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Abstract

Contagion processes, representing the spread of infectious diseases, information, or social

behaviors, are often schematized as taking place on networks, which encode for instance

the interactions between individuals. The impact of the network structure on spreading pro-

cess has been widely investigated, but not the reverse question: do different processes

unfolding on a given network lead to different infection patterns? How do the infection pat-

terns depend on a model’s parameters or on the nature of the contagion processes? Here

we address this issue by investigating the infection patterns for a variety of models. In simple

contagion processes, where contagion events involve one connection at a time, we find that

the infection patterns are extremely robust across models and parameters. In complex con-

tagion models instead, in which multiple interactions are needed for a contagion event, non-

trivial dependencies on models parameters emerge, as the infection pattern depends on the

interplay between pairwise and group contagions. In models involving threshold mecha-

nisms moreover, slight parameter changes can significantly impact the spreading paths.

Our results show that it is possible to study crucial features of a spread from schematized

models, and inform us on the variations between spreading patterns in processes of differ-

ent nature.

Author summary

Contagion processes, representing the spread of infectious diseases, information, or social

behaviors, are often schematized as taking place on networks, which encode for instance

the interactions between individuals. We here observe how the network is explored by the

contagion process, i.e. which links are used for contagions and how frequently. The result-

ing infection pattern depends on the chosen infection model but surprisingly not all the

parameters and models features play a role in the infection pattern. We discover for

instance that in simple contagion processes, where contagion events involve one connec-

tion at a time, the infection patterns are extremely robust across models and parameters.

This has consequences in the role of models in decision-making, as it implies that numeri-

cal simulations of simple contagion processes using simplified settings can bring impor-

tant insights even in the case of a new emerging disease whose properties are not yet well
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known. In complex contagion models instead, in which multiple interactions are needed

for a contagion event, non-trivial dependencies on model parameters emerge and infec-

tion patterns cannot be confused with those observed for simple contagion.

Introduction

Contagion processes pervade our societies. Examples include the spread of infectious diseases,

both through contacts between hosts and following their mobility patterns, but also informa-

tion diffusion or the propagation of social behavior [1–6]. Modeling of these processes often

includes a description of the interactions among the hosts as a network, in which nodes repre-

sent individuals and a link between nodes correspond to the existence of an interaction along

which the disease (or information) can spread. In the resulting field of network epidemiology

[4, 6, 7], many results have been obtained for the paradigmatic models of diffusion processes,

in which the hosts can only be in a few possible states or compartments, such as susceptible (S,

healthy), infectious (I, having the disease/information and able to transmit it), or recovered (R,

cured and immunized) [1, 2]. These results concern mainly the context of models aimed at

describing the spread of infectious diseases, represented as so-called simple contagion pro-

cesses: namely, processes in which a single interaction between a susceptible and an infectious

can lead to a transmission event [1, 6]. In this context, many studies have provided insights

into how the structure of the underlying network influences the spread and impacts the epi-

demic threshold (separating a phase in which the epidemic dies out from one in which it

impacts a relevant fraction of the population), and how various containment strategies can

mitigate the spread [4, 6].

Fewer results concern the detailed analysis of the process dynamics and spreading patterns,

despite its relevance [8]. In particular, the reverse question of whether different processes lead

to different or similar infection patterns has barely been explored. At the population level, a

robustness of the shapes of the epidemic curves has been observed for various spreading mod-

els [9, 10] and contact networks [11]. In heterogeneous networks, it has also been shown that

simple contagion spreading processes first reach nodes with many neighbours, and then cas-

cade towards nodes of smaller degree [12–14]. Moreover, in the context of metapopulation

models, in which each node of the network represents a geographic area and hosts can travel

between nodes on the network, possibly propagating a disease, the heterogeneity of travel pat-

terns has been shown to determine dominant paths of possible propagation at the worldwide

level [8, 15, 16], allowing for instance to provide predictions for the arrival time of a pandemic

in various parts of the world [17, 18].

In addition, while these results concern simple contagion processes, it is now well known

that such models might not be adequate to describe some contagion mechanisms, such as

social contagion of behaviors. Empirical evidence has led to the definition and study of models

of complex contagion [3, 19]: in these models, each transmission event requires interactions

with multiple infectious hosts. In particular, models involving threshold phenomena [20] or

group (higher-order) interactions [21] have been put forward, but results concerning the detail

of their propagation patterns are scarce [14, 22].

Overall, most results on propagation patterns concern simplified models with few compart-

ments (such as the susceptible-infected-susceptible (SIS) and susceptible-infected-recovered

(SIR)) and simple contagion processes. The question arises thus of their applicability to more

realistic models and to other types of spreading processes, and of the possibility to directly

apply them in concrete cases. Here we contribute to tackle these issues by investigating
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spreading patterns for different types of contagion models on networks and hypergraphs and

by addressing the following questions: how general are the propagation patterns observed in

these models, and are they similar in more realistic models with compartments including

latent individuals, asymptomatic cases, etc? How well do propagation patterns of simple conta-

gion inform us on complex contagion ones, and do the most important seeds or the nodes

most easily reached differ depending on the precise model or type of contagion?

To this aim, we consider the infection network of a process [8], which gives the probability

of a node to be directly infected by another one, averaged over realizations of the process, and

generalize it as well to complex contagion models. We compare the resulting patterns within

each model as its parameters change, between different models of simple contagion and

between different types of contagion processes. We first find an extreme robustness of the con-

tagion patterns across models of simple contagion. These patterns slightly depend on the

reproductive number of the spread, but are almost completely determined by the final epi-

demic size. This indicates also that one can define spreader and receiver indices to quantify a

node’s tendency to contaminate or be contaminated by its neighbours: these indices are largely

independent of the specific disease model and can thus be computed on simple cases with arbi-

trary parameters. The situation changes when models of complex contagion are considered.

On the one hand, patterns of contagion turn out to be less robust in threshold models. On the

other hand, they depend on the interplay between pairwise and group processes for models

involving higher-order interactions.

Results

General framework

We consider the context of network epidemiology, i.e., of spreading processes on a weighted

network where nodes represent the hosts and weighted links between the hosts correspond to

contacts along which a disease can spread, with probability depending on the link weight [6].

Specifically, the weighted networks we will use to perform numerical simulations of spreading

processes are empirical networks obtained by temporally aggregating time-resolved data

describing contacts between individuals in various contexts [23–25], where the weight Wij

between two individuals i and j is given by their total interaction time (see Methods).

On these networks, we will first consider several models of simple contagion, in which each

node can be in several states such as susceptible, latent, infectious, and recovered, and an infec-

tious node can transmit the infection to a susceptible neighbour with a certain probability per

unit time. We will consider models with different sets of states, corresponding both to very

schematic and to more realistic situations, and both Markovian and non-Markovian processes.

On the other hand, we will consider a model of complex contagion that involves higher-order

contagion mechanisms, i.e., interactions among groups of nodes [21]: This model describes

the fact that the probability of a contagion event can be reinforced by group effects, and is

defined on hypergraphs [26] in which interactions can occur not only in pairs but also in larger

groups. It has indeed been shown that the inclusion of such effects leads to an important

phenomenological change, with the emergence of a discontinuous epidemic transition and of

critical mass phenomena. Finally, we will also consider so-called threshold models [20], in

which a susceptible node becomes infected when the fraction of its interactions spent with

infected neighbors reaches a threshold θ, to mimic the fact that an individual may adopt an

innovation only if enough friends are already adopters. All models and their parameters are

described in detail in the Methods section, and their mechanisms are sketched in Fig 1.

For each given spreading model and propagation substrate (network or hypergraph), we

perform numerical (Monte Carlo) simulations of the spread at given parameter values, starting
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from a single infectious seed taken at random in the network, while all other nodes are suscep-

tible (see Methods). The infection pattern of the model is then the weighted and directed graph

C such that Cij is the probability (averaged over 1000 realizations of the spread) that node i
infected node j [8, 16]. In practice, it is obtained from the numerical simulations, by counting

all the direct infectious events from i towards j among all runs, and dividing by the number of

runs. The infection pattern hence represents the signature of an epidemic, highlighting the

paths that are taken by the contagion process with a higher probability. C was defined for

metapopulation models [8, 16] as the probability for a contagion to arrive in a geographical

area from another one. Here we consider the case instead in which nodes represent hosts;

moreover, this definition needs to be generalized in the case of complex contagion processes

where the contagion of a node originates from several others, as described later. We first note

that a non-zero Cij> 0 can be obtained if and only if there exists an interaction between i and j
in the weighted network; moreover, one can expect that the probability Cij of i infecting j
depends on the weight Wij of their connection. However, it also depends on the probability of

i to be infected in the first place, to be infected before j, and of j not to be infected through

another interaction. Overall, one can thus expect Cij to depend on non trivial properties of the

network topology and not only on the weight of the link between i and j. In particular, even if

the interaction weights are symmetric, this is not a priori the case for the infection pattern: the

network defined by the matrix Cij is directed. This is shown in Fig 2 for a toy network, where

the largest values of Cij do not correspond to the largest link weights. Once C is defined, we

can moreover use it to compute spreader and receiver indices for each node, respectively as si
= ∑j Cij and ri = ∑j Cji, i.e., as the out-strength and in-strength of each node in the directed net-

work of the infection pattern.

It is worth noting here that C, and as a consequence also the spreader and receiver indices,

depend both on the specific model of spread and on its parameters. We will explore these

dependencies in detail in the following sections. In this exploration, we have considered, as the

support of the contagion models we investigate, data describing contacts between individuals

collected in a conference [27], a hospital [28], a workplace [27], a primary school [29] and a

high school [30]. The primary school contact data has been used in various studies to feed

numerical simulations of infectious diseases’ models [31–33] and entails rich intertwined

structural and temporal features such as groups of temporarily densely connected nodes and

alternating patterns of nodes being structured in groups or able to connect in a more global

Fig 1. Sketch of the models of contagion considered. In all sketches, black nodes represent infectious hosts, empty

nodes are susceptible, and colored nodes represent the hosts that can be contaminated by the infectious ones. Left:

Simple contagion on weighted graphs. Contagion events occur along the network edges, with probability per unit time

given by β multiplied by the weight Wij of the edge (i, j) between a susceptible and an infected node. Center: Simplicial

model on weighted hypergraphs. Contagions can take place both along network edges (rate βWij) and if a susceptible

node i is part of a group (i, j, k) with j and k both infectious (rate bDWD
ijk, with WD

ijk the weight of the hyperedge (i, j, k)).

Right: Threshold model on weighted graphs. A susceptible node becomes infected when the sum of the weights of its

connections with infected nodes, divided by the total weight of its connections, exceeds a threshold θ.

https://doi.org/10.1371/journal.pcbi.1012206.g001
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manner, as well as an important number of simultaneous group (higher-order) interactions

[29, 34–37]. We thus show in the main text the results obtained for this data set, and we show

the results for the other data sets in the S1 Text.

Simple contagion

We consider several models of simple contagion, characterized by different sets of possible

states for the hosts and various types of dynamics between states. The simplest is the Suscepti-

ble-Infected-Recovered (SIR) model, in which a susceptible individual i (S) can become

infected (I) with rate βWij when linked with another infected individual j by an edge of weight

Wij (see Fig 1). Infected individuals then spontaneously become recovered (R) with rate μI and

cannot participate in the dynamics anymore. The most studied extension of this model is the

SEIR one, in which susceptible individuals become exposed (E, not yet contagious) with rate β
upon contact with an I individual, before becoming infected. In both SIR and SEIR, we con-

sider on the one hand fixed rates of transition from the I to the R state and from the E to the I

state; the times that an individual spends in the E and I states, resp. τE and τI, are then expo-

nentially distributed random variables (with averages given by the inverses of the transition

rates). A more realistic dynamical process is obtained by a non-Markovian dynamics between

these states, in which τE and τI are random variables taken from Gamma distributions with

given mean and standard deviation. As both SIR and SEIR remain generic models, we also

consider a more elaborate model designed to represent the propagation of COVID-19, in

which individuals can be exposed and not contagious, pre-symptomatic but already infectious,

infectious but asymptomatic, or infectious and symptomatic [13, 33]. These models and their

parameters are described in more detail in the Methods section.

For each model and network, once the parameters of the spontaneous transitions are fixed,

it is possible to adjust the contagion rate β to obtain a specific value of the reproductive

Fig 2. Simple contagion. Toy network illustrating the asymmetry of the infection pattern and its dissimilarity with the

adjacency matrix. The upper sketch shows the weighted adjacency matrix (links’ width proportional to their weights,

nodes’ size proportional to their weighted degree). The lower sketch represents the infection pattern for a simple SIR

contagion with R0 = 2 (averaged over 500 simulations). For each connection only the direction with higher probability

of infection is shown and the arrows’ width is proportional to the probability. The nodes are colored according to their

spreader index.

https://doi.org/10.1371/journal.pcbi.1012206.g002
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number R0, defined as the expected number of cases directly generated by one initial infected

individual in a population where all other individuals are susceptible to infection [1]. For each

model and parameter value, we compute the infection pattern C and the spreader and receiver

indices of each node as explained above.

As expected and anticipated in the toy example of Fig 2, we find that the matrix C is asym-

metric, and we show the similarity of its elements with the weighted adjacency matrix of the

underlying network in the Section A of S1 Text. We then compare in Fig 3A the infection pat-

terns C obtained in different simple contagion models, calibrated so as to correspond to the

same value of R0. The comparison is performed by computing the cosine similarity between

the lists of elements of the matrices C obtained in the various cases (see Methods for the defini-

tion of cosine similarity). Even at fixed R0, each model entails a different time evolution of the

epidemic (see Section B in S1 Text) with a different spreading velocity, and also different com-

partments, so corresponds to a different general process. One could hence suppose that the

infection pattern could also be largely different from one model to the next. However, Fig 3A

highlights how the infection patterns are actually extremely similar across models, with simi-

larity values above 0.98. Hence, the probability for each network link of being used for a conta-

gion event is largely independent of the specific contagion model considered (at given R0),

despite the differences in their temporal evolution. In other words, contagion paths are not

only stable within one model [16] but also across models. In the following analysis, we will

thus focus on the simplest SIR model.

Fig 3. Simple contagion. A: Cosine similarity between the infection patterns of different models of simple contagion,

simulated with the same R0 = 2.5 (see Methods for the description of the models). B: Cosine similarity between the

infection patterns obtained at varying R0 for the SIR model of simple contagion. C: Cosine similarity between infection

patterns at varying R0 for the SIR model, with infection patterns computed only using runs with final attack rate

between 0.75 and 0.85. D: Same as C but using runs with final attack rate between 0.5 and 0.6. E: Same as C but using

runs with final attack rate lower than 0.2. The results in panel C have been obtained by comparing, for each value of R0,

infection patterns obtained by averaging over 1000 simulations with final attack rate a in the chosen range. For panels

D and E the number of simulations to average on has been increased to 10000 and 50000, respectively. Indeed, smaller

values of a mean that less nodes and links are involved in each run, so that one needs to average over more runs to

compute the infection probability for each link.

https://doi.org/10.1371/journal.pcbi.1012206.g003
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Fig 3B reports the cosine similarity between matrices C obtained with the SIR model at

varying R0. Interestingly, although the similarity values are very large, they are lower than

between models at fixed R0, revealing a weak dependency of the infection patterns on R0. To

understand this point further, it is worth reminding that, while R0 largely determines the initial

velocity of the spread, the contagion process remains stochastic, and simulations with a fixed

R0 can lead to different final attack rates, i.e., final values of the density of recovered individuals

once the spreading process is over, i.e., once no contagion can take place any longer (we show

in the Section E of S1 Text the resulting distributions of final attack rates for several values of

R0). We thus consider the infection patterns at different values of R0 but at fixed final attack

rate. To this aim, we need to consider compatible ranges of R0 and final attack rates, i.e., a

range of attack rates that can be reached at all the values of R0 used. We report in Fig 3C the

analogous of Fig 3B, but where the matrices C have been computed taking into account only

the simulations with a final attack rate between 0.75 and 0.85 (as shown in the S1 Text, such

final attack rates are reached by a non-negligible fraction of the runs for R0 between 1.65 and

3). The similarity values become larger than 0.99, suggesting that the infection pattern of a

spreading model mostly depends on its average final attack rate. To check the generality of this

result, we extend this investigation to two other ranges of final attack rates in Fig 3D and 3E,

namely 0.5 − 0.6 and 0 − 0.2 (note that, to obtain enough simulations with final attack rates

between 0.5 and 0.6, we need to consider lower values of R0). We obtain also in theses cases

very high values of the similarity.

Such results moreover lead us to an additional investigation, based on two simple points: (i)

the final attack rate is an increasing function of R0 and (ii) for a given R0, the average attack

rate is a continuously increasing function of time, which thus passes through the values of the

final attack rates obtained with lower values of R0. The question arising is thus the following: if

we consider, for a large R0, the time-dependent infection patterns C(t) (obtained by averaging

on all infection events up to t), are the matrices C(t) similar to the final infection patterns

obtained with lower values of R0?

We investigate this issue in Fig 4 through the following procedure. First, we consider as ref-

erence an SIR model with Rref
0 ¼ 4, and perform 1000 simulations of this model. At each time,

we build the time-dependent Cref(t) by averaging on all the contagion events occurred in these

1000 simulations up to t. Second, we consider several lower values of R0, namely R0 2 {1.5, 2,

2.5, 3, 3.5}, perform 1000 simulations for each value, and compute the resulting infection pat-

terns CR0
. The top panel of Fig 4 displays the similarity between the time-dependent infection

pattern for R0 = 4, Cref(t), and the final infection patterns obtained with the lower values of R0,

CR0
. Each such similarity goes through a maximum (with large values above 0.98) as a function

of time, and this maximum is obtained when the time-dependent attack rate of the reference

process (R0 = 4) is almost equal to the final attack rate of the process at lower R0, as seen in the

middle panel of Fig 4.

More precisely, the 1000 simulations of the reference model yield a distribution of attack

rates at each time t (displayed in black in the bottom panels of Fig 4 for five different times).

These distributions are typically bimodal and the location of the non-zero mode for each time

is plotted in the middle panel of Fig 4 (black curve). The colored dots correspond instead to

the non-zero modes of the distributions of final attack rates for the lower R0 values (full distri-

butions shown by the colored curves in the bottom panels, obtained as well with 1000 simula-

tions of the model for each R0). The y-value of each coloured dot is reached by the black curve

in the middle panel at the same time as the maximum of the corresponding similarity curve in

the top panel. Note that the fact that the similarity between Cref(t) and CR0
does not reach 1
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can be explained by the fact that the distributions of time-dependent and final attack rates do

not coincide completely.

In other words, at each time step t of a contagion process with a high R0, the partial infec-

tion patterns, which describe the contagion probability of each connection until t, are

extremely similar to the full infection patterns of a process with a lower value of R0. Vice-versa,

this also means that the infection patterns of processes with low R0 can be approximated

extremely well by using a single process at large R0 and computing its time-dependent infec-

tion patterns.

Fig 4. Simple contagion. Comparison, for the SIR model, between a reference R0 = 4 and five testing parameter values

(R0 from 1.5 to 3.5). Each curve in the upper panel represents the similarity in time between the temporal infection

pattern Cref(t) of the reference and the infection pattern CR0
of each testing parameter. Cref(t) is computed by

averaging, over 1000 numerical simulations of the SIR model at R0 = 4, the contagion events occurring until t. CR0
is

instead obtained by averaging all contagion events of 1000 numerical simulations of the SIR model at R0. The middle

panel shows as a black curve the temporal evolution of the non-zero mode of the distributions of attack rates of the

reference spread, also computed over all 1000 simulations at R0 = 4 and at each time. The colored dots show, for each

R0 2 {1.5, 2, 2.5, 3, 3.5}, the value of the non-zero mode of the final attack rate distribution, computed over 1000

simulations at each R0. The corresponding attack rate distributions are shown in the smaller panels below.

https://doi.org/10.1371/journal.pcbi.1012206.g004
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We finally also show in the S1 Text that the range of values of the spreader and receiver

indices depend on the reproductive number R0, but the ranking of nodes by these indices is

very robust across models and across values of R0. Moreover, when fixing the attack rate, the

ranges of values become equivalent even for different R0, and the ranking of nodes becomes

almost independent of R0, showing that also this ranking is almost completely determined by

the attack rate, and in any case very robust across parameter values. Overall, our results indi-

cate an extreme robustness of the infection patterns across different models of simple conta-

gion, despite their diversity in the sets of possible states for the hosts and of dynamical

transition rules. Moreover, while the infection pattern does depend (very) slightly on the

model parameters, it is almost completely determined by the final attack rate of the process.

This result is not valid for complex contagion processes, as we will see in the next sections.

Simplicial contagion

Let us now consider a model of complex contagion in which the propagation can occur both

on the links of the network, as in the case of simple contagion, but also on higher order

(group) interactions, namely the simplicial contagion model [21], generalized here to weighted

hypergraphs. As in [21], we limit ourselves for simplicity to contagion processes on first and

second order interactions (pairs and triads), neglecting structures of higher orders, which will

only appear as decomposed into links and triangles. We consider a SIR model, where a suscep-

tible host i can receive the infection (i) with rate β|Wij when sharing a link of weight Wij with

an infected host j, and (ii) with rate bDWD
ikl when part of a group i, k, l of three interacting

nodes such that both k and l are infected (WD
ikl being the weight of the hyperedge (i, k, l), see

Methods and Fig 1). As in simple contagion models, infected nodes recover spontaneously—

we consider here a fixed recovery rate μI.
As contagion events can occur both through links and triads, we here need to generalize the

computation of C by defining the number of infection events from i to j, ni!j, as follows: if j is

infected by i in a pairwise interaction, ni! j is incremented by one; if instead j is infected

through a triadic interaction with i and l who are both infected, i and l play an equivalent role

in this contagion event, and thus we divide the “responsibility” of the event equally among

them: both ni!j and nl! j are incremented by 1/2. Cij is finally the ratio of ni!j to the number

of numerical simulations considered.

While there is a one-to-one correspondence between R0 and the infection rate β in the case

of simple contagion (the other parameters being fixed), a given R0 could here correspond to

various pairs (β|, βΔ). We thus compare the infection patterns obtained when varying both

parameters in Fig 5A, going from a situation in which the contagion events occur mostly on

triads to one in which they occur mostly on links (as shown in Fig 5B). These different ratios

between the two parameters β| and βΔ, given they yield different relative abundances of the two

types of infection (simple vs complex), can be expected to give rise to different infection pat-

terns. The similarity values obtained remain however high, even between the most extreme

cases (very different relative values of the numbers of infections in pairs and triads). We show

in the S1 Text results concerning the receiver and spreader indices and the subsequent ranking

of nodes: similarly to the case of simple contagion, the ranking of nodes are very robust across

parameter values, even if the range of values taken by the indices change. This can be explained

by the observation that, in social networks, higher order interactions and pairwise ones largely

overlap, i.e., nodes connected in groups with large weights are typically also connected by links

with large weights (see Section C in S1 Text). The infection patterns on pairwise links and on

triads thus also overlap. In fact, the similarity between the infection patterns of the simple SIR

contagion process and the simplicial one, shown in Fig 5E at varying R0 (of the simple
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contagion) and parameters (β|, βΔ), are also high, especially when the pairwise contagion

events dominate in the simplicial model.

An interesting distinction with the case of simple contagion is however revealed in Fig 5.

Namely, while the infection pattern of a simple contagion process is almost completely deter-

mined when fixing its final attack rate (see Fig 3), this is not the case for the simplicial one. We

show indeed in Fig 5C the similarity between infection patterns at different values of the

spreading rates, but when these patterns are computed using only simulations with a given

final attack rate. In contrast to the case of simple contagion, constraining the attack rate does

not change the similarity values, which remain similar to the ones observed in Fig 5A. This is

clearly due to the fact that the same attack rate can be obtained through very different relative

numbers of pairwise and higher order infection events (Fig 5D). The differences between sim-

plicial contagion infection patterns at different parameters measured in Fig 5A are thus mostly

due to the differences in the combination between the two competing processes at work in this

model (first-order vs. second-order contagions).

The simple and simplicial models entail fundamentally different contagion mechanisms,

leading to different physics and different types of phase transitions, including critical mass

phenomena [21, 26]. Here indeed, the differences in infection patterns are driven by the differ-

ences between pairwise and higher order contagions. However, the resulting infection patterns

remain very similar in our simulations, which is probably largely due to the fact that, in the

empirical data we consider, links and higher order hyperedges largely overlap, with correlated

Fig 5. Simplicial contagion. A: Cosine similarity between infection patterns at varying different combinations of β|

and βΔ. B: Number of contagions taking place via first and second order simplices in the simulations of the previous

panel. C1 is the infection pattern matrix obtained considering only infections taking place via pairwise links and C2 is

the analogous for triads infections, with C1 + C2 = C. In the plot we report the sum of all elements of the matrices

∑ij(C1)ij and ∑ij(C2)ij, which give the respective fractions of contagion events of each type. C: Cosine similarity between

infection patterns at varying different combinations of β and βΔ, when computing the infection patterns using only

simulations with attack rate between 0.6 and 0.7. D: Number of contagions taking place via first and second order

simplices in the simulations of the previous panel. E: Cosine similarity between infection patterns of simplicial

contagion (for the same range of values of β| and βΔ) and simple contagion (for different values of R0).

https://doi.org/10.1371/journal.pcbi.1012206.g005
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weights (see S1 Text and [38]) so that both simple and higher order mechanisms tend to use

the same infection routes. We confirm this hypothesis in the S1 Text by showing that, if corre-

lations between the weights of links and higher order hyperedges are removed, the similarity

between the infection patterns of simple and simplicial contagion notably decreases.

Threshold contagion

We finally investigate the infection patterns resulting from a model of complex contagion

driven by threshold effects on a network: in this model [20], a susceptible node can become

infected (deterministically) only if the fraction of its neighbors that are infected overcomes a

certain threshold θ, the parameter of the process (see Fig 1). In the generalization of this model

to weighted networks, a susceptible node becomes infected when the weight of its connections

with infected nodes divided by the total weight of its connections exceeds the threshold. We

moreover introduce a recovery parameter μI as in the previous cases, in order to obtain an SIR

model as well. As in the simplicial model, the infection of a node i is typically due to more than

one other node. We thus generalize the computation of the infection pattern C similarly to the

previous case: if i becomes infected because k of its neighbours i1, i2, . . . ik are infected, each Ciai

is incremented by Wiai
=
Pk

b¼1
Wibi

, i.e., by the relative contribution of ia to the infection event.

We compare the infection patterns of this model at various values of the parameter θ in Fig

6A. Interestingly, the values of the cosine similarity between patterns are still high, but typically

much lower than in the previous cases, suggesting that the parameter θ plays a stronger role in

determining the infection pattern than β (or R0) in simple contagion processes (see S1 Text for

results on the receiver and spreader indices). This can be understood by the following argu-

ment: in simple contagion, all existing paths on the network can potentially support a conta-

gion; on the other hand, changing the value of θ corresponds to allowing some infection

patterns and impeding others, as it can change the number of infected neighbors needed to

infect a given node. Smaller values of θ imply an easier and faster infection of nodes, while

larger values only allow contagion of nodes connected with many infected, thus constraining

infection to follow more specific patterns.

In Fig 6B we also compare the infection patterns of the threshold contagion model with the

ones of simple contagion, showing that the two processes are characterized by rather different

infection patterns. The similarity is higher for larger values of θ: as θ becomes large, the condi-

tion needed for the infection of a node i becomes stricter and can be fulfilled only if the neigh-

bours j to which i is linked by its largest weights are infected. Thus, the infection pattern

becomes closer to the one of a simple process.

In general, the infection patterns for the threshold model show a higher parameter depen-

dency with respect to the simple models. However, the values of the similarities between

Fig 6. Threshold contagion. A: Cosine similarity between infection patterns at varying θ. B: Cosine similarity between

infection patterns of threshold contagion (for different values of θ) and simple contagion (for different values of R0).

https://doi.org/10.1371/journal.pcbi.1012206.g006
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infection patterns obtained in Fig 6 remain rather high, typically above 0.7. This is due to the

fact that in all cases the infection patterns largely depend on (and are correlated with) the

underlying weighted adjacency matrix (see Section A in S1 Text).

Discussion

We have here investigated the infection patterns of various models of contagion processes on

networks, using as substrate several empirical networks of contacts between individuals. In

particular, while it is well known that the network structure impacts the spreading patterns,

the question of how these patterns depend on the type of model considered (e.g., schematic or

more realistic set of compartments, Markovian dynamics or more realistic transitions), on a

model’s parameters, or on the type of spreading process considered (i.e., simple vs. complex

contagion) has been much less considered. Understanding these issues has however important

consequences in the articulation between modeling and decision making, as modeling and

theoretical investigations often focus on simple models with arbitrary parameters, while one

could argue that decision making should be based on models as realistic as possible. Here, we

have shed light on these questions by investigating the infection patterns, defined as measuring

for each connected pair of nodes of the network the probability that an infection event occurs

from one to the other [8, 16].

We have obtained results along four main directions. First, we have shown that these pat-

terns are extremely robust in models of simple contagion. This robustness is in agreement

with previous results obtained each within one specific model, such as the existence of a pat-

tern of cascading dynamics from hubs towards less connected nodes in paradigmatic models

of spread [12, 13, 39], or the possibility to define epidemic pathways making the spreading pat-

tern of a disease on a network quite predictable [8, 15, 16]. These results also rationalize the

fact that arrival times of a disease spread on a network can be obtained from purely topological

measures [17]. We here extend however significantly previous literature by generalizing the

robustness across a large ensemble of possible models typically used to describe the evolution

of infectious diseases, even if they differ in the compartments used, in the parameters and, as a

result, in the resulting dynamics timescales. In particular, within one model the spreading pat-

terns slightly depend on the reproductive number but are almost fully determined by the final

attack rate.

Second, the infection patterns also allow us to define a receiver and a spreader indices for

each node, which give a ranking of nodes according to their relative risk of becoming infected

during the spread and to spread to other nodes. The corresponding ranking of nodes is also

very robust across models and parameters. Interestingly, this result gives support to, and puts

on a firmer ground, a wealth of previous literature using topological centrality measures to

predict epidemic sizes or to determine which nodes would be the best “sentinels” (i.e., nodes

easily reached by a disease and hence to monitor more closely in a surveillance program).

Most such studies indeed use very simple spreading models with often arbitrary parameters

[40–44], and our results explain why correlations between a topological centrality and mea-

sures of epidemic impact are robust against parameter changes [45], making it indeed possible

to limit such studies to a restricted set of models and parameters.

Third, we have generalized the infection patterns to complex contagion processes (typically

used to describe social contagion) in which each contagion event can involve several infecting

nodes. We have observed that the infection patterns are then less robust; in models where sim-

ple and complex contagion events can co-exist, the robustness of patterns and their similarity

to the case of simple processes depends on the ratio between events of simple and complex

contagions. In a threshold-based model, patterns differ more across parameter values. Fourth,
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the similarity between the averaged infection patterns discussed here remains in all cases

rather high, even between contagion processes of different nature. Both these results concern-

ing complex contagion spreading patterns constitute a major new contribution to the litera-

ture, as we are aware of almost no result on this topic. Notably, the observed high similarity

might at first glance seem to contradict a previous contribution, which showed that observing

the propagation patterns of single processes makes it possible to distinguish between processes

based on simple contagion, higher-order contagion, or threshold processes [14]. However, we

consider here averages, which are indeed all correlated with the matrix of link weights describ-

ing the network, while [14] considered individual single realizations; moreover, the fact that

spreading patterns are similar does not mean that they are indistinguishable, and indeed the

results of [14] relied on machine learning techniques trained on a well-chosen set of features

to manage to perform the distinction between different types of processes.

Our results have interesting implications that can impact our way of thinking about and

performing numerical simulations of spreading processes for decision-making purposes. First,

the extreme robustness of the spreading patterns for models of simple contagion implies that

simulations of very schematic models with arbitrary parameters carry an enormous amount of

information on the dynamics of spreading processes with apparently much more complicated

dynamics. It is also possible to use these schematic models to provide a ranking of the risk of

nodes to be reached, or of their spreading power: this ranking will indeed remain remarkably

accurate for different processes. This is very important as, when a new disease emerges, it is

initially difficult to estimate its parameters and sometimes even the types of compartments

that should be taken into account in its modeling. Even in such cases, simulations with simpli-

fied models can thus bring interesting initial insights.

Second, even if single instances of simple and complex contagion processes present differ-

ences [14], it is also noteworthy that, when considering average infection patterns, their simi-

larity remains high. Schematic simple contagion models can thus still be used to obtain

information on the patterns of a social contagion process, and on the ranking of hosts in terms

of their probability to be reached or their ability to propagate. However, the uncertainty on

such ranking is higher than with simple contagion processes if the precise mechanism deter-

mining the propagation (e.g., depending on a threshold, or implying group effects) and the

corresponding parameters are unknown.

Third, the stronger dependency of complex contagion processes on models and parameters

implies the need for additional tools to determine whether an observed contagion process is

determined by simple or complex contagion mechanisms. A first step in this direction was per-

formed in [14], but more investigations, especially on real (social) contagion data, are desir-

able. Moreover, as the infection patterns depend on the ratio of contagion events occurring in

pairwise events or in larger group, data collection efforts should explicitly target the measure

of group interactions and not be restricted to pairwise representations of the system under

scrutiny, in order to correctly inform models.

Our work has limitations worth mentioning, which also open some avenues for future

work. The set of networks on which we have performed our investigation corresponds to

diverse contexts of empirical contacts and thus entails a variety of complex interaction pat-

terns, but remains limited. It would be interesting to extend our study to synthetic (hyper)net-

works where the distributions of degrees and of group sizes and the overlap between dyads

and triads could be controlled. Our work also deals with static networks, and could be

extended to temporal networks, especially as the propagation paths and infection risk might

then be measured during a certain period while the propagation could then take place at

another time [46, 47]. Finally, the infection patterns could also be studied for other models of

complex contagion (including contagion events in groups of arbitrary sizes [48]).
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Methods

Models of simple contagion

We consider three different epidemic processes, all of them agent-based compartmental mod-

els, i.e., in which each agent (represented by a node of the network) can pass through a finite

set of possible compartments describing the evolution of a disease.

In the SIR model, a susceptible node i (in compartment S) can become infected (changing

compartment to I) by contact with one of its neighbors on the network j. This transition takes

place with rate βWij, where β is the infection rate, a free parameter of the model, and Wij is the

weight of the connection between i and j. Each node will then recover (becoming R) indepen-

dently at rate μI, another free parameter. We note that, as we consider processes occurring on

static networks, rescaling all parameters by the same factor does not change the dynamics but

only sets a global time scale. We thus consider for simplicity parameters of order 1 in all cases.

The SEIR model is similar to the previous one with the addition of one state: exposed (E).

Newly infected individuals first enter the exposed (non-infectious) state and, with a rate μE,

they transition to the infectious state. Again, they will recover at rate μI. We consider three ver-

sions of SEIR models: SEIRe1, SEIRe4, and SEIRi4, which only differ by the values of their

parameters, which are given in Table 1. SEIRe1 is a baseline in which all rates are equal, and in

each variation we change one of the parameters by a factor 4, making the average duration of

the corresponding state four times longer (for instance in SEIRe4, a node spends on average

four times more time in the exposed state than in the SEIRe1 version), so that these average

durations differ significantly in the different models, but do not change order of magnitude

(which would be unrealistic).

In both SIR and SEIR, the recovery rate μI and the exposed-to-infected rate μE are constant,

implying that the times spent by an agent in the infected and exposed states are random vari-

ables drawn from exponential distributions with respective averages τI = 1/μI and τE = 1/μE
(which are thus gamma distributions with standard deviations σX = τX with X = I, E). Instead

of constant rates, we can also consider times in the E and I states distributed according to

Table 1. Simple contagion model parameters.

SIR model

μI
SIR 0.25

Markovian SEIR models

μE ηE μI ηI
SEIRe1 1 1 1 1

SEIRe4 0.25 1 1 1

SEIRi4 1 1 0.25 1

Non-Markovian SEIR models

μE ηE μI ηI
SEIRe1v025 1 0.25 1 0.25

SEIRe4v025 0.25 0.25 1 0.25

SEIRi4v025 1 0.25 0.25 0.25

COVID model

τE ± σE τp ± σp τI ± σI pc rp rsc
COVID 4 ± 2.3 1.8 ± 1.8 5 ± 2.0 0.5 0.55 0.55

https://doi.org/10.1371/journal.pcbi.1012206.t001
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gamma distributions with averages τE = 1/μE and τI = 1/μI and standard deviations σX = ηXτX
with η 6¼ 1, thus obtaining non-markovian models. We consider the extension of the three ver-

sions of the SEIR model (SEIRe1, SEIRe4, and SEIRi4) to this non-markovian framework,

namely SEIRe1v025, SEIRe4v025, and SEIRi4v025. In these models, the average durations τI
and τE are the same as in the Markovian versions, but the standard deviations are reduced by a

factor 4 with respect to the Markovian cases: this yields clearly different distribution of the

durations of the states with respect to the Markovian case, without going to extreme, unrealis-

tic cases (see Table 1).

We also consider the COVID model describing the propagation of SARS-CoV2 used in [13,

33]. In this model, when a susceptible agent is contaminated it transitions to an exposed state

followed by a pre-symptomatic infectious state, remaining in these states for times extracted

from gamma distributions with respective averages τE and τp, and standard deviations σE and

σp. Then individuals can either evolve into a sub-clinical infection or manifest a clinical infec-

tion, with respective probabilities 1 − pc and pc. The duration in the infectious state is extracted

from a gamma distribution with average τI and standard deviation σI. An individual i in the

infected states (pre-symptomatic, sub-clinical or clinical) can transmit the disease to a suscep-

tible individual j when in contact with it with respective rates of transmission rpβWij, rscβWij,

and βWij. We use here the same parameter values as in [13, 33].

Table 1 shows the values for the different parameters used in these models. Moreover, in all

cases, the parameter β is tuned to obtain a desired specific value for the basic reproductive

number R0, as detailed in the next section.

Reproductive number and calibration of the simple contagion models

The reproductive number, R0, is defined as the average number of cases directly generated by

one infected individual in a population where all the others are susceptible. In detail, each sim-

ulation begins with one random infected node i and we count all the neighbors of i that are

directly infected by it until i becomes recovered, obtaining a potentially different value in each

stochastic simulation. Averaging over these values at fixed parameters yields R0.

Specifically, we perform 1000 simulations for 20 values of β to obtain the corresponding val-

ues of R0 (ranging between 1 and 4) and thus a correspondence table between β and R0. For

each desired value of R0, it is then enough to interpolate between the values in the table to

obtain the value of β needed in the simulations.

Data sets

We use high-resolution face-to-face empirical contacts data collected using wearable sensors

in different settings. The data sets are publicly available on the website http://www.

sociopatterns.org/datasets. Data sets are available as lists of contacts over time (with a temporal

resolution of 20 s) between anonymized individuals. The considered data sets are:

• Primary school, which describes the contacts among 232 children and 10 teachers in a pri-

mary school in Lyon, France, during two days of school activity in 2009 [49]. The school is

composed of 5 grades, each of them comprising 2 classes, for a total of 10 classes.

• Workplace, gathering the contacts among 214 individuals, measured in an office building in

France during two weeks in 2015 [27].

• Hospital, which describes the interaction among 42 health care workers (HCWs) and 29

patients in a hospital ward in Lyon, France, gathered during three days in 2010 [50].
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• High school, describing the contacts among 324 students of “classes préparatoires” in Mar-

seille, France, during one week in 2013 [51].

• Conference, which describes the interactions of 405 participants to the 2009 SFHH confer-

ence in Nice, France [52].

From the data to weighted graphs and hypergraphs

As explained in the previous section, the data sets we use describe temporally resolved interac-

tions between individuals. Each data set is provided as a list of interactions between individu-

als. Each element of the list corresponds to a time in which two individuals were registered as

in interaction. Each such interaction event is reported in the form “t i j” where t indicates the

time, with a temporal resolution of 20 seconds, and i and j the involved individuals identifica-

tion numbers.

For each data set we obtain a weighted static network by aggregating over time as follows:

• each individual involved in the data collection is represented by a node of the network;

• each pair of nodes (i,j) appearing in the list of events is represented as a link ij between nodes

i and j in the network;

• we denote by nij the number of times that the pair (i, j) appears in the data set (the total con-

tact duration between the corresponding individuals is thus nij times 20 seconds);

• we compute the maximum of these numbers over all pairs of individuals, nmax = maxi,j nij;

• the weight of the link ij is given by nij/nmax.

We then use the weighted networks resulting from this procedure to simulate the spread-

ing models of simple and threshold contagion, in which contagion events involve only

links.

We moreover use the data sets to build weighted hypergraphs involving both links (hyper-

edges of size 2, or “first-order interactions”) and hyperedges of size 3 (so-called “second-

order interactions”, i.e., interactions between 3 nodes). We build the hypergraphs as in [21].

Namely, we first consider all the links of the weighted graphs obtained as above: these links

form the weighted hyperedges of size 2 of the hypergraph. To build the second-order interac-

tions, we first identify all the simultaneous interactions at each time t, obtaining so-called

“snapshot graphs”: the snapshot graph at time t is simply the network of all interactions tak-

ing place at t. In each snapshot graph, we identify its cliques (sets of nodes all interacting

with each other) of size at least 3. For instance, if at t the interactions (i, j), (i, k), (j, k) are

present, then ijk is a clique at time t. If a clique of size larger than 3 is present, such as ijkl, we

decompose it into all the possible triads, here ijk, ijl, ikl, jkl. We then proceed as for the

weighted graphs, namely

• each triad ijk appearing at least in one snapshot becomes a hyperedge of size 3 of the

weighted hypergraph;

• we denote by nijk the number of snapshots in which the triad ijk appears;

• we compute the maximum of these numbers over all triads of individuals, nð2Þmax ¼ maxi;j;knijk;

• the weight of the hyperedge ijk is given by nijk=nð2Þmax.

We use the resulting weighted hypergraphs in the numerical simulations of the simplicial

contagion processes.
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Cosine similarity

The cosine similarity cs(v, w) quantifies the similarity between two vectors v and w of the same

dimension n. It is defined as:

csðv;wÞ ¼
v �w

kvk kwk
¼

Pn
i¼1

viwiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

v2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

w2
i

p : ð1Þ

It is bounded in [−1, 1]. It is equal to 1 when one vector is proportional to the other with a pos-

itive proportionality factor, and to 0 if they are orthogonal.

In order to measure the similarity between two infection patterns we generate two vectors

from the corresponding C matrices (concatenating all the rows of one matrix) and we apply

the definition of cosine similarity to the two resulting vectors. Since all the elements of C are

non-negative, the cosine similarity is here bounded in [0, 1].

Supporting information

S1 Text. Supporting information. Supporting information is provided in a separate pdf

file. It contains additional analyses on infection pattern, attack rate, spreader and receiver

index executed for the primary school dataset used in the main text and for additional data-

sets.
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