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Abstract

The self-organization of cells relies on the profound complexity of protein-protein interac-

tions. Challenges in directly observing these events have hindered progress toward under-

standing their diverse behaviors. One notable example is the interaction between molecular

motors and cytoskeletal systems that combine to perform a variety of cellular functions. In

this work, we leverage theory and experiments to identify and quantify the rate-limiting

mechanism of the initial association between a cargo-bound kinesin motor and a microtu-

bule track. Recent advances in optical tweezers provide binding times for several lengths of

kinesin motors trapped at varying distances from a microtubule, empowering the investiga-

tion of competing models. We first explore a diffusion-limited model of binding. Through

Brownian dynamics simulations and simulation-based inference, we find this simple diffu-

sion model fails to explain the experimental binding times, but an extended model that

accounts for the ADP state of the molecular motor agrees closely with the data, even under

the scrutiny of penalizing for additional model complexity. We provide quantification of both

kinetic rates and biophysical parameters underlying the proposed binding process. Our

model suggests that a typical binding event is limited by ADP state rather than physical

search. Lastly, we predict how these association rates can be modulated in distinct ways

through variation of environmental concentrations and physical properties.

Author summary

Cytoskeletal-motor assemblies self-organize to achieve cellular functions ranging from

delivering intracellular cargoes to generating forces in mitosis. Advancements in single-

molecule experiments have revealed immense detail about motor detachment and step-

ping, but relatively little regarding attachment. Newly available binding times for individ-

ual kinesin motors allow for the evaluation of mechanistic models of the process. We find
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that a model limited by both diffusive search and a weak-to-strong transition from ADP

release best explains the data. The coupled chemo-mechanical nature of this interaction

can be modulated more richly than either separately, possibly explaining the diversity and

regulation observed in cells. More broadly, our study provides a timely vignette in leverag-

ing computations with experiments to understand the mosaic of mechanisms underlying

protein-protein interactions.

Introduction

Life depends on an immensely diverse and complex array of protein-protein interactions [1].

These interactions are richly regulated in both space and time (e.g., via post-translational mod-

ifications, fluctuating concentrations [2]) to modulate affinities, promiscuities, and sensitivities

[3]. Understanding how these interactions are parameterized by both chemical and physical

factors is broadly limited due to challenges in observing interaction events directly [4]. While

predicting interactions from molecular structures (e.g., from molecular dynamics simulations)

is an invaluable approach, these investigations still suffer from the same observational limita-

tion in their validation [5].

One variety of such interactions of major importance across cellular function are those

between molecular motors and cytoskeletal filaments. Cytoskeletal motors, specifically kine-

sin-microtubule assemblies, self-organize to perform a zoo of cellular behaviors, including the

delivery of cargoes in intracellular transport [6], generation of forces to guide genetic material

in mitosis [7, 8], and guiding of axonal growth [9]. Each of these wildly different behaviors is

fundamentally achieved through molecular motors binding, stepping, and unbinding from

cytoskeletal filaments [10]. Over the last several decades, advancements in single-molecule

experiments have revealed extensive details about the latter two components [11–13]. Stepping

and unbinding are, in some sense, downstream of binding, suggesting clear merit in under-

standing the details underlying the process.

Pursuits toward understanding motor-cytoskeleton binding have been clouded by compli-

cations in disentangling the measurements from convolving factors. That is, one must specify

exactly the notion of binding that is being measured. To do so, consider the full process of self-

assembly. Initially, a freely diffusing motor associates with a cargo, then the motor-cargo com-

plex diffuses into close proximity to a cytoskeletal filament where a motor binds to the filament

and begins stepping along it. Due to the challenges in disentangling these components of

cargo-motor self-assembly, there is enormous variety in the reported ranges for motor binding

rates. While landing rate assays [14] provide direct measurements of motor-cargo association

rates, these do not inform motor-cytoskeletal rates. With the exception of [15], very little data

of direct measurements of motor-microtubule binding events exists, but this study corre-

sponds to the reattachment of a secondary motor that is kept close to the filament by another.

Effective binding on the timescale of seconds [16, 17] to tenths of a second [18] have been

reported from indirect measurements and utilized heavily in other modeling works [19–22] to

understand collective motor behavior. However, these effective rates neglect geometric factors

(such as organization on the cargo) that are known to crucially dictate the binding rate [23–

26]. A mechanistic, biophysical model of the binding process is therefore necessary to recon-

cile the various experimental observations and modeling efforts.

Here, we use a combined experimental and computational approach to explore different

possible biophysical models of how the motor-microtubule binding process occurs. The inves-

tigation is based on the initial association time between a cargo-bound kinesin and
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microtubule from recent optical trap measurements depicted in Fig 1 on a variety of motor

lengths and trapped distances away from the microtubule. The span of setups allows explora-

tion and validation of models otherwise impossible with a single dataset. We first investigate

the null model of a diffusion-limited search performed by the motor head. Through Brownian

dynamics simulations coupled with simulation-based inference, we find that this model fails to

capture a delay in binding at close distances. We find reconciliation with the data after the

addition of an ADP-release requirement prior to binding to the model, motivated by known

mechano-chemistry of motors. Through approximate Bayesian computation techniques, we

quantify underlying rates and biophysical parameters governing this process and predict that

most motor binding events are limited by tubulin-stimulated ADP release. Lastly, we provide

predictions on how this process can be modulated distinctly by varying environmental con-

centrations or spatial distance, highlighting the complexity and regulatability of this interac-

tion. Altogether, our study provides a new state-of-the-art mechanistic understanding of the

motor-cytoskeletal binding process, a crucial ingredient in understanding the self-organization

of motor-cytoskeletal assemblies used in cellular function. More broadly, our work illustrates

how complexities arising from spatial and chemo-mechanical factors that shape protein-pro-

tein interactions may be understood through the combined efforts of theory and experiments.

Results

Diffusion-limited binding does not capture the qualitative behavior of

experimental data

To investigate the biophysical mechanisms of the first association between a cargo-bound

motor and a microtubule, we compare binding time data of three kinesin lengths (33, 45, and

60 nm) attached to a polystyrene bead that is laser-trapped at several distances away (0, 20, 40,

and 60 nm) from a microtubule. Concentrations of motors in solution are diluted such that at

most one motor is on each bead. Throughout the remainder of the work, we consider the bind-

ing time to be that between the unbinding reset event and the next time of detectable motion

of the bead, as schematically shown in Fig 1. More details on the experimental setup can be

found in Methods and in a concurrent manuscript with further validation [27]. The binding

times for all setups are on the order of seconds, which is in line with other measurements of

binding as discussed in the Introduction. Intuitively, as the cargo is moved away from the

microtubule track, binding times increase. The most straightforward explanation for this is a

“random search” mechanism rate-limiting the binding, schematically shown in Fig 2 as the

“diffusion model”. That is, the “null” model for binding, as assumed elsewhere [10], is that the

Fig 1. Experimental setup. An optical trap (pink) controls the average z-position of a polystyrene microbead cargo. When the cargo-motor ensemble binds to the

microtubule and begins to walk on it, a position-sensitive diode (PSD) senses the displacement of the bead. As the motor walks farther from the center of the trap, the

force on the cargo (and consequently the motor) grows, eventually leading to unbinding from the microtubule and resetting of the setup. The PSD measurements provide

the timing between unbinding to rebinding, the binding process modeled throughout the remainder of the work. Further details can be found in [27].

https://doi.org/10.1371/journal.pcbi.1012158.g001
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motor head undergoes random motion until it reaches close proximity to the microtubule

track and then binds with some reactivity. Our work does not directly incorporate electrostatic

effects known to underlie the binding process [28], but assumes that these effects can be

lumped into the effective reactivity and movement parameters.

To investigate whether such a diffusion-binding model can explain the binding time across

experimentally observed conditions (data shown in Fig 3), we developed a Brownian dynamics

simulation of the proposed model. The stochastic model includes the random motion of the

cargo, both translation and rotational, and the diffusive search of a motor head attached via a

tether to this cargo. The tether is assumed to be of the known length of each motor and exerts a

Fig 2. Schematic of models. Left: State diagram of the simple diffusion model of kinesin-microtubule binding. Through random motion of the cargo and

motor head, binding time is determined by the stochastic search process of the motor reacting when in close proximity to the microtubule. Right: Model of

binding process that considers a weak-to-strong transition driven by ADP release. We consider a cargo-motor ensemble that is in State 1, unbound from the

microtubule and bound to ADP on both motor heads. From here, the motor can release ADP from one of its heads, transitioning to State 2, or bind weakly to

the microtubule in State 3. To bind strongly to the microtubule and transition to State 4, the motor must meet two requirements: ADP is released from one of

its motor heads and it must be within a binding distance to the microtubule. We consider two types of ADP release: a non-tubulin stimulated rate ðkADPoff Þ, and a

faster tubulin-stimulated rate ðkADP;Fastoff Þ.

https://doi.org/10.1371/journal.pcbi.1012158.g002
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Hookean force when extended beyond this length. The initial configuration of the motor head

is assumed to be downward, based on the fast timescale of resetting in the optical trap (tenths of

a second). When the motor head enters a specified distance of the microtubule due to random

motion, the binding reaction occurs at an unknown, microscopic rate. Additional model details

and discussion of assumptions can be found in the Methods. Ultimately, this leads to two

unknown parameters: the diffusivity of the motor head, and the microscopic reactivity.

Fig 3. Model fits and cross-validation. ADP-release model captures qualitative behavior in experimental data, while the simple diffusion model cannot. In vitro optical

trap experiments [27] were used to measure mean binding times (black) for three motor lengths: 33 nm (A), 45 nm (B), and 60 nm (C). The horizontal axis shows

average distances between the cargo and microtubule (MT), which were varied for each experiment. Two binding models (simple diffusion only in green and ADP-

release in pink) were simulated and fitted to all of the experimental data. n = 100 for simulated data varied for experimental data. Data are presented as mean ± SEM. D:

Cross-validation was performed to determine the predictive power of each model. For three rounds, data was trained on two motor lengths, and tested on the third.

Dashed lines show error when fitting the models to the entire data in panels A-C.

https://doi.org/10.1371/journal.pcbi.1012158.g003
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Through a suite of simulation-based inference techniques [29–31] (further details in Meth-

ods), we obtain fits to the diffusion model over all experimental setups for the two unknown

parameters: the diffusivity of the motor head, and the microscopic binding rate. The resulting

fits can be seen in Fig 3A–3C in green for the mean time to bind for the three motor lengths

and various distances. There appears to be reasonable qualitative agreement with the experi-

ments, where increasing distances increases binding time. The corresponding parameter fits

can be found in Table 1. While the diffusivity of the motor head is challenging to quantify [32],

our fitted value on the order of 1000–10000 nm2/s is within ranges considered for kinesin else-

where [33]. Upon further scrutiny, the mean binding times shown in Fig 3A–3C, especially at

close distances, display a distinct qualitative disagreement between the diffusion model and

experimental measurements. In the diffusion model, as the cargo is trapped closer, the motor

is effectively instantly able to bind. However, experimental values show a plateau of times

around 1 second, even for close distances. This plateau points to the binding process being a

multistep process.

A chemo-mechanical ADP-release model of binding better explains

observed binding times

With the observation that a simple diffusion model does not produce the*1 second delay in

binding at close distances seen in experimental measurements, we sought a model that may

explain this phenomenon. Several plausible explanations including cargo rotation and mea-

surement error were considered, but seem unlikely when evaluated with estimates of their

effect (see Discussion). Instead, we turn to the rich mechanochemistry of the kinesin motor. It

is known that the nucleotide state of each motor head crucially determines its strong or weak

affinity to the microtubule [43–45] and through cycles of this nucleotide state (ATP, ADP,

released), processive stepping is achieved [46]. We posit that this nucleotide-based regulation

of “binding” extends beyond that of processive stepping, and even the preliminary attachment

between the cargo-motor ensemble and the microtubule. That is, we posit that the experimen-

tally observed binding times correspond to a strong binding event, and therefore the underly-

ing nucleotide state of the motor heads, plays a significant role in arriving at this state.

To investigate whether a model including nucleotide state may better explain the experi-

mentally observed times, we extend the model to account for 4 possible states, as shown in

Fig 2. In this model, the motor-cargo ensemble begins in State 1 with both motor heads in an

ADP state, undergoing the same random motion as the diffusion model. From here, the

ensemble can enter one of two states: State 2, where ADP is released from either motor head,

Table 1. Fitted kinetic and biophysical parameters.

Parameter Simple Diffusion Model Diffusion w/ ADP State Model Previous Literature

kADPoff ðs� 1Þ 0 0.008 0.008–0.1 [34–36]

kADP;fastoff ðs� 1Þ 0 2.12 0.5–300 [35–41]*
kADPon ðs

� 1Þ 0 883.9 425.0 [35]

kMT
on ðs� 1Þ 80.6 70.65

kMT
off ðs� 1Þ 0 0.2 0.31 [42]

Dm (nm2 s−1) 4459.8 1994.0

κw (pN nm−1) 0 0.0020

Parameters for both models fit using a Bayesian optimization algorithm [29] and compared to literature values when available.

*The wide range of ADP release rates can be attributed to force-sensitivity, as identified in [39]. See text for further discussion.

https://doi.org/10.1371/journal.pcbi.1012158.t001
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or State 3, when the ensemble diffuses close to the microtubule and one of the motor heads

weakly binds to it. From either of these states, the ensemble can then strongly bind to the

microtubule either through diffusion (from State 2), or the ADP molecule is released (from

State 3). We consider two types of ADP release, a fast tubulin-stimulated release and a slow

non-tubulin-stimulated release [34–38]. We consider ADP release as a requirement for strong

binding based on the neck-linker model for stepping where an ADP-bound head has a low

affinity for the microtubule, then this trailing head moves forward along the microtubule

bound to ADP, and when it steps down onto the microtubule, ADP is released [47]. Impor-

tantly, our description is coarse-grained to not track the heads separately, but we consider the

ADP release to describe either motor head. The assumption that the ensemble begins in State 1

has two parts: we assume that if the motor detaches in an ATP-bound state, this phosphate

release is fast [46], but then the corresponding ADP release is slower without tubulin [37].

Using the same simulation-based inference approaches for the diffusion model, we fit the

observed binding times for all 3 motor lengths and distances simultaneously for the extended

ADP-diffusion model, with 7 unknown parameters, 2 from the diffusion model, 4 reaction

rates, and 1 corresponding to the strength of attachment in the weak binding state. The result

of the fits can be seen in Fig 3A–3C in pink. The overall fit is discernibly better for the 33 nm

and 45 nm motor lengths, and arguably worse for 60 nm at long distances. The noteworthy

consistent overestimation for 60 nm motor arises due to the simultaneous fitting of fixed

parameters across all three motor lengths, sacrificing better fits for shorter motor lengths at

the expense of the longest length. Such consistent overestimation does point toward a short-

coming of the model and may be due to heterogeneities in the different motors beyond their

length alone. However, the model now importantly captures the qualitative feature of a plateau

of times at short distances. While only the mean binding times were used to fit, Figs B and C in

S1 Text show close agreement in full distributions of binding times as well.

Beyond the qualitative improvement, the inherent danger in quantitatively assessing

whether the ADP-release model better explains the data comes from the increased model com-

plexity [48]. Intuitively, a model with more parameters has more flexibility to produce a better

fit, and careful attention must be paid to model selection. In lieu of commonly-used informa-

tion-theoretic techniques (AIC, BIC), even for simulation-based inference [49], we instead

leverage the structure of our experimental observations to compare models based on their abil-

ity to explain unseen experimental circumstances. We perform a cross-validation procedure

where we fit both the diffusion and ADP+diffusion models to the binding times for 2 of the 3

motor lengths, withholding one for testing on the trained models. In each validation test of

withholding a motor length, the more complex model generalized better, shown in Fig 3D.

From this, we conclude that the ADP-diffusion model better fits the observed binding times,

even under cross-validation-based scrutiny [50].

Kinetic and biophysical parameters of the ADP-binding model can be

estimated with high precision

Beyond the qualitative lesson of identifying the ADP-diffusion model as explaining the data,

our fitting procedure provides rich quantitative insight into the underlying processes by esti-

mating underlying parameters, shown in Table 1 and Fig 4. Some kinetic rates have been pre-

viously measured, and serve as support for the model, whereas others are, as far as we know,

unmeasured. The values reported in Table 1 are point estimates from a simulation-based infer-

ence optimization procedure [29]. The estimated values for microscopic binding rate, diffu-

sion of the motor head, and ADP binding are all within an order of magnitude of previously

reported estimates. To our knowledge, the weak-tethering strength κw has not been reported
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elsewhere, but we note it is significantly weaker than other physical forces in the system and

may correspond to electrostatic attraction. The limiting ADP release rate estimated by our

model is� 2/s. This parameter has a wide range of values reported in the literature, ranging

from slow rates in the vicinity of ours, as well as significantly faster rates on the order of hun-

dreds per second. We defer discussion of this important parameter and its subtle interpreta-

tion to the Discussion. As further validation of this optimization procedure for point

estimates, we also performed a separate simulation-based inference technique, sequential

approximate Bayesian computation (sABC) [30] to obtain samples of an (approximate) poste-

rior distribution shown in Fig 4. The reason for this method was two-fold: for one, the agree-

ment between the point estimates arising from the two procedures validates the

approximations involved in the techniques, and the latter sABC approach produces valuable

uncertainty quantification that we were unable to employ but may very well be possible using

the techniques of [29]. Further details on these procedures can be found in the Methods.

Somewhat surprisingly, all parameters of the model seem to be identifiable, as shown in the

relatively tightly-shaped posterior distributions.

Most motors strongly bind via tubulin-stimulated ADP release

These quantitative estimates of the underlying microscopic rates provide qualitative lessons

about motor binding. Referring to the model schematic in Fig 2, motors can achieve the strong

Fig 4. Estimates of microscopic parameters from fitting the ADP-diffusion model. Joint (Approximate) Posterior Distribution of ADP release Model Parameters.

Black curves in the marginal densities from sequential approximate Bayesian computation (sABC) are the posterior distributions, and the grey curves are the priors. A

kernel density estimator [51] was applied to discrete samples to form posterior estimate curves.

https://doi.org/10.1371/journal.pcbi.1012158.g004
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binding state either through an intermediate weak binding state (State 3) after which ADP

release occurs, or directly from a diffusing state (State 2). Although we do not observe these

transitions directly, their relative proportions can be deduced from the data and are investi-

gated in Fig 5. Our proposed binding process can be conceptually decomposed into two com-

ponents: the physical search process of the motor binding (either weakly or strongly) to the

microtubule, and an ADP release step. Fig 5A demonstrates the predicted relative contribution

of the physical search component to the overall binding time. Specifically, the panel shows the

fraction of time stochastic simulations of the full binding process spent in States 1 and 2,

where the motor is unbound completely and searching for the microtubule. This fraction was

calculated by determining the portions of time spent unbound in each simulation, and then

taking the average. For all motor lengths, the fraction of time in the searching state increases as

Fig 5. Cataloging pathways of binding from stochastic simulation shows that motors typically bind via tubulin-stimulated ADP release. A: Averaged portion of

total time spent in the unbound states (1 and 2). For all motor lengths and distances, this portion increases. B: Portion of all binding events that weakly and then strongly

bind (arrive in state 4 from state 3) from state 3 (as opposed to arriving from state 2). C: Mean probability of transitions that occur from each state, averaged over all

events from all experimental conditions (motor length and mean spacing between cargo and microtubule). Parameters for simulation are from Table 1.

https://doi.org/10.1371/journal.pcbi.1012158.g005
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the distance between the cargo and microtubule increases, ranging from about 20% to 80% of

full binding time. Moreover, for a fixed distance (60 nm), the fraction of time searching

increases as the length of the motor decreases. These trends can be interpreted as the diffu-

sion-based physical search step always contributing a meaningful rate limitation to the process.

However, from this panel alone, the typical binding pathway cannot be deduced. As physical

search takes varying of the portion of the total binding time, is ADP release always, never, or

sometimes the rate-limiting component? Fig 5B addresses this question by computing the frac-

tion of stochastic simulations that end up strongly bound (State 4) by entering through the

tubulin-stimulated ADP release pathway (from State 3). These portions show that for all

motor lengths and distances, effectively all binding events (about 99%) enter through this

state.

Motors could, in theory, release ADP while undergoing diffusive search, and then strongly

bind directly (States 2 to 4). To understand why this pathway does not seem to contribute to

the binding time, we show the full effective predicted binding transition frequencies in Fig 5C,

averaged over all motor lengths and distances. A full report of the relative proportions and

effective rates of each transition can be found in Figs E and F in S1 Text. From State 1, most

(over 80%) of initial binding interactions arise via a preliminary weak binding state and subse-

quent ADP release (States 3 to 4). However, we predict that some transitions to State 2 (ADP

release while unbound) occur. From State 2, there may seem to be a paradox that the transition

rate between States 2 to 4 is very low, which one might interpret as the ADP released motor

state having low affinity for the microtubule, but we emphasize this quantity is a byproduct of

the competing rates between physical binding and ADP capture. That is, State 2 does not have

a lower affinity for the microtubule, but rather, occurs less often than ADP rebinding. There-

fore, the ADP release before physical search is too transient to provide a viable binding path-

way. Altogether, our results suggest tubulin-stimulated ADP-release after weak binding is the

typical pathway for kinesin binding.

Binding rates can be distinctly modified by physical and chemical factors

The quantity and structure of experimental data have thus far allowed for significant progress

in understanding binding from retrodictive reconciliation with a model. We conclude with

predictions that emphasize the broader lessons and may serve as the basis of validation in

future experiments. The exploration of typical binding events in the previous section points

toward conceptualizing this process as a distinct mechanical diffusive search and a chemical

step from the nucleotide state. Regulation and perturbations of each of these components

should therefore be discernible. To explore these two scenarios, we predict how the binding

times should be altered in two hypothetical experimental perturbations shown in Fig 6. Fig 6A

shows how if one could modulate the tubulin-stimulated ADP-release rate, the effective spa-

tially-dependent binding rate shifts up or downward for all distances. In contrast, numerous

physical experiments could plausibly alter the physical properties of the system. In Fig 6B, we

show the predicted effect of changing the cargo size, which would consequently modify the

overall diffusivity of the ensemble and the random search time. For short distances that are not

limited by this diffusive search, the difference is negligible, but for long distances, the effect

becomes magnified. Predictions for other motor lengths can be found in Fig G in S1 Text.

While we do not currently have the technological capability to validate these experimental pre-

dictions (e.g., the ability to disentangle the competition between ADP and ATP binding to the

motor head prior to the motor binding), we hope they will be the basis of future validation or

invalidation of our proposed binding model.
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Discussion

Conclusion

Altogether, our results point toward a model of the initial binding between a cargo-bound

kinesin and a microtubule track being more complex than a diffusion-limited search of the

motor head that is presumed elsewhere [10, 33]. Motivated by the known mechano-chemistry

of motor stepping, where the nucleotide state of each motor head dictates microtubule affinity

[34, 37, 52], we posit that the observed binding times correspond to a nucleotide-state-limited

strong binding event. In this conceptual model, the primary binding pathway is a preliminary

weak binding from physical search, followed by the motor being weakly tethered to the micro-

tubule. During this weak tethering, ADP is released from one of the heads and the motor

becomes strongly bound. The rate-limiting component transitions between ADP release and

physical search as the cargo-microtubule distance increases, arising from the competition

between these rates. To validate this hypothesis, we considered a coarse-grained computational

model that incorporates both diffusive search and the ADP state of motor heads, and through

simulation-based inference and model selection, ultimately found compelling agreement with

the experimental measurements. With only observed binding times, computational modeling

reveals unobserved details of the binding process and predicts that the “typical” binding event

is modulated distinctly by both environmental and physical factors. From a design perspective,

these orthogonal modulations allow for more fine-grained control and malleability than either

separately.

The emergent model of an ADP-release rate-limiting kinesin binding warrants further dis-

cussion. Due to the inability to observe the behavior of individual motor heads, our computa-

tional model forgoes this complexity and implements weak and strong binding states agnostic

to the underlying biochemistry. The simulation-based inference procedure and its validation

rigorously show that a model with this weak-to-strong transition fits the binding data more

Fig 6. Predicted binding time changes from chemical and physical perturbations. A: An example of a chemical change, kADP;Fastoff , was varied in the simulation and

resulting simulated binding times are plotted. Data are presented as mean ± SEM. B: Physical changes, such as changing the cargo size, can also be made to study the

resulting binding times.

https://doi.org/10.1371/journal.pcbi.1012158.g006
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closely than without these states. This agreement primarily arises from the fitted�2/s rate of

strong binding after weak binding. Based on the known mechanochemistry of kinesin, we

attribute this weak-to-strong transition to an ADP release of one of the motor heads [34, 37,

52]. However, this rate is commonly reported on the order of�100/s [40], allowing for the

rapid procession of the motor on this same rate-limiting timescale. This presents an apparent

contradiction to our hypothesis, as this fast rate indeed fails to explain the apparent delay seen

in binding times. Reconciliation arises from the findings of [39], principally the result that

ADP release rate of each kinesin head is highly sensitive to the load applied to it. When both

kinesin heads are bound to the microtubule, the release rate for ADP from the front head

(under load) is indeed very rapid. However, the ADP release rate for kinesin when only a sin-

gle head is bound (and not under load) is much lower. Our model describes the transition

from kinesin completely unbound to the MT to a single-head attachment and therefore corre-

sponds to this slow unloaded, microtubule-stimulated ADP release rate. This slower ADP

release rate has been reported in the literature with noteworthy agreement with our estimated

rate. In [53], the authors find a bimodal distribution of ADP release rates: one fast, and a sec-

ond, slower rate of 0.4–2.3/s. This is in close agreement with the rates of 2.3–3.3/s found in

[54], although for a different motor (ncd). These same authors later report a faster value of

31.5/s [36], but note this is an average of fast and slow rates. In a more recent study [41], the

authors find an ADP exchange rate of�0.5/s that can be modulated by engineering longer

neck linkers. Admittedly, our proposed model seems in tension with the historical narrative

that the slow ADP release corresponds to the second head after the first quickly releases ADP.

A possible reconciliation arises from the idea that a single head binding event (with fast ADP

release) is not sufficiently strong alone to prelude stepping, but the second, slower ADP release

of the next head leads to the binding events observed in the experimental assay. However, like

the studies leading to previous conceptual models, our work cannot resolve the precise under-

lying biochemistry of individual motor heads. Nonetheless, the remarkable agreement between

the fitted weak-to-strong transition rate arising from our work and the slow unloaded ADP

release found in the literature provides plausible evidence of their connection. Moreover, the

emergence of the unloaded ADP rate reveals more insight into the underlying mechanics

between the motor heads in the attachment process.

Motor binding times have been estimated and measured many times prior [14–17], but

these studies cannot easily disentangle the physical configuration the binding arises from,

whether it be from a landing experiment, DNA origami, or motors re-attaching while another

is already bound. The absence of this consideration juxtaposes the increasing body of evidence

that spatial organization plays a vital role in motor binding [23–26]. By distilling both the

experimental assay and corresponding model to the minimal ingredients of a single motor

attachment, we can clarify this process with unprecedented precision and generalizability.

That is, while we have shown that our model successfully recapitulates the experimental data

from our optical trap assay, we have moreover provided quantitative details about the underly-

ing process that can be used to calculate binding times in other configurations. That is, one

could imagine taking our fitted model and adapting it to DNA-origami cargo to reconcile the

observed binding rates of [15, 17]. Discrepancies between the predictions and observations

may occur, but these provide crucial details about the underlying chemistry and physics that

we advocate warrant further investigation.

Limitations and assumptions

We have not, and likely cannot ever fully rule out other conceptual models and confounding

factors of binding time. The key qualitative feature we sought to replicate was the binding
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delay on the order of 1 second in close-proximity cargoes. Our ADP release model successfully

recapitulates this, and we provide testable hypotheses that can be used to invalidate the model

in Fig 6. We considered several other possible factors that may explain or contribute to this

delay. The most pressing possibility is whether this delay arises as an artifact of failure to detect

optical trap displacements faster than this. Assuming an unloaded kinesin velocity of around

500 to 1000 nm/s, a 15 nm bead displacement for detection corresponds to fractions of a sec-

ond and does not explain the observed delay on the order of a second. Furthermore, we strug-

gle to speculate what a realistic initial configuration of the motor may be, as a more detailed

model of the cargo resetting in the optical trap likely requires careful consideration of hydro-

dynamic effects that couple rotation, motion, and distant-dependent diffusivity [55]. We made

the crude assumption that the motor was configured downward initially due to the fast time-

scale between cargo resetting in the trap, but this is likely not the case. However, our estimates

(see Fig H in S1 Text)) and others estimate [26] a cargo taking 0.2 seconds to complete a full

rotation at this viscosity. To test the robustness of this result, we extended the model to also

approximately incorporate near-wall diffusivity hindrance from hydrodynamics [56–58] and

find that there is some slowdown at far distances with random initial motor configurations,

shown in Fig K in S1 Text. In a previous study from the lab [59], it was found that a reduced

bead size does reduce the binding time slightly. Altogether, this evidence points toward sup-

porting our conceptual model that cargo rotation and hydrodynamics do play a role in motor

binding time, but alone fail to explain the magnitude of delay seen at close binding distances.

One last possibility we note is the conceptual model where a motor begins in a “crumpled”

state, and then unfurls with some delay to bind. Our model of the kinesin stalk is crude, and

one could imagine other possibilities such as a worm-like chain model considered for the neck

linker [60]. However, these models primarily differ when under load, rather than undergoing

a diffusive search. Therefore, we leave the investigation of other polymer models for the stalk

to future work. We note the coarse-grained approximation of the whole motor head as a single

spatial point with a single nucleotide state due to the inability to resolve further detail from

available data. We leave to future work more detailed models that incorporate in vivo complex-

ities, including motor attachments diffusing on the surface of cargo [23–25] or cargoes with

multiple motors. Lastly, we identify that this binding model may be limited to kinesin, and per-

haps even only some kinesins. Future investigation warrants investigating other motors’ bind-

ing details, e.g., dynein, through the procedure outlined in this work.

Context in cytoskeletal-motor systems

The focus of this work is understanding the binding between a single cargo-bound kinesin and

a microtubule track. This setup follows the spirit of a now long-established and successful line

of investigation of cytoskeletal-motor assemblies by isolating fundamental building blocks. We

attempt to situate our advances in the broader context of the wildly complex array of cytoskele-

tal-motor interactions and the feedback between them. We emphasize the chemo-mechanical

nature of our binding model in the context of the enormous literature on how physical and

chemical changes to microtubules affect motor behavior. For instance, geometry of the micro-

tubule network dictates cargo-microtubule distances [61, 62] by pulling the cargo closer to the

microtubule via tethers such as dynactin [63], or pushing it away via microtubule-associating

proteins (MAPs) [64], and motors themselves reorganize microtubules through forces [33]. A

zoo of MAPs and the tubulin code are known to interfere with motor function [65, 66], includ-

ing in the recruitment of motors [67–69]. Our model may shed light on explaining the mecha-

nisms by which these microtubule decorations modify motor binding, and serve as the basis

for future investigation. Through the decomposition of how chemical and physical factors
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modulate binding, our study may be the basis for discerning the mechanism of MAPs regula-

tion of motors. For instance, one could imagine C-terminal tails may serve as physical tethers

or may alter nucleotide states, and such an investigation remains for the future. More broadly,

this understanding serves as a key step toward understanding how cells regulate binding to

direct cargo and perform even more cytoskeletal-motor functions such as coordinate mitosis

[70]. Moreover, this understanding may help aid in the design of increasingly sophisticated

synthetic systems [71], where spatial distances can be prescribed.

Broader lessons for probing protein-protein interactions

The difficulty in directly observing protein-protein interactions makes their study challenging.

Two main avenues of approaches have been historically successful, each at extremes of chosen

level of detail. Molecular dynamics simulations are a gold standard for predicting interactions.

We build on the immense insight they have illuminated on the interactions between microtu-

bules and kinesin [72, 73] and otherwise would not have considered the ADP release in our

model. However, these approaches built from microscopic components have immense diffi-

culty in scaling up to more complex systems with multiple interacting components, such as

between motor, cargo, and cytoskeletal filaments. At the other extreme, “spherical cow” mod-

els of diffusion-limited reactions [74, 75] have revealed many qualitative lessons of protein-

protein interactions, but remain challenging to quantitatively link with data because even the

inclusion of modest complexities like orientation constraints [76] make the analyses prohibi-

tively complex.

Our work adds a timely vignette to other studies [77–79] that illustrates the value of striking

an intermediate level of complexity in understanding protein-protein interactions. This bal-

ance allows for the incorporation of microscopic details from more fine-grained studies but

remains vigilantly coarse-grained to directly connect with data. We highlight major compo-

nents of the work that we believe will be of broader use in other probing of protein-protein

interactions, such as understanding the competition between peptides and kinases for the

same binding site on a transcription factor [80], or disentangling folding and aggregation rates

in proteins [81]. For one, we leveraged measuring interactions in a variety of conditions.

Equipped with only a single motor length or trapped distance, the diffusion model would have

fit to a seemingly satisfactory degree. By probing a model’s ability to explain data across condi-

tions, we were able to identify the ADP model. Furthermore, our work was made possible by

recent advances in simulation-based inference [82]. While model fitting has historically been

bogged down in the complications of the procedure, we now live in an age where it is plausible

to perform inference on any model that can be thought of (and simulated), with rapidly

improving techniques beyond those we utilized in this work [83]. Neither of these lessons is

specific to the context of cytoskeletal-motor interactions, and therefore we hope our work

serves as an outline for other pursuits in data-driven discovery of protein-protein interactions.

Methods

Optical trap experiments

The optical trapping setup was assembled on an inverted Nikon TE200 microscope using a

980 nm, single mode, fiber-coupled diode laser (EM4 Inc). The laser power was set to achieve

a trap stiffness, κt, of *0.045 pN nm−1 while using the polystyrene bead of 0.56 μm (streptavi-

din conjugated, Spherotech).

Single motor experiments were carried out in the motility buffer (80 mM Pipes pH 6.9, 50

mM CH3COOK, 4 mM MgSO4, 1 mM DTT, 1 mm EGTA, 10 μM taxol, 1 mg mL−1 casein).

In all the rebinding rate assays, single-motor kinesin-coated polystyrene beads were prepared
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just before the measurements. The motors DK-406-His/DK-560-His/DK-746-His (Kinesin-1,

aa 1–560/Drosophila Kinesin aa 1–406/ Drosophila Kinesin aa 1–746; His tag at c-term) were

diluted to *20 nM before mixing with *1 pM of biotinylated penta-His- antibody conju-

gated streptavidin beads stored at 4˚C. This ratio produced the bead binding fraction of 10–

15% and was maintained to maximize the probability of finding single motor beads in the solu-

tion (a bead binding fraction less than 30% corresponds to a single motor regime [84]). The

bead-motor incubation (*50 μL volume) was carried out at room temperature for 10 minutes.

At the end of incubation, the sample chamber with preassembled microtubules was washed

with *50 μL of warm filtered buffer just before injecting the incubated mixture. Experiments

were carried out at room temperature in a motility buffer supplemented with 2 mM ATP and

oxygen-scavenging system (0.25 mg mL−1 glucose oxidase, 30 μg mL−1 catalase, 4.5 mg mL−1

glucose).

In general, small dust or debris in the solution gets pulled into the trap along with the bead.

Trapped dust interferes with motor rebinding to microtubules. To prevent this interference,

the large dust particles and aggregates of casein in the buffer were removed using a 100 nm

centrifugal filter (Millipore). Another potential issue is the stage drift during measurement,

and it was minimized with an automated drift correction system using an xyz piezo stage (PI)

and custom software.

All kinesin proteins were purified using HIS-tag and MT affinity purification after express-

ing them in Rosetta bacterial cells as described earlier [85]. DK406 plasmid was procured from

Addgene (plasmid ID #129764, generously supplied by William Hancock lab). DK746 was

designed in the lab after modifying the full-length DK980, also procured from Addgene (plas-

mid ID: #129762, William Hancock lab), using restriction enzyme digestion.

Binding detection. Bead displacements in the trap registered by a position-sensitive

diode (PSD; First Sensor AG) were acquired at 3kHz using an analog-to-digital converter

(ADC) card. The digitized PSD data was smoothed with a 40 point fast Fourier transform

(FFT) filter and analyzed by custom Matlab code to score all the peaks greater than 15 nm

and lasting more than 0.01 seconds (30 data points). The experimental method is fully

described in [27].

Maintaining bead-microtubule separation. Autocorrelated template matching of defo-

cused fiduciary bead immobilized on the surface served as a feedback signal to maintain a sta-

ble bead-microtubule separation. The method was developed using an autocorrelation of a

template image with real-time images of the fiduciary beads to generate a parameter called

match score (degree of matching). It is custom-developed to study protein-protein interactions

using an optical trap. To describe it briefly, fiduciary beads were immobilized on the coverslip

and an image of the bead was recorded at 200 nm below the surface to serve as a reference

library image. The key parameter here is the match score (value = 0 for no match and 1000 for

perfect match with the library image) and when the template used is a bead in focus, this score

exhibits quadratic behavior in the vicinity of the surface. Thus, score change per nm of the

focus shift is negligible when the bead is in perfect focus. However, when a defocused bead

image is used as a reference library image, the score change/nm is as high as 1% for every 10

nm z-focus change. This parameter was used as a feedback signal both to increment and lock

the z-position at a fixed level using an automated focus locking system developed in-house

using an xyz-piezo-stage, image grabber cards, and labVIEW. In the experiments, the distance

between the trapped bead and the Surface-attached microtubule is altered by moving the sur-

face. In principle, moving the surface by causes a slightly smaller change (�12% less) in the

distance between the trapped bead and the surface, due to the mismatch in refractive indices.

This has not been corrected for in the data presented.
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Brownian dynamics simulation

The simulation consists of a motor that is bound to a cargo and a microtubule. The cargo is a

three-dimensional sphere and is subject to translational and rotational diffusion. The motor’s

condition is dependent on whether an ADP molecule is bound to it and whether it is bound to

the microtubule. Whether the motor is weakly or strongly bound to the microtubule is depen-

dent on whether it is bound to an ADP molecule. The transitions through these states (Fig 2)

are simulated using a Gillespie-style algorithm [86]. The motor is defined by its location of

attachment to the cargo and its head location. Locations of the motor head and cargo center

are calculated using the Euler-Maruyama method [87]. The microscopic binding between the

motor head and microtubule follows a standard “Doi model” for chemical reactions [88]:

when the motor heads come within binding reach of the microtubule, it has a constant rate of

binding to it; otherwise, this rate is 0. The motor behaves as a spring, and when they are

bound, they experience and exert force. When the motor is weakly bound to the microtubule,

its off-rate depends on force. ADP molecules can also bind and unbind to the motor head at

constant rates, but the ADP off-rate is dependent on whether the motor is weakly bound to the

microtubule. The equations of motion for the cargo and motor are constructed by discretizing

a set of stochastic ordinary differential equations derived from force balance.

ADP release model description. This model is three-dimensional and mesoscale, with

state variables and summarized in Table 2. A set of stochastic ordinary differential equations is

used to describe the location of the cargo sphere and the motor that is attached to it. The

motor transitions stochastically between discrete states (shown in Fig 2), and these transitions

occur as Poisson processes. The force that the motor exerts on the cargo is modeled as a one-

way spring:

~Fm ~a;~h
� �

¼

� km
�
�
�~h � ~a

�
�
� � Lm

� �
~h � ~a�
�~h � ~a
�
�

� �

þ~Fw
�
�
�~h � ~a

�
�
� > Lm

0

�
�
�~h � ~a

�
�
� � Lm

;

8
>>><

>>>:

where~a and~h are the motor anchor and head locations, respectively, κm is the motor stiffness

Table 2. List of variables in the computational models.

Variable Description

~Fm Force from motor head

~a Position on cargo where motor is anchored

~h Position of motor head

~Fw Force from weak bond between the motor and the microtubule

~aMT Position on microtubule where motor is weakly bound

~tm Torque that motor exerts on cargo

~c Position of cargo center

~y Cargo rotation

tn Time at the nth time step

~Fb Brownian force

~tb Brownian torque

~Gc,
~Gy and ~Gm

Gaussian random variables

https://doi.org/10.1371/journal.pcbi.1012158.t002

PLOS COMPUTATIONAL BIOLOGY Computational modeling of kinesin binding

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012158 May 20, 2024 16 / 25

https://doi.org/10.1371/journal.pcbi.1012158.t002
https://doi.org/10.1371/journal.pcbi.1012158


constant, Lm is the motor rest length,

~Fw ¼
kw
�
~aMT � ~h

�
motor is weakly bound to theMT

0 motor is unbound from theMT
;

8
<

:

κw is the weak spring between the motor head and the microtubule, and~aMT is where the

motor head is weakly bound on the microtubule. There is a torque that is exerted on the cargo:

~tm ~a;~h;~c
� �

¼
ð~a � ~cÞ �~Fm

�
~a;~h

�
weakly bound toMT

0 otherwise
;

8
<

:

where~c is the cargo center location. Thus, we have ordinary differential equations (modeled

after the Langevin equation):

d~cðtÞ
dt
¼

1

6pZR
~Fm ~a tð Þ;~h tð Þ
� �

þ
1

6pZR
~Fb tð Þ; ð1Þ

and

d~yðtÞ
dt
¼

1

8pZR3
~tm ~a tð Þ;~h tð Þ;~c tð Þ
� �

þ
1

8pZR3
~tb tð Þ; ð2Þ

where η is the water viscosity, R is the cargo sphere radius,~y is the cargo orientation, and~Fb

and~tb are the Brownian force and torque, respectively, which are random variables with mean

0 and variance 2kBTξc, and ξc is the drag coefficient of the cargo. According to the Euler-Mar-

uyama method, a discrete formulation of Eqs 1 and 2 will be:

~cðtnþ1Þ ¼~c tnð Þ þ
1

6pZR
~Fm ~a tnð Þ;~h tnð Þ
� �

4t

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
kBT

6pZR
4t

r

~Gc tnð Þ

and

~yðtnþ1Þ ¼
~y tnð Þ þ

1

8pZR3
~tm ~a tnð Þ;~h tnð Þ;~c tnð Þ
� �

4t

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
kBT

8pZR3
4t

r

~Gy tnð Þ;
ð3Þ

where n is the current time step, and ~Gc and ~Gy are mutually uncorrelated vectors of indepen-

dent and identically distributed (i.i.d.) Gaussian random variables with mean 0 and variance 1.

The cargo cannot phase through the microtubule. Since we are simulating optical trap experi-

ments, we add a force from the trap on the cargo:

~cðtnþ1Þ ¼~cðtnÞ þ ktð~cð1Þ � ~cðtnÞÞ

þ
1

6pZR
~Fm ~a tnð Þ;~h tnð Þ
� �

4t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
kBT

6pZR
4t

s

~Gc tnð Þ;
ð4Þ

where κt is the trap stiffness. We can now determine the motor anchor location by inputting

the cargo axis of rotation~yðtnþ1Þ �
~yðtnÞ and this axis’ length as the magnitude of rotation (in
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radians) into a rotation matrix M(tn):

~aðtnþ1Þ ¼ MðtnÞð~aðtnÞ � ~cðtnÞÞ þ~cðtnÞ þ ð~cðtnþ1Þ � ~cðtnÞÞ: ð5Þ

Similarly to Eqs 1 and 2, we discretize ordinary differential equations for the motor head posi-

tion:

~h tnþ1

� �
¼~h tnð Þ þ

1

xm

~Fm4t þ
ffiffiffiffiffiffiffiffiffi
2Dm

p
~Gm; ð6Þ

where ξm = kBT/Dm is the motor drag coefficient, Dm is the motor head diffusion constant, and

~Gm is the uncorrelated i.i.d. Gaussian random variable of mean 0 and variance 1. The motor

head cannot phase through the microtubule and the cargo. Since in experiments, the microtu-

bule lies on the coverslip surface, the motor head cannot diffuse under the microtubule.

We also considered an extended model that approximately accounts for the near-wall dif-

fusivity hindrance from hydrodynamics [56, 57]. In lieu of fully incorporating the detailed

hydrodynamics, an undertaking outside the scope of this work [55, 89], we employ the classi-

cal Brenner correction formulae [56, 58]. As an approximation based on the assumption that

the z-directional motion dominates the binding time, we rescale the entire rotational and

translation drag coefficients of the cargo by the analytical perpendicular z-dependent rota-

tional and translational diffusivities. Specifically, we rescale η in the translational update Eq

(4) by (1 − (9/8)(R/z) + (1/8)(R/z)3)−1 and the translational η in Eq (3) by (1 − (5/16)(R/z)3 +

(15/256)(R/z)6)−1 where R is the radius of the cargo and z is the distance from the coverslip

to the center of the cargo. Notably, this neglects the asymmetry in perpendicular and parallel

directions, and leave these details to future work.

Transitions between each motor state (Fig 2) are modeled as Poisson processes, with rates

as follows:

l
ADP
off ¼

kADPoff ADP-bound andMT-unbound

kADP;Fastoff ADP-bound and weakly bound toMT

0 motor is ADP-unbound

8
>>><

>>>:

ð7Þ

l
ADP
on ¼

kADPon motor is ADP-unbound

0 motor is ADP-bound

(

ð8Þ

l
MT
on ¼

kMT
on unbound fromMT and within dMT

kADP;Fastoff motor is weakly bound to microtubule

0 motor is not within dMT

;

8
>>><

>>>:

ð9Þ

where dMT is the binding distance between the motor head and the microtubule, and

l
MT
off ¼

kMT
off � exp F

w=Fd weakly bound toMT

0 motor is MT-unbound
;

(

ð10Þ

where Fd is the motor’s critical detachment force. Parameter values are listed in Tables 1 and 3.

The particular choice of dMT = 5nm was made based on the approximate size of kinesin-1, but

varying this parameter has little effect on the resulting fit (cumulative absolute fitting errors

were at most 0.01s different), shown in Fig L in S1 Text.
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Numerical simulation. The model is simulated forward in time. Time steps are either

equal to dtmax, the maximum time step the system can undergo, or they are determined

through the Gillespie-style algorithm if the next motor state-change event (i.e., bound or

unbound to microtubule, ADP released or unreleased), also determined by the Gillespie-style

algorithm, occurs before tn + dtmax. An appropriate dtmax (0.004) was chosen with a conver-

gence test (see Fig I in S1 Text). To implement the Gillespie-style algorithm, exponential ran-

dom variables from distributions with means set by each Poisson (Eqs 7, 8, 9 and 10) were

generated at each time step. After the Gillespie-style algorithm determines the next event and

when it occurs, the time step is used to determine the locations of the cargo center and the

motor’s head and anchor (Eqs 4, 5 and 6).

To mimic experimental practices, simulations are allowed to simulate 100 seconds. If the

motor does not strongly bind to the microtubule during this time, the simulation starts over.

This method is similar to the experiment, where the assay is run for 100 seconds screening for

a binding event to occur before trapping a different cargo. The simulation is written in

MATLAB, and takes approximately 0.1 seconds to simulate 1 second of the system. Example

snapshots of the simulation are shown in Fig A in S1 Text.

Model fitting, cross-validation

The model is fit through two distinct approximate inference procedures, the reconciliation of

which serves as a validation for the approximations. The first procedure is a Bayesian optimi-

zation procedure [29] to obtain a single point estimate for the parameter values. The loss func-

tion is the squared distance over the mean binding times (and therefore neglects the full

distributional information) and the estimated mean binding time over S = 1000 simulations,

and these estimates are used in Fig 3 and Table 1.

To obtain uncertainty quantification seen in Fig 4, we also employ a sequential Monte

Carlo approximate Bayesian computation approach [30]. These techniques are far slower than

the optimization procedure and require the specification of a prior distribution for each

parameter, but provide some notion of uncertainty quantification, and were used to generate

Fig 4 with some data withheld. That is, because of the heavy computation expense, only the

shortest motor at 0 nm average distance between the cargo and microtubule, the mid-length

motor at 40 nm average distance, and the longest motor at 80 nm average distance were used

in the fitting. The maximum a posteriori (MAP) estimates from this latter procedure closely

Table 3. Parameters used in the computational model.

Parameter Description Value

κm Motor stiffness (pN/nm) [12] 0.3200

κt Trap stiffness (pN/nm)† [0.045 0.045 0.03]

Lm Motor length (nm)† Varies

η Fluid Viscosity (pN � s/nm2) 1e-05

R Radius of cargo bead (nm) 280

kbT Boltzmann constant (pN � nm) 4.114

dMT MT Binding range (nm)* 5

Fd Critical detachment force (pN) [19] 4

*Unmeasured estimate.
†Measured estimate.

The motor length includes the antibody that binds the motor to the cargo (about 10 nm).

https://doi.org/10.1371/journal.pcbi.1012158.t003
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agree those of the first procedure, supporting the validity of both. Furthermore, in Table A in

S1 Text, we show the inference procedures successfully infer rates from synthetic data. Lognor-

mal priors are chosen for all parameters, and hyperparameters are shown in Table 4. Hyper-

parameters were chosen based on the range of values reported in the literature for each

parameter when available. Otherwise, they were chosen to be approximately uninformative

with large standard deviations. Initially, 100 simulations estimate the binding times in the

model, and weights in the sequential Monte Carlo algorithm are defined as wi = π/(∑ wi−1Ki),
where Ki is the perturbation kernel for the ith sequence, i> 1. We use a Gaussian distribution

for K. These new samples are then used to simulate more mean binding times until 100 sam-

ples are generated resulting in a relative error lower than 1.8. Eight more sequences follow in

this same manner, each time the relative error threshold decreases by 0.2. A kernel density esti-

mator was then applied to the resulting samples shown in Fig 4.

The cross-validation procedure in Fig 3 was implemented by fitting the models using the

aforementioned point estimate optimization scheme with data withheld, and then test error

defined to be N � 1
PN

i¼1
ðti � t̂ iÞ=ti, a percentage error over the test scenarios. This procedure is

validated in Fig J in S1 Text showing cross-validation successfully identifying the correct

model when tested against synthetic data.

Supporting information

S1 Text. Supporting figures and tables. Additional demonstrations, investigations, and vali-

dations of computations described in the main text.

(PDF)
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