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Abstract

Neural responses in visual cortex adapt to prolonged and repeated stimuli. While adaptation
occurs across the visual cortex, it is unclear how adaptation patterns and computational
mechanisms differ across the visual hierarchy. Here we characterize two signatures of
short-term neural adaptation in time-varying intracranial electroencephalography (iEEG)
data collected while participants viewed naturalistic image categories varying in duration
and repetition interval. Ventral- and lateral-occipitotemporal cortex exhibit slower and pro-
longed adaptation to single stimuli and slower recovery from adaptation to repeated stimuli
compared to V1-V3. For category-selective electrodes, recovery from adaptation is slower
for preferred than non-preferred stimuli. To model neural adaptation we augment our
delayed divisive normalization (DN) model by scaling the input strength as a function of stim-
ulus category, enabling the model to accurately predict neural responses across multiple
image categories. The model fits suggest that differences in adaptation patterns arise from
slower normalization dynamics in higher visual areas interacting with differences in input
strength resulting from category selectivity. Our results reveal systematic differences in tem-
poral adaptation of neural population responses between lower and higher visual brain
areas and show that a single computational model of history-dependent normalization
dynamics, fit with area-specific parameters, accounts for these differences.

Author summary

Neural responses in visual cortex adapt over time, with reduced responses to prolonged
and repeated stimuli. Here, we examine how adaptation patterns differ across the visual
hierarchy in neural responses recorded from human visual cortex with high temporal and
spatial precision. To identify possible neural computations underlying short-term adapta-
tion, we fit the response time courses using a temporal divisive normalization model. The
model accurately predicts prolonged and repeated responses in lower and higher visual
areas, and reveals differences in temporal adaptation between visual areas and stimulus
categories. Our model suggests that differences in adaptation patterns result from
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data are publicly available as part of the ‘Visual
ECoG dataset’ on OpenNeuro ( https://openneuro.
org/datasets/ds004194). Code used to generate
the figures is available at https:/github.com/
ABra1993/tAdaptation_ECoG.git.

Funding: This work was supported by a
MacGillavry Fellowship to IIAG and a NIH R01
MH111417 to JW. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

A

amplitude

Sing

Transient-sustained neuronal dynamics

differences in divisive normalization dynamics. Our findings shed light on how informa-
tion is integrated in the brain on a millisecond-time scale and offer an intuitive framework
to study the emergence of neural dynamics across brain areas and stimuli.

Introduction

Neural responses in human visual cortex adapt over time, showing reduced responses to pro-
longed and repeated stimuli. Adaptation occurs at multiple spatial scales: from single-cell
recordings in monkeys [1-3] to neural population responses in humans on functional mag-
netic resonance imaging (fMRI) [4-7], magneto- and electroencephalography (M/EEG) [8-
12] and electrocorticography (ECoG) [13, 14]. Adaptation also occurs at multiple temporal
scales, from milliseconds [15] to minutes [16] or days [17]. Adaptation is thought to facilitate
efficient neural coding by allowing the brain to dynamically recalibrate to changing sensory
inputs [18-20], but its role in visual processing is not precisely understood. For example, it is
unclear if adaptation patterns and computational mechanisms differ across visual brain areas.

To elucidate these issues, we studied two signatures of adaptation in time-resolved neural
responses at short (sub-second) time-scales. First, neural responses reduce in magnitude when
a static stimulus is viewed continuously, evident in transient-sustained dynamics in the shape
of response time courses (Fig 1A). Second, when two stimuli are viewed close in time, the
response to the second stimulus is reduced; i.e., repetition suppression (RS; [1, 21-23]; Fig 1B).
Higher visual areas have been found to show slower transients and more slowly decaying
responses than lower visual areas in human ECoG [13, 14] and in simulated neural fMRI
responses [24, 25], and fMRI studies suggest that higher visual areas show stronger RS than
lower areas (e.g., V1; [7, 26]). Further, a computational model of delayed divisive normaliza-
tion [27, 28] simultaneously predicts transient-sustained dynamics and RS in neural popula-
tion responses measured with ECoG [13, 14], implying that both forms of adaptation may
reflect divisive normalization mechanisms.

Together, these findings suggest that adaptation signatures differ across the visual hierarchy
and that this may reflect differences in history-dependent normalization. However, in most
studies, the stimuli were noise patches or simple contrast patterns, which primarily drive
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Fig 1. Two forms of temporal short-term adaptation observed in neural response time courses. A. For a prolonged single stimulus, adaptation is
evident because the neural response, after an initial transient, is followed by a decay plateauing to a sustained response level. B. For two presentations of
an identical image with a brief gap in between the stimuli, adaptation is evident because the neural response for the second stimulus is reduced.

https://doi.org/10.1371/journal.pcbi.1012161.9001
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responses in lower-level areas. Thus, the observed differences across areas may reflect subopti-
mal stimuli for higher visual areas, rather than systematic differences in temporal adaptation.
Further, neural adaptation also may vary within an area, depending on stimulus type. Monkey
and human fMRI studies find that in visual areas with increased sensitivity to stimulus catego-
ries such as faces or bodies, preferred stimuli elicit stronger RS than non-preferred stimuli [3,
29, 30]. Thus, to compare and model adaptation across the visual hierarchy, stimulus effective-
ness must be considered.

To disentangle the influence of visual area and stimulus on neural adaptation, we quantified
transient-sustained and repetition suppression dynamics of neural responses across multiple
visual brain regions in a new set of intracranial EEG (iEEG) recordings from human partici-
pants. Participants were presented with naturalistic stimuli from distinct image categories,
allowing us to assess stimulus preference and its effectiveness on neural adaptation patterns.
By fitting an augmented version of the delayed divisive normalization model [13, 14] that con-
siders stimulus category preference, we propose explanations for differences in adaptation
patterns.

Our results yield three insights. First, we demonstrate systematic differences in neural adap-
tation between lower and higher human visual areas: lower areas show faster transient-sus-
tained dynamics and faster recovery from repetition suppression. Second, we reveal stimulus-
specific differences in recovery from RS in category-selective electrodes: preferred stimuli elicit
stronger repetition suppression than non-preferred stimuli. Third, our augmented DN model
accurately predicts neural responses to different stimulus categories along the visual hierarchy.
Based on the observed model behavior, we propose that observed differences in neural adapta-
tion patterns reflect differences in divisive normalization dynamics.

Materials and methods
Ethics statement

Approval for this study was granted by New York University, Grossman School of Medicine,
Institutional Review Board. Prior to the experiment participants gave written informed con-
sent. The methods for collecting and preprocessing the ECoG data have been recently
described by [14]. For convenience, the following sections were duplicated with modifications
reflecting differences from the previous method: ECoG recordings, Data preprocessing and Elec-
trode localization.

Subjects

Intracranial EEG data were collected from four participants who were implanted with sub-
dural electrodes for clinical purposes at the New York University Grossman School of Medi-
cine (New York, USA). All participants had normal or corrected-to-normal vision and were
implanted with standard clinical strip, grid and depth electrodes. One participant was addi-
tionally implanted with a high-density research grid (HDgrid), for which separate consent was
obtained. Detailed information about each participant and their implantation is provided in
S1 Table and S9 Fig.

iEEG recordings

Recordings were made using a Neuroworks Quantum Amplifier (Natus Biomedical) recorded
at 2048 Hz, band-pass filtered at 0.01-682.67 Hz, and then downsampled to 512 Hz. An audio

trigger cable, connecting the laptop and the iEEG amplifier, was used to record stimulus onsets
and the iEEG data. Behavioral responses were recorded by an external number pad that was
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connected to the laptop through a USB port. Participants initiated the start of the next run by
pushing a designated response button on the number pad.

Stimuli

Stimuli consisted of natural color images presented on a gray background belonging to one of
the following six categories: bodies, buildings, faces, objects, scenes and scrambled (Fig 2A).
Images (568 x 568 pixels) were taken from a set of stimuli used in prior fMRI studies to localize
functional category-selective brain regions [31, 32]. In total the dataset consisted of 288 images
with 48 images per category. Bodies consisted of pictures of hands (24 images) and feet (24
images) taken from a variety of viewpoints. Buildings consisted of a large variety of human-
built structures (including houses, apartment buildings, arches, barns, mills, towers,

A B Duration trial Repetition trial

Bodies  Buildings Faces u !‘ u

(1 34

17 | 17

duration (ms)

Fig 2. Experimental design and electrode positions. A: Stimuli consisted of natural images belonging to one of six image categories (bodies, buildings,
faces, objects, scenes and scrambled). For privacy reasons, the face exemplar shown here depicts the first author and for copyright reasons, exemplars
from the buildings, objects and scene category are stock photos (source https://www.pexels.com/). These images were not included in the actual dataset.
The scrambled exemplars consisted of image patches and were created by taking cropped images and swapping the pixels (mkFigure2_scrambled.m). B:
Subjects were presented with two different trial types. Duration trials (left) consisted of a single stimulus with one of six durations, ranging from 17-533
ms. Repetition trials (right) comprised two stimulus presentations of 134 ms each with one of six ISIs ranging from 17-533 ms. Subjects fixated on a
small cross and were instructed to press a button whenever it changed color. C: Electrodes with robust visual responses were identified in V1-V3
(n=15), VOTC (n = 17) or LOTC (n = 47). Electrodes not included in the dataset are shown in black. Electrodes were considered category-selective if
the average response for one image category was higher than for the other image categories (d’ > 0.5, see Eq 1, Materials and methods, n = 26).
Apparent misalignments between electrode positions and the brain surface in C result from the fact that the electrodes here are displayed on the
reconstructions of the average brain surface; electrode assignment was performed in each participant’s native T1 space (S9 Fig). L = lateral, M = medial,
D = dorsal, V = ventral, A = anterior, P = posterior. The brain surfaces were created using MNE-Python and can be reproduced by mkFigure2.py.

https://doi.org/10.1371/journal.pchi.1012161.g002
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skyscrapers, etc). Face images were taken from frontal viewpoints and were balanced for gen-
der (24 male, 24 female) and included a variety in race and hairstyle. Objects consisted of both
man-made items (24 images, e.g., household items, vehicles, musical instruments, electronics
and clothing) and natural items (24 images, e.g., fruits/vegetables, nuts, rocks, flowers, logs,
leaves, and plants). Scene images were equally divided between indoor, outdoor man-made
and outdoor natural scenes (16 images each). Faces, bodies, buildings and objects were
cropped out and placed on gray-scale backgrounds. Scrambled images consisted of an assem-
bly of square image patches created by taking the cropped object images and randomly swap-
ping 48 x 48 pixel ‘blocks’ across images and placing them on a gray-scale background. Stimuli
were shown on a 15 inch MacBook Pro laptop with a screen resolution of 1280 x 800 pixels (33
cm x 21 cm), which was placed 50 cm from the participant’s eyes (at chest level), resulting in
stimuli subtending 8.5 degrees of visual angle. Stimuli were presented at a frame rate of 60 Hz
using Psychtoolbox-3 [33-35].

Experimental procedure

Participants viewed two different types of trials (Fig 2B). Duration trials showed a single stimu-
lus for one of six durations, defined as powers of two times the monitor dwell time (1/60): 17,
33, 67, 134, 267 and 533 ms. Repetition trials contained a repeated presentation of the same
image with fixed duration (134 ms) but variable inter-stimulus interval (ISI), ranging between
17-533 ms (same temporal step sizes as the duration trials). These temporal parameters were
identical to previous studies [7, 13, 14], but here naturalistic color images were presented
instead of gray-scale noise patterns. Each participant underwent 2-6 runs of 144 trials each,
including 72 duration trials and 72 repetition trials, which each contained 12 stimuli from
each of the six stimulus categories. Trial order was randomized, with an inter-trial-interval
(ITT) randomly chosen from a uniform distribution between 1.25-1.75s. Participants were
instructed to fixate on a cross at the center of the screen and press a button when it changed
from black to white or vice versa. Fixation cross changes occurred independently of the stimu-
lus sequence on randomly chosen intervals between 1-5 s. In between runs participants were
allowed a short break. Stimuli were divided into two sets, one for even and one for odd runs,
with each set containing 72 of the 144 stimuli. The number of odd/even run pairs determined
the number of repetitions for a specific trial-type. Detailed information about the amount of
data collected for each participant is provided in S1 Table. Three participants (p12-14) addi-
tionally viewed repetition trials in which the second image differed from the first (either a dif-
ferent exemplar from the same category or a different category). These trials are included in
the dataset (see Data Availability) but not further analyzed for the purpose of this study.

iEEG data analysis

Data preprocessing Data was read into MATLAB 2020b using the Fieldtrip Toolbox [36]
and preprocessed with custom scripts available at https://github.com/WinawerLab/ECoG _
utils. The raw voltage time series from each electrode, obtained during each recording session,
were inspected for spiking, drifts or other artifacts. Electrodes were excluded from analysis if
the signal exhibited artifacts or epileptic activity, determined based on visual inspection of the
raw data traces and spectral profiles, or at the clinician’s indication. Next, data were divided
into individual runs and formatted according to the iEEG-BIDS format [37]. For each run, the
data were re-referenced to the common average computed separately for each electrode group
(e.g. grid or strip electrodes, see bidsEcogRereference.m) and a time-varying broadband signal
was computed for each run (see bidsEcogBroadband.m): First, the voltage-traces were band-
pass filtered by applying a Butterworth filter (passband ripples < 3 dB, stopband attenuation
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60 dB) for 10 Hz-wide bands ranging between 50-200 Hz. Bands that included frequencies
expected to carry external noise were excluded (60, 120 and 180 Hz). Next, the power envelope
of each band-pass filtered time course was calculated as the square of the squared magnitude
of the analytic signal. The resulting envelopes were then averaged across bands using the geo-
metric mean (see ecog_extractBroadband.m), ensuring that the resulting average is not biased
towards the lower frequencies. The re-referenced voltage and broadband traces for each run
were written to BIDS derivatives directories.

Electrode localization Pre- and post-implantation structural MRI images were used to
localize intracranial electrode arrays [38]. Electrode coordinates were computed in native T1
space and visualized onto pial surface reconstructions of the T1 scans, generated using Free-
Surfer [39]. Boundaries of visual maps were generated for each individual participant based on
the preoperative anatomical MRI scan by aligning the surface topology with two atlases of reti-
notopic organization: an anatomically-defined atlas [40, 41] and a probabilistic atlas derived
from retinotopic fMRI mapping [42] (S9 Fig). Using the alignment of the participant’s cortical
surface to the fsaverage subject retrieved from FreeSurfer, atlas labels defined on the fsaverage
were interpolated onto the cortical surface via nearest neighbor interpolation. Electrodes were
then matched to both the anatomical and the probabilistic atlas using the following procedure
(bidsEcogMatchElectrodesToAtlas.m): For each electrode, the distance to all the nodes in the
FreeSurfer pial surface mesh was calculated and the node with the smallest distance was deter-
mined to be the matching node. The matching node was then used to assign the electrode to
one of the following visual areas in the anatomical atlas (hereafter referred to as the Benson
atlas): V1, V2, V3,hV4, VO1, VO2, LO1, LO2, TO1, TO2, V3a, V3b, or none; and to assign it
a probability of belonging to each of the following visual areas in the probabilistic atlas (hereaf-
ter referred to as the Wang atlas): V1v, V1d, V2v, V2d, V3v, V3d, hV4, VO1, VO2, PHCI,
PHC2, TO2, TO1, LO2, LO1, V3b, V3a, IPS0, IPS1, IPS2, IPS3, IPS4, IPS5, SPL1, FEF, or
none. After localization, all electrodes were assigned to one of three visual electrode groups:
early (V1-V3), ventral-occipital (VOTC) and lateral-occipital (LOTC), according to the follow-
ing rules (S2 Table): electrodes were assigned to V1-V3 if located in V1, V2, V3 according the
Benson atlas or if located in V1v, V1d, V2v, V2d, V3v, V3d according to the Wang atlas. Elec-
trodes were assigned to VOTC if located in hV4, VO1 VO2 according to either the Benson or
Wang atlas. Electrodes were assigned to LOTC if electrodes were located in any of the remain-
ing retinotopic atlas areas (with exception of SPL1 and FEF). Electrodes that showed robust
visual responses according to the inclusion criteria (see Data selection) but were not matched
to any retinotopic atlas region (i.e. that obtained the label ‘none’ from the retinotopic atlas
matching procedure described above), were manually assigned to one of the three groups
based on visual inspection of their anatomical location and proximity to already-assigned elec-
trodes (e.g. being located on the same electrode strip extending across the lateral-occipital sur-
face, or penetrating the same cortical region as nearby depth electrodes being assigned to
V1-V3). Detailed information about the subject-wise electrode assignment is provided in S3
Table. A schematic layout of the electrodes assigned to the visual regions pooled across all four
participants is shown in Fig 2C.

Data selection Python scripts used for data selection can be found at https://github.com/
ABral993/tAdaptation_ECoG.git. Two consecutive data selection steps were performed: 1)
trial selection and 2) selection of visually-responsive and category-selective electrodes.

Trial selection. Trial selection was performed on the broadband time courses for each elec-
trode separately (analysis_selectEpochs.py). We first computed the maximum (peak)
response within each trial, after which the standard deviation (SD) of these maximum val-
ues over all trials was computed. Trials were excluded from analysis if the maximum
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response was > 2 SD. Across participants, on average 3.25% of epochs (min: 1.81%, max:
3.80%) were rejected. Next, broadband time courses were converted to percentage signal
change by point-wise dividing and subtracting the average prestimulus baseline (100 to 0
ms prior to stimulus onset) across all epochs within each run (analysis_baselineCorrection.

py)-

Electrode selection. Electrode selection was performed separately for i) the analyses focusing
on comparison of temporal dynamics across visual areas and ii) the analyses focusing on
comparison across stimuli in category-selective regions.

Selection of visually-responsive electrodes. For the comparisons across areas, electrodes were
included when showing a robust broadband response based on the following two metrics com-
puted onto the duration trials (analysis_selectElectrodes.py): the z-score (z — score = g) where
the mean and deviation are computed across time samples and the onset latency of the
response computed over the average stimulus duration. The onset latency was determined
during the 150 time samples ( ~ 300 ms) time window after stimulus onset. First, responses
were z-scored, after which the onset latency was defined as the first time point at which the
response passed a threshold (0.85 std) for a duration of at least 60 time samples (~ 120 ms).
Note, converting responses to z-score was only applied during the electrode selection proce-
dure. The reason for this is because response magnitudes when expressed as a percent signal
change vary highly across electrodes. To determine the response onset latency, we were inter-
ested in the relative increase after presenting the stimulus, and for this reason time courses
were converted to a z-score. Electrodes were included in the final selection when i) a response
onset could be determined and ii) if the z-score > 0.2. Based on the selection methods
described above, on average 37% (min: 14%, max: 57%) of the electrodes assigned to a visual
group either according to the Benson or Wang atlas were included.

Selection of category-selective electrodes. Electrodes were considered category-selective if
they preferentially responded to a given image category over other image categories (excluding
scrambled) computed for the duration trials. Category-selectivity of an electrode was measured
asd"

where X,,; and o, represent the mean response and standard deviation for one image cate-
gory over time, while X, ., and 0,4, represent the mean response and standard deviation
over time for the other image categories. Category-selective electrodes generally exhibit a low
z-score for the non-preferred image categories, possibly leading to exclusion from analysis
when considering only the z-score computed over all categories (see above). Therefore, for the
comparison across stimuli in category-selective regions, electrodes were included if i) a onset
latency for the averaged response over all categories for the duration trials was present and if
ii) d' passed a threshold of 0.5, 0.75 or 1. The reason for using a range of threshold values was
to verify whether the observed data patterns depend on the chosen threshold, whereby a lower
threshold allows inclusion of electrodes which show weaker selectivity for a specific image cat-
egory (analysis_selectElectrodes.py). Detailed information about the number of category-
selective electrodes included is provided in S4 Table and a schematic layout of the category-
selective electrodes is shown in Fig 2C for a d' threshold of 0.5 (see S10(A) and S10(B) Fig for a
threshold of 0.75 and 1.0, respectively).
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Data summary The data preprocessing, electrode localization and data selection proce-
dures outlined above resulted in 79 electrodes with robust visual responses over either V1-V3
(n=17), VOTC (n = 15) or LOTC (n = 47). A subset of these electrodes showed selectivity for
specific image categories where the number of category-selective electrodes depended on the
threshold of d' (n =26, n = 12, n = 6 for a threshold of 0.5, 0.75 and 1 respectively). After aver-
aging the time series within trial types, there were 72 response time courses per electrode: 12
temporal conditions (6 durations and 6 ISIs) times 6 image categories. The time series from
these 72 conditions were used to investigate the temporal profile of neural adaptation and con-
stituted the data for model fitting.

Computational modelling

Model fitting Computational models and associated model fitting procedures were
implemented using custom Python code available at https://github.com/ABral993/
tAdaptation_ECoG.git. Models were fitted separately to individual electrodes, after which
parameters or metrics derived from these fits were averaged within visual areas using a boot-
strapping procedure described below. Models were fitted using a nonlinear least-squares algo-
rithm (scipy.optimize least_squareas, SciPy, Python), with bounds on the parameters. The
starting points, and upper and lower bounds that were used for fitting can be found at
modelling_utils_paramlInit.py.

Models

Delayed normalization model
The broadband time courses for each individual electrode were fitted with a delayed divi-
sive normalization (DN) model previously described conceptually in the appendices of [27,
28] and implemented in [13] and [14]. In the DN model, an input drive is divisively nor-
malized by its own delayed activation history, implemented as a low-pass filter on the input
drive (DN.py). The model takes a stimulus time course as input and produces a predicted
neural response time course as output, by applying a series of transformations which take
the form of a Linear-Nonlinear-Gain control (LNG) structure, corresponding to filtering
(L), exponentiation (N), and normalization (G). The model contains four free parameters
of interest: 7, n, 0 and 7, (Fig 3A). In addition, two nuisance parameters are fitted, includ-
ing a shift (delay in response onset relative to stimulus onset) and electrode-specific scale
(i.e. gain of response) to take into account differences in overall response latency and ampli-
tude between electrodes. In the following, we will drop the time index for brevity, and
denote free parameters between parentheses.
The input drive, 7inpur drives is computed by first convolving a stimulus time course (s = 0
when stimulus is absent, s = 1 when the stimulus is present) with an impulse response func-
tion (IRF), h;(7;), yielding a linear response prediction:

r,=sx*h(t)) (2)
where h, is defined as:

h (7)) = te™/m (3)

The parameter 7, is a time constant and determines the peak (i.e. function peaks when ¢ =
71). The input drive is obtained by converting the linear response to a nonlinear response
by applying a full-wave rectification and an exponentiation with #:

rinput drive — |rL|rl (4)
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Fig 3. Modeling neural responses using delayed divisive normalization with category-dependent input strength. A: Schematic depiction of the
delayed divisive normalization (DN) model, originally proposed by [27, 28] and first presented in this form in [13]. The model is defined by a linear-
nonlinear-gain control structure, taking as input a stimulus time course and producing a predicted neural response as output. The linear computation
consists of a convolution with an impulse response function (IRF), h;, parameterized as a gamma function with 7; as a free parameter. The nonlinear
computation consists of rectification, exponentiation with a free parameter, #, and division by a semi-saturation constant g, which is summed with a
delayed copy of the input that is also rectified and exponentiated. The delay is implemented as a convolution of the linear response with an
exponentially decaying function, h,, with a time constant, 7,. B: Top, To capture category-selectivity in neural responses, a scaling factor (SF) for each
image category is introduced to the DN model, which allows the input drive to vary depending on stimulus category by scaling either the height of the
stimulus or predicted neural time course. Bottom, Category-wise responses for an example electrode showing increased sensitivity for faces (left). The
category-selectivity is captured by the csDN model evident by the increased value for the face compared to the other image categories. C: Cross-
validated explained variance (coefficient of determination) across all stimulus conditions for the DN (omitting category scaling) and the augmented DN
model (including category-scaling) plotted per visual area (V1-V3, VOTC and LOTC). The DN model which includes category-specific scaling of the
stimulus time course better predicts neural responses across all visual areas. Averages indicate medians and error bars indicate 68% confidence interval
across 1000 samples derived from the bootstrapped R* values. Panel C can be reproduced by mkFigure3.py.

https://doi.org/10.1371/journal.pcbi.1012161.9003

The normalization pool, 7,.,matizations i cOmputed by summing a semi-saturation constant,
0, and a convolution of the linear response with a low-pass filter followed by rectification,
where both terms are exponentiated with n:

T (o,n) = 0"+ [r, * h2(f2)|n (5)

normalization

with the low-pass filter taking the form of the following decaying exponential function with
a time constant 7,:

hy(1,) = e/ (6)
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In summary, the delayed divisive normalization is applied as follows:

rinput drive — |rL|n (7)
0" + |1, % hy(zy)["

rDN(O-7 n) =

rnormalization

The computation of the temporal dynamics by the DN model as described in Eq 7 has the
form of a canonical divisive normalization [43], where the normalization pool (i.e. the
denominator) consists of a delayed version of the numerator, yielding an output that is
characterized by a transient response rise followed by a decay to a sustained response level.
Augmented DN model with category-selective stimulus strength
The DN model, as described in the previous section, only receives information about the
presence or absence of a stimulus over time. While previous studies [13, 14] scaled the stim-
ulus time course to represent variations in stimulus contrast, they did not incorporate infor-
mation about the content of a stimulus, e.g., the category it belongs to. Here, we
incorporated stimulus content into the model by including six additional free parameters,
i.e. one for each image category, which adjust the height of the input stimulus time course
according to category preference (Fig 3B), referred to as categorical scaling factors (csDN.
py). More specifically, the scaled stimulus course is computed by multiplying the original
time course with the scaling factor for the respective category, s = s x sf where sf € sfyogics
Sfpuildings> Sffacess Sfobjects> Sfsceness Sfscramiea (€.8- for a face stimulus, s = s*sf..). From here on
out, we will refer to this augmented version of the DN model as the category-selective DN
(csDN) model.

Model evaluation Model performance was quantified as the cross-validated coefficient of
determination (modelling modelFit.py). A 12-fold cross-validation was performed on 72
input broadband time courses, whereby parameters were fitted on 66 conditions and testing
was done on the remaining 6 conditions. Within each fold, test data were selected in a pseudo-
random manner whereby each image category was always present in one of the six test samples
(but these were drawn randomly from the 12 temporal conditions). Comparison of model per-
formance between the DN model which either omits or includes category-dependent scaling
confirms that scaling the stimulus course improves model accuracy in all visual areas (Fig 3C).
Due to the fact that model accuracy is computed on the left-out data, this result is not guaran-
teed simply due to adding more free parameters to the DN model. Model parameter values
and summary parameters were estimated based on a separate fit to the full dataset.

Note that for electrodes assigned to VOTC the cross-validated explained variance is lower
compared to the other visual groups when considering the DN model which omits category
scaling. This is likely due to the fact that a large proportion of the electrodes in VOTC show
strong category-selectivity, which results in poor model fits for image categories which elicit
weaker responses (S11 Fig).

Summary metrics

To quantify adaptation and associated temporal dynamics, we computed the following sum-
mary metrics from the neural time courses and the model predicted time courses:

Time-to-peak. The time interval between stimulus onset and the maximum (peak) of the
response time course. This metric was computed based on response or model predictions
for the longest stimulus duration of 533 ms.
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Full-width at half maximum. The time from when the response has risen to half of its maxi-
mum until it has decayed to half of its maximum. This metric was computed on the neural
response or model prediction for all stimulus durations separately.

Recovery from adaptation for repeated stimuli. The response magnitude of the second stim-
ulus divided by the first. To obtain a robust estimate of the response to the first stimulus, we
averaged together the response time courses for the 134 ms duration stimulus (same dura-
tion as the ISI stimuli) and each of the ISI stimuli from trial onset up to the onset of the sec-
ond stimulus. We then subtracted this average time course from each of the ISI varying
stimulus responses, yielding an estimate of the response of the second stimulus corrected
for the response to the first stimulus (S3(A) Fig, see also [14]). Subsequently, the recovery
from adaptation is defined as the AUC for the second response proportional to the AUC of
the first response.

Overall adaptation for repeated stimuli. Overall adaptation was computed as the recovery
(see above) averaged over all ISIs.

Long-term recovery. The amount of recovery (see above) predicted for an ISI of 1 second. To
compute this value, a log curve was fitted through recovery values over all ISIs (S3(B) Fig):

y=c+a-log(x) (8)

where y is the recovery, x is the ISI and [c, a] are two free parameters. When the IS is 1 sec-
ond, y = ¢ (because log(1) = 0), so ¢ quantifies long-term recovery from neural adaptation.
Note that this function is a heuristic applied to short to medium time scales. For very long
ISIs, it will make unreasonably large predictions.

Bootstrapping procedure and statistical testing

When computing the summary metrics outlined above, we repeatedly (n bootstraps) sampled
k electrodes with replacement and calculated the mean, followed by computing the summary
metric over the averaged timecourse. The median and 68% confidence interval were then com-
puted over the samples derived from the bootstrapped timecourses. Statistical significance was
determined by a two-tailed sign test (statistical significance, o = 0.025), whereby the difference
between two bootstrap distributions was computed and the minimal amount of instances
where differences were either positive or negative were divided by n. We applied a Bonferroni
correction for the number of pairwise comparisons made in the analyses comparing different
visual areas (i.e. statistical significance, o = 0.025/3 = 0.008).

Results

We collected iEEG recordings while participants viewed single and repeated naturalistic
images from six stimulus categories (Fig 2A), with variable stimulus duration and inter-stimu-
lus-intervals (ISI) (Fig 2B). By aggregating responses across four patients, we identified 79
visually responsive electrodes which we separated into one lower-level visual group (V1-V3)
and two higher-level ventral-occipital cortex (VOTC) and lateral-occipital cortex (LOTC)
groups using retinotopic atlases (Fig 2C). Some electrodes in VOTC and LOTC were category-
selective, showing higher sensitivity to one stimulus class (Fig 2C; see Materials and methods,
Data selection). We computed a single average time-resolved broadband response for each
temporal stimulus condition and stimulus class, resulting in 72 response time-courses per
electrode.
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To model neural response dynamics across visual areas and stimuli, the time courses were
fitted using a delayed divisive normalization (DN) model. The model takes as input a stimulus
time course and produces as output a predicted neural response (Fig 3A). To take into account
category-selectivity, we allowed the model to scale the input stimulus time course as a function
of category (Fig 3B, see Materials and methods, Computational modeling). Incorporating cate-
gory-dependent scaling improves model predictions in all visual areas (Fig 3C).

We compared the DN model to temporal two-channel models [24, 44], which we aug-
mented such that it similarly employs a scaling factor for modulating category-specific input
strength. These models predict neural responses using distinct channels responsible for either
the transient and sustained responses observed in neural signals [45] and has been shown to
accurately predict some aspects of iEEG responses [14] and fMRI responses [7, 25]. We distin-
guished two different model implementations. The L+Q model [24] consists of a linear sus-
tained channel and a transient channel with quadratic nonlinearity, whereas the A+S model
[44] contains a sustained channel with adaptation and a transient channel with sigmoid non-
linearities. In the current data, the DN model outperforms the L+Q model in V1-V3 and
LOTC and the A+S model in V1-V3 (S1(A) Fig). While for the higher visual regions the A+S
model [44] performs nearly on par with the DN model, we see a qualitatively poorer fits with
the data, which we will discuss in more detail below.

In the following sections, we first characterize transient-sustained dynamics and repetition
suppression in lower and higher visual areas and then examine repetition suppression within
category-selective electrodes. Along with the neural data, we present DN model predictions to
demonstrate how the observed differences result from divisive normalization dynamics.

Higher visual areas exhibit slower and prolonged responses to single
stimuli

Neural time courses to duration-varying stimuli in V1-V3, LOTC and VOTC exhibit different
transient-sustained dynamics (Fig 4A, top panel). In all areas, responses show an initial tran-
sient, which for short durations is the only part of the response, while for longer durations, a
subsequent lower-amplitude sustained response emerges. However, electrodes in V1-V3 show
faster and shorter transients with relatively low sustained responses, while VOTC and LOTC
have slower and wider transients with higher sustained responses.

To quantify these differences in response shapes across visual areas, we computed two met-
rics which capture different characteristics of the time courses. First, responses rise more
slowly in higher visual areas as reflected by the time-to-peak, which is shortest for V1-V3,
intermediate for VOTC and longest for LOTC (Fig 4B, circle markers). Second, compared to
V1-V3, responses for VOTC and LOTC show a broadening of the transient as reflected by the
full-width at half-maximum (Fig 4C, circle markers). This difference becomes more pro-
nounced as the stimulus duration lengthens for LOTC and to a lesser degree for VOTC. These
metrics indicate a slower rise and a slower decay of the response, resulting in a prolonged,
more slowly adapting response in higher visual areas.

The DN model accurately captures the broadband responses for the duration trials across
all visual areas (Fig 4A, lower panel). It also predicts the differences in response shapes, that is
the slower rise (Fig 4B, triangle markers) and the wider transients (Fig 4C, triangle markers) in
LOTC compared to V1-V3, with intermediate values for VOTC. While the A+S model cap-
tures the overall response shapes for the different visual areas, it also shows some model fail-
ures. First, the model predicts offset responses for longer stimulus durations which are not
present in the neural data (S1(B) Fig). Moreover, model predictions show narrower response
widths for electrodes in VOTC more similar to those observed in V1-V3 (S1(C) Fig).
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Fig 4. Slower rise and prolonged responses in higher visual areas. A: Top, Average, normalized broadband iEEG responses (80-200 Hz) for
electrodes assigned to V1-V3 (n = 17), VOTC (n = 15) and LOTC (n = 47) to single stimuli (gray). Responses are shown separately per duration from
shortest (17 ms, left) to longest (533 ms, right). Bottom, DN model predictions for the same conditions. The shapes of the neural time courses differ
between visual areas and are accurately captured by the DN model. Time courses were smoothed with a Gaussian kernel with standard deviation of o =
10; the shaded regions indicate 68% confidence interval across 1000 bootstrapped timecourses (see Materials and methods, Bootstrapping procedure
and statistical testing). B-C: Summary metrics plotted per visual area derived from the neural responses (circle marker) or model time courses (triangle
marker). Time-to-peak (B) computed to the longest duration (533 ms). Full-width at half maximum (C), computed for each stimulus duration. Data
points indicate medians and error bars indicate 68% confidence interval across 1000 samples derived from the bootstrapped timecourses. Bootstrap test,
* = p < 0.05 (two-tailed, Bonferroni-corrected). This figure can be reproduced by mkFigure4.py.

https://doi.org/10.1371/journal.pcbi.1012161.9g004

To assess whether the differences in transient-sustained dynamics across areas are affected
by stimulus selectivity, we quantified these dynamics separately for each electrode’s preferred
category (eliciting the maximum response) and for all remaining stimulus categories com-
bined (non-preferred stimuli). While for higher visual areas, the response decay for preferred
stimuli seems to be slightly stronger compared to non-preferred stimuli, the neural and DN
model time courses overall exhibit the same area-specific differences regardless of whether pre-
ferred (S2(A)-S2(C) Fig) or non-preferred (S2(D)-S2(F) Fig) stimuli were shown. This sug-
gests that the transient-sustained dynamics in higher visual regions are not stimulus-
dependent, but rather reflect intrinsically slower temporal integration.

Stronger RS and a slower recovery in higher visual areas for repeated
stimuli

Viewing repeated stimuli results in repetition suppression in all visual areas (Fig 5A, top
panel), whereby responses to the second stimulus are most suppressed at shortest ISIs and
show a gradual recovery as ISI increases. Across conditions, there also appear to be differences
in RS between lower and higher visual areas. However, quantifying differences in the degree of
recovery in these response time courses is not straightforward: the response to the first
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Fig 5. Qualitative differences in repetition suppression across visual areas. A: Top, Average, normalized broadband responses for electrodes
assigned to V1-V3 (n = 17), VOTC (n = 15) and LOTC (n = 47) to repeated visual stimuli (gray). Responses are shown separately per ISI from shortest
(17 ms, left) to longest (533 ms, right). Bottom, DN model predictions for the same data. Time courses differ between visual areas which is captured by
the DN model. B. Estimated, normalized response to the second stimulus for V1-V3, VOTC and LOTC. For each visual area, the left panel shows the
neural data and the right panel shows the model prediction. Recovery from adaptation gradually increases as the ISI becomes longer, and the rate of
recovery is higher for V1-V3 compared to VOTC and LOTC in both the neural data and the DN model as a result of a higher peak magnitude to the
second stimulus and a less strong decay after the peak (black arrows). This figure can be reproduced by mkFigure5_6.py.

https://doi.org/10.1371/journal.pchi.1012161.9g005

stimulus continues after its offset (see Fig 4A), and as demonstrated above, this continued
response is longer in higher visual regions (Fig 4C). This problem is especially evident for
short ISIs: at 17 ms ISI, response amplitudes measured after onset of the second stimulus are
higher in LOTC and VOTC than in V1-V3 (Fig 5A), but this could result from weaker RS of
the second stimulus, the continued neural responses to the first stimulus, or a combination.

To disentangle these responses, we estimated the response to the second stimulus in isola-
tion (see Materials and methods, Summary metrics) while correcting for the ongoing activity
caused by the first stimulus (Fig 5B, Neural data). This shows that recovery from RS qualita-
tively differs between visual areas: V1-V3 shows less suppression and recovers faster than
VOTC and LOTC. These differences between areas are partly due to differences in the peak
magnitude of the response to the second stimulus, as well as the faster decay after the peak for
higher visual areas (Fig 5B). We quantified the level of RS in these responses by computing
their Area Under the Curve (AUC) divided by the AUC of the first stimulus response (see S3
Fig). Neural responses show overall stronger RS for shorter compared to longer ISIs (Fig 6A,
left), but also relatively more RS in VOTC and LOTC than in V1-V3. Responses in V1-V3 are
nearly fully recovered at the longest ISI of 533 ms, while VOTC and LOTC are still suppressed.
Summary metrics of the average recovery across ISIs (Fig 6B, circle markers) and long-term
recovery (Fig 6C, circle markers) confirm that there is less RS and faster recovery in V1-V3
compared to VOTC and LOTC.
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Fig 6. Stronger RS and slower recovery rate from adaptation in higher visual areas. A: left, Recovery from adaptation for V1-V3 (n = 17), VOTC

(n =15) and LOTC (n = 47), computed as the ratio of the Area Under the Curve (AUC) between the first and second response. The fitted curves express
recovery as a function of the ISI (see Materials and methods, Summary metrics). Higher visual areas show stronger RS and slower recovery from
adaptation. Right, model predictions for the same data. The model captures area-specific recovery from adaptation. B-C: Summary metrics plotted per
visual area derived from the neural responses (circle markers) or model time courses (triangle markers). Average recovery (B) from adaptation for each
area, computed by averaging the AUC ratios between the first and second stimulus over all ISIs. The long-term recovery (C) reflects the amount of
recovery for an ISI of 1s, obtained by extrapolating the fitted line. Higher visual areas show stronger RS and a slower recovery rate which is accurately
predicted by the DN model. Data points indicate medians and error bars indicate 68% confidence interval across 1000 samples derived from the
bootstrapped timecourses. Bootstrap test, * = p < 0.05 (two-tailed, Bonferroni-corrected). This figure can be reproduced by mkFigure5_6.py.

https://doi.org/10.1371/journal.pchi.1012161.9006

Fitting these responses with the DN model again shows accurate predictions: the model
captures the overall gradual recovery from RS with longer time lags, closely mimicking the
neural data (Fig 5A, lower panel and Fig 5B, DN model). The DN model also predicts stronger
RS (Fig 6A, right), reflected in average level of suppression (Fig 6B, triangle markers) and faster
recovery (Fig 6C, triangle markers), for higher than lower visual areas, although it underesti-
mates the average suppression in VOTC and LOTC, possibly due to a slight over-prediction of
the recovery for shorter ISIs. We also fitted neural responses with the A+S model and find that
the A+S model poorly aligns with the neural data, predicting an overall higher degree of RS
with area-dependent differences for short as opposed to long ISIs (S1(D) Fig).

Given prior reports of stimulus-specific differences in RS depending on a neural popula-
tion’s stimulus selectivity [3], we also quantified RS separately for preferred and non-preferred
stimuli in all areas. In both neural responses and model predictions, the differences in RS
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between areas are most pronounced for preferred stimuli (54 Fig), and comparatively less
strong for non-preferred stimuli (S5 Fig). This suggests that the repetition suppression effects
in higher visual areas are partly stimulus-dependent.

Differences in adaptation reflect slower normalization in higher visual
areas

We showed that lower and higher visual areas show different adaptation patterns, as evident
from transient-sustained dynamics and recovery from repetition suppression, which are both
accurately captured by the DN model. To better understand the neural computations underly-
ing these response profiles, we examined the temporal dynamics of two components of the DN
model: the input drive (i.e. the numerator) and the normalization pool (i.e. the denominator).
To explain differences in transient-sustained dynamics, we considered the model predic-
tion for the longest duration (533 ms, Fig 7A), because it has the most pronounced sustained
response difference across areas. The DN model captures transient-sustained dynamics in neu-
ral responses because the input drive dominates the prediction early in the response, resulting
in a transient, followed by the normalization pool, resulting in a response decay to sustained
levels. The model suggests that lower visual areas exhibit relatively fast dynamics in both the
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Fig 7. Slower normalization in higher visual areas results in prolonged response shapes and stronger RS. A. DN model prediction of the neural
response for a single stimulus with a duration of 533 ms in V1-V3 (n = 17), VOTC (n = 15) and LOTC (n = 47). For each visual area, an additional
panel is shown depicting the input drive (numerator, solid line) and the normalization pool (denominator, dashed line). The slower rise and prolonged
response for VOTC and LOTC result from slower dynamics (arrow) of the normalization pool. B. Same as A for a repeated stimulus with an ISI of 533
ms. The stronger RS for higher visual areas results from lingering normalization at the start of the second stimulus, which is stronger for VOTC and
LOTC compared to V1-V3. C. Fitted DN model parameters per visual area, from left to right: h; (time constant of the IRF), h, (time constant of the
exponential decay), n (exponent) and ¢ (semi-saturation constant). Data points indicate medians and error bars indicate 68% confidence interval across
1000 samples derived from the bootstrapped timecourses. This figure can be reproduced by mkFigure7.py.

https://doi.org/10.1371/journal.pcbi.1012161.9g007
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numerator and the denominator, resulting in a fast initial rise and a fast subsequent decay of
the response. These dynamics occur at a lower pace in higher visual areas, where both the
input drive and normalization pool rise more slowly. This results in broader response shapes,
which are most pronounced for LOTC and to a lesser degree for VOTC.

To explain differences in recovery from RS, we again examined the longest temporal condi-
tion (ISI of 533 ms, Fig 7B), because differences in adaptation between lower and higher visual
areas were most distinct at this ISI. The DN model captures suppression of repeated stimuli by
adapting the dynamics of the normalization pool. After the offset of the first stimulus, the nor-
malization pool decays and approaches the minimum possible value of the denominator,
which is set by ¢”. If the normalization pool has not reached this minimum value at the start of
the second stimulus, suppression occurs due to the lingering normalization from the first stim-
ulus. Thus, the difference in RS between visual areas is a result of slower dynamics of the nor-
malization pool in VOTC and LOTC, leading to more lingering normalization at the start of
the second stimulus presentation and consequently stronger RS and slower recovery.

The differences in temporal adaptation across areas are also reflected in the fitted parameter
values (Fig 7C). Both 7, (time constant of the IRF) and n (exponentiation) are higher in VOTC
and LOTG, reflecting the slower dynamics of the input drive and normalization pool, which
give rise to the area-dependent differences in transient-sustained dynamics and RS; 7; controls
the width of the transient, reflected by the time to peak, whereas n controls the decay of the
transient response. Thus, these parameters affect the full-width at half maximum and degree of
recovery from RS for single and repeated stimuli, respectively. However, 7, and o also affect
the width and decay of the transient and fitted parameters (to some degree) trade off. There-
fore, parameter differences across the visual hierarchy should be interpreted with caution.
Nonetheless, our results suggest that adaptation differences between lower and higher visual
areas could arise from underlying differences in temporal normalization dynamics.

Stronger RS for preferred image categories in category-selective electrodes

The results indicated that transient-sustained dynamics are slower in higher than lower visual
areas regardless of stimulus preference, whilst repetition suppression differences across areas
are most pronounced for preferred stimuli (54 Fig). To further investigate how adaptation is
influenced by stimulus preference, we directly compared responses within a subset of elec-
trodes in higher visual regions that exhibit strong category-selectivity.

We identified a subset of category-selective electrodes in LOTC and VOTC by calculating a
sensitivity measure (d') on the response per stimulus category averaged across all stimulus
durations (see Materials and methods; for electrode positions and counts see Fig 1C and S4
Table, respectively). We then calculated average broadband responses separately for the pre-
ferred and non-preferred categories for each ISI and calculated recovery from RS similar as
before. RS occurs for both preferred and non-preferred stimuli (Fig 8A, top panel), but more
strongly for preferred stimuli (Fig 8B, Neural data). Model simulations show that the DN
model also captures these differences, including the overall shape of the neural time courses
(Fig 8A, bottom panel) and stronger RS for preferred stimuli (Fig 8B, DN model).

Quantifying the recovery from RS for the different stimulus types shows that the stronger
RS for preferred image categories which is most pronounced for longer ISIs (Fig 8C, left),
which is accurately captured by the model, although it slightly overestimating the degree of
recovery for non-preferred stimuli for shorter ISIs (Fig 8C, right). Preferred stimuli show
slower long-term recovery of RS (Fig 8D, circle markers) in both the neural data and the DN
model (Fig 8D, triangle markers). These differences were robust in both data and model and
became even more pronounced when increasing the threshold for category-selectivity
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Fig 8. Differences in recovery from adaptation across stimuli in category-selective areas. A. Top, Average, normalized broadband responses of
category-selective electrodes (threshold d’ = 0.5, n = 26) of trials during which preferred (blue) or non-preferred (red) stimuli were presented in
repetition (gray). Responses are shown separately per ISI from shortest (17 ms, left) to longest (533 ms, right). Bottom, DN model predictions for the
same data. Time courses differ for preferred and non-preferred stimuli which is captured by the DN model. For non-normalized responses see S6 Fig.
B. Estimated, normalized response to the second stimulus for trials containing preferred and non-preferred stimuli. Per visual area, the left panel shows
the neural data and the right panel shows the model prediction. The rate of recovery is higher for non-preferred compared to preferred stimuli. C:
Recovery from adaptation computed as the ratio of the AUC between the first and second response derived from the neural data (left) or DN model
predictions (right). The fitted curves express the degree of recovery as a function of the ISI (see Materials and methods, Summary metrics). Responses
derived from trials containing preferred stimuli show a stronger degree of RS and the DN model is able to capture stimulus-specific recovery from
adaptation. D: Long-term recovery from adaptation derived from the neural responses (circle marker) or DN model (triangle marker), reflecting the
amount of recovery for an ISI of 1s. Responses for trials presenting preferred stimuli show stronger RS and a slower recovery rate. Data points indicate
medians and error bars indicate 68% confidence interval across 1000 samples derived from the bootstrapped timecourses. Bootstrap test, * = p < 0.05
(two-tailed). This figure can be reproduced by mkFigure8.py.

https://doi.org/10.1371/journal.pcbi.1012161.g008
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Fig 9. Stronger RS for preferred stimuli in category-selective areas due to slower normalization dynamics and stronger input drive. A. DN model
predictions for repeated preferred (blue) or non-preferred (red) stimuli with an ISI of 533 ms. B. The input drive (solid lines) and normalization pool
(dashed lines) plotted separately for a preferred (left) and non-preferred (right) stimulus. The stronger RS for preferred stimuli is a result of the higher
lingering normalization at the start of the second stimulus, due to a larger input drive resulting in a delayed component amply surpassing the semi-
saturation constant. Model time courses represented bootstrapping averages (n = 1000) across category-selective electrodes (threshold d' = 0.5, n = 26).
This figure can be reproduced by mkFigure9.py.

https://doi.org/10.1371/journal.pcbi.1012161.9g009

selection (see S8 and S9 Figs for a threshold of &’ of 0.75 and 1, respectively, resulting in fewer
selected electrodes).

Lingering normalization and stronger input drive result in stronger
adaptation and slower recovery rate for preferred stimuli

Our results suggest that preferred stimuli elicit stronger RS than non-preferred stimuli in cate-
gory-selective electrodes in VOTC and LOTC. The DN model explains this from the balance
between the two components that make up the model denominator (Fig 9). As before, RS for
both stimulus types results from lingering normalization at the start of the second stimulus.
For preferred stimuli, the input drive is strong, and therefore the lingering normalization
amply surpasses the value of the semi-saturation constant, ¢”. Because dynamics are slow, the
lingering normalization is (relatively) high at the start of the second response, resulting in
strong RS. For non-preferred stimuli, the lingering normalization is much smaller in compari-
son to ¢”, due to the weaker input drive. While there is still lingering activity at the start of the
second stimulus, ¢ comprises a much larger part of the denominator, marginalizing the effect
of the lingering normalization. Since ¢” is the same for the first and second stimulus, less RS is
observed.

In short, the differences in adaptation between preferred and non-preferred stimuli in cate-
gory-selective electrodes can be explained by the balance between the normalization pool com-
ponents, which depends on the initial input drive, in combination with the slower dynamics in
higher visual areas.

Discussion

Our aim was to examine how short-term neural adaptation differs across human visual cortex
and to pinpoint the underlying neural computations using a model of delayed divisive normal-
ization. We demonstrate that, compared to V1-V3, higher visual areas have more prolonged
responses for single stimuli and stronger repetition suppression for repeated stimuli. The DN
model accurately predicts the neural response time courses and their adaptation profiles in
both lower and higher visual areas by means of a category-dependent scaling on the input
stimulus time course. The model fits show that differences in temporal adaptation across areas
can be explained by slower dynamics of both the input drive and normalization pool for higher
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visual regions. We additionally find that neural responses in category-selective electrodes
exhibit stronger RS for preferred than non-preferred stimuli, which the DN model explains
from the balance of the normalization pool components in combination with slower dynamics
in these regions.

We believe this study offers several novel insights. First, we demonstrate clear differences in
temporal dynamics between lower and higher visual areas when using naturalistic stimuli that
drive both low and high-level regions well. Earlier studies which examined temporal dynamics
across lower and higher areas used stimuli that mostly drive lower visual regions. Our results
show that stimulus effectiveness affects short-term adaptation in various ways and should
therefore be carefully considered when measuring and modeling adaptation across the visual
hierarchy. Second, while previous work using single-cell recordings to study stimulus-specific
effects on temporal dynamics of neural responses across the visual cortex, this study is to our
knowledge the first to demonstrate and model the neural computations possibly underlying
such effects in human data with both high spatial- and temporal resolution.

Slower time-scales of neural processing in higher visual areas

We observed prolonged responses with slower transient-sustained dynamics in higher visual
areas. This is consistent with the idea that time scales of temporal processing become longer
when ascending the visual hierarchy, as suggested based on brain responses to both single [7,
14] and repeated stimulus presentations [7, 13, 26, 29], as well as the pattern of responses to
intact and scrambled natural movies [46, 47]. Increasing temporal windows across the cortical
hierarchy may have several computational benefits. First, [48] proposed that such a hierarchy
is useful for prediction over multiple timescales. Second, temporal windows may be tuned to
the temporal regularities of the input features, as demonstrated in both theoretical [49] and
empirical work [46, 47]. Different types of image feature are likely to exhibit different temporal
regularities in natural viewing conditions: low-level features (e.g., orientation, edges, and con-
trast) change each time an observer moves their eyes, thereby benefiting from shorter process-
ing windows, while high-level features (e.g., holistic representations of faces and objects) are
likely to be stable over longer viewing durations, and areas tuned to that information may
therefore be tuned to longer timescales. In addition to computational benefits, the ability to
integrate and hold information across a variety of time scales is also critical for cognition and
flexible behaviour [50].

In addition to a hierarchy within unimodal areas (e.g. visual or auditory cortex), there may
also be a hierarchy of time scales in multimodal processing, with shorter time windows in
unimodal regions and longer time windows in association cortex (e.g. lateral prefrontal cortex
or the default model network), which has been observed across several acquisition modalities,
species and task states (e.g. [51]). It is believed that this hierarchy of timescales plays a key role
in both integrating and segregating sensory information across time. Regions with shorter
timescales may favour temporal segregation, reflected by shorter neural responses, whereas
higher areas are involved in temporal integration, reflected by longer neural responses. This
balance of temporal integration and segregation may enable the segmentation of continuous
inputs (for a review see [52]), benefiting perception and cognition. Whether similar distinc-
tions can be made between lower and higher regions within unimodal areas in visual cortex,
and how this contributes to perception, warrants future investigation.

Slower recovery from RS in higher visual areas

We found differences in the overall degree of repetition suppression and recovery rate from
RS between lower and higher visual areas. These results differ from a prior study [14], which

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012161 May 30, 2024 20/31


https://doi.org/10.1371/journal.pcbi.1012161

PLOS COMPUTATIONAL BIOLOGY Neural adaptation in human visual cortex

found that the degree of RS and the recovery rate from RS did not differ between early visual
and lateral-occipital retinotopic regions, ranging from V1 to IPS. Here we find stronger RS as
well as higher recovery rates in VOTC and LOTC compared to V1-V3. We attribute the differ-
ence between studies to the difference in stimuli, simple contrast patterns in [14] vs naturalistic
stimuli in this study. Simple contrast patterns strongly drive responses in lower visual areas
(V1-hV4, [7, 53]), but not higher areas that are selective for complex, naturalistic stimuli [54-
56]. The reduced responses in higher areas to simple contrast patterns could have made it
more difficult to accurately measure RS. In addition to eliciting weaker responses, sub-optimal
stimuli may have also led to less RS in higher areas, making the adaptation patterns more simi-
lar to early areas. This explanation is supported by our current observations of similar RS
between areas for non-preferred stimuli (S5 Fig), as well as less RS for non-preferred stimuli
within category-selective electrodes (Fig 8). Furthermore, stimulus type influences not only
the magnitude of neural responses but also their temporal stability [57] as well as their oscil-
latory components [58], which could also affect RS patterns.

An fMRI study on short-term adaptation by [26] found stronger RS for higher visual
regions, consistent with our findings, but did not observe differences in recovery rate between
visual areas despite using complex stimuli, differing from our findings. One reason for the dis-
crepancy with our findings could be the way (recovery from) adaptation was computed. As the
sluggish nature of the BOLD signal makes it difficult to estimate independent fMRI responses
to stimuli presented close in time, [26] used stimulus pairs consisting of either repeated, identi-
cal stimuli, or two distinct stimuli, and quantified RS as the difference in the maximal response
to identical versus non-identical stimulus pairs. In contrast, we measured iEEG responses only
to repeated representations of the same image, and measured recovery from RS as the differ-
ence in response AUC between the first and second stimulus representation.

Differences in temporal dynamics between ventral and lateral occipital
cortex

We separated our electrodes into two higher-level groups covering ventral and lateral occipito-
temporal cortex, respectively. Previous work has shown differences in the temporal dynamics
between these regions using an encoding framework where neural responses were modelled in
separate sustained and transient channels [44]. VOTC responded to both transient and sus-
tained visual inputs, while LOT'C predominantly responded to visual transients. The authors
suggested that VOTC regions are mainly involved in processing of static inputs while LOTC
regions process dynamic inputs. In contrast, our data show a more sustained response in
LOTC compared to VOTC (Fig 4C). These sustained responses could indicate that LOTC
accumulates information over relatively longer time periods, in line with work suggesting that
LOTC regions may also be involved in more stable information processing [47].

While [44] showed that VOTC and LOTC both exhibit transient responses, they also
observed differences in the dynamics of transient processing across the two visual streams. In
LOTGC, the onset and offset of the visual stimulus elicited equal increase in neural responses,
suggesting that these areas process information regarding moment-to-moment changes in the
visual input. In VOTC, the transient responses for the onset and offset of the stimulus were
surprisingly asymmetric and were mostly dominated by stimulus offset. The authors hypothe-
sized that this reflected memory traces maintained by these regions after the stimulus is no
longer visible. In our data however, we did not observe strong stimulus offset responses. A
similar lack of offset responses was observed in earlier ECoG studies [13, 14]. [13] furthermore
noted that offset responses were more pronounced for electrodes with peripherally tuned spa-
tial receptive fields (beyond 5 degrees eccentricity). The stimuli used in the current study
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extended to 8.5 eccentricity, therefore the lack of offset responses may be related to the spatial
coverage of the stimulus. However, other explanations are possible, such as differences in data
type (fMRI vs. ECoG), brain areas sampled, or experimental design. In conclusion, further
research is needed to elucidate the differences in temporal dynamics between higher-level
regions and how they relate to the timescales of the visual input.

Stimulus-specific differences in temporal dynamics in category-selective
areas

We found stronger RS for preferred than non-preferred stimuli in category-selective elec-
trodes, consistent with findings from fMRI [29], single-cell recordings [3, 59] and ECoG [30].
The DN model shows that the stimulus-specific adaptation differences could result from the
balance in normalization pool components in combination with slower normalization dynam-
ics in these areas. The strong input drive for preferred stimuli causes more lingering normali-
zation so that when the second stimulus arrives, there is a reduced response. To model effects
of stimulus preference on neural response dynamics, we augmented the DN model by incor-
porating category-dependent scaling on the stimulus timecourse. Model fits showed that add-
ing a category-based scaling factor results in better predictions in all visual regions, including
V1-V3, which is not typically considered to exhibit category-selectivity. We attribute the scal-
ing benefit in these early visual regions to co-variation of low-level feature differences with the
categories in the dataset. Specifically, one of the six categories consisted of scrambled stimuli
which had many edge elements, and one of scene stimuli which had a slightly larger retinoto-
pic extent than the other classes. These classes likely are more optimal stimuli for lower visual
areas.

While our data revealed stimulus-specific effects on RS for repeating stimuli, we observe
weak to no effect of stimulus preference on transient-sustained dynamics during single stimu-
lus trials. This is in line with previous work on non-human primates using single-cell record-
ings, which predominantly report differences in temporal dynamics in the context of RS [3, 22,
60-62]. While some studies also present stimuli in isolation, they do not further examine adap-
tation-related differences based on stimulus preference. For example [3] showed, similar to
our experimental paradigm, stimulus sequences with either identical or varying images that
elicited weaker or stronger responses depending on stimulus preference. While the authors do
make comparisons between repeated stimuli and single stimuli, no analysis is conducted
regarding the dynamics of preferred and non-preferred stimuli in isolation. While the lack of
reports regarding stimulus-dependent effects on transient-sustained dynamics does not evince
their nonexistence, further research should elucidate the presence of stimulus-specific effects
on the temporal dynamics during briefly presented stimuli with varying durations.

Limitations and future work

First, since electrode positioning was determined based on clinical constraints, the number
of electrodes localized to individual retinotopic maps was limited. Therefore, our compari-
sons focused on coarse groupings of the visual areas: early (V1-V3) versus ventral (VOTC)
versus lateral (LOTC) maps. For fine-grained comparison between visual areas across the
cortical hierarchy (say V1 vs V2), different methods are needed. Related to this, there was an
imbalance in the area-wise distribution of electrodes across subjects, with only two subjects
contributing electrodes covering early visual maps (S3 Table). Interpretation of the results in
the context of the visual hierarchy should therefore be made with caution. Second, the cur-
rent model form does not explicitly represent the computations in each stage of processing,
and so the model is agnostic to the origin of the divisive signals. Third, the behavioral task
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participants performed was orthogonal to the temporal stimulus manipulations. This design
was purposeful to reduce variability in top-down signals from trial to trial and between par-
ticipants. Nonetheless, neural adaptation is important for behavior such as priming [60, 63],
and the link between them cannot be directly studied without a task that is relevant to the
stimulus.

Several approaches could be undertaken to tackle some of these limitations, including col-
lecting and fitting behavioral measurements of adaptation with the DN model, or measuring
transient-sustained dynamics and RS in neural data from animals to allow a more systematic
comparison across the visual hierarchy. Another approach is to study adaptation in Artificial
Neural Networks (ANNSs). ANNs have recently come forward as a powerful new tool to model
sensory processing [64-66]. These models are image-computable, are trained to process natu-
ralistic stimuli, consist of units whose activations are inspired by biological neuronal signals,
and output predictions that can be compared with human behavior. Moreover, these models
process inputs in a sequential fashion, where activations from earlier layers are fed to later lay-
ers which is comparable to the input-out transformations mimicking the neural processing
from lower- to higher-level areas. Future studies could examine the link between adaptation
phenomena and behavior by implementing biologically plausible adaptation in ANNS, includ-
ing divisive normalization. Such paradigms could aid in better understanding how different
adaptation mechanisms may benefit perception.

Lastly, we would like to note that the DN model as presented in this study, is not a circuit-
level model and the predicted neural responses can be the result of a variety of biophysical and
cellular mechanisms. Future studies should perform a more in-depth examination, using other
types of data such as single-cell recordings and alternative models (e.g. [67]), to identify the
neural circuitry that could give rise to observed normalization dynamics across visual areas
and stimuli.

Supporting information

S1 Fig. The two-temporal channel model with adaptation and sigmoidal nonlinearities (A
+S, [44]) fails to capture transient-sustained dynamics and repetition suppression (RS)
observed in neural responses. A: Cross-validated explained variance (coefficient of determi-
nation) across all stimulus conditions for the DN model compared with a two-channel model
from [24] (linear + quadratic, L+Q) and [44] (adaptation + sigmoid, A+S) plotted per visual
area (V1-V3, VOTC and LOTC). Category-selective scaling is either omitted or included dur-
ing model fitting. The DN model predicts neural responses to a higher degree compared to
both implementations of the two-channel models. Category-dependent scaling further
improves model fits. B: Top, Average, normalized broadband iEEG responses (80-200 Hz) for
electrodes assigned to V1-V3 (n = 17), VOTC (n = 15) and LOTC (n = 47) to single stimuli
(gray). Responses are shown separately for a stimulus duration of 267 and 533 ms. The TTC
model predicts an offset response which is not present in the neural data (black arrow). C:
Full-width at half maximum, computed for each stimulus duration. The TTC model predicts
narrower response widths for VOTC compared to what is observed in the neural data. D: left,
Recovery from adaptation computed as the ratio of the Area Under the Curve (AUC) between
the first and second response derived from the neural data. The fitted curves express the degree
of recovery as a function of the ISI (see Materials and methods, Summary metrics). Right,
Same as left for the TTC model. The TTC model poorly aligns with the neural data and pre-
dicts an overall higher degree of recovery from RS with area-dependent differences for short as
opposed to long ISIs. Data points indicate medians and error bars indicate 68% confidence
interval across 1000 samples derived from the bootstrapped timecourses. Panel A can be
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reproduced by mkSuppFigurel.py. Panel BC and D can be reproduced by mkSuppFigure4.py
and mkFigure5_6.py, respectively.
(PDF)

S2 Fig. Slower rise and prolonged responses in higher visual areas for single stimuli for
preferred and non-preferred stimuli. (previous page). A: Top, Average, normalized broad-
band iEEG responses (80-200 Hz) for electrodes assigned to V1-V3 (n =17), VOTC (n = 15)
and LOTC (n = 47) to single, preferred stimuli (gray). Responses are shown separately per
duration from shortest (17ms, left) to longest (533 ms, right). Bottom, DN model predictions
for the same conditions. The shapes of the neural time courses differ between visual areas and
are accurately captured by the DN model. Time courses were smoothed with a Gaussian kernel
with standard deviation of ¢ = 10; the shaded regions indicate 68% confidence interval across
1000 bootstrapped timecourses (see Materials and methods, Bootstrapping procedure and sta-
tistical testing). B-C: Summary metrics plotted per visual area derived from the neural
responses (circle marker) or model time courses (triangle marker). Time-to-peak (B) com-
puted to the longest duration (533 ms). Full-width at half maximum (C), computed for each
stimulus duration. For higher visual areas, results suggest that neural responses show stronger
reduction at stimulus offset for preferred compared to non-preferred stimuli (black arrow in
panel A and D), which is captured by the DN model. Data points indicate medians and error
bars indicate 68% confidence interval across 1000 samples derived from the bootstrapped
timecourses. Bootstrap test, * = p < 0.05 (two-tailed, Bonferroni-corrected). D-F: Same as A-C
for trials showing non-preferred stimuli. This figure can be reproduced by mkFigure4.py.
(PDF)

S3 Fig. Extract degree of recovery from repetition suppression. A. Top, the broadband time
course of an example electrode averaged over all repetition trials plotted separately for each
ISI. Bottom, an estimate of the response to the first and second stimulus. A robust response to
the first stimulus is obtained by averaging the response time courses for the 134 ms duration
stimulus and each of the repetition stimuli from trial onset up to the onset of the second stimu-
lus. The estimate of the response to the second stimulus is computed by subtracting the aver-
age time course of the first stimulus from the ISI varying stimulus responses. B: The recovery
from neural adaptation is computed and defined as the Area Under the Curve (AUC) of the
second pulse proportional to AUC of the first pulse, as a function of the ISI. This figure can be
reproduced by mkSuppFigure3.py.

(PDF)

S4 Fig. Differences in recovery from repetition suppression across visual areas for pre-
ferred stimuli. A. Estimated, normalized response to the second stimulus for V1-V3, VOTC
and LOTC. For each visual area, the left panel shows the neural data and the right panel shows
the model prediction. Recovery from adaptation gradually increases as the ISI becomes longer,
and the rate of recovery is higher for V1-V3 compared to VOTC and LOTC in both the neural
data and the DN model. B: left, Recovery from adaptation for V1-V3 (n = 17), VOTC (n = 15)
and LOTC (n = 47), computed as the ratio of the Area Under the Curve (AUC) between the
first and second response. The fitted curves express the degree of recovery as a function of the
ISI (see Materials and methods, Summary metrics). Higher visual areas show stronger RS and
slower recovery from adaptation. Right, model predictions for the same data. The model is
able to capture area-specific recovery from adaptation. B-C: Summary metrics plotted per
visual area derived from the neural responses (circle marker) or model time courses (triangle
marker). Average recovery (B) from adaptation for each area, computed by averaging the
AUC ratios between the first and second stimulus over all ISIs. The long-term recovery (C)
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reflects the amount of recovery for an ISI of 1s, obtained by extrapolating the fitted line.
Higher visual areas show stronger RS and a slower recovery rate which is accurately predicted
by the DN model. Data points indicate medians and error bars indicate 68% confidence inter-
val across 1000 samples derived from the bootstrapped timecourses. Bootstrap test, * =

p < 0.05 (two-tailed, Bonferroni-corrected). This figure can be reproduced by mkFigure5_6.

py-
(PDF)

S5 Fig. Differences in recovery from repetition suppression across visual areas for non-pre-
ferred stimuli. A. Estimated, normalized response to the second stimulus for V1-V3, VOTC
and LOTC. For each visual area, the left panel shows the neural data and the right panel shows
the model prediction. Time courses were obtained using a bootstrapping procedure (# = 1000,
see Materials and methods, Bootstrapping procedure and statistical testing). Recovery from
adaptation gradually increases as the ISI becomes longer, and the rate of recovery is higher for
V1-V3 compared to VOTC and LOTC in both the neural data and the DN model. B: left,
Recovery from adaptation for V1-V3 (n = 17), VOTC (n = 15) and LOTC (n = 47), computed
as the ratio of the Area Under the Curve (AUC) between the first and second response. The fit-
ted curves express the degree of recovery as a function of the ISI (see Materials and methods,
Summary metrics). Higher visual areas show stronger RS and slower recovery from adapta-
tion. Area-related differences are less pronounces compared to preferred stimulus trials (S5
Fig). Right, model predictions for the same data. The model is able to capture area-specific
recovery from adaptation. B-C: Summary metrics plotted per visual area derived from the neu-
ral responses (circle marker) or model time courses (triangle marker). Average recovery (B)
from adaptation for each area, computed by averaging the AUC ratios between the first and
second stimulus over all ISIs. The long-term recovery (C) reflects the amount of recovery for
an ISI of 1s, obtained by extrapolating the fitted line. Higher visual areas show stronger RS and
a slower recovery rate which is accurately predicted by the DN model. Data points indicate
medians and error bars indicate 68% confidence interval across 1000 samples derived from the
bootstrapped timecourses. Bootstrap test, * = p < 0.05 (two-tailed, Bonferroni-corrected). This
figure can be reproduced by mkFigure5_6.py.

(PDF)

S6 Fig. Differences in recovery from adaptation across stimuli in category-selective areas.
A. Top, Average, broadband responses of category-selective electrodes (threshold d’ = 0.75,
n = 12) of trials during which preferred (blue) or non-preferred (red) stimuli were presented
in repetition (gray). Time courses were obtained using a bootstrapping procedure (n = 1000,
see Materials and methods, Bootstrapping procedure and statistical testing). Responses are
shown separately per ISI from shortest (17 ms, left) to longest (533 ms, right). Bottom, DN
model predictions for the same data. Time courses differ for preferred and non-preferred sti-
muli which is captured by the DN model. This figure can be reproduced by mkFigure8.py.
(PDF)

S7 Fig. Differences in recovery from adaptation across stimuli in category-selective areas.
A. Top, Average, normalized broadband responses of category-selective electrodes (threshold
d' =0.75, n = 12) of trials during which preferred (blue) or non-preferred (red) stimuli were
presented in repetition (gray). Time courses were obtained using a bootstrapping procedure
(n = 1000, see Materials and methods, Bootstrapping procedure and statistical testing).
Responses are shown separately per ISI from shortest (17 ms, left) to longest (533 ms, right).
Bottom, DN model predictions for the same data. Time courses differ for preferred and non-
preferred stimuli which is captured by the DN model. B. Estimated, normalized response to
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the second stimulus for trials containing preferred and non-preferred stimuli. Per visual area,
the left panel shows the neural data and the right panel shows the model prediction. The rate
of recovery is higher for non-preferred compared to preferred stimuli. C: Recovery from adap-
tation computed as the ratio of the AUC between the first and second response derived from
the neural data (left) or DN model predictions (right). The fitted curves express the degree of
recovery as a function of the ISI (see Materials and methods, Summary metrics). Responses
derived from trials containing preferred stimuli show a stronger degree of RS and the DN
model is able to capture stimulus-specific recovery from adaptation. D: Long-term recovery
from adaptation derived from the neural responses (circle marker) or DN model (triangle
marker), reflecting the amount of recovery for an ISI of 1s. Responses for trials presenting pre-
ferred stimuli show stronger RS and a slower recovery rate. Data points indicate medians and
error bars indicate 68% confidence interval across 1000 samples derived from the bootstrapped
timecourses. Bootstrap test, * = p < 0.05 (two-tailed). This figure can be reproduced by
mkFigure8.py.

(PDF)

S8 Fig. Differences in recovery from adaptation across stimuli in category-selective areas.
A. Top, Average, normalized broadband responses of category-selective electrodes (threshold
d =1, n = 6) of trials during which preferred (blue) or non-preferred (red) stimuli were pre-
sented in repetition (gray). Responses are shown separately per ISI from shortest (17 ms, left)
to longest (533 ms, right). Bottom, DN model predictions for the same data. Time courses dif-
fer for preferred and non-preferred stimuli which is captured by the DN model. B. Estimated,
normalized response to the second stimulus for trials containing preferred and non-preferred
stimuli. Per visual area, the left panel shows the neural data and the right panel shows the
model prediction. The rate of recovery is higher for non-preferred compared to preferred sti-
muli. C: Recovery from adaptation computed as the ratio of the AUC between the first and sec-
ond response derived from the neural data (left) or DN model predictions (right). The fitted
curves express the degree of recovery as a function of the ISI (see Materials and methods, Sum-
mary metrics). Responses derived from trials containing preferred stimuli show a stronger
degree of RS and the DN model is able to capture stimulus-specific recovery from adaptation.
D: Long-term recovery from adaptation derived from the neural responses (circle marker) or
DN model (triangle marker), reflecting the amount of recovery for an ISI of 1s. Responses for
trials presenting preferred stimuli show stronger RS and a slower recovery rate. Data points
indicate medians and error bars indicate 68% confidence interval across 1000 samples derived
from the bootstrapped timecourses. Bootstrap test, * = p < 0.05 (two-tailed). This figure can
be reproduced by mkFigure8.py.

(PDF)

S9 Fig. Electrode positions for individual participants, overlaid on a retinotopic atlas. (pre-
vious page). Electrode positions for subject p11 (A), subject p12 (B), subject p13 (C) and sub-
ject p14 (D) overlaid on a pial surface reconstruction with colour-coded predicted visual
locations. A surface node in the pial mesh was assigned a colour if it had a non-zero probability
of being in a visual region according to a max probability map from [42]. If the electrode had a
nonzero probability of being in multiple regions, the region with the highest probability was
assigned. For visualization purposes, some retinotopic maps have been merged (e.g., dorsal
and ventral parts of V1). The brain surfaces were created using Freesurfer [39] and scripts can
be found at https://github.com/WinawerLab/ECoG_utils. L = lateral, M = medial, D = dorsal,
V = ventral, A = anterior, P = posterior.

(PDF)
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S10 Fig. Electrode positions. A. Electrodes with robust visual responses were assigned to early
(V1-V3,n=17), VOTC (n = 15) or LOTC (n = 47) retinotopic areas. Electrodes that were not
included in the dataset are shown in black. Electrodes were considered category-selective if the
average response for a given image category was higher compared to the other image catego-
ries (d' > 0.75, see Eq 1, Materials and methods, n = 12). B. Same as A for a threshold of d’ for
category-selectivity of 1.0 (n = 6). The brain surfaces were created using MNE-Python and can
be reproduced by mkFigure2.py. L = lateral, M = medial, D = dorsal, V = ventral, A = anterior,
P = posterior.

(PDF)

S11 Fig. DN model without category-dependent input strength has poor fits for non-pre-
ferred image categories. DN model prediction (red) of the neural response (black) of an
example electrode, given a stimulus timecourse (light blue), with (top panel) and without (bot-
tom panel) category-specific scaling. Model prediction for the least preferred image category
(faces) results in an overestimation of the neural response, resulting in a strongly negative coef-
ficient of determination (blue arrow). This figure can be reproduced by mkSuppFigurel1.py.
(PDF)

S1 Table. Overview of patient data included in this dataset. Columns refer to the following:
Subject, subject code in dataset. Age, age of patient at time of recording in years. Sex, gender of
the participant. Implantation, type of electrodes implanted. Grid, standard clinical grid;
HDgrid, high-density grid; strip, standard clinical strip; depth, depth electrodes. Runs, number
of runs where a run is defined as a period of sequential stimulus presentations with no breaks
in between. Trials, number of trials collected where half consisted of duration and half con-
sisted of repetition trials (e.g. for sub-p11, there were 432 duration and 432 repetition trials).
Repetitions, number of times a stimulus set was repeated (separate stimuli were used for even
and uneven runs).

(PDF)

$2 Table. Overview of visual areas included in this dataset. Columns refer to the following:
Visual areas, visual areas to which electrodes are assigned, V1-V3, early visual cortex; VOTC,
ventral-occipital cortex; LOTC: lateral-occipital cortex. Matching probabilistic areas, visual
areas according to the maximum probability atlas by [42]. Matching retinotopic areas, visual
areas according to an anatomically defined atlas by [40] and [41].

(PDF)

$3 Table. Overview of electrodes included and visual areas covered in this dataset. Columns
refer to the following: Subject, subject code in dataset. Electrodes, total number of electrodes.
Visual areas, visual areas to which electrodes are assigned, V1-V3, early visual cortex; VOTC,
ventral-occipital cortex; LOTC: lateral-occipital cortex. The number of electrodes per area is
reported within the parentheses. Matching areas, visual areas included according to the maxi-
mum probability atlas by [42] (left column) or a retinotopic atlas developed by [40] and [41]
using a Bayesian mapping approach (right column). Visually responsive electrodes, the num-
ber of electrodes assigned according by one of the atlases (left column) or assigned manually
(right column) to V1-V3, VOTC or LOTC.

(PDF)

$4 Table. Overview of category-selective electrodes. Columns refer to the following: d'
threshold, threshold for an electrode to be considered category-selective (see Eq 1, Materials
and methods). Image categories, number of electrodes selected per image category. The num-
ber of electrodes per area is reported within the parentheses. Total, total number of category-

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012161 May 30, 2024 27 /31


http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012161.s010
https://github.com/ABra1993/tAdaptation_ECoG/blob/master/mkFigure2.py
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012161.s011
https://github.com/ABra1993/tAdaptation_ECoG/blob/master/mkSuppFigure11.py
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012161.s012
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012161.s013
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012161.s014
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012161.s015
https://doi.org/10.1371/journal.pcbi.1012161

PLOS COMPUTATIONAL BIOLOGY Neural adaptation in human visual cortex

selective electrodes for the specified d’ threshold.
(PDF)
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