structure, which, in turn, leads to a depression

and decay of the weights of the memory—that is, no consolidation. When the dendritic excit-

ability is high, memories can be consolidated, but in qualitatively different ways depending on

external stimulation. On the one hand, without external stimulation, a backbone of the feed-

forward structure with the strongest weights is further potentiated, such that a sparser repre-

sentation of the memory emerges. This can be considered as a minimal and most energy-effi-

cient representation that enables a reliable sequence replay. On the other hand, with external

stimulation present, also small weights as well as connections to cells further “down” the

sequence are potentiated, which can be interpreted as a form of generalization of the sequential

memory. Note that this generalization goes along with a loss of temporal information as com-

pared to the original memory. In the most extreme case, a spiking in a group of neurons trig-

gers all neurons further down the sequence at once. Accordingly, there is a strong decline in

quality of temporal structure of replays (Fig A:F in S1 Appendix). Hence, to preserve memory

structure, consolidation by spontaneous replays is more optimal. In general, temporal struc-

ture is expected to be preserved when spikes of neurons with far separated receptive fields do

not coincide within the potentiation window of the STDP-rule. In the stimulated case, this

could be achieved by temporally very constrained stimulation that triggers only one volley of

synchronous spikes that propagates through the structure (comparable to the test-pulses in Fig

A in S1 Appendix, see [42] for an analysis).
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In most computational models, replay relies on some form of stimulation and naturally

stops as soon as the stimulation ceases. The spontaneous replays in our model would continue

and need to be suspended when processing new experiences during wakefulness. This could

happen through increased inhibition due to the ongoing processing, decreased neural (or den-

dritic) sensitivity [50], or a decreased strength of the excitatory connectivity (e.g., due to neu-

romodulation, [51]).

As an explanation for the different consolidation behavior in the different cases, we demon-

strated that activity propagation and plasticity strongly depend on the dendritic excitability as

Fig 5. Hypothesized progression in the consolidation of episodic memories. (A-D) Schematic of the proposed progression: Immediately after learning (panel B),

dendrites become more excitable (red circles) and external stimulation triggers replays (lightning symbol), such that also weak, memory-related synapses are

potentiated. Later-on, the external stimulation ceases (panel C), but dendrites still have enhanced dendritic excitability, such that all sufficiently strong synapses

continue to grow. Finally dendritic excitability decreases, but the feed-forward structure is sufficiently potentiated to still spontaneously reactivate and, thereby,

maintain strong synaptic weights. (E) Time-evolution of synasptic weights without stimulation or enhanced dendritic excitability. All weights decay. (F) Time

evolution of synaptic weights in a network undergoing the progression in panels A-D. After transient stimulation and enhanced dendritic excitability, the memory is

strong enough to sustain itself. Solid grey lines indicate transition between phases whereas dashed grey lines mark the dendritic spiking threshold of the respective

phase. (G-I) The weights after the different phases in B-D mapped to the distance between the pre- and postsynaptic neurons place-field. The feed-forward nature is

preserved.

https://doi.org/10.1371/journal.pcbi.1012218.g005
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well as on the number and the correlation of presynaptic neurons at the previous “stage” of the

feed-forward structure (Fig 4). Although the correlations considered in our reduced model are

very high, it is conceivable that such high correlations can be reached through common input

of these cells. Also, gap junctions between groups of excitatory neurons could enhance corre-

lated firing [33–35, 52]. Moreover, it can be expected that each “stage” of the feed-forward

structures in the brain comprises a much larger amount of neurons, such that small synapses

may be recruited even at much lower correlations.

In our model, sequence replay and memory consolidation only emerge when the dendritic

non-linearity can be triggered by a few or even one (for the unstimulated model) strong synap-

tic inputs. In particular, our model synapses converge to 10 nS, which seems very large as com-

pared to experimentally observed values, e.g. in CA1 [53]. In our model, the value of these

stationary weights could be decreased by a weaker STDP-contribution or stronger synaptic

scaling [43]. In that case activity propagation would still be possible if neurons were more sen-

sible. One possibility we investigated here (Fig 4) would be lower thresholds for dendritic spik-

ing. Moreover, the integration window for active dendrites could be increased up to 3 ms [54],

which would increase the responsiveness to correlated, but temporally spread-out inputs.

Additionally, also the membrane potential might (on average) be closer to the firing threshold,

rendering the neuron more sensitive to synaptic inputs. Interestingly, a recent biophysical

study [55] provided evidence that the latter is indeed the case in vivo, where dendrites receive a

lot of background input. Thus, assuming that our model represents only part of the the hippo-

campal network with all other neurons subsumed into the background currents and the den-

dritic non-linearity, the derived requirements for consolidation may indeed be fulfilled in

biological networks. Furthermore, also homeostatic processes that down-regulate neural firing

rate may be suspended during sleep ([50], but see [56, 57]) for evidence on sleep homeostasis),

which would make the neurons even more prone to firing. Moreover, in many cases neurons

are connected by multiple contacts [58–63], which would be subsumed under a single, but

much stronger synapse in our model (for an explicit implementation see [52]) and have a even

higher chance to trigger non-linear dendritic integration. Thus, in summary a strong influence

of a single synapse on dendritic and neuronal firing is indeed biologically plausible.

We also found that the propagation of activity through the feed-forward structure is facili-

tated by the synchronous firing of multiple neurons at each “stage” of a feed-forward structure.

Similar results have been obtained in multitude of previous modeling studies [40, 64–67]. It

can be expected that in a larger networks with larger feed-forward structrures, the number of

synchronous neurons per stage increases, which in turn decreases the synaptic weighs required

for activity propagation which were discussed above. Along this line, especially in random net-

works, active dendrites seem to foster the propagation of synchronous firing [68, 69]. Note

that connections may in general be distributed over multiple dendritic arbors such that our

model with its single dendritic compartment overestimates the amount of coincident inputs.

Yet, on the long run, synapses can reorganize [70], and coactive synapses can be expected to

cluster at the same dendrite (see, e.g. [71, 72]) exploiting local cooperative plasticity mecha-

nisms (see, e.g., [73, 74]).

Our results now relate the mode of activity propagation to properties of the consolidated

memory predicting that input-induced replays will lead to a generalized and strengthened

memory representation that recruits and strengthens initially weak synapses during consolida-

tion. Moreover, replays that are induced by an input at the beginning of the feed-forward

structure, propagate through the whole structure and are, thus, more long-lasting than sponta-

neous replays which can start anywhere in the feed-forward structure. Strikingly, experiments

show that longer replays are crucial for memory consolidation shortly after learning [49].

Thus, input-driven replays may be more prevalent shortly after learning, when additional,
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initially weak synapses need to be allocated to the memory. Eventually, however, the input

stimulation for the respective feed-forward structure may decrease. In that case, our model

predicts that the memories evolve towards a sparser, and thus more energy-saving representa-

tion. Such a sparsification may correspond to forgetting certain details and abstracting a mem-

ory to its gist, which is well known effect of sleep [75].

We therefore propose that the different synaptic plasticity dynamics that we found for dif-

ferent stimulations and dendritic excitability all contribute to the evolution and maintenance

of a memory in different phases as both are transiently increased after learning. This is in line,

both with the idea that dendritic excitability primes memories for consolidation [24] as well as

findings that hippocampal memory is becoming independent of input only over time [76]. We

tested this idea in an example setting with three phases with different dendritic excitability and

external stimulation and showed that the memory was consecutively stabilized and general-

ized, then sparsified and pruned, and finally remained stable under basal conditions.

Thus, in summary, our model predicts that dendritic excitability and external stimulation

jointly control replay activity during rest phases and their transient increase after learning can

lead to functionally different phases of memory reorganization.

The model we used to obtain these results has been based on and extended from [42],

which had been proposed to resemble CA1. The model components are hereby not as biologi-

cally detailed as possible, but instead the model is formulated such that it accounts for replay

and ripple-like activity, but contains a reasonable mathematical complexity enabling simula-

tions for variable cases. Along this line, the main components required for this kind of activity

are (i) a mechanism that fosters activity propagation along a sequence of neurons—here the

non-linear dendritic integration—and (ii) the excitatory couplings between the cells that can

encode the sequence memory. Concerning the latter, experiments show that excitatory con-

nections between pyramidal neurons in CA1 are far less abundant than the connection proba-

bilities assumed in the model ([53, 77], but see [78]). Yet, the network model used here and in

[42] only represents a sub-sample of the actual network. Therefore, to observe large connected

sub-networks (e.g., feed-forward structure), that are present in large networks with smaller

connection probability by chance, higher connection probabilities must be used in the model.

On the other hand, the model is abstract enough to be applied to other networks such as CA3,

which has abundant recurrent connections [79] and is also known to be able to generate ripple

activity [7, 80–82] and sequential replays [81]. Moreover, also CA3 exhibits fast dendritic

sodium [83] as well as NMDA spikes [84]. Therefore, it is conceivable, that the mechanisms

discussed here can be observed in CA3 with external inputs arising from dentate gyrus [85] or

entorhinal cortex [7].
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8. Girardeau G, Benchenane K, Wiener S, Buzsáki G, Zugaro M. Selective suppression of hippocampal

ripples impairs spatial memory. Nature Neuroscience. 2009; 12:1222–1223. https://doi.org/10.1038/nn.

2384 PMID: 19749750

9. Barnes DC, Wilson DA. Sleep and olfactory cortical plasticity. Frontiers in Behavioral Neuroscience.

2014; 8. https://doi.org/10.3389/fnbeh.2014.00134 PMID: 24795585

10. Sadowski JHLP, Jones MW, Mellor JR. Sharp-Wave Ripples Orchestrate the Induction of Synaptic

Plasticity during Reactivation of Place Cell Firing Patterns in the Hippocampus. Cell Reports. 2016; 14

(8):1916–1929. https://doi.org/10.1016/j.celrep.2016.01.061 PMID: 26904941

11. Norimoto H, Makino K, Gao M, Shikano Y, Okamoto K, Ishikawa T, et al. Hippocampal ripples down-

regulate synapses. Science. 2018; 359(6383):1524–1527. https://doi.org/10.1126/science.aao0702

PMID: 29439023

12. Buzsáki G, Lai-Wo S L, Vanderwolf CH. Cellular bases of hippocampal EEG in the behaving rat. Brain

Research Reviews. 1983; 6(2):139–171. https://doi.org/10.1016/0165-0173(83)90037-1 PMID:

6357356
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61. Feldmeyer D, Lübke J, Sakmann B. Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyrami-

dal cells in the barrel cortex of juvenile rats. J Physiol. 2006; 575(Pt 2):583–602. https://doi.org/10.1113/

jphysiol.2006.105106 PMID: 16793907

62. Hardingham NR, Hardingham GE, Fox KD, Jack JJB. Presynaptic efficacy directs normalization of syn-

aptic strength in layer 2/3 rat neocortex after paired activity. J Neurophysiol. 2007; 97(4):2965–2975.

https://doi.org/10.1152/jn.01352.2006 PMID: 17267749

63. Fares T, Stepanyants A. Cooperative synapse formation in the neocortex. Proceedings of the National

Academy of Sciences. 2009; 106(38):16463–16468. https://doi.org/10.1073/pnas.0813265106 PMID:

19805321

64. Gewaltig MO, Diesmann M, Aertsen A. Propagation of cortical synfire activity: survival probability in sin-

gle trials and stability in the mean. Neural networks. 2001; 14(6-7):657–673. https://doi.org/10.1016/

S0893-6080(01)00070-3 PMID: 11665761

65. van Rossum MC, Turrigiano GG, Nelson SB. Fast propagation of firing rates through layered networks

of noisy neurons. Journal of neuroscience. 2002; 22(5):1956–1966. https://doi.org/10.1523/

JNEUROSCI.22-05-01956.2002 PMID: 11880526

66. Kumar A, Rotter S, Aertsen A. On the propagation of firing rate and synchrony in a model of cortical net-

work. BMC Neuroscience. 2008; 9(1):1–2.

67. Bouhadjar Y, Wouters DJ, Diesmann M, Tetzlaff T. Sequence learning, prediction, and replay in net-

works of spiking neurons; 2021.

68. Jahnke S, Timme M, Memmesheimer RM. Guiding synchrony through random networks. Physical

Review X. 2012; 2(4):041016. https://doi.org/10.1103/PhysRevX.2.041016

69. Jahnke S, Memmesheimer RM, Timme M. Propagating synchrony in feed-forward networks. Frontiers

in Computational Neuroscience. 2013; 7:153. https://doi.org/10.3389/fncom.2013.00153 PMID:

24298251

70. Fauth M, Tetzlaff C. Opposing effects of neuronal activity on structural plasticity. Frontiers in Neuroanat-

omy. 2016; 10:75. https://doi.org/10.3389/fnana.2016.00075 PMID: 27445713

71. Yang G, Lai CSW, Cichon J, Ma L, Li W, Gan WB. Sleep promotes branch-specific formation of den-

dritic spines after learning. Science. 2014; 344(6188):1173–1178. https://doi.org/10.1126/science.

1249098 PMID: 24904169

72. Fu M, Yu X, Lu J, Zuo Y. Repetitive motor learning induces coordinated formation of clustered dendritic

spines in vivo. Nature. 2012; 483(7387):92–95. https://doi.org/10.1038/nature10844 PMID: 22343892

73. Fauth M, Wörgötter F, Tetzlaff C. The formation of multi-synaptic connections by the interaction of syn-

aptic and structural plasticity and their functional consequences. PLoS computational biology. 2015; 11

(1):e1004031. https://doi.org/10.1371/journal.pcbi.1004031 PMID: 25590330

74. Kastellakis G, Poirazi P. Synaptic clustering and memory formation. Frontiers in molecular neurosci-

ence. 2019; 12:300. https://doi.org/10.3389/fnmol.2019.00300 PMID: 31866824

75. Feld GB, Born J. Sculpting memory during sleep: concurrent consolidation and forgetting. Current Opin-

ion in Neurobiology. 2017; 44:20–27. https://doi.org/10.1016/j.conb.2017.02.012 PMID: 28278432

76. Nakashiba T, Buhl DL, McHugh TJ, Tonegawa S. Hippocampal CA3 Output Is Crucial for Ripple-Asso-

ciated Reactivation and Consolidation of Memory. Neuron. 2009; 62(6):781–787. https://doi.org/10.

1016/j.neuron.2009.05.013 PMID: 19555647

77. Knowles WD, Schwartzkroin PA. Local circuit synaptic interactions in hippocampal brain slices. Journal

of Neuroscience. 1981; 1(3):318–322. https://doi.org/10.1523/JNEUROSCI.01-03-00318.1981 PMID:

7264721

78. Yang S, Yang S, Moreira T, Hoffman G, Carlson GC, Bender KJ, et al. Interlamellar CA1 network in the

hippocampus. Proceedings of the National Academy of Sciences. 2014; 111(35):12919–12924. https://

doi.org/10.1073/pnas.1405468111 PMID: 25139992

79. Debanne D, Guerineau N, Gahwiler BH, Thompson SM. Physiology and pharmacology of unitary syn-

aptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures.

PLOS COMPUTATIONAL BIOLOGY Consolidation by spontaneous and evoked ripples in the presence of active dendrites

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012218 June 25, 2024 21 / 22

https://doi.org/10.1113/jphysiol.1997.sp022031
http://www.ncbi.nlm.nih.gov/pubmed/9147328
https://doi.org/10.1111/j.1469-7793.1999.00169.x
http://www.ncbi.nlm.nih.gov/pubmed/10562343
https://doi.org/10.1113/jphysiol.2001.012959
https://doi.org/10.1113/jphysiol.2001.012959
http://www.ncbi.nlm.nih.gov/pubmed/11826166
https://doi.org/10.1113/jphysiol.2006.105106
https://doi.org/10.1113/jphysiol.2006.105106
http://www.ncbi.nlm.nih.gov/pubmed/16793907
https://doi.org/10.1152/jn.01352.2006
http://www.ncbi.nlm.nih.gov/pubmed/17267749
https://doi.org/10.1073/pnas.0813265106
http://www.ncbi.nlm.nih.gov/pubmed/19805321
https://doi.org/10.1016/S0893-6080(01)00070-3
https://doi.org/10.1016/S0893-6080(01)00070-3
http://www.ncbi.nlm.nih.gov/pubmed/11665761
https://doi.org/10.1523/JNEUROSCI.22-05-01956.2002
https://doi.org/10.1523/JNEUROSCI.22-05-01956.2002
http://www.ncbi.nlm.nih.gov/pubmed/11880526
https://doi.org/10.1103/PhysRevX.2.041016
https://doi.org/10.3389/fncom.2013.00153
http://www.ncbi.nlm.nih.gov/pubmed/24298251
https://doi.org/10.3389/fnana.2016.00075
http://www.ncbi.nlm.nih.gov/pubmed/27445713
https://doi.org/10.1126/science.1249098
https://doi.org/10.1126/science.1249098
http://www.ncbi.nlm.nih.gov/pubmed/24904169
https://doi.org/10.1038/nature10844
http://www.ncbi.nlm.nih.gov/pubmed/22343892
https://doi.org/10.1371/journal.pcbi.1004031
http://www.ncbi.nlm.nih.gov/pubmed/25590330
https://doi.org/10.3389/fnmol.2019.00300
http://www.ncbi.nlm.nih.gov/pubmed/31866824
https://doi.org/10.1016/j.conb.2017.02.012
http://www.ncbi.nlm.nih.gov/pubmed/28278432
https://doi.org/10.1016/j.neuron.2009.05.013
https://doi.org/10.1016/j.neuron.2009.05.013
http://www.ncbi.nlm.nih.gov/pubmed/19555647
https://doi.org/10.1523/JNEUROSCI.01-03-00318.1981
http://www.ncbi.nlm.nih.gov/pubmed/7264721
https://doi.org/10.1073/pnas.1405468111
https://doi.org/10.1073/pnas.1405468111
http://www.ncbi.nlm.nih.gov/pubmed/25139992
https://doi.org/10.1371/journal.pcbi.1012218


Journal of Neurophysiology. 1995; 73(3):1282–1294. https://doi.org/10.1152/jn.1995.73.3.1282 PMID:

7608771
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