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Abstract

The apicomplexan intracellular parasite Toxoplasma gondii is a major food borne pathogen

that is highly prevalent in the global population. The majority of the T. gondii proteome

remains uncharacterized and the organization of proteins into complexes is unclear. To

overcome this knowledge gap, we used a biochemical fractionation strategy to predict inter-

actions by correlation profiling. To overcome the deficit of high-quality training data in non-

model organisms, we complemented a supervised machine learning strategy, with an unsu-

pervised approach, based on similarity network fusion. The resulting combined high confi-

dence network, ToxoNet, comprises 2,063 interactions connecting 652 proteins. Clustering

identifies 93 protein complexes. We identified clusters enriched in mitochondrial machinery

that include previously uncharacterized proteins that likely represent novel adaptations to

oxidative phosphorylation. Furthermore, complexes enriched in proteins localized to secre-

tory organelles and the inner membrane complex, predict additional novel components rep-

resenting novel targets for detailed functional characterization. We present ToxoNet as a

publicly available resource with the expectation that it will help drive future hypotheses within

the research community.

Author summary

Toxoplasma gondii is a food-borne parasite that chronically infects 1 in 3 worldwide. It

can cause blindness in children and is life-threatening during pregnancy and to those

with compromised immune systems. During infection, Toxoplasma relies on the coordi-

nation of suites of proteins that allow it to invade host cells and persist. In this study we

combined a sophisticated biochemical separation platform with a novel machine learning
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strategy to build a global roadmap that describes how parasite proteins work together as

molecular machines to help drive infection. Our roadmap, which we term ToxoNet,

details 2,063 connections between 652 proteins. These include proteins representing para-

site-specific innovations that help Toxoplasma perform essential functions such as the

generation of energy. Further, in addition to capturing proteins already implicated in host

cell invasion pathways, we identified many additional components of these pathways that

represent novel targets for future drug development strategies.

Introduction

Toxoplasma gondii, the causative agent of toxoplasmosis, is an apicomplexan intracellular par-

asite of biomedical importance, estimated to infect 30% of the world’s population [1]. It is the

leading cause of infectious retinitis in children and is life-threatening in pregnancy and to the

immunocompromised [2–4]. Despite its impact, viable vaccines have yet to be developed and

few treatments are available. Further, resistance to front line drugs (sulfonamides) is emerging

[5]. Able to form tissue-cysts, Toxoplasma exhibits a heteroxenous lifestyle, with a sexual phase

occurring in the intestinal epithelium of cats and an asexual phase capable of infecting any

nucleated cell of any warm-blooded animal. To fulfil its life cycle, Toxoplasma is exquisitely

adapted to exploit its hosts. For example, to invade its hosts requires specialized processes that

mediate host cell attachment, penetration and modulation of host pathways that prevent para-

site clearance. Driving this process are hundreds of invasion-related proteins and complexes,

that directly impact virulence [6–13]. Key systems include the inner membrane complex

(IMC) which drives motility and cell division [14], SAG-1 related sequence (SRS) proteins

which are parasite surface receptors involved in host cell recognition and attachment [13,15],

microneme proteins, that are also involved in gliding motility and host cell attachment [16],

and dense granule and rhoptry proteins which are secreted during and after host cell invasion

to both help the parasite enter the host cell and modulate host cell behaviour subsequently

[17–21]. Genome analyses of Toxoplasma strains, exhibiting different virulence phenotypes,

reveal many of the genes encoding these proteins exhibit significant genetic variation [9]. To

better understand the involvement of these genes in pathways driving host cell invasion, a

number of approaches such as protein microarrays [22], CRISPR screens [23], phosphopro-

teome analysis [24,25], coexpression analysis [6] and metabolic modeling [26] have been

applied to reveal the contribution of many of these proteins to pathogenesis. However, infor-

mation on how these proteins are organized into physical protein complexes is lacking. Such

an understanding is important as it allows functions to be ascribed to otherwise uncharacter-

ized proteins through guilt by association [27], as well as providing mechanistic insights into

how proteins are coordinated to perform specialized biological processes.

Over the past two decades, a number of methods have been developed to help elucidate the

physical protein-protein interactions that define protein complexes, including yeast two-

hybrid (Y2H) screens [28], affinity purification mass spectrometry (AP-MS) [29], spatially

restricted enzyme labelling techniques (e.g. BioID [30] and APEX [31]), phage display [32]

and protein microarrays [33]. For example, in high throughput applications, AP-MS has been

applied to generate large scale maps of protein-protein interactions for both yeast and E. coli,
each comprising hundreds of protein complexes [34,35]. However such approaches are labor

intensive and expensive, requiring the generation of thousands of cell lines carrying tagged

gene constructs. Instead, biochemical cofractionation (or coelution) [36,37], has emerged as

an efficient and effective route for elucidating protein complexes in a near native
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pathophysiological context. In a typical application, native protein lysates are separated into

hundreds of biochemical fractions, each subjected to shotgun proteomics. Coeluting proteins

identified in the same fractions are then considered to form stable interactions. Applying this

approach on a global-scale has resulted in the recovery of hundreds of stably associated soluble

protein complexes for humans [36] and metazoans [37]. More recently, this strategy has been

applied to generate smaller sets of complexes for Trypanosoma brucei [38,39] and Plasmodium
[40]. Since coelution can result in protein pairs that do not physically associate (false positive

interactions), rigorous computational scoring procedures that integrate additional supporting

functional association evidence (e.g. based on expression profiles or literature evidence) are

required to increase the overall quality of the predicted interactions.

In this study, we applied a stringent coelution strategy to generate the first genome-scale

physical protein interaction network for T. gondii. Based on biochemical coelution data, we

apply a novel computational strategy, to integrate additional functional genomics data, includ-

ing orthogonal coexpression, phylogenetic profiles and known domain-domain interactions.

Since non-model organisms often lack the depth of known protein complexes of model organ-

isms, required for training supervised machine learning approaches, we complement an

approach based on a Random Forest classifier, with an unsupervised approach based on Simi-

larity Network Fusion (SNF) [41], which provides superior performance than random in the

absence of suitable training data. Together this pipeline yielded a combined network of 3,753

interactions capturing 792 proteins which was further filtered to obtain a combined high con-

fidence network of 2063 interactions connecting 652 proteins. We partitioned this network to

define distinct protein complexes including assemblies that have previously been character-

ized, as well as novel macromolecules involving invasion proteins that represent novel targets

for detailed functional characterization.

Results

Coelution profiling coupled with supervised machine learning

recapitulates known protein complexes

This study is the first effort to generate a genome-wide protein-protein interaction network

for the apicomplexan parasite Toxoplasma gondii, using a biochemical coelution approach,

augmented by the integration of functional genomics datasets. To generate coelution profiles

for T. gondii, ME49 tachyzoites were harvested from human foreskin fibroblasts, and subject

to six biochemical fractionation experiments: five using beads featuring different surface

chemistries for selective enrichment of different proteins followed by standard HPLC separa-

tion [42], and one using high performance mixed-bed IEX (Fig 1A and S1 Table), resulting in

in the collection of 60 fractions from each of the five beads and 120 fractions from IEX for a

total of 420 fractions. Consistent with previous co-elution studies involving parasites [38,39],

by focusing on a diverse fractionation strategy involving six complementary experiments, we

aimed to maximize the number of proteins recovered. We appreciate that the six experiments

do not represent true biological replicates, however previous co-elution studies have shown

replicates to be highly reproducible [43]. Furthermore through using the same lysate for each

bead elution, our strategy offers the potential to capture the same protein interactions across

multiple experiments. The proteins in each fraction are proteolytically cleaved into peptides,

which were subsequently identified by precision mass spectrometry (LC-MS) at an estimated

false discovery rate of 5%, yielding a total of 1,423 unique T. gondii proteins or which 187 were

common to all six fractionations (S2 Table). One-half of these proteins are annotated with

Gene Ontology (G.O.) terms [44], while another one-third are defined as ‘hypothetical pro-

teins’ (Fig 1B). Notably, we identified 105 invasion related proteins, including 17 IMC
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Fig 1. Network generation, statistics and overview analyses. (A) An outline of the methodology employed in this study

for generating the predicted T. gondii network. In six separate elution experiments, involving five bead purifications and

one from whole cell lysate, we generated a total of 420 fractions. Utilizing six complementary scoring schemes (see

Materials and Methods), a total of 45 coelution similarity scores were calculated. In a supervised machine learning

approach, of the 45 coelution similarity scores, 28 were deemed informative for predicting interactions (S3 Table) and
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proteins, 9 rhoptry neck proteins (RONs), 17 microneme proteins (MICs), 27 rhoptry proteins

and 35 dense granule proteins (GRAs). Although ~400 proteins were identified at relatively

low abundances (in terms of total spectral counts), ~1000 proteins were robustly identified

with�5 spectral counts, implying substantive abundance (Fig 1C). To ensure we include only

proteins with reliable identifications in our analyses, during generation of the protein-protein

interaction networks, as detailed below, we removed proteins with less than five spectral

counts.

To define interactions between these proteins, the coelution profiles were used to generate

six complementary coelution similarity scores capturing each possible coeluting protein pair

per experiment: Pearson correlation coefficient with noise modeling (PCCNM); weighted

cross-correlation (WCC); co-apex; mutual information; topological overlap similarity based

on PCCNM; and topological overlap similarity based on WCC (S3 Table)(see Methods for

detailed description). These scoring schemes were calculated individually for the 6 experi-

ments and then once more for the elution profiles combining all experiments, which generated

a more informative profile for proteins coeluting consistently in multiple experiments. In all, a

set of 45 coelution similarity scores were used to define overlaps in coelution profiles. Given

that certain proteins can elute together by chance, rather than due to physical association, we

next integrated additional functional genomics datasets as a filter to define functional geno-

mics scores. These included two scoring schemes based on gene-coexpression datasets [6]; two

scoring schemes based on phylogenetic profile datasets [45]; a single scoring scheme based on

domain-domain interactions [46]; and two scoring schemes based on the STRING database

[47] within a supervised machine learning framework (RandomForest–see Methods). For

training purposes, we used a gold standard set of positive interactions curated from ortholo-

gues of known protein complexes collected from the CORUM [48] and Cyc2008 [49] data-

bases, together with interactions inferred from the Toxocyc resource [50] and G.O

annotations [51] (S4 Table). Gold standard negative interactions were generated based on dif-

ferences in cellular localization (see Methods). Out of a total of 52 scores, feature selection

identified 33 to be informative (S3 Table). Of these, 28 correspond to coelution similarity

scores and 5 to functional genomics scores. Notably, scores obtained from the STRING data-

base were not informative, likely due to their relatively low representation in the dataset, and

were therefore not considered further. Based on the 33 of the 52 scores identified by feature

selection, we used 10-fold cross validation to show integration of these scores with functional

genomics profiles using the RandomForest classifier yielded the best performance

(AUC = 0.806; Fig 1D). This compares to the best performing individual dataset (coelution

scores only; AUC = 0.722) or the combination of all functional genomics datasets (AUC of

0.749). Furthermore, precision-recall curves reveal that the combination of coelution and

functional genomics datasets contributes to the highest recall and precision in contrast to

using either coelution data alone or only the functional genomics data (S1 Fig). Using this

RandomForest classifier, a test set of 174455 protein pairs with biochemical support

integrated with five functional genomics scores to generate a supervised network. In a separate unsupervised approach, we

combined three coelution similarity scores, with three functional genomics scores to generate an unsupervised (fused)

network. (B) Functional characterisation of the proteins identified by coelution in this study (with� 5 spectral counts),

with special reference to invasion clusters. (C) Distribution of protein abundance for cofractionated proteins. The red

dashed line indicates the cutoff for filtering proteins with low spectral counts. (D) Receiver operating characteristic (ROC)

curve for supervised machine learning using RandomForest. The RandomForest output corresponding to a false positive

rate of ~0 and true positive rate of ~0.3 on the graph (indicated using a *—value of 0.57) was used as the cutoff for

selecting the high confidence network. (E) Network statistics of the combined network and combined high confidence

network, with a breakup into supervised and unsupervised networks for the full network. (F) The predicted protein-

protein interaction network of T. gondii.

https://doi.org/10.1371/journal.pcbi.1012208.g001
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(corresponding to a coelution similarity score�0.5 in at least one of the experiments) were

evaluated. The resulting predictions were further pruned to remove: i) pairs involving proteins

with a spectral count of< 5 (to remove spurious correlations arising out of low abundance)

and ii) pairs involving proteins which do not contain any unique peptides distinguishing

between the pair.

Based on the set of pairs predicted to be interacting according to the RandomForest analysis

(corresponding to a Random Forest score�0.5), our approach yielded a network comprising

2,833 interactions between 730 proteins. From these, we applied a RandomForest prediction

score cutoff of 0.57 (corresponding to the lowest false positive rate (~0) on the ROC plot, as

indicated by a * in Fig 1D) to further define a higher quality dataset comprising 1,541 interac-

tions between 549 proteins (S2 Fig and S5 Table). It should be noted that although the FPR of

0 associated with the selected cutoff appears to be highly stringent, this rate only applies to the

training set and does not preclude the presence of false positives in our predictions. This net-

work segregates proteins associated with invasion from known complexes and functional

interactions conserved across organisms. Moreover, as expected, the supervised network reca-

pitulates many known complexes including the proteasome, the ribosome, and a snRNP com-

plex, demonstrating its ability to capture features in the training datasets (S2 Fig). It also

recapitulates previously reported interactions in T. gondii, including MIC1-MIC4-MIC6 [52],

ROP5-ROP18 [53], GRA2-GRA4-GRA6 [54].

Applying an unsupervised machine learning approach identifies additional

protein-protein interactions not captured by the supervised approach

A major challenge for inferring protein interactions for non-model organisms is the lack of

comprehensive datasets of previously characterized complexes that can serve as training data

for more sophisticated machine learning algorithms. To overcome this challenge, we explored

an unsupervised machine learning approach, termed Similarity Network Fusion (SNF) [41], to

predict protein interactions in the absence of training data (Fig 1A). In this approach, the

same scores as used for the supervised approach are used to construct 7 individual networks,

based on combinations of three scoring schemes for coelution data (PCCNM, WCC, Coa-

pex1), two scoring schemes for coexpression datasets (COEXPR-RS, COEXPR-MA), and two

scoring schemes for phylogenetic profiles (MI-Pij, MI-PresAbs) (see Methods for more

details). Networks are then fused using a method based on message-passing theory to identify

interactions supported by multiple datatypes, eliminating poorly supported interactions and

strengthening interactions supported by multiple datatypes.

We exhaustively explored all possible combinations of datasets and hyperparameters for the

generation of networks using SNF (see Methods). From these networks, we focused on the net-

work that captured the greatest number of likely complexes (corresponding to the highest

number of clusters with overlap score�0.25 [55], resulting in 943 interactions between 343

proteins (S6 Table and S3 Fig). This network was constructed using a combination of scores

fused by SNF (PCCNM, WCC, Coapex1, Coexpr-RNAseq, Coexpr-Microarray, MI-pij). To

further reduce the number of false positives in this dataset, we additionally filtered out interac-

tions with coexpression scores <0.5 (S4 Fig), which corresponds to the cutoff where the super-

vised network starts losing bone fide interactions. Consistent with the supervised network, we

further removed proteins represented by fewer than 5 spectral counts, as well as pairs in which

each protein contains no unique peptide capable of distinguishing between the pair. This fil-

tered network (defined as the unsupervised network) consists of 523 interactions between 282

proteins. Within this network, we identified 73 hypothetical proteins and 32 invasion-related

proteins, with some connected interactions localized to the same compartment (e.g., MIC4,
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chitinase-like protein CLP1, TGME49_200270 are localized to the microneme, according to

GO evidence codes).

Comparison of the overall unfiltered supervised and unsupervised networks reveals 62 pro-

teins exclusive to the unsupervised network (S5A Fig). These proteins are involved in 262

interactions, including some paralogs such as HMG_box_containing_protein, aminopepti-

dases, MIC17A-MIC17B, MIC17A-PAN/Apple domain-containing protein, which are likely

to be involved in functional interactions. The distribution of their spectral counts is similar to

that of all proteins in the coelution dataset (S5B Fig). The predicted unsupervised pairwise

interactions score significantly better than randomly generated interactions in terms of their

highest coelution scores (PCCNM, WCC and Coapex1). However, they are consistently lower

than the highest PCCNM and WCC scores for the predictions from the supervised network,

but comparable in terms of the Coapex1 score. Of the remaining proteins, 415 are exclusively

predicted in the supervised network whereas 315 are common to both (S5A Fig). For these

common proteins, the two approaches predict 73 common interactions, the rest are mutually

exclusive–with 2053 interactions predicted by the supervised approach, and 898 interactions

predicted by the unsupervised approach. Based on the seven scoring schemes outlined above

(i.e. PCCNM, WCC, Coapex1, COEXPR_MA, COEXPR_RS, MI_PreAbs and MI_pij), we

find that the supervised approach captures interactions with higher coelution similarity scores

in general (except for Coapex1 score–which is similar for both supervised and unsupervised

approaches) and closer phylogenetic profiles (MI-pij score) than the unsupervised approach,

which still demonstrates improved performance over sets of randomly generated interactions

(S5C Fig). Combining the supervised and unsupervised approaches generates a single com-
bined network of 792 proteins and 3,753 interactions (Fig 1F). The networks share 315 pro-

teins (an overlap of 43.1% for supervised; 83.1% for unsupervised) and 73 interactions (an

overlap of 4.4% for supervised; 8.2% for unsupervised). Among these 792 proteins are 385

annotated as ‘hypothetical’ and 105 predicted to be involved in invasion (S5 and S6 Tables).

From this combined network, a high confidence network of 549 proteins and 1541 interac-

tions was derived for the supervised network, based on the score at a false positive rate cutoff

of ~0 on the ROC curve (i.e. 0.57), and a high confidence network of 282 proteins and 523

interactions was derived for the unsupervised network, based on a coexpression score of�0.5

(S7 Table). The combined high confidence version of ToxoNet comprises of predicted interac-

tions from both supervised and unsupervised approaches, resulting in a network of 652 pro-

teins and 2063 interactions, supported by biochemical coelution (PCCNM (or) WCC

scores� 0.5) in at least one of the six experiments, providing a resource of known/putative

interactions for several proteins involved in core cellular processes and apicomplexan-specific

processes, including 68 invasion-related proteins and 130 hypothetical proteins.

Integrative analyses validate the biological relevance of ToxoNet

To assess the quality of the combined high confidence network and its ability to recapitulate

biologically meaningful relationships, we performed a series of meta-analyses. Focusing on

network statistics, we find that ToxoNet exhibits properties consistent with previously pub-

lished PPI networks. Notably, it exhibits small world properties including a scale-free architec-

ture [56] and relatively short path length distributions (Fig 2A and 2B). Next, we examined

the role of essential and conserved proteins in the combined high confidence network. As

expected, we find that essential proteins, previously defined through a genome-wide CRISPR

screen of the tachyzoite lifecycle [23], are more highly connected with significantly higher

degree (p = 2.9E-10; Fig 2C). Dispensable proteins however, mediate more central roles in the

network with higher betweenness (p = 1.5E-2) than essential proteins (Fig 2D). These data

PLOS COMPUTATIONAL BIOLOGY Toxoplasma protein interaction network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012208 June 20, 2024 7 / 35

https://doi.org/10.1371/journal.pcbi.1012208


support the theory that essential proteins serve as network hubs with key organizational roles

in PPI networks [57,58]. Likewise, we find that highly conserved proteins (with orthologs pre-

dicted in other, non-apicomplexan, eukaryotes) are also more highly connected than lineage

specific proteins, albeit with significant differences only observed with Toxoplasma-specific

proteins (p = 0.02; Fig 2E). These findings are consistent with previous studies from many bio-

logical networks including E. coli and yeast [34,59].

We further validated the quality of ToxoNet through comparisons with existing protein

interaction data for T. gondii as well as other parasites. Recently, complementary APEX and

BioID approaches [60] were applied to identify a shared set of 161 T. gondii proteins, predicted

to localize to the mitochondria. Since we expect colocalized proteins to appear closer in our

combined high confidence network, we were reassured by a significantly shorter average path-

length between the 36 proteins that were present in ToxoNet (of the 161 proteins identified in

the previous study) than expected by random (average shortest path length = 3.0; p = 2.8E-6;

Fig 2F). A similar dual screen of dense granule proteins [61] identified a common set of 33

related GRA proteins. Strikingly, the average shortest pathlength of the 23 proteins that were

found in ToxoNet exhibited a relatively shorter average path length than expected (average

shortest pathlength = 3.68; p = 4.3E-3; Fig 2G). Further datasets based only on a BioID

approach [62,63], also generally exhibited smaller (not statistically significant trend)

Fig 2. Benchmarking of ToxoNet using previously published datasets. (A) The node degree distribution with a power fit line (R2 = 0.86). (B) Distribution of

shortest path lengths. (C-D) The bar graphs with essential proteins (orange) and dispensable proteins (blue) indicate significant differences in node degree and

betweenness centrality (p = 2.9E-10, p = 1.5E-2 respectively). (E) The bar graph indicates differences in node degree at various evolutionary timepoints. Error

bars indicate standard error. (F-G) The distribution of random permutations (n = 1000) of characteristic path lengths relative to the actual characteristic path

length (red line) of a set of candidates identified in BioID experiments as putative mitochondrial (n = 36, F) and dense granule (n = 23,G) proteins (p = 2.8E-6,

p = 4.3E-3, respectively). (H) The distribution of coexpression in RNA-seq experiments of interacting network proteins, non-interacting network proteins and

a random sampling of the proteome (n = 10,000; Kolmogorov-Smirnov p< 2.2E-16).

https://doi.org/10.1371/journal.pcbi.1012208.g002
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characteristic pathlengths, with a screen of the IMC-related protein, ISP3, being notable for

exhibiting a higher average pathlength than random (S6 Fig). This likely reflects the higher

false-positive rates associated with these screens in the absence of additional experimental sup-

port. The congruency with high confidence datasets demonstrates that the spatial proximity of

proteins within the cell is echoed by shorter distance within ToxoNet.

Beyond proximity screens, we also compared ToxoNet with two recently published protein

interaction networks for Trypanosoma brucei [64] and Plasmodium parasites [40]. Notably

both networks were generated using a similar coelution methodology. Typically, protein inter-

action networks often display little overlap between species [65]. However, here we found that

ToxoNet exhibited a highly significant overlap in protein interactions with both T. brucei (283

common interactions, p = 6.4E-204) and Plasmodium (450 common interactions, p = 0; S6B

Fig). While most of these shared interactions occur between highly conserved proteins, and

may reflect their inclusion in training data (S4 Table), we did identify interactions between an

apicomplexan-specific protein (TGME49_268830), with an ATP synthase subunit

(TGME49_226000) as well as cytochrome c1 (TGME49_246540), to be conserved in the Plas-
modium network. The former interaction between TGME49_268830 and TGME49_226000

has been validated in T. gondii. Its presence in the Plasmodium network supports the conserva-

tion of this interaction as an apicomplexan-specific adaptation to ATP synthase.

Next, we analyzed our combined high confidence network in the context of expression data

from RNA-seq datasets that had previously been withheld from the machine learning analyses

applied to generate ToxoNet. Pearson correlation values were calculated for transcript pairs

across ten tachyzoite time-points from three independent experiments [11,66]. Expression of

putatively interacting proteins has a significantly greater density at higher coexpression corre-

lation values than both non-interacting network proteins and random sampling of proteome

pair-wise combinations (p< 2.2E-16), whereas, the density of Pearson correlation values

between non-interacting network proteins and random proteome pair-wise combinations is

not significantly different (p = 0.61; Fig 2H). G.O. annotations of putative interactions were

also compared using terms annotated to T. gondii proteins available on ToxoDB. Despite the

limited number of annotated proteins, of those pairs in which both proteins are annotated,

54% have the same G.O. process term (p = 0), 60% have the same G.O. component term

(p = 8.27E-272) and 49% have the same G.O. function term (p = 3.82E-272). Since G.O. com-

ponent terms were also utilized in the construction of negative training data utilized in the

supervised learning step that might enhance network performance, we also compared our pre-

dictions with a subcellular atlas of the Toxoplasma protein predicted using hyperLOPIT locali-

zation patterns [67] which was not included in any aspect of network generation. From this

independent analysis we found a significant number (37%, p< 1.12E-203) of interacting pairs

were predicted to share the same compartment (S8 Table). It is important to note that the

hyperLOPIT dataset predicts localization and not interactions per se. Thus it is possible that

our dataset may contain interactions between proteins that, while occupying different loca-

tions, nevertheless may share a point of contact (e.g. 40S ribosome and 60S ribosome, cytosol

and mitochondrion membrane). Furthermore, in this study, we used protein fractions that

were collected after solubilization of Toxoplasma cells, hence potential barriers preventing

interactions between proteins were removed. These include those associated with rhoptries,

micronemes and dense granules which are secreted during host invasion and have been shown

to form physiologically relevant complexes (e.g. the microneme and rhoptry proteins, AMA1

and RON2 [68]). We therefore looked at interactions between proteins predicted to occupy

different compartments and found an additional 28% of interacting pairs that either share a

point of contact (e.g. 40S ribosome and 60S ribosome, cytosol and mitochondrion membrane)

or have the potential to interact after secretion (e.g. dense granules and rhoptries, micronemes
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and rhoptries). The remaining (34%) pairs represent potential interactions that can be

explored in future experiments. For example microneme proteins have been shown via co-IP

to interact with the cytoplasmic protein, fructose-1,6-bisphosphate aldolase [69]. Together,

these results illustrate that the relative performance of ToxoNet is consistent with that found

for other protein-protein interaction studies.

ToxoNet recapitulates known protein complexes and identifies novel

components and novel complexes

Since coelution data is enriched for proteins that physically interact, we applied the Cluster-

ONE algorithm [55] to identify protein complexes based on their interactions (see Methods).

In total we identified 93 overlapping clusters (representing putative protein complexes) with

an average of 8.2 proteins per cluster (Fig 3 and S9 Table). In total, 28 clusters recapitulate 25

training complexes with an overlap score of 0.25 or greater [70]. These include the protein

kinase CK2 complex (cluster 72, overlap = 1), the U4/U6.U5 tri-snRNP complex (cluster 33,

overlap = 0.79), the C complex spliceosome (cluster 56, overlap = 0.75), the reductive TCA

cycle (cluster 54, overlap = 0.75), eIF3 complex (cluster 44, overlap = 0.51), the vacuolar ATP

synthase complex (cluster 53, overlap = 0.56) and the box C/D snoRNP complex (cluster 70,

overlap = 0.6). Additionally, the ClusterONE algorithm recapitulated experimentally validated

complexes absent from training data, including MIC1/4/6 (cluster 83, overlap = 0.34). At a

lower cut-off, we also recapitulate GRA2/4/611 (cluster 26, overlap = 0.23), the T. gondii ATP

Synthase complex with Apicomplexan-specific subunits [71] (overlapping clusters 12 and 29,

overlap = 0.13) and the Moving Junction (cluster 88, overlap = 0.13). The glideosome is also

partially recapitulated (cluster 52, overlap = 0.11) with GAP45 and MLC1 included in the

same cluster as the α,β-tubulin complex.

While we found clusters enriched in lineage-specific proteins generally localize to lineage-

specific organelles (i.e. rhoptries, micronemes and dense granules), there are also examples of

lineage-specific proteins in clusters with proteins that have been shown to be associated with

either the cytosol or the mitochondria. Again, utilizing expression data withheld from training,

we found that of the 93 clusters, 45 (48%) are predicted to be significantly coexpressed (Fig

3B). This is consistent with previous studies of protein complexes that display a significant

enrichment of component coexpression and likely reflect regulation through common tran-

scription factors [72]. Analysis of essential protein distributions also revealed a non-random

pattern of organization (p = 1.079E-06; Fig 3C). Specifically, clusters defined by ToxoNet con-

tain a higher proportion of dispensable proteins. Of the 30 clusters enriched in essential pro-

teins (� 75% of components are essential), 17 represent recapitulated training complexes.

Interestingly, dispensable clusters, composed of� 25% essential proteins (n = 25), are signifi-

cantly enriched in proteins associated with network invasion (i.e., SRS, MIC, ROP, RON and

GRA proteins) and IMC proteins (p = 7.3E-35), as well as proteins restricted to Apicomplexa

(p = 1.6E-17; S7 Fig). In addition to the high percentage of invasion and IMC proteins per dis-

pensable cluster (41%), these dispensable clusters are composed of an average of 25% hypo-

thetical proteins, offering an exciting wealth of candidates for novel virulence factors. These

results are again consistent with previous studies that have shown highly conserved protein

complexes to be essential, while those composed of lineage-specific components, reflecting in

this case, more recent adaptations to parasitism, tend to be more dispensable.

To further explore the potential impact of these macromolecular adaptations at the strain

level, we examined genetic variation data associated with 80 strains of T. gondii. Among the

interacting proteins identified in our combined high confidence network, we identified 2893

non-synonymous single nucleotide polymorphisms (SNPs) present in at least 4 strains [9,73].
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Fig 3. Organization of ToxoNet into discrete protein complexes (A) Global organization of predicted complexes is visualized by a graph where nodes

represent clusters that are placed in their putative compartment (IMC = purple, micronemes = green; rhoptry = orange, dense granules = blue). Nodes

are placed on the T. gondii schematic in their putative organelle based on the most frequent hyperLOPIT localization prediction. Unclassified clusters are

placed in the cytosol. Numbered nodes are colored according to lineage composition (see inset). The edges indicate inter-cluster interactions.

Noteworthy clusters are highlighted to the sides with known (red) and novel (black) interactions indicated between proteins. (B) Coexpression of cluster

components–clusters are coloured by significance of coexpression. (C) Distribution of essential proteins in clusters and random generated clusters

(n = 100). (D) Boxplots compare the average SNP scores for putative complexes across different compartments.

https://doi.org/10.1371/journal.pcbi.1012208.g003
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A SNP score was assigned to each protein based on the number of non-synonymous SNPs

normalized by protein length and the average was taken across all cluster proteins to identify

putative complexes with the greatest genetic variation (S8 Fig). Consistent with previously

reported higher rates of SNPs within invasion family proteins, particularly in GRA and ROP
family proteins [9], we found that putative complexes from dense granule and rhoptry com-

partments exhibited the highest average SNP score (Fig 3D). To predict which SNPs are most

likely to interfere with physical interactions, we examined the Pfam domains [74] and identi-

fied premature stop codons present in the proteins of the ten complexes with the highest aver-

age SNP score. In the experimentally validated MIC1/4/6 complex (cluster 83), we identified

five non-synonymous SNPs in three domains mediating interactions with other proteins

(S55G and Q82E in the first TSR1 domain of MIC1, K114N and R123L in the EGF2 domain of

MIC6 and A171V in the second apple domain of MIC4) [75,76]. Notably, strain members of

clade E (which includes TgH21016, CASTELLS, TgH26044 and TgH20005) were unique inso-

far that they carry four of these five mutations, suggesting that the MIC1/4/6 complex in these

strains may not occur in its canonical form. Similarly, we found that for 5 strains, including

ME49, 3675, B73, PRU, and TgGoatUs21, GRA44 (TGME49_228170) orthologs contain a pre-

mature stop codon that results in a 105 amino acid truncation. Given its interactions with

other proteins in three predicted invasion-related clusters (16, 23 and 78), we predict these

complexes may again exhibit different patterns of organization outside these strains.

Complex predictions identify novel apicomplexan-specific mitochondrial

adaptations

Recent studies have elucidated apicomplexan-specific subunits to the protein complexes

involved in the electron transport chain (ETC) and oxidative phosphorylation. ToxoNet reca-

pitulates these features. The conserved eukaryotic α-, β-, δ-subunits and the apicomplexan-

specific subunits of the ATP synthase complex (i.e., TGME49_258060, TGME49_268830,

TGME49_282180 and TGME49_223040) [71,77,78] were represented in overlapping clusters

29 and 12, respectively. Furthermore, the apicomplexan adaptations to the cytochrome c oxi-

dase (COX) complex, or ETC Complex IV, TGME49_264040, TGME49_221510 and

TGME49_297810 [60], were also captured in cluster 12. Recently, TGME49_207170 was iden-

tified as a novel component of ETC Complex III of the electron transport chain (ETC) [79,80].

In general, the proteins captured in cluster 12 are enriched in predicted mitochondrial target-

ing sequences and an essential phenotype (Fig 4A). The remaining protein which remains

uncharacterized and fits this profile is TGME49_306650. Its presence in this cluster predicts a

role in ETC. This prediction was also supported by a parallel study which predicted

TGME49_306650 to be a member of ETC Complex II [80].

To assess the localization of TGME49_306650, we engineered a T. gondii PRU strain with a

3×HA tag at the C-terminus of the endogenous locus. Mitochondrial localization was validated

by colocalization with the mitochondrial marker, F1B ATPase (Fig 4B). To further character-

ize its binding partners, we performed immunoprecipitation (IP) of the HA tagged hypotheti-

cal protein (TGME49_306650) utilizing the same sonication-based lysis protocol which

generated ToxoNet. The AP-MS data from two replicates of T. gondii PRU 306650-HA and T.

gondii PRU wild-type (WT) strains were filtered utilizing SAINTexpress [81] to identify inter-

actors. Though highly enriched for the bait, none of the interactions or cluster proteins were

represented in the prey proteins at a FDR cut-off of 0.01 or less; however, some of the compo-

nents displayed in Cluster 12 are present at higher FDR values, including TGME49_264040

(FDR = 0.12), TGME49_221510 (FDR = 0.17), TGME49_207170 (FDR = 0.17),

TGME49_282180 (FDR = 0.17), TGME49_223040 (FDR = 0.17) and TGME49_233100
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(FDR = 0.24; Fig 4C and S10 Table). Given that electron transport complexes are embedded

in the inner mitochondrial membrane, we also performed IP from lysates prepared utilizing

1% NP-40 to optimize membrane complexes. In these solubilisation conditions, we identified

a protein complex that consisted of many of the subunits predicted by Maclean, et al [80].

They predicted 8 total subunits in Complex II. Here we identify 5 of these subunits when we

precipitate TGME49_306650–3×HA (Fig 4C and S10 Table). Interestingly, while they identi-

fied the canonical succinate dehydrogenase subunit B (SDHB) in their study, we detect neither

SDHB nor SDHA. Finally, we tried to knock-out TGME49_306650 by replacing its endoge-

nous locus with HXGPRT to create the full knockout strains, but the gene deletion did not

generate viable parasites for both cases, suggesting that TGME49_306650 might be important

for parasite fitness and tachyzoite survival.

Complex predictions identify novel invasion proteins

ToxoNet predicts 18 clusters representing putative invasion complexes, including 1, 10 and 7

that are predicted to localize to micronemes, rhoptries and dense granules, respectively (e.g.

clusters 16, 38, 67, 75, 76, 78, 83 and 86 in Fig 3A). Filtering for proteins with validated locali-

zation data reveals a set of 38 previously uncharacterized proteins, predicted to be involved in

host invasion (Table 1). Of these, 15 (39%) are predicted to carry a signal peptide, consistent

with their trafficking through the secretory pathway, while 45% are specific to the Apicom-

plexa lineage. Nine of these proteins have been localized to invasion organelles in ToxoDB

user comments, of which two were localized to the IMC. Furthermore, 53% (20/39) are
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Fig 4. (A) Clusters 12 and Clusters 29 recapitulate mitochondrial complexes: ATP synthase (red text) and the COX complex (green text). The nodes are

colored by their lineage and the presence of a purple border indicates a predicted mitochondrial targeting signal by TargetP. Diamond and circle shaped nodes

indicate essential and dispensable proteins, respectively. (B) IFA of 306650–3×HA expressing parasites reveals colocalization with the F1B ATPase

mitochondrial marker and not the parasite plasma membrane marker SAG1. (C) IP of: i) TGME49_306650 utilizing a sonication based method with table

columns identifying prey, spectral counts across two replicates and FDR, and ii) TGME49_306650 utilizing 1% NP-40.

https://doi.org/10.1371/journal.pcbi.1012208.g004
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predicted to localize to dense granules, rhoptries and micronemes in hyperLOPIT datasets.

These clusters also predict interactions between well characterized invasion factors and those

with little known functional information beyond their localization in discovery screens (e.g.,

ROP11 and GRA32).

Focusing on specific complexes, cluster 16 predicts a novel dense granule complex, with

many proteins annotated as localized to the dense granule (e.g. GRA12, GRA32, GRA35,

GRA44 and a MAF1 homolog), together with several novel invasion proteins. For example,

Table 1. Putative Novel Invasion Factors. Columns indicate Gene IDs (TGME49), their product description, the prediction (+) of a signal peptide (SP), localization

information from ToxoDB, predicted lineage and cluster(s) in which it occurs.

Gene ID (TGME49) Description SP Localization Lineage Clusters

200360 hypothetical protein + Dense Granules Toxoplasma 16

202620 hypothetical protein + Toxoplasma 23, 78

204080 histidine acid phosphatase superfamily protein + Eukaryotes 58, 62, 88

204340 hypothetical protein + Toxoplasma 23

208370 myosin heavy chain, putative + Eukaryotes 16, 23

215980 hypothetical protein Toxoplasma 26, 46

218780 phosphoserine aminotransferase, putative Eukaryotes 82

219250 acetyltransferase, GNAT family protein Eukaryotes 82

221200 CW-type Zinc Finger protein Eukaryotes 58

221480 hypothetical protein Microneme Toxoplasma 23

224460 aminopeptidase n, putative + Eukaryotes 65

225870 hypothetical protein Eukaryotes 62, 88

230160 hypothetical protein IMC Apicomplexa 23

230940 hypothetical protein Eukaryotes 62

231160 hypothetical protein Coccidia 30

242820 hypothetical protein + Eukaryotes 67

244250 hypothetical protein Eukaryotes 76

244690 hypothetical protein Eukaryotes 65

247520 TgWIP + PV localization Eukaryotes 75

248740 hypothetical protein IMC Eukaryotes 58

249990 hypothetical protein Eukaryotes 16, 23

253430 asparagine synthetase, putative Eukaryotes 65

257380 hypothetical protein + Coccidia 38, 83

258080 hypothetical protein Eukaryotes 38

261440 ARM repeats containing protein rhoptry surface Eukaryotes 23

268760 hypothetical protein + Toxoplasma 88

268790 hypothetical protein + Toxoplasma 67

269950 hypothetical protein + Coccidia 65, 83

271740 hypothetical protein Eukaryotes 58, 62

280370 hypothetical protein Eukaryotes 23

293360 hypothetical protein Coccidia 67

297070 hypothetical protein + rhoptry Eukaryotes 22, 69

305070 hypothetical protein Coccidia 22

309600 hypothetical protein Coccidia 16

309760 hypothetical protein + Toxoplasma 23, 78

315210 rhoptry protein, putative Eukaryotes 76

316250 hypothetical protein + Coccidia 16, 23

323100 hypothetical protein Coccidia 16, 23

https://doi.org/10.1371/journal.pcbi.1012208.t001
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TGME49_200360 is a hypothetical protein that has been previously localized to the parasito-

phorous vacuole (PV) [82]. The interacting proteins, GRA35 and GRA44, are also present in

the overlapping cluster 78, suggesting that they may represent core subunits of both com-

plexes. Cluster 67 is a dense granule complex containing GRA37, MAG1 and three hypotheti-

cal proteins. MAG1 is a known component of the cyst wall during the bradyzoite stage;

however, none of the other proteins identified in this cluster were present in a recent proteo-

mic survey of cyst wall components [83]. The presence of MAG1 in this complex might there-

fore represent a novel tachyzoite-specific function for this protein. Cluster 75 highlights four

proteins that form an isolated subnetwork (i.e. they do not interact with any other network

proteins) and include the known rhoptry proteins ROP40, ROP11 and ROP47. This cluster

has the highest average SNP score and contains the two network proteins with the highest SNP

scores, ROP47 and TgWIP (TGME49_247520), a cytoplasmic modulator of dendritic cell

migration [84] (Fig 5A). Additionally, this cluster has the third highest average expression cor-

relation (Pearson correlation = 0.833; S9 Table), suggesting that its function is tightly regu-

lated. Cluster 76 also predicts a novel rhoptry complex that contains two relatively

uncharacterized rhoptry proteins, ROP14 and RON1, and two hypothetical proteins. Integra-

tion of SNP scores reveals clusters 67, 75 and 78 are among the top ten clusters with the highest

average SNP score. The distribution of SNPs for proteins in these clusters across previously

designated clades A-F [9] (and a group of 18 unclassified strains) is visualized within node pie

charts (Fig 5A). These can be used to generate hypotheses regarding the conservation of these

complexes. For example, the high proportion of SNPs present in clade E in the protein TgWIP

in cluster 75 suggest that associations with this protein might not be conserved and contribute

to variation in the pathogenic phenotype of this relatively small clade of four strains.

Putative IMC complexes recapitulate known structural organization and

predict novel IMC-related proteins

Clusters 48, 71, 74, 77 and 89 represent putative IMC complexes and predict five novel IMC

proteins (Table 2). Two of these proteins have been described as localized to the IMC in Tox-

oDB user comments, with TGME49_254870 specifically localized to the apical complex. One

protein is predicted to localize to the IMC in hyperLOPIT datasets. To examine whether the

rigid structural hierarchy of distinct apical, central and basal compartments was recapitulated

in the coelution datasets, matrices of the highest pairwise PCCNM or WCC in any experiment

were computed for all pair-wise IMC proteins. The highest pair-wise scores were utilized to

account for potentially missing data points. Hierarchical clustering of these matrices success-

fully reconstructs this spatial sub-compartmentalization with proteins from the basal/central

and apical compartments segregated into distinct clusters (Figs 5B and S8). The notable

exception is ILP1 which has been previously reported to localize to the central compartment

[82]. These results support the network’s ability to predict IMC interactions that are largely

consistent with its structural organization. Cluster 48 contains ISP3, IMC19 and IMC22. The

spatial proximity of IMC19 and ISP3 has already been confirmed by BioID [63] while all three

IMC proteins have been localized to the central subcompartment of the IMC [63,85]. Cluster

71 also recapitulates known IMC architecture in that both PHIL1 and ISP1 are localized to the

apical subcompartment [85,86]. Cluster 74 represents a novel complex that contains IMC17, a

centrally localized protein, and two functionally uncharacterized proteins (IMC-localized

TGME49_242070 [87] and TGME49_267430). Together these results demonstrate the efficacy

of ToxoNet at recapitulating meaningful interactions in the IMC.

To assess the quality of these predictions we performed IPs on T. gondii PRU strains engi-

neered to have 3×HA tags at the endogenous loci of IMC17 and IMC19. In utilizing the
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Fig 5. (A) These three putative invasion complexes are among the top ten clusters with the highest average SNP score.

The proportion of SNPs present in each clade for each protein is indicated by the pie chart within each node. SNP

scores for proteins, such as TGME49_242820, without reliable annotation in the ME49 reference genome were not

calculated and are indicated with a red border. The legend indicating clade classification displays the proportion of 80

strains belonging to each of the 7 categories. (B) Heatmap showing coelution relationships between IMC proteins. For

each protein pair, the highest PCCNM score from each coelution experiment for IMC proteins was used to generate a

matric of coelution relationships. Clustering of these relationships recapitulates the sub-compartmental structural

organization of the IMC. Only proteins with five or more spectral counts are considered. Proteins previously localized

to the apical and basal/central subcompartments are highlighted in red and green, respectively. Hierarchal clustering

was performed using the complete linkage method. (C) IP of IMC17, IMC19 and IMC22 with table columns

containing identified prey, spectral counts and FDR.

https://doi.org/10.1371/journal.pcbi.1012208.g005
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sonication-based approach which generated ToxoNet we identified 230 and 190 significant

preys (�0.01 FDR), respectively. This large number of proteins in the IP eluent reflects the

need for more targeted solubilisation methods in identifying meaningful IMC interactions;

nonetheless, we were able to recapitulate network interactions (Fig 5C and S10 Table). Cluster

74 was particularly well recapitulated in the IP of IMC17 with TGME49_242070 significantly

enriched and TGME49_267430 identified at an FDR of 0.17. IP was also performed on

IMC19-3×HA transgenic strains to validate interactions in cluster 48. We detect ISP3 and

RON8 significantly enriched in the eluent and TGME49_232600 at a higher FDR of 0.01.

These results demonstrate the robustness of ToxoNet predictions and the ability to recapitulate

our results with independent experimentation.

Discussion

ToxoNet represents the first genome-scale protein-protein interaction network for Toxo-
plasma gondii. Based on coelution data for 1423 proteins across 6 experiments, we applied two

machine learning strategies to integrate additional functional genomics datasets, including

gene coexpression, phylogenetic profiles, and domain-domain interactions, to lend support to

predicted interactions (Fig 1). The first strategy relies on a standard supervised approach, in

this case Random Forest, which requires gold standard training datasets of known positive and

negative interactions. Traditionally such training datasets have been challenging to generate

for non-model organisms, typically relying on the inference of orthologous interactions that

have been characterized for model organisms. Consequently, such datasets tend to be enriched

for highly conserved proteins. In an attempt to overcome potential biases that such training

data may generate, we therefore adopted a second strategy based on an unsupervised approach,

in this case Similarity Network Fusion [41], which instead relies on a non-linear iterative

strengthening or weakening of interactions based on their support across multiple comple-

mentary datasets. To our knowledge, this is the first instance of applying such an approach to

predict protein-protein interactions. While we find that supervised approach, in general pro-

vides improved performance, we nonetheless find that the unsupervised approach performs

significantly better than random (S5 Fig). Further, it predicted several previously characterized

interactions that were not captured by the supervised approach. We therefore suggest that

future protein-protein interaction studies also consider applying a similar two-pronged strat-

egy. Further, such strategies might benefit from the evaluation of additional unsupervised

approaches such as iCluster, MDI and others based on Bayesian approaches, kernel-based

methods, and non-negative matrix factorization [88–90]. In addition, future studies may con-

sider integrating complementary datasets such as hyperLOPT localization patterns [65]. Here

we chose to use this dataset for validation purposes which precluded its use in network

generation.

The resulting combined high confidence network consists of 2,063 high quality interactions

between 652 proteins. While this number falls short of the 8,920 predicted proteins from the T.

Table 2. Putative Novel IMC Proteins. Columns indicate Gene IDs (TGME49), their product description, the prediction (+) of a signal peptide (SP), localization infor-

mation from ToxoDB, predicted lineage and the cluster(s) in which it occurs.

Gene ID (TGME49) Description SP Localization Lineage Clusters

220390 hypothetical protein Coccidia 48

232600 phospholipase, patatin family protein + Apicomplexa 48

254870 hypothetical protein Apical Complex Coccidia 48

267430 DnaJ domain-containing protein Eukaryotes 74

242070 cAMP-dependent protein kinase regulatory subunit IMC Eukaryotes 74

https://doi.org/10.1371/journal.pcbi.1012208.t002
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gondii ME49 genome, previous screens of the tachyzoite stage have identified only 2,252 pro-

teins as being expressed at this stage [91]. In this study, the sonication-based lysis conditions

were optimized for soluble proteins. Proteomic screens of tachyzoite membrane proteins have

identified 841 proteins [92]. The underrepresentation of membrane proteins has likely con-

tributed to a relatively low number (1,423) of proteins identified in our fractions. In future

studies, this technology can be adapted to optimize membrane complexes with non-ionic

detergents or to investigate different lifecycle stages to increase coverage of the T. gondii prote-

ome. Comparisons to a recent network of protein interactions generated for the related api-

complexan parasite, Plasmodium sp. [40] shared 22% of the interactions predicted by

ToxoNet. This is surprisingly high considering that protein-protein interaction datasets rarely

feature high levels of overlap, even in studies within the same organism using comparable

methods [93]. Notable apicomplexan complexes predicted in both species, such as the Moving

Junction and the Glideosome, are missing from the overlapping set of interactions and are bet-

ter recapitulated in either the T. gondii or Plasmodium network, respectively. This suggests

that technical differences, such as sample preparation and data processing, still limit cross-spe-

cies comparisons of protein-protein interaction networks, that might otherwise identify

instances of network ‘rewiring’ underlying species-specific adaptations to their specialized life

cycles.

Application of the graph clustering algorithm, ClusterONE, predicts 93 clusters that reca-

pitulate known, as well as novel protein complexes. Novel complexes successfully cluster pro-

teins with known functional and spatial relationships, such as the organization of proteins that

mediate pathogenesis, or localize to compartments, such as the mitochondria, cytosol and

nucleus. It is noteworthy that one-third of the proteins identified by mass spectrometry are

indicated as hypothetical by ToxoDB [94], and their identification in this coelution study pro-

vides evidence that they are expressed in the tachyzoite stage. Many of these hypothetical pro-

teins and other poorly characterized proteins are present in protein complexes, representing

valuable opportunities to drive new discoveries. Despite the limitations associated with gener-

ating a network on a non-model organism, the T. gondii network demonstrates robust congru-

ence with parasite biology as demonstrated by benchmarking of additional datasets. This is

evident with high correlation of transcript expression between pair-wise interactions, organi-

zation of essential proteins and agreement between spatial proximity of proteins in the cell and

in the network.

Detailed analyses of identified protein complexes yield a number of novel insights into the

organization of complexes with implications for both specialized parasite processes such as

host invasion, as well as parasite-specific adaptations of otherwise highly conserved pathways.

For example, many rhoptry and dense granule proteins are known to mediate important roles

in maintaining the intracellular tachyzoite lifecycle, co-opting host machinery and regulating

the host immune response. However, the full complement of these proteins remains to be elu-

cidated and many that have been identified remain uncharacterized. Among these clusters are

known invasion complexes, such as the MIC1/4/6 and GRA2/4/6 complexes, that additionally

contain several novel components. These data also yield additional insights into the function

of previously uncharacterized invasion factors, including GRA32, GRA37, GRA38, ROP11,

ROP14, and ROP40, as well as predict many novel invasion proteins. Excitingly a recent study

[95] cited our dataset in support of a novel tetrametric complex confirming our predictions of

interactions between GRA32 (TGME49_212300), GRA70 (TGME49_249990) and GRA71

(TGME49_309600).

Outside invasion complexes, ToxoNet provides additional insights into the function and

organization of the alveolate-specific IMC, an important organelle for host cell invasion and

sexual reproduction [7]. Our coelution data reconstructs the rigid sub-cellular organization of
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this compartment and as such, yields new testable hypotheses concerning the sub-cellular

localization of novel IMC-related proteins and their complexes. Interestingly within our data-

set we predict several interactions involving proteins from different compartments. Such find-

ings are consistent with similar known examples, such as the well-established association

between the microneme and rhoptry proteins: AMA1 and RON2 [68], and the interaction of

other microneme proteins with the cytoplasmic protein, fructose-1,6-bisphosphate aldolase

[69]. Such interactions in our dataset likely arise from the solubilization of compartments dur-

ing sample preparation.

Beyond specialized pathways involved in invasion, several recent studies featuring fitness

and proteomic screens, have identified an increasing number of apicomplexan-specific proteins

that localize to the mitochondria, suggesting that this otherwise highly conserved organelle fea-

tures a number of parasite-specific adaptations, particularly with respect to ATP synthase and

oxidative phosphorylation [23,79,96,97]. This expanded view of the apicomplexan mitochon-

dria is reflected in ToxoNet with the prediction of clusters that are supported by these previous

studies. Here we identify and localize another novel apicomplexan-specific mitochondrial pro-

tein, TGME49_306650, that was previously uncharacterized. Its clustering with known ATP

synthase and oxidative phosphorylation machinery suggests a role in these processes.

The construction of protein interaction networks provides a valuable scaffold onto which

additional metadata may be integrated. For example, previous studies have leveraged protein

interaction networks to inform on properties of essentiality and conservation, domain archi-

tectures, as well as taxon-specific representations of microbiome functionalities [34,98,99].

Here we show how ToxoNet can be used to interpret genetic variation information derived

from 80 strains of T. gondii. Such approaches enable strain-level insights into the organization

and function of protein complexes. In particular these visualizations allow us to distinguish

proteins or protein complexes that represent conserved functions from those that underlie

strain-specific functionality, which could be associated with host or tissue tropism.

Conclusions

Here we present ToxoNet, the first high quality protein interaction network for T. gondii. We

validate the quality of the network through systematic comparison of other protein interaction

networks, both from other organisms as well as through the application of complementary

technology. Our network predicts 93 clusters that capture well characterized complexes as well

as complexes containing novel components and novel complexes. These data reveal a wealth

of testable hypotheses and are provided here as a community resource.

Materials and methods

Culturing T. gondii ME49 parasites and protein extract preparation

T. gondii ME49 parasites were cultured in two independent batches for 3 days in human fore-

skin fibroblast (HFF) cells supplemented by D10+M199 media. Parasites were harvested,

washed with PBS and pelleted at 1500g at 4˚C for 15 min. The pellet re-suspended in 1 mL

lysis buffer (10mM Hepes-pH 7.9, 1.5mM MgCl2, 10mM KCl) with 1mM DTT and COmplete

Mini Protease Inhibitor Cocktail (Roche). Lysates were subjected to sonication with 10 sec on,

10 sec off cycles at 30–35 W and centrifuged at 4˚C and 2000g for 20 min to clear cell debris.

Pre-enrichment before HPLC Fractionation by affinity beads

For the material recovered from the second batch of cultured T. gondii, we used affinity beads

(NuGel PROspector) to pre-enrich Toxoplasma gondii lysate to capture five distinct sub-

PLOS COMPUTATIONAL BIOLOGY Toxoplasma protein interaction network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012208 June 20, 2024 19 / 35

https://doi.org/10.1371/journal.pcbi.1012208


proteomes. In this experiment, we added one volume of Cleanascite PRO to five volumes of

the sample to remove lipids and any insoluble biomass. We then added PRO-BB binding

buffer (pH 6.0) to the delipidated samples in a 1:1 volume ratio. The resulting mixture was

then added to different reagent beads (PRO-A, PRO-C, PRO-L, PRO-N and PRO-R from

NuGel PROspector tool kit) in the Spin-X filterers (from NuGel PROspector tool kit). The

samples and beads were mixed for 10 min, and then centrifuged to collect the filtrate as ‘flow-

through’ fractions. We then added PRO-BB binding buffer to wash the sample. We eluted the

bound proteins by 200 ul elution buffer (0.2 M Tris, 0.5 M NaCl, pH 9.0). The buffer was

exchanged for HPLC loading buffer by Zeba desalt spin column (Thermo) before HPLC frac-

tionation. The resulting elutes from the five beads were kept for later HPLC fractionation.

HPLC fractionation

We fractionated T. gondii cell lysate and enriched eluates from affinity beads using ion-

exchange (IEX) liquid chromatography by an Agilent 1100 HPLC system (Agilent Technolo-

gies, ON, Canada) individually. A PolyCATWAX mixed-bed ion exchange column (200 x 4.6

mm id, 12 μm, 1500 A) was used with a 240 min salt gradient (0.15 to 1.5 M NaCl), for whole

lysate samples prepared from the first batch of cultured T. gondii. For enriched eluate samples,

a PolyCATWAX mixed-bed ion exchange column (200 x 4.6mm id, 5 μm, 1000A) was

employed. Enriched samples were fractionated into 60 fractions by using a 120 min salt gradi-

ent (0.15 to 1.5 M NaCl). We collected the fractions every 2 mins. As a result, 120 fractions

were collected for the whole cell lysate, and 60 fractions of each eluate from affinity bead. In

total, 420 fractions were collected.

LC-MS/MS analysis

All HPLC fractions were precipitated, re-dissolved and then digested by trypsin overnight at

37˚C resulting in peptides, which were subsequently dried and re-dissolved into 5% formic

acid before LC-MS/MS. The LC-MS/MS was performed by a nano-flow HPLC System (EASY-

nLC, Proxeon, Odense, Denmark) coupled with a LTQ Orbitrap Velos Mass Spectrometer

(Thermo Fisher). First, the peptides were loaded into a 2.5 cm trap column (75 mm inner

diameter), which was packed with Luna 5u C18, 100A beads (Phenomenex), by an auto-sam-

pler. Next, a 10 cm analytical column (75 mm inner diameter), packed with 2 mm Zorbax

80XDB C18 reverse phase beads (Agilent), was connected to the trap column for peptides sepa-

ration. A 60 min gradient of CAN in water (1% formic acid) from 5% to 35% was used to elute

peptides. Electro-spray ionization was set at 2.5kV, and the mass spectrometer was operated in

a data dependent mode (One full MS1 scan followed by MS2 acquisitions on top 10 precursor

ions). The fragmentation was performed by 35% normalized collision energy at CID mode.

Protein identification and label free quantification

We converted all raw files generated from LTQ Orbitrap Velos Mass Spectrometer to mzXML

files by ReAdw software. The FASTA file was downloaded from ToxoDB v11 [100] and com-

mon contaminant peptides and corresponding reverse sequence decoys were added for false-

discovery rate (FDR) evaluation. SEQUEST v2.7 [101] was used with default parameters to

identify proteins with the probabilistic STATQUEST model subsequently applied to evaluate

and assign confidence scores to all putative matches. Both proteins and peptides were consid-

ered positively identified, if detected within a 1% false discovery rate cut off (based on empiri-

cal target-decoy database search results). All the fractions were compared and concatenated

using the Contrast software tool [102].
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Capturing similarity of coelution profiles

The similarity of coelution profiles for two proteins was estimated using various metrics.

Three metrics implemented by Havugimana et.al were used as specified in [36]: a) pearson

correlation coefficient with noise modeling (PCCNM)–which introduces random noise into

the profiles in order to negate the high spurious correlations arising due to low abundance; b)

weighted cross correlation (WCC)–which negates minor spectral shifts arising in the coelution

profiles during collection of fractions; c) overall coapex score (Coapex1)–which captures the

number of coelution experiments in which the same fraction contains peak abundance for

both proteins. In addition, three other scores were implemented: a) mutual information (MI),

implemented using the “entropy” package in R, in order to capture non-linear dependencies

between the two coelution profiles; b) topological overlap similarity (TOM)–typically used in

gene coexpression networks [103] to measure the relative interconnectedness between two

proteins by combining the similarities between the two proteins (captured via their PCCNM,

WCC scores) along with those of its shared neighbours–implemented using the scran and

WGCNA packages in R; and c) individual coapex score (Coapex_X)–capturing the number of

fractions with same peak abundance for both proteins in an experiment. In summary, for each

protein pair, 6 PCCNM scores, 6 WCC scores, 6 Coapex_X scores, 6 MI scores, 6

TOM-PCCNM, and 6 TOM-WCC scores are generated, corresponding to each of the 6 experi-

ments (five from bead purifications and one from whole cell lysate). Further, apart from Coa-

pex1 (which is calculated over all experiments), overall scores were calculated using two

approaches for the other measures by capturing similarity over all experiments (420 fractions)

after ensuring that the two proteins coelute in at least one experiment: a) Calculate similarities

over 420 fractions (PCCNM_overall, WCC_overall, MI_overall, TOM-PCCNM_overall,

TOM-WCC_overall); and b) Calculate similarities only over the experiments in which either /

both of the proteins are detected (PCCNM_overall-E, WCC_overall-E, MI_overall-E). Note

that the latter was not carried out for TOM-based scores which considers shared neighbours

in each experiment, resulting in too many combinations of experiments, with several being

populated sparsely. Details of scores are shown in S3 Table.

Integrating functional genomics datasets

The coelution datasets are integrated with additional functional genomics data for T. gondii
using a supervised machine learning classifier in order to generate a protein interaction net-

work. The additional datasets are:

a. Domain-domain interactions: Lee et. al. [46] generated log-likelihood scores to capture

how often two Pfam domains [104] found in two proteins are involved in physical interac-

tion. An integrated log-likelihood score was generated for each protein pair based on the

log-likelihood scores assigned for their Pfam domain.

b. Phylogenetic profiles–Phylogenetic profiles represent the pattern of gene/protein distribu-

tion in sequenced genomes. Phylogenetic profiles for T. gondii were obtained from Phylo-

pro v2 [105], which stores gene/protein distribution for 165 eukaryotic proteins [106]. Two

types of phylogenetic profiles were generated: i) where presence/absence of orthologs is rep-

resented as 1s and 0s ii) where presence of homolog is represented in terms of modified

BLAST E-value reflecting extent of sequence similarity, thereby capturing more informa-

tion than binary gene presence/absence [45]. The similarity of phylogenetic profiles of two

proteins was estimated using mutual information, implemented by the entropy package in

R.
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c. Coexpression–Coexpression of T. gondii proteins in 44 conditions was obtained from 8

coexpression datasets, from ToxoDB v11 [94]. The datasets were split into two based on the

method: RNAseq and Microarray. The similarity between two coexpression profiles was

estimated using pearson correlation coefficient. The datasets considered are: Buchholz_-

Boothroyd_M4_in_vivo_bradyzoite_rnaSeq, Sibley_ME49_bradyzoite_rnaSeq, DBP_Hehl-

Grigg_rnaSeq, Knoll_Laura_Pittman_rnaSeq, microarrayExpression_Boothroyd_Life-

Cycle, microarrayExpression_Matrajt_GSE23174_Bz, microarrayExpression_Roos-Tz,

microarrayExpression_Sullivan_GSE22100_GCN5-A.

d. Gene fusion and Textmining–Protein pairs in T. gondii reported to be functionally interact-

ing according to gene fusion and text-mining (co-citation) evidence from STRING v10

were considered [107]. The scores representing their similarity in the STRING database

were considered as is.

Supervised machine learning approach to network generation

A supervised machine learning approach based on a RandomForest classifier (implemented

using weka software suite v3.6) was used to integrate the similarity scores of coelution and func-

tional genomic datasets using a training dataset of 511 positive interactions and 1533 negative

interactions generated from ToxoCyc [108] and 1:1 orthologues of manually curated complexes

from Cyc2008 (http://wodaklab.org/cyc2008/), CORUM [109] (S4 Table). The positive training

dataset consists of 333 pairs from Toxocyc, 133 pairs sharing same GO-Biological Process terms

(GO term annotation by Pfam2GO taken from [9]), 206 pairs from orthologs of yeast complexes

in Cyc2008, and 516 pairs from orthologs of human complexes in CORUMCore (complexes

with 50 members). Duplicate pairs and ribosomal pairs were removed from these datasets, yield-

ing an overall positive training dataset of 511 pairs. The negative training dataset was generated

by choosing pairs that do not share common localization (according to Apiloc v3 annotation

wherever available (152 pairs), or by comparison of GO terms of orthologs in Cyc2008 and

CORUM otherwise (2227 pairs and 1912 pairs respectively)). We initially evaluated several classi-

fiers with the training dataset using 10-fold cross validation: RandomForest, SVM, BayesNet and

found that RandomForest yielded the best performance in terms of AUC. Of the 52 features in

total comprising both coelution (45 scores) and functional genomics (seven scores) similarity

scores, feature selection identifies 33 attributes as providing information gain with respect to the

training data (S3 Table). The RandomForest classifier was retrained based on these 33 features

using 10-fold cross validation i.e. the training dataset was randomly split into 10 sets, with each

of the 10 iterations using a different set as the test data, while the remaining 9 sets are used to

generate the training data. The RandomForest classifier was trained using 100 trees, each con-

structed while considering five random features, at a maximum tree depth of 0 (corresponding

to unlimited). The -I hyperparameter (number of trees in the RandomForest) was varied from

100 to 500, in steps of 100. However, since the AUC was not significantly impacted across itera-

tions, we chose the number of trees (100) which gave the best performance in terms of overlap

with previously known identified complexes. Averaging classifier results following the 10-fold

cross validation gave an AUC score of 0.806 (Fig 1D). This RandomForest classifier was used to

evaluate the set of 174455 protein pairs with biochemical support (coelution score� 0.5 in any

of the experiments). The resulting set of predicted interacting pairs were further pruned to: i)

remove pairs containing proteins with a spectral count of� 5 (to remove spurious correlations

arising out of low abundance—90% of the scores with a value of–nan according to PCCNM

have� 5 spectral counts in one of the protein pairs); and ii) remove pairs of proteins not con-

taining any unique peptides distinguishing one from the other.
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Unsupervised machine learning approach to network generation

An unsupervised machine learning approach, based on Similarity Network Fusion (SNF) [41],

was also adopted for integrating the coelution similarity scores with functional genomics simi-

larity scores. Initially, using the set of 1329 proteins common to the coelution, coexpression and

phylogenetic profile datasets, seven individual similarity networks were generated for each of

the following scores: three similarity measures for coelution data (PCCNM_overall, WCC_o-

verall, Coapex1), two similarity measures for coexpression data (COEXPR_RS, COEXPR_MA),

and two similarity measures for phylogenetic profiles (MI based on presence/absence (MI-Pre-

sAbs) and sequence similarity metric (MI-pij)). We evaluated the contribution of the different

datasets to network generation by SNF by examining different combinations of these seven sim-

ilarity networks (S4 Fig). Note we examined the removal of COEXPR_MA and MI_PresAbs,

due to overlaps with COEXPR_RS and MI_pij, respectively and perceived quality of the latter

two datasets relative to the former. During generation of these networks, we systematically

examined combinations of three hyperparameters used by SNF: 1) the number of neighbours,

K (increased from 2–30 in increments of 2); 2) hyperparameter alpha (increased from 0.2 to 1

in increments of 0.2); and 3) number of fusion iterations, I (increased from 2–30 in increments

of 2). The resulting set of integrated pairs were pruned at a false positive rate of 0.0001 (deter-

mined based on the training dataset generated for the supervised learning technique). Once

generated, networks were clustered with the Markov Clustering Algorithm (MCL) [110] using

an inflation parameter of 2.6. Resulting clusters were analysed for overlap with known protein

complexes and pathways (orthologs of CORUM/Cyc2008 complexes and members of same

pathway in ToxoCyc) using the Bader-Hogue scoring scheme [70]; clusters with a cutoff

of� 0.25 were considered to be similar [55]. From these analyses we found that the network

generated from the combination of coelution and functional genomics scores, with the excep-

tion of MI_PresAbs, performed best (S5 Fig) and was therefore used as the unsupervised net-

work in downstream analyses. Subsequent to network generation, we applied a similar pruning

approach as for the supervised network: i) remove pairs containing proteins with a spectral

count of�5; and ii) remove pairs where there are no unique peptides distinguishing one protein

from the other. Finally, only protein pairs with a PCC�0.5 in COEXPR_RS were considered in

order to generate the high confidence unsupervised network (S6 Table).

Generating combined network and combined high-confidence network

The overlap similarity score [70] was used to identify the best unsupervised predicted networks in

terms of their ability to identify biologically relevant clusters: From the various unsupervised pre-

dicted networks generated for different combinations of similarity matrices and parameters, the

network with the highest number of clusters according to the overlap score cutoff (�0.25) was

selected. For the supervised network, the network regenerated using the 33 features identified to be

informative based on feature selection (see above) was chosen. These two networks were integrated

to generate the overall combined network. Further, to generate a high confidence set, the super-

vised network was derived by considering interactions with RandomForest predicted scores greater

than a cutoff corresponding to a false positive rate of ~0 (indicated by a * on the ROC curve–Fig

1). For the unsupervised network, the high confidence version was generated by considering all

those interactions that are coexpressed (PCC�0.5 for COEXPR_RS). These two high confidence

networks were collated in order to generate a combined high confidence network (S7 Table).

Network analysis

Networks were visualized using Cytoscape v3.7.1 [111]. Topological analysis of the network

was achieved using the Cytoscape plugin NetworkAnalyzer to determine node degree, node
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betweenness, network degree distribution, network characteristic pathlength and network

shortest pathlength distribution. Essentiality information was integrated from a genome-wide

CRISPR screen of the tachyozoite lifecycle [23]. Essential proteins were defined by a phenotype

score of less than or equal to -2 based on the reported separation of proteins with experimen-

tally validated essential and dispensable fitness phenotypes [23]. The T. gondii network was

compared to previously published T. bruceii [64] and Plasmodium [40] networks using 1:1

orthologs identified by InParanoid v4.1 [112]. Information from spatial proximity experiments

was analyzed in the context of the network. In publications that utilized both BioID and APEX

techniques [60,61], the subnetwork was defined by the network proteins present in the over-

lapping set detected by both methods. In cases where only BirA* fusion proteins were utilized,

the subnetwork was defined by network proteins detected in streptavidin pull-downs that were

not present in negative controls [62,63]. The Python package networkx was used to calculate

the pairwise pathlength of all subnetwork proteins and the average was the characteristic path-

length of the subnetwork. The 55 network proteins that are isolated in clusters of 2–4 proteins

were not included in this analysis due to their disconnection from the main network. Subnet-

work permutations were generated by randomly selecting the same number of proteins from

the network and determining the characteristic path length. This was repeated 1000 times for

each subnetwork. P-values were determined using the pnorm function in R. For the G.O. com-

parisons, computed G.O. component, processes and function terms were taken from ToxoDB

(downloaded April 5th 2022). Of the number of interactions where both proteins were anno-

tated, the percent of interactions with the same term was calculated and significance of con-

gruence of terms calculated using the Fishers exact test. To analyze coexpression correlation of

network interactions, the following RNA-seq datasets were retrieved from ToxoDB: ‘tachyzoite

transcriptome time series (ME49)’, ‘tachyzoite transcriptome 3 and 4 days post-infection

(VEG NcLIV)’ [11] and ‘comparative ribosome profiling of intracellular and extracellular par-

asites’ [66]. The Pearson correlation for pair-wise transcripts was calculated for transcript lev-

els in transcripts per million (TPM) values across 10 timepoints. TPM values were for reads

that mapped back to the transcript sense strand, including non-unique reads. Pearson correla-

tion values were determined for pair-wise network interactions, all pair-wise combinations of

network proteins that were not predicted to be interacting, and 10,000 random pair-wise com-

binations from the full proteome. The significance of the difference in the distributions of

these respective values was determined by a two-sample Kolmogorov-Smirnov test.

Clustering and cluster analysis

Clusters were identified in the combined high confidence network using ClusterONE [55]

using a density parameter of 0.25. The density parameter was optimized by iteratively scanning

each possible value. To select a final cluster set, the number of recapitulated complexes utilized

in supervised training data with an overlap score of 0.25 or greater [70] was calculated. The

average number of recapitulated training complexes was also calculated from 100 random

cluster permutations. The set of clusters that recapitulated the greatest number of training

complexes minus the average number of training complexes recapitulated at random was

selected as the final set of clusters. For the analysis of coexpression of cluster proteins, the aver-

age cluster coexpression correlation was calculated for each cluster by averaging the Pearson

correlation for each pairwise combination of cluster proteins. The average correlation with

network proteins was calculated by averaging the Pearson correlation for each pairwise combi-

nation of cluster proteins with all network proteins. The p-value was calculated using a Welch’s

T-test to determine the significance of the difference of the average coexpression correlation of

cluster proteins with each other relative to all network proteins. For the analysis of distribution
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of essential proteins in clusters, the fraction of essential proteins for each cluster was calcu-

lated. 100 random cluster permutations were generated as previously described. The signifi-

cance of the difference in the distributions of essential proteins in clusters and random clusters

was determined by a two-sample Kolmogorov-Smirnov test.

SNP analysis

The dataset of SNPs used here compiles sequencing results from previous studies of T. gondii
genetic diversity [9,73], and contains 1,054,454 SNPs spanning 80 different strains of T. gondii.
The effect of these substitutions on the ME49 reference genome were assessed using SnpEff

v4.3 [113], which produced multiple functional annotations (including the affected gene and

type of mutation) for each given SNP. SNPs with minor alleles only present in 3 or fewer

strains were excluded from further analyses. The SNP dataset was further filtered down by

considering only those SNPs causing non-synonymous mutations for proteins in the network,

resulting in a final set of 2893 SNPs. To determine which of these SNPs have pronounced bio-

logical effects, the 2881 network SNPs annotated as missense mutations were each assigned a

score using PROVEAN v1.1.3. SNPs with a PROVEAN score of -2.5 or below were considered

to be putatively deleterious. The SNP score was calculated for each network protein as the

number of non-synonymous SNPs normalized by the protein length. The deleterious SNP was

similarly calculated, but including only non-synonymous SNPs that were flagged as deleterious

by PROVEAN. The previously described neighbor network [9] designates 62 of these T. gondii
strains in clades A-F; the remaining 18 are designated as unknown. For each of the non-synon-

ymous SNPs, of the strains carrying the minor allele, the proportion belonging to each clade

was calculated. The proportions for each clade were averaged for all these SNPs within a pro-

tein to determine the final clade distribution visualized within node pie charts. The average

SNP score of each cluster was determined by averaging the SNP score of each cluster protein.

IMC reconstruction

To relate cofractionation datasets to characterized structural hierarchies of the apicomplexan

IMC, PCCNM or WCC matrices were computed for all known IMC proteins contained in the

proteomic data with five or more spectral counts. These matrices contained the highest pair-

wise PCCNM or WCC score from individual fractionation experiments (i.e., five affinity beads

and IEX) or from across all 420 fractions, respectively. Hierarchical clustering of these matrices

was performed using the complete linkage method and heatmaps and representative dendo-

grams were generated using the heatmap.2 function in R.

Endogenous epitope tagging, immunofluorescence and

immunoprecipitation

T. gondii Pru Δku80/Δhxgprt strain was used to generate the endogenous 3×HA-tagged strains

used for IFA assays. The 3×HA sequence was inserted into the endogenous locus of

TGME49_306650 by double crossover homologous recombination using CRISPR/Cas-based

genome editing and homology arms of 40 bp to facilitate the 3×HA integration. For all trans-

fections, 6 μg of guide RNA was transfected along with 3 μg of a repair oligo (3xHA). Parasites

were transfected and cloned by limiting dilution after the first lysis. Insertion of 3xHA tag was

confirmed by conventional PCR and IFA. All strains were maintained in HFF cells grown in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% heat-inactivated fetal

bovine serum (FBS), 0.25 mM gentamicin, 10 U/mL penicillin, and 10 μg/mL streptomycin

(Gibco, Thermo Fisher Scientific Inc., Grand Island, NY). For IFA, HFF monolayers were

infected with T. gondii for 24 hours. Coverslips were then fixed with 0.1% Triton X-100 and
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incubated with primary antibodies. The signal from primary antibodies was then amplified

using species-specific secondary antibodies conjugated to Alexa488, Alexa647 and Rhodamine

Red X. DNA was stained using DAPI. Imaging was performed utilizing an Olympus IX81 quo-

rum spinning disk confocal microscope with a Hamamatsu C9100-13 EM-CCD camera (the

Imaging Facility at the Hospital for Sick Children). Lysates for IP were prepared as described

above or by incubating T. gondii pellets in lysis buffer (1% NP-40, 150 mM NaCl, 50 mM Tris

pH 8.0, 5 mM EDTA) for 1 hour at 4˚C and cell debris was removed by centrifugation. In addi-

tion to IP of strains with endogenously tagged proteins, parallel IPs were performed on T. gon-
dii PRU WT for negative controls. The IP was performed utilizing SureBeads Protein G

magnetic beads (BioRad); each with a total of 2 replicates. The resulting quantitative mass

spectrometry data was analyzed utilizing SAINTexpress to identify high confident hits

(FDR� 0.01).

Supporting information

S1 Fig. Precision-Recall curve for the Randomforest approach, for different combinations

of features.

(PDF)

S2 Fig. Predicted high confidence supervised network depicted using cytoscape, where pro-

teins are shown as nodes (circles) and the predicted interactions between them are shown

as edges (lines). Hypothetical proteins are indicated as squares enclosed by black borders.

Well known protein complexes are colored uniquely and encircled–such as ribosome (yellow),

proteasome (orange), snRNP complex (light green), glycolytic complex (blue), prefoldin com-

plex (black). Proteins known to be involved in invasion are colored pink, and proteins associ-

ated with the IMC are colored purple.

(PDF)

S3 Fig. Performance of networks generated from the integration of different combinations

of datasets by SNF. After network generation, clusters were defined using the MCL algorithm

and evaluated for overlap with known protein complexes using the Bader-Hogue overlap scor-

ing algorithm. The graph shows the number of unique clusters with overlap score�0.25 with

respect to known protein complexes for six combinations of networks: 1) coelution scores

(PCCNM, WCC and Coapex1); 2) phylogenetic scores (MI_PresAbs, MI_pij); 3) functional

genomics scores (MI_PresAbs, MI_pij, COEXPR_RS and COEXPR_MA); 4) coelution and

functional genomics scores (PCCNM, WCC, Coapex1, MI_PresAbs, MI_pij, COEXPR_RS

and COEXPR_MA); 5) coelution and functional genomics scores excluding COEXPR_MA

and MI_PresAbs; and 6) coelution and functional genomics scores excluding MI_PresAbs. In

this analysis, phylogenetic profile scores performed better than coelution scores. However,

overall we found the network generated from combining coelution and functional genomics

scores, excluding MI_PresAbs, gave the best performance. This network was selected as the

final unsupervised network.

(PDF)

S4 Fig. Fraction of interactions lost for various cutoffs of coexpression measure (PCC) for

both the supervised and unsupervised networks.

(PDF)

S5 Fig. Comparison of supervised and unsupervised networks. (A). Venn diagram showing

the number of overlapping and unique proteins for the supervised and unsupervised networks.

(B) Features of proteins uniquely identified by the unsupervised network: Distribution of
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ing the distribution of various coelution, coexpression, and phylogenetic scores for Supervised,

Unsupervised, and an equivalent set of Randomly generated interactions. The box and whis-

kers in each boxplot indicate the 25%-75% quartile and min-max of the scores over all the

interactions in a dataset, respectively.

(PDF)

S6 Fig. (A) The distribution of random permutations (n = 1000) of characteristic path lengths

relative to the actual characteristic path length (red line) of network proteins identified in bio-

tinylation BirA-based BioID experiments with GRA13 (n = 35, p = 0.43), GRA17 (n = 48,

p = 0.1), GRA25 (n = 71, p = 0.07), ISP3 (n = 46, p = 0.85), AC2 (n = 14, p = 0.21). (B) The

intersection of interactions predicted in recent Trypanosome bruceii6 and Plasmodium falcipa-
rum7 protein interaction networks.

(PDF)

S7 Fig. Characteristics of essential and dispensable proteins. (a) Overlapping histograms

compare the distribution of the fraction of conserved eukaryotic proteins in essential and dis-

pensable clusters. Boxplots illustrate the fraction of invasion and IMC proteins (b) and hypo-

thetical proteins (c) in essential and dispensable clusters.

(PDF)

S8 Fig. (A) Distribution of the average SNP score for each predicted protein complex. (B)

Hierarchal clustering of the best pairwise WCC score from each coleution experiment for IMC

proteins recapitulates the subcompartmental structural organization of the IMC. Proteins pre-

viously localized to the apical and basal/central subcompartments are highlighted in red and

green, respectively.

(PDF)

S1 Table. Details of peptide counts obtained from mass spectrometry analysis of T. gondii
tachyzoites from six cofractionation experiments.

(XLSX)

S2 Table. Details of T. gondii ME49 proteins identified in the cofractionation experiments,

along with their elution profiles.

(XLSX)

S3 Table. Description of scores evaluated in the study along with selected scores from fea-

ture selection.

(XLSX)

S4 Table. Description of POSITIVE and NEGATIVE training datasets used for training

the supervised classifier.

(XLSX)

S5 Table. Coelution, coexpression, and phylogenetic profiles of predicted interactions for

the supervised network.

(XLSX)

S6 Table. Coelution, coexpression, and phylogenetic profiles of predicted interactions for

the unsupervised network.

(XLSX)
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S7 Table. List of interactions comprising the combined high confidence network.
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S8 Table. Summary of correspondence in hyperLOPIT predictions for interacting pairs of

proteins in the combined high confidence network.

(XLSX)

S9 Table. Details of Protein Complexes including, protein components, complex size,

name of recapitulated training complex, overlap score of training complex, fraction of

eukaryotic, apicomplexan, coccidian and toxoplasma-specific proteins, fraction of essen-

tial and dispensable proteins, putative localization, average SNP score, average coexpres-

sion correlation of cluster proteins, the average coexpression correlation of cluster

proteins with all network proteins and the p-value determining the significance complex

coexpression.

(XLSX)

S10 Table. Affinity-purification mass spectrometry (AP-MS) results processed using

SAINTexpress for IPs of TGME49_306650, IMC17 and IMC19 baits. The ‘Bait’, ‘Prey’ and

‘Prey Gene’ columns indicate the bait, identified prey and the identified prey’s gene name,

respectively. The ‘ToxoNet HC’ and ‘ToxoNet LC’ columns indicate whether the prey is a pre-

dicted interactor of the bait in the ToxoNet high confidence and low confidence networks,

respectively. The ‘ToxoNet Cluster’ column indicates the ToxoNet cluster that contains both

the prey identified by AP-MS and the bait. The ‘Spectral Counts’, ‘Number Replicates’, ‘Con-

trol Spectral Counts’ and ‘BFDR’ columns indicate the number of spectral counts for each prey

identified in the bait eluent, the number of biological replicates for the bait, the number of

spectral counts for each prey identified in the negative control eluent and the Bayesian false

discovery rate, as determined by SAINTexpress, respectively.

(XLSX)
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