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Abstract

Amortized simulation-based neural posterior estimation provides a novel machine learning

based approach for solving parameter estimation problems. It has been shown to be compu-

tationally efficient and able to handle complex models and data sets. Yet, the available

approach cannot handle the in experimental studies ubiquitous case of missing data, and

might provide incorrect posterior estimates. In this work, we discuss various ways of encod-

ing missing data and integrate them into the training and inference process. We implement

the approaches in the BayesFlow methodology, an amortized estimation framework based

on invertible neural networks, and evaluate their performance on multiple test problems. We

find that an approach in which the data vector is augmented with binary indicators of pres-

ence or absence of values performs the most robustly. Indeed, it improved the performance

also for the simpler problem of data sets with variable length. Accordingly, we demonstrate

that amortized simulation-based inference approaches are applicable even with missing

data, and we provide a guideline for their handling, which is relevant for a broad spectrum of

applications.

Author summary

In biomedical research, mechanistic models describe dynamic processes, yet inferring their

underlying parameters can often be challenging. Bayesian statistics provides an established

framework for this by integrating prior knowledge with observed data, and naturally

enables uncertainty quantification as a distribution of parameter values is returned. How-

ever, classical case-based methods for Bayesian inference can be computationally expen-

sive, particularly when the same model needs to be fitted to different data sets. Recently,

deep-learning-based approaches have been developed to streamline the inference proce-

dure, allowing the upfront training cost to amortize when applied to multiple data sets. In

this manuscript, we explore approaches to extend the setup to data sets with missing data.

In summary, an encoding scheme which exploits data augmentation with binary indicators

of presence or absence performs the most robustly across different test problems.
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1 Introduction

Mechanistic models are used to describe and understand dynamical systems in a variety of

research fields ranging from life and physical sciences to economics [1, 2]. Commonly, these

models depend on unknown parameters, which can be estimated by assessing the likelihood of

observed data given parameters [3, 4]. Classical parameter estimation methods (e.g. optimiza-

tion, Markov-chain Monte-Carlo, approximate Bayesian computation [4, 5]) are case-based.

That is, they work on the level of individual data sets, such that the entire computationally

expensive inference procedure needs to be repeated for every new data set.

However, often the same structural model is fitted to different data sets with potentially dif-

ferent parameters, e.g. to describe experiments under different stimuli, epidemic dynamics in

different communities, or treatment response for different patients. In such cases, amortized
inference methods are of interest. These first learn a mapping from synthetic data sets to e.g.

likelihood or posterior distribution, which can subsequently be cheaply queried for many

observed data sets [6, 7]. A successful method, which is particularly applicable for the study of

time series models, is BayesFlow. BayesFlow uses conditional invertible neural networks

(cINN) to learn, conditioned on data, a reversible transformation from parameters to a tractable

latent space, and has been shown to be superior to alternative approaches capable of amortized

simulation-based inference, as well as to case-based methods when facing multiple data sets [8].

A problem persistent in many research areas is that data are incomplete, i.e. parts of the

entries are missing. There are many possible reasons, including incomplete entry, data loss,

device malfunction, or study participant non-response. Further, in clinical studies measure-

ments are often not taken at the exact time intervals or for different time spans, across patients

or participants. There exist various missingness mechanisms as well as strategies to deal with

them, e.g. by deletion or imputation [9]. In case-based inference, at its simplest, a likelihood or

cost function can be formulated based on only the available data. However, amortized infer-

ence typically requires inputs to be of consistent structure and size across samples, and needs

to know what entries are available, in order to learn the underlying data-parameter relation-

ships correctly. For the specific case of data sets of different sizes, BayesFlow already allows to

use summary networks yielding a fixed-size representation. However, this mechanism permits

only e.g. time series of different length, but not entries to be missing at random intermediate

points (see also S1 Supplementary Information, Section 1, for an illustration of how the estab-

lished approach fails in this situation).

In this work, we propose and discuss three approaches of encoding missing data via fill-in

values and augmenting the data. We integrate these into the BayesFlow workflow, and evaluate

and compare their performance on three test problems. We find that an approach in which the

data matrix is augmented with binary indicators of presence or absence of values performs the

most robustly. Further, we demonstrate how this approach performs advantageously also in

the simpler case of time series of different length, thereby showing how BayesFlow perfor-

mance might be even improved in the absence of missing data.

1.1 Related work

There exist various possible missing data mechanisms, (not) missing (completely) at random

(MCAR, MAR, NMAR, see [10]). Strategies to deal with missing data can be broadly divided

into methods discarding entries with missing values, and approaches replacing missing values

with imputed values. Imputation strategies include e.g. mean, maximum-likelihood, and multi-

ple imputation, and deep learning approaches using e.g. LSTM networks [11] and autoencoders

[12], see [13, 14] for a review. In the context of neural posterior estimation, [15] developed an

integrated approach to simultaneously learn a model predicting parameters with failing
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simulations, and impute missing data. However, the faithful reconstruction of missing data using

(multiple or weighted) imputation approaches relies on the accuracy of the used imputation

method (see also a discussion of the inadequacy of overly simple, e.g. linear, imputation methods

in S1 Supplementary Information, Section 2). Moreover, when the uncertainty of imputed values

is properly accounted for, by considering their distribution that depends on the available values

and prior knowledge leveraged for imputation, parameter estimation from imputed data should

yield the same effective posterior distribution as parameter estimation considering only the avail-

able data, provided the underlying missingness mechanism is captured accurately in the model

(see S1 Supplementary Information, Section 3). Therefore, in such a Bayesian sense, there should

be no conceptual advantage of using imputation over approaches discarding missing data, as

long as they do not discard further data. Unfortunately, as many established inference methods

cannot deal with missing (not-available, NA) entries, methods discarding missing entries often

discard entire cases, such as listwise deletion [16], in which case they lose information. Our

approach also discards missing values; however, importantly, it does not discard any non-miss-

ing data, and therefore neither loses information nor introduces a potential bias due to inade-

quacy of an imputation method. To the best of our knowledge, missing data discarding

approaches for amortized inference have so far not been systematically studied.

2 Methods

2.1 Background

2.1.1 Amortized simulation-based neural posterior estimation. A mechanistic model

induces a likelihood function θ 7! π(x|θ) of measuring data x 2 Rnx given model parameters

y 2 Rny . Parameter inference deals with the problem of estimating the unknown model

parameters θ, given experimentally observed data xobs 2 Rnx . In a Bayesian setting, the likeli-

hood is combined with prior information π(θ) on the parameters, giving by Bayes’ Theorem

the posterior distribution

pðyjxobsÞ / pðxobsjyÞpðyÞ: ð1Þ

There are two major challenges to working with (1): (i) In many applications, the mechanis-

tic model is only available as a simulator, allowing to generate synthetic data x* π(x|θ), but

not to evaluate the likelihood function π(xobs|θ) [17, 18]. (ii) Often, the same model needs to

be fitted to different data sets xobs,d, d = 1, . . ., nd, requiring the costly analysis of multiple pos-

terior distributions.

BayesFlow approximates the posterior by a tractable distribution πϕ(θ|x)� π(θ|x) for any

(x, θ)* π(x|θ)π(θ). The approximate posterior is parameterized in terms of a conditional

invertible neural network (cINN) f� : Rny ! Rny , θ 7! z, conditioned on data x, which defines

a normalizing flow [19] between the posterior over the parameters θ and a standard multivari-

ate normal latent variable z,

y � p�ðyjxÞ , y ¼ f � 1

�
ðz; xÞ with z � pzðzÞ ¼ N ny

ðzj0; InyÞ:

The neural network parameters ϕ are trained to minimize the Kullback-Leibler (KL) diver-

gence between posteriors over all possible data sets x,

�̂ ¼ arg min
�

Ex�pðxÞ½KLðpðyjxÞkp�ðyjxÞÞ� ¼ arg max
�

Eðy;xÞ�pðy;xÞ½log p�ðyjxÞ�:

Via change of variable, it is p�ðyjxÞ ¼ pzðf�ðy; xÞÞ � jdet Jf�ðy; xÞj, with straightforward calcula-

tion of the Jacobian Jf�ðy; xÞ ¼
@
@y
f�ðy; xÞ due to the cINN architecture. In practice, a Monte-
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Carlo approximation

�̂ � arg min
�
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XM

m¼1
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�f� y

ðmÞ
; xðmÞ

� ���
�

2

2

� log jdet Jf� y
ðmÞ

; xðmÞ
� �

j

� �

of the expectation is employed, with samples fðy
ðmÞ
; xðmÞÞ � pðy; xÞgMm¼1

.

2.1.2 Invertible architecture. The basic unit of the cINN in BayesFlow is the affine cou-

pling layer [8, 20]. A layer comprises four internal functions s1, t1, s2, t2, each realized as fully

connected neural networks with exponential linear units. In the forward direction, the input

vector u is split into two halves u1 and u2, which then undergo a sequence of operations to give

the output v = (v1, v2):

v1 ¼ u1 � expðs1ðu2ÞÞ þ t1ðu2Þ; v2 ¼ u2 � expðs2ðv1ÞÞ þ t2ðv1Þ

Here,� denotes the Hadamard product and exp(�) the elementwise exponential function. The

non-linear mapping u 7! v is bijective, with the inverse given by:

u2 ¼ ðv2 � t2ðv1ÞÞ � expð� s2ðv1ÞÞ; u1 ¼ ðv1 � t1ðu2ÞÞ � expð� s1ðu2ÞÞ

In practice, multiple layers are stacked to craft an invertible chain with sufficient expressive-

ness. The input to the first layer are the parameters θ of interest, and the output of the final

layer are the latent variables z. To condition the mapping on the data x, either x or summary

statistics h = hψ(x) thereof are additionally fed as input into all internal networks. The chain of

conditional layers yields the cINN fϕ, which is trained to learn the normalizing flow from θ to z
using information from the data. The complete forward and inverse pass through the cINN

can be written as z = fϕ(θ; h) and y ¼ f � 1
�
ðz; hÞ, respectively.

2.1.3 Summary networks. Instead of feeding the raw data directly into the cINN, sum-

mary statistics h = hψ(x) can be employed. This has two advantages [8]: First, tailored dimen-

sion reduction methods can adequately summarize redundant data and account for

symmetries. Second, this enables the method to work with varying data set sizes x 2 Rnx with

random nx 2 N, by transforming them into fixed-size representations. For example, an LSTM

[21] can handle time series x of different length.

To avoid manual crafting, [8] propose to learn maximally informative statistics from the

data, by training the summary network parameters ψ jointly with the invertible network

parameters, giving the joint objective

�̂; ĉ � arg min
�;c

1

M

XM

m¼1

1

2

�
�
�f� y

ðmÞ
; hcðx

ðmÞÞ
� ���

�
2

2

� logjdet Jf� y
ðmÞ

; hcðx
ðmÞÞ

� �
j

� �

ð2Þ

It can be shown that, provided sufficient training and expressiveness of fϕ and hψ,

p�̂ðyjhĉðxÞÞ ¼ pðyjxÞ almost surely, i.e. the learned posterior perfectly approximates the actual

one.

The upfront training phase can be expensive, as it might require many model simulations.

Once the approximate posterior p�̂ðyjhĉðxÞÞ has been trained, for the inference phase,
observed data xobs are passed through the summary network, hobs = hψ(xobs). Then, latent vari-

ables zðlÞ � N ny
ð0; InyÞ, l = 1, . . ., L are sampled and transformed to samples y

ðlÞ
¼

f � 1

�̂
ðzðlÞ; hobsÞ � p�̂ðyjhĉðxÞÞ from the target distribution, by passing them through the cINN in

inverse direction.

BayesFlow tackles both challenges (i) and (ii) above: It does not require likelihood evalua-

tions and can thus be applied to any simulator. Further, it gives posterior approximations for
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any possible parameters and data. The inference phase is relatively cheap, as it does not require

simulations of the mechanistic model, allowing to amortize the training phase when applied to

different data sets xobs.

2.2 Encoding missing data

In many applications, not all data sets are complete. A prime example are clinical data, in

which patients might have missed an appointment or dropped out of a study. In the case of

incomplete data, the vector xobs is not available completely, but some of its entries are missing,

giving observed data xobsavai 2 ðR [ fNAgÞ
nx . Explicitly, defining the binary availability mask

tobs 2 f0; 1g
nx , where 0 indicates absence and 1 presence of a data point, we consider

xobsavai ¼ xobs � tobs þNA � ð1 � tobsÞ, where the convention NA � 1 = NA and NA � 0 = 0 is used.

There can be many causes and patterns of missingness, e.g. completely at random or depen-

dent on the parameters. We are agnostic of the exact underlying mechanisms, and interested

in the posterior pðyjxobsavaiÞ conditioned only on the available data. A different problem would be

posed by the posterior π(θ|xobs) with xobs the full data, which would however require a (faithful,

multiple) reconstruction.

Missing values (“not available”, “not a number”) cannot be handled by neural networks, as

they result in failing cost function and gradient evaluations. Simply dropping them from the

data vector is no solution in the context of amortized inference, as the information about

which data were present would be lost. Further, the BayesFlow cINN fϕ requires inputs of fixed

size across samples. A summary network hψ that permits inputs of variable size and transforms

them into fixed-size representations constitutes one solution. This renders the method applica-

ble to e.g. time series of different length, which can be mapped by an LSTM to a fixed-size

latent state. However, this does not extend to random intermediate missing entries.

Here, we propose three ways of handling data sets xavai with missing entries, to enable infer-

ence on the posterior π(θ|xavai). For simplicity, assume that the mechanistic model produces

data sets of fixed size nx. This is in practice no restriction, as we can embed data sets of differ-

ent size into one of maximum dimension nmax
x , considering entries nx < i � nmax

x as missing

too. We propose the following ways of encoding missing data into a vector xaug such that the

neural network can learn to detect and ignore them (see Fig 1 for an illustration of the result-

ing full workflow and examples):

• E1 (“Insert c”): Insert a constant value c 2 R in place of missing data points. That is, set xaug

≔ ιc(xavai)≔ xavai� τ + c � (1 − τ), i.e. ι(NA) = c, and ι(x) = x for x 2 R.

• E2 (“Augment by 0/1”): As in E1, insert a constant value c 2 R in place of missing data

points. In addition, augment the data xavai by the availability mask t 2 f0; 1g
nx to a com-

bined matrix xaug ≔ [ιc(xavai), τ].

• E3 (“Time labels”): Restrict the data xavai to available entries, yielding a reduced vector

ðxavaiÞt 2 R
P

i
ti . Augment this vector by a mask of time point indices l 2 R

P
i
ti , or alterna-

tive positional encodings, giving a combined data matrix xaug ≔ [(xavai)τ, l].

2.3 Training algorithm with missing data

In order to facilitate recognizing the encoding of incomplete experimentally observed data

during the inference phase, we train BayesFlow on data sets containing missing entries. There-

fore, given complete simulated data x(m) * π(x|θ), we explicitly simulate an availability pattern
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tðmÞ � pðtÞ 2 f0; 1g
nx in order to generate artificially incomplete data

xðmÞavai ¼ xðmÞ � tðmÞ þNA � ð1 � tðmÞÞ. These are then passed through one of the missingness

encoders, giving augmented data xðmÞaug , which are fed into summary and invertible network.

The distribution of available entries π(τ) should incorporate any prior knowledge on missing-

ness patterns, in order to train the network on realistic scenarios. At its simplest, we consider

uniformly missing entries, i.e. with nmax
⌀ � nx the maximum number of missing entries, we

sample nðmÞ⌀ � Uð0; nmax
⌀ Þ, and then sample without replacement nðmÞ⌀ indices out of [1, . . ., nx].

In order to vectorize the propagation of samples through summary and invertible network,

as well as gradient calculation via backpropagation, all samples within a batch must be of the

same size. Thus, for approach E3 above, a single number n⌀ of missing data points needs to be

sampled per batch, like in the original BayesFlow implementation when considering time

series of different length. The exact distribution of the n⌀ missing entries over the data set can

still be individual-specific. Meanwhile, in E1+2 the augmented data dimension is fixed and

independent of the number of missing entries, such that the number of missing data points

can be sampled for each sample individually. Sampling the number of missing data points on

individual instead of batch level reduces the variance of the cost function approximation across

batches (i.e. iterations), which can be hoped to improve the stability of gradient descent when

training the network parameters.

The entire algorithm for training and inference using BayesFlow with missing data is pre-

sented in Algorithm 1. We use an online learning approach similarly to [8], meaning that a

batch of new data is simulated in each iteration. This is reasonable, since model simulations in

our test problems are relatively fast, and effective to prevent overfitting. If simulations are

Fig 1. Illustration of the workflow combining BayesFlow with missing data encoding. Upfront training phase (left): Parameters θ* π(θ) are sampled from the prior to

simulate complete data sets x1:N. Then, missing entries are randomly selected and encoded according to one of the three approaches “Insert c” (here c = −1), “Augment by

0/1” (here c = −1), and “Time labels”. The BayesFlow network is trained on such data sets with missing values using an online learning algorithm. Amortized inference

(right): Experimentally observed incomplete data xobsavai are processed using the preferred encoding approach (here “Augment by 0/1”, c = −1) and passed through the pre-

trained BayesFlow network in its inverse direction. This leads to representative samples from the posterior conditioned on the available data pðy jxobsavaiÞ. The upfront

training amortizes over inference on arbitrarily many incomplete data sets.

https://doi.org/10.1371/journal.pcbi.1012184.g001
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more expensive, one should consider approaches where simulated data are reused to speed up

training, possibly combined with regularization techniques.

Algorithm 1 Amortized Bayesian inference for incomplete data using BayesFlow
1: Training phase (online learning using data sets with artificially

induced missing values):
2: Input: Prior π(θ), simulator π(x|θ), missingness pattern π(τ),

batch size M.
3: repeat
4: If using encoding E3, sample number of missing entries n⌀ * π(n⌀|

nx) (or the entire availability pattern τ * π(τ)).
5: for m = 1, . . ., M do
6: Sample model parameters from the prior: θ(m) * π(θ).
7: Generate a synthetic complete data set: x(m) * π(x|θ(m)).
8: If using encoding E1 or E2, sample availability pattern τ(m) * π

(τ).
9: If using encoding E3, sample availability pattern τ(m) * π(τ|n⌀)

(or set τ(m) = τ).
10: Mask missing entries: xðmÞavai ¼ xðmÞ � tðmÞ þ NA � ð1 � tðmÞÞ.
11: Encode xðmÞavai via E1–3, yielding augmented data xðmÞaug.
12: Pass the augmented data through the summary network:

hðmÞ ¼ hcðx
ðmÞ
augÞ.

13: Pass (θ(m), h(m)) through the inference network in forward
direction: z(m) = f�(θ

(m); h(m)).
14: end for
15: Compute the loss Lð�;cÞ according to (2) from the training batch

fðy
ðmÞ
;hðmÞ;zðmÞÞgMm¼1

.
16: Update neural network parameters �, ψ via backpropagation.

17: until convergence to �̂; ĉ

18: Return �̂; ĉ.
19:
20: Inference phase (given an incomplete observed data set):
21: Input: Observed incomplete data xobs

avai, number of posterior
samples L.

22: Encode xobs
avai via E1–3, yielding augmented data xobsaug.

23: Pass the augmented data through the summary network, yielding
hobs ¼ hĉðx

obs
augÞ.

24: for l = 1, . . ., L do
25: Sample a latent variable instance: zðlÞ � N ny

ðz j0;InyÞ.
26: Pass (z(l), hobs) through the inference network in inverse direc-

tion, yielding y
ðlÞ
¼ f � 1

�̂
ðzðlÞ;hobsÞ.

27: end for
28: Return fyðlÞgLl¼1

as a sample from pðy jxobsavaiÞ.

2.4 Implementation

Unless otherwise stated, we used the default settings of BayesFlow (version 0.0.0b1). For all

problems, we ran the training phase for 300 epochs, each consisting of 1000 iterations, with

one iteration denoting one batch of samples, over which the loss was calculated and backpro-

pagation performed. The batch size was 64 or 128, depending on the complexity of model sim-

ulations. As summary network, we used an LSTM with the number of hidden units being a

power of two close to the data dimension. Unless otherwise specified, we used the actual time

points as positional encoding in the “Time labels” method. The analyses were performed on a

single CPU (AMD EPYC 7443 2.85 GHz) with 48 cores and 1 TB RAM. The full code
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underlying this study can be found at https://github.com/emune-dev/Data-missingness-paper,

a snapshot of code and data is available on Zenodo at https://doi.org/10.5281/zenodo.7515458.

3 Results

We evaluated and compared the performance of the proposed missing data encodings E1–3

on five test problems—a simple conversion reaction model, a sinusoidal model, the FitzHugh-

Nagumo (FHN) neuron model, and ODE and SSA versions of the SIR epidemiological model.

Details on all test problems can be found in S1 Supplementary Information, Section 4. In S1

Supplementary Information, Section 5, we provide further analyses e.g. on convergence for all

models, beyond the main results shown here in the main manuscript. When comparing results

to the “true posterior”, we imply the distribution pðyjxobsavaiÞ given only actually observed data,

ignoring missing entries, as we assume ignorable missingness in the considered problems.

This reference was computed analytically for the conversion reaction, sinusoidal and SIR ODE

model, approximated numerically using Markov Chain Monte Carlo for the FHN model, and

using approximate Bayesian computation for the SIR SSA model.

3.1 Conversion reaction model

We considered an ordinary differential equation (ODE) model of a simple conversion reaction

AÐ B, a common building block in many biochemical systems and a widely used test problem

(see e.g. [22, 23]). We assumed additive normally distributed measurement noise and that up

to nmax
⌀ ¼ 2 of the overall nx = 3 observations are missing. The aim is to infer the posterior of

the two log-scale rate parameters k1, k2.

3.1.1 All approaches perform well on simple test problem. To assess the performance of

different encodings, we trained for each a 5-layer cINN with an LSTM with 8 hidden units as

summary network. For “Insert c” and “Augment by 0/1”, we used a fill-in value of c = −1, as

the model only allows positive trajectories.

Our assessment of the results revealed that for this simple problem, all three encodings led

to accurate posterior approximations, even though the true posterior can be clearly non-

Gaussian (Fig 2, Data set 1). In addition, in the special case that both values at t2 and t3 are

missing and only the initial time point t1 is available, we are dealing with a completely uninfor-

mative data set, and all three approaches correctly returned the Gaussian prior distribution

(Fig 2, Data set 2). This indicates that BayesFlow can conceptually comprehend each of the

encodings, and focus on the available data points while ignoring masked missing entries.

3.1.2 Binary indicator augmentation increases robustness. In some applications no suit-

able dummy imputation value might be known a-priori, e.g. when the model is flexible enough

to simulate unbounded trajectories, when the prior range encompasses experimentally implau-

sible regimes, or when noise levels can be large. In this case, the network might have difficulties

to distinguish between the imputed and the really occurring value, and the approaches “Aug-

ment by 0/1” and “Insert c” may have difficulties in distinguishing between signal and dummy

imputation values representing missing data. To assess this, we tested them on the conversion

reaction model with an ambiguous dummy value of c = 0.5. We observed that the approach

“Insert 0.5” misinterprets measured values in a neighborhood of 0.5 as missing data. In con-

trast, the approach “Augment 0/1”, additionally employing binary indicator augmentation, is

capable of deciding correctly whether a value around 0.5 represents signal or missing value

(Fig 3).
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3.2 Oscillatory models

As a class of more complex test problems, we studied two oscillatory models. Oscillations play

an important role in many biochemical systems, e.g. in the context of metabolism [24] and cell

cycle [25]. From a mathematical perspective, models producing oscillatory data are in general

hard to fit, as the landscape of the cost function can be highly irregular with multiple local min-

ima [26]. We first considered a simple sinusoidal model given by the function sin(2πa � t) + b,

in which we aim to infer frequency a and offset b.

3.2.1 Improved performance on variable data set size as a special case of missing data.

The original BayesFlow implementation [8] can already deal with time series models produc-

ing data sets of different length, by preprocessing the data with a suitable LSTM summary net-

work, which reads in a given time series sequentially and summarizes it into a fixed-size

representation, before feeding it into the cINN. Our missing data encoding also naturally cov-

ers this, as time series of different length can always be interpreted as data in which the last

nmax
x � nx time steps are missing.

To study this, we assumed the number of observations in the sinusoidal model to vary uni-

formly between nmin
x ¼ 2 and nmax

x ¼ 41. For both the original BayesFlow method and the

approach “Augment by 0/1 (c = −5)”, we trained a 5-layer cINN jointly with an LSTM with

128 hidden units as summary network. Comparing the losses over 300 epochs (Fig 4A), we

observed that for “Augment by 0/1” the loss converged faster, more smoothly and towards a

slightly lower final value, which corresponds to a better approximation of posterior

distributions.

This can be explained by the fact that in the original BayesFlow method the number of

available data points is sampled only once per batch, to enable vectorized operations. This

Fig 2. Posterior approximations for the conversion reaction model with nx = 3 observations. Two test data sets at parameters [−0.98, −0.66] (Data set 1, top, n⌀ = 1) and

[−0.71, −0.54] (Data set 2, bottom, n⌀ = 2) are shown. In Data set 2, no informative data are available, such that the posterior must equal the prior. All three encodings

yield near-perfect posterior approximations for this simple problem.

https://doi.org/10.1371/journal.pcbi.1012184.g002
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results in a loss function estimate with substantially higher variance (although it remains unbi-

ased). Its severe fluctuation over iterations (Fig 4B) may then affect the convergence of the sto-

chastic gradient descent algorithm (Fig 4A). Contrarily, the approach “Augment by 0/1” yields

augmented data sets of fixed size, thus it is possible to sample the number of available data

Fig 3. Increased robustness through binary indicator augmentation in case of ambiguous dummy values c = 0.5 for the conversion reaction model with nx = 3

observations. Left: The approach “Insert 0.5” sees a data set in which only the second observation is missing. However, the network misinterprets the signal 0.501 as

another missing value. Hence, the estimated posterior is wrong, and the third available data point is not fitted by the re-simulated trajectories. Middle: The approach

“Augment by 0/1” is able to correctly identify the value 0.5 in the second entry as a missing value and in the third entry as a signal. Consequently, the estimated posterior is

correct, and the re-simulated trajectories fit the third data point, but not the second one. Right: With changed binary indicator, the approach “Augment by 0/1” correctly

interprets the value 0.5 in the second and third entry as missing, despite 0.5 being a plausible data value for the third entry.

https://doi.org/10.1371/journal.pcbi.1012184.g003

Fig 4. Comparison of loss behavior for the sinusoidal model with variable data set length. (a) Epoch-averaged loss over all 300 training epochs. (b) Loss in the last 20

iterations of the final epoch. Our missing data handling approach based on binary indicator augmentation achieves superior convergence to the original BayesFlow

method, both globally (a) and on the level of individual iterations (b).

https://doi.org/10.1371/journal.pcbi.1012184.g004
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points, or here rather the time series length, on the level of individual data sets and thereby cal-

culate loss estimates with reduced variance.

3.2.2 “Time labels” encoding performs poorly on sinusoidal model. Assuming uniform

missingness with a maximum number of missing time steps of nmax
⌀ ¼ 21 in the sinusoidal

model, we compared the performance of the two encodings “Augment by 0/1” and “Time

labels”. We trained a 5-layer cINN with an LSTM with 128 hidden units as summary network.

A dummy value of c = −5 was employed for the former encoding.

Across test data sets generated for different ground truth parameters and exhibiting differ-

ently many missing values, we consistently observed the approach “Augment by 0/1” to

approximate the true posterior better than the approach “Time labels” (Fig 5). The latter

approach suffers, similarly to the original BayesFlow algorithm in the previous section, from

sampling the number of missing values only once per iteration and not per individual simula-

tion. Consequently, its cost function exhibited substantially more fluctuations compared to

“Augment by 0/1” (see S1 Supplementary Information, Fig K). Similarly increased fluctuations

could be observed when sampling the number of missing observations on batch level for the

“Augment by 0/1” approach. However, in addition “Time labels” converged to an altogether

worse cost function value. A similar value was obtained by “Augment by 0/1” already after

about 25 epochs. Comparing its posterior approximation at this early training stage with the

final posterior approximation obtained by “Time labels”, we saw qualitatively similar results

(S1 Supplementary Information, Fig L). Also using an alternative attention-based transformer

summary network, designed to work with positional encodings, did not improve the perfor-

mance of “Time labels” (S1 Supplementary Information, Fig P and Fig Q). While further anal-

yses would be needed, this could indicate that the BayesFlow network misinterpreted the time

labels and could thus not converge to the true distribution.

Fig 5. Results for the sinusoidal model with uniformly sampled missing time steps. Top: Posterior distributions. Bottom: Posterior predictive checks. Two data sets at

parameters [0.2, −0.4] (Data set 1, left, n⌀ = 15) and [0.95, 0.1] (Data set 2, right, n⌀ = 20) are shown.

https://doi.org/10.1371/journal.pcbi.1012184.g005
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3.2.3 Similar behavior on FitzHugh-Nagumo model. To check our findings on the sinu-

soidal model, we studied another oscillatory model, the FitzHugh-Nagumo (FHN) model, an

ODE model with three parameters describing excitable systems [26]. Assuming a variable data

set size between nmin
x ¼ 2 and nmax

x ¼ 21, we compared the original BayesFlow method with

the approach “Augment by 0/1 (c = −5)” by training a 5-layer cINN with an LSTM with 64 hid-

den units as summary network. Although the original BayesFlow method again showed a

more fluctuating loss than “Augment by 0/1”, this time both converged comparably well (S1

Supplementary Information, Fig R).

Assuming that data are missing uniformly at up to nmax
⌀ ¼ 11 of the overall nx = 21 time

steps, we compared “Augment by 0/1” and “Time labels” by training a 5-layer cINN each with

an LSTM with 64 hidden units as summary network. Qualitatively similar results were

achieved compared to the sinusoidal model, i.e. worse loss function convergence and worse

posterior approximations by “Time labels” than by “Augment by 0/1”, albeit less pronounced

(S1 Supplementary Information, Fig T to Fig W).

In summary, the “Time labels” encoding appears to have problems with oscillatory models,

whereas “Augment by 0/1” performed robustly. The underlying reason remains to be

investigated.

3.3 SIR epidemiological models

Compartmental models have been widely used to describe the course of the COVID-19 pan-

demic [27, 28]. However, infectious disease data are almost always subject to missing values.

Therefore, we next studied two SIR-type models, the first one modeling the involved compart-

ments as an ODE [29], and the second one as a discrete Markov process via the stochastic sim-

ulation algorithm (SSA) [8]. In both cases, we aimed to estimate transmission and recovery

rate parameters. We assumed uniform missingness of at most nmax
⌀ ¼ 15 of the overall nx = 21

time steps, and trained a 5-layer cINN with an LSTM with 128 hidden units as summary

network.

For the encoding “Augment by 0/1” with a dummy value of c = −1, we obtained precise pos-

terior approximations and data fits. This shows that this approach can deal with both more

complex models and a high degree of missingness (Fig 6 for the ODE model; and S1 Supple-

mentary Information, Section 5.6 for the SSA model). In particular, this renders possible simu-

lation-based inference for stochastic models with missing data in an amortized fashion. See

further S1 Supplementary Information, Sections 5.5 and 5.6 for “Insert −1”, which performed

comparably, and “Time labels”, which converged slightly worse on these problems.

3.4 Parameter-dependent missingness can be captured

In the above test problems, missing entries were always sampled uniformly and independently

of the parameters. This may however not be the case in real-world applications, e.g. the fre-

quency of case numbers being reported in an epidemic may depend heavily on the disease

severity.

Therefore, as a prototype for dynamical models exhibiting parameter-dependent missing-

ness, we modified the conversion reaction model with up to nx = 11 observations by adding a

missingness parameter p � Uð0; 0:8Þ that determines the portion of missing values via n⌀ =

bp � nxc. Then, n⌀ values of the nx are uniformly sampled to be missing (Fig 7). For simplicity,

we fixed the rate parameter k2. Employing the encoding “Augment by 0/1” with a dummy

value of c = −1, we trained a 5-layer cINN with an LSTM with 32 hidden units as summary net-

work to jointly estimate k1 and p.
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Across different test data, we observed that our method not only correctly identified the

interval of parameter values for p that leads to the observed number of missing values, but also

captured the independence between the dynamics parameter k1 and the missingness parame-

ter p (Fig 7). This shows that our approach is conceptually able to unravel parameter-missing-

ness dependencies.

4 Discussion

Motivated by the fact that missing data are ubiquitous in experimental studies, in this work we

presented approaches that allow to adequately handle them while performing inference over

Fig 6. Results for the SIR ODE model. Top: Posterior distributions. Bottom: Posterior predictive checks displaying the means of noise-corrupted simulations and their

centered 90% credible intervals. Three data sets at ground truth parameters [−0.8, −1.4] (Data set 1, left, n⌀ = 15), [−1.0, −1.7] (Data set 2, middle, n⌀ = 10) and [−0.5,

−1.3] (Data set 3, right, n⌀ = 5) are shown.

https://doi.org/10.1371/journal.pcbi.1012184.g006

Fig 7. Parameter-dependent missingness for a modified conversion reaction model. Left: Visualization of the data generation process. Right: Posterior approximations

using the encoding “Augment by 0/1” for three data sets at ground truth parameters [−0.75, 0.6] (Data set 1), [−0.6, 0.3] (Data set 2) and [−1.1, 0.7] (Data set 3).

https://doi.org/10.1371/journal.pcbi.1012184.g007
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many observed data sets simultaneously. We achieved this by encoding the missing entries by

fill-in values (“Insert c”) and augmenting the data by a binary mask indicating absence or pres-

ence (“Augment by 0/1”), or a mask identifying the available data points globally (“Time

labels”), and using the established BayesFlow framework.

In particular, we found the approach “Augment by 0/1” to perform robustly across different

problems. Unlike “Insert c”, it provides a binary indicator which can be easily interpreted by

the neural network. This renders the approach particularly useful in case of ambiguous fill-in

values. However, this comes at the cost of increased effective data set size. Thus, in cases a clear

fill-in value can be found, “Insert c” may suffice and perform more efficiently. On the consid-

ered examples, we observed no substantial run time differences between the approaches.

In the original BayesFlow implementation, time series lengths were sampled only once per

batch. This was in order to facilitate vectorized operations when propagating through the net-

work. We showed that sampling the missingness pattern per individual, rather than once per

batch, improves convergence, as it leads to a more stable Monte-Carlo approximation of the

cost function. In particular, this renders “Augment by 0/1” a superior alternative to the “Time

labels” approach, and also to the original BayesFlow implementation in the simplified case of

time series of different lengths. The approaches are broadly applicable to various missingness

scenarios. In particular, they allow also to handle irregular time series data, via projecting onto

a high grid resolution with missing entries.

While we obtained some first promising results on how to combine amortized inference

with missing data, several questions remain open:

It remains to be studied how the suggested missingness encodings perform comparatively

on more challenging application problems. Such problems would allow to realistically bench-

mark the approaches, e.g. on the trade-off of augmented data set size and accuracy, and to fur-

ther evaluate the ability to unravel parameter-dependent missingness patterns.

Instead of sampling the missingness pattern individually per model simulation, one could

generate multiple data sets with missing entries from a single full simulation. Especially for

expensive mechanistic models, this could be useful. Moreover, this could be easily combined

with an offline training approach, where, in contrast to the online training approach employed

throughout this study, simulated data using the mechanistic model are generated only once

before the analysis. In such an offline approach, missing entries for each full simulation (and

more generally parts of the model simulation that are computationally inexpensive) could be

generated anew in each generation to avoid overfitting while keeping the computational

advantages of offline training. However, the resulting trade-off of simulation cost and accuracy

or convergence needs to be investigated.

Further, attention-based networks such as transformers are designed to work with posi-

tional encodings, such as the here-used time labels. However, on oscillatory data we observed

inferior performance, which remains to be studied in detail.

Moreover, while we here provided an integration into the BayesFlow methodology, the

encodings may also prove useful for other amortized inference approaches, such as [30], which

however remains to be studied.

Further, as we discussed briefly, an alternative to ignoring missing data is to impute faithful

values. An investigation of the applicability of such approaches and a comparison to the here

presented missingness encodings in terms of the obtained posterior approximation would be

of interest.

Last, in this study we have considered entries missing completely at random (MCAR), or

with the portion of missing entries dependent on latent parameters. Inspection of the deriva-

tion of our approach in Section 2.3 however reveals that no assumptions on the missingness

distribution π(τ) need to be made, as it is completly simulation-based. In particular, this
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conceptually allows the consideration of general data-dependent missingness patterns π(τ|x)

(MNAR). However, the practical feasibility of this remains to be tested. As common in missing

data problems, an application to MNAR can be challenging, as it requires an accurate specifi-

cation of the distribution of missing values given observable data. In general for neural poste-

rior estimation, adequacy of the learned posterior distribution across the domain of possible

observed data and parameters, as well as adequacy of the employed model to describe the

observed data must be carefully assessed. For this, there exist established systematic

approaches, whose application in the context of missing data would however remain to be

checked [8, 31].

In conclusion, in this work we presented and compared approaches to handle missing data

in the amortized simulation-based neural posterior estimation framework BayesFlow. We

believe that this will substantially improve its applicability on a wide range of problems.

Supporting information

S1 Supplementary Information. Additional analyses and information supplementing this

manuscript.

(PDF)
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