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Abstract

Intrinsically disordered proteins have dynamic structures through which they play key bio-

logical roles. The elucidation of their conformational ensembles is a challenging problem

requiring an integrated use of computational and experimental methods. Molecular simula-

tions are a valuable computational strategy for constructing structural ensembles of disor-

dered proteins but are highly resource-intensive. Recently, machine learning approaches

based on deep generative models that learn from simulation data have emerged as an effi-

cient alternative for generating structural ensembles. However, such methods currently suf-

fer from limited transferability when modeling sequences and conformations absent in the

training data. Here, we develop a novel generative model that achieves high levels of trans-

ferability for intrinsically disordered protein ensembles. The approach, named idpSAM, is a

latent diffusion model based on transformer neural networks. It combines an autoencoder to

learn a representation of protein geometry and a diffusion model to sample novel conforma-

tions in the encoded space. IdpSAM was trained on a large dataset of simulations of disor-

dered protein regions performed with the ABSINTH implicit solvent model. Thanks to the

expressiveness of its neural networks and its training stability, idpSAM faithfully captures 3D

structural ensembles of test sequences with no similarity in the training set. Our study also

demonstrates the potential for generating full conformational ensembles from datasets with

limited sampling and underscores the importance of training set size for generalization. We

believe that idpSAM represents a significant progress in transferable protein ensemble

modeling through machine learning.

Author summary

Proteins are essential molecules in living organisms and some of them have highly dynam-

ical structures, which makes understanding their biological roles challenging. Disordered

proteins can be studied through a combination of computer simulations and experiments.

Computer simulations are often resource-intensive. Recently, machine learning has been

used to make this process more efficient. The strategy is to learn from previous simula-

tions to model the heterogenous conformations of proteins. However, such methods still

suffer from poor transferability, meaning that they tend to make incorrect predictions on
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proteins not seen in training data. In this study, we present idpSAM, a method based on

generative artificial intelligence for modeling the structures of disordered proteins. The

model was trained using a vast dataset and, thanks to its architecture and training proce-

dure, it performs well on not just proteins in the training set but achieves high levels trans-

ferability to proteins unseen in training. This advancement is a step forward in modeling

biologically relevant disordered proteins. It shows how the combination of generative

modeling and large training sets can aid us understand how dynamical proteins behave.

Introduction

A major paradigm of structural biology is that the function of a protein is determined by the

properties of its structural ensemble. The level of conformational variability of different pro-

teins can range from relatively rigid molecules to fully unstructured ones [1]. For more rigid

proteins, a single three-dimensional (3D) structure, obtainable by experimental [2] or compu-

tational prediction methods [3,4], often provides key insights into its function. On the other

hand, for highly dynamic proteins, function may only be fully understood by knowing the sta-

tistical properties of their structural ensembles [5,6]. Intrinsically disordered proteins (IDPs)

or intrinsically disordered regions (IDRs) of otherwise more rigid proteins exhibit very high

levels of conformational flexibility [7]. For simplicity, we will use the term IDR to refer to both

in the remainder of the text. IDRs have many important biological roles and perfectly exem-

plify the difficulty of investigating structure-to-function relationships for dynamic proteins

[8]. Such studies require the integration of experimental data and computational methods for

generating pools of 3D structures compatible with that data [9]. Therefore, algorithms for

modeling conformational ensembles are central for our understanding of a large and biomedi-

cally relevant fraction of the protein space.

A powerful method to generate structural ensembles consists of physics-inspired sampling

strategies, such as molecular dynamics [10] (MD) or Markov Chain Monte Carlo [11]

(MCMC) simulations. While there has been progress in improving the force fields to model

protein dynamics in atomistic MD and especially for IDRs [12], the high computational cost

of running such simulations still limits their usage even on the most advanced current comput-

ing hardware. IDRs are particularly challenging because the more extended and dynamic con-

formations require both larger simulation systems and longer simulation times to generate

representative conformational ensembles. Coarse-grained [13] or implicit solvent [14] simula-

tions can reduce the cost but at the expense of introducing modeling approximations.

Recently, an alternative approach has emerged in the form of machine learning algorithms

[15–17]. The general idea is to train a machine learning model on molecular simulation data

to learn to sample new conformations in a computationally efficient way [18]. Deep generative

models are a promising strategy for achieving this goal thanks to their capability of modeling

complex probability distributions and fast sampling with one or few steps [19–21]. They have

been applied to datasets of both folded [22] and intrinsically disordered proteins or peptides

[23]. Most applications focus on replicating ensembles from simulations, but recently the

DynamICE model [24] was used to integrate experimental data in the ensemble generation

process of IDRs, highlighting the potential of generative models in integrative structural biol-

ogy [9]. In closely related work, generative models such as RFdiffusion [25] and FrameDiff

[26] have also been applied successfully in protein design studies [27], where they are trained

on experimentally-determined folded proteins instead of molecular simulation datasets.
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Despite these advancements, the problem of rapidly generating a useful conformational

ensemble for an arbitrary dynamic protein remains essentially an unsolved problem. While

nowadays it is routinely possible to train system-specific models that may recapitulate or even

extrapolate sampling seen in training data, the critical challenge is to obtain transferable mod-

els that can be applied to new systems with satisfactory performance [28], especially for com-

plex systems such as IDRs [29]. The fundamental issue is that deep learning methods are

highly data-driven, whereas transferability requires generalization beyond given data in order

to model previously unseen systems. General principles could be introduced via physics-based

terms, following the typical approach in traditional simulations, but additional sampling

requirements may negate the advantages of direct ensemble generation via deep generative

models. Alternatively, a very large, diverse training set may provide enough information to

learn general principles with a sufficiently deep network to reach transferability.

Earlier efforts by us towards generating ensembles for intrinsically disordered peptides in a

transferable manner have resulted in idpGAN [29], based on a generative adversarial network

[20] (GAN). Two versions of idpGAN were trained, one based on the residue-based coarse-

grained model COCOMO [13], another one on sampling with the ABSINTH implicit solvent

potential [14,30]. For COCOMO-based sampling we achieved good transferability for most

test proteins, but since COCOMO focuses on polymer-like properties and is limited in captur-

ing complex conformational distributions, the generated ensembles by idpGAN are equally

limited in capturing detailed aspects of IDRs. The idpGAN version trained on ABSINTH sim-

ulations had the potential to generate more realistic conformational distributions for IDRs,

but we found that transferability was only achieved for some test proteins, therefore limiting

its usefulness in broader applications.

Here we report idpSAM (Structural Autoencoder generative Model) that significantly

improves over our previous efforts. IdpSAM achieves fully transferable ensemble generation

for IDRs based on the ABSINTH model. The key factors are a new type of generative model

and significantly expanded training data.

We switched from the GAN model used earlier to a denoising diffusion probabilistic model

[19] (DDPM) motivated by the recent success of such models in other recently proposed gen-

erative frameworks. Diffusion models can be directly applied to 3D atomic coordinates. How-

ever, training such models on protein atomic coordinates in a transferable way has been

shown to be challenging, for example requiring large pre-trained networks [25] and bespoke

geometrical-aware architectures. For this reason, we explore here an alternative approach and

make use of latent DDPMs, which operate on a learned “latent” representation of the original

data. Our approach has been inspired by latent DDPMs employed for image generation [31–

33]. Recently, GEOLDM, a model of this kind, has been applied to generate drug-like mole-

cules obtaining state-of-the-art performance [34]. A similar approach was also independently

adopted in protein design studies [35]. Our method differs from these models as we introduce

the use of Euclidean-invariant encodings. This choice enables the incorporation of any expres-

sive neural network into the DDPM, such as the commonly used transformers [36], instead of

being limited to only E(3)-equivariant networks. To our knowledge, this is the first latent

DDPM to have been applied to datasets consisting of protein simulations. The method is also

different from a previously-reported work for sampling IDR conformations via the latent

space of an autoencoder [37], since that approach was non-transferable and did not involve a

generative model component to learn the structure of the latent space.

Along with the improved generative model, we also significantly expanded the underlying

training set. We decided to continue to work with ABSINTH simulations because, despite

their approximations in the treatment of solvent, proteins are represented in atomistic details

and, more importantly, because ABSINTH captures non-trivial sequence-specific interaction
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patterns that result in complex distributions of conformations involving the formation of real-

istic transient secondary structure elements [38,39]. Yet, ABSINTH is still computationally

efficient enough to generate very large amounts of training data. It would otherwise be very

difficult to achieve such data via fully explicit solvent atomistic simulations, especially for

IDRs. The increased amount of training data also allowed us to address questions of data suffi-

ciency for training transferable ensemble generating models that have been largely unexplored

to date.

As in our previous work, we train a system to model only the Cα traces of IDRs. This made

the machine learning effort manageable with available hardware. However, we can recover full

atomistic detail rapidly and accurately with the cg2all method developed recently [40]. This

allows us to introduce a new platform for rapidly generating IDR ensembles at different resolu-

tions via a deep learning framework that can potentially replace traditional simulation

approaches.

Results

Structural Autoencoder Model

In order to generate conformations of IDRs, a structural autoencoder model (SAM) was

trained with ABSINTH simulation data. An overview of the training and sampling processes

of idpSAM are shown in Fig 1. SAM consists of two main components: first, an autoencoder

(AE) is trained to generate SE(3)-invariant encodings of Cα coordinates (Fig 1A). Second, a

denoising diffusion probabilistic model (DDPM) is employed to learn the probability distribu-

tion of encodings from the encoder network with amino acid sequences as conditional input

Fig 1. Architecture of the idpSAM generative model. (A) and (B) Two-staged training process of the structural autoencoder model (SAM). In the first

stage, a Euclidean-invariant AE is trained to encode Cα protein conformations. An example Cα structure from the training set is shown along with a 2D

image representation of its encoding. In the image, the horizontal axis represents the encoding dimension (encodings have c = 16 channels) and the vertical

axis represents the residue index. In the second stage, a DDPM is trained to learn the distribution of the encodings in the training set. (C) Generating

samples via SAM. Once the DDPM is trained, it can be used to generate encodings for new peptide sequences via reverse diffusion starting from Gaussian

random noise. The decoder then maps the encodings to 3D structures. The process can be repeated to generate full conformational ensembles.

https://doi.org/10.1371/journal.pcbi.1012144.g001
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(Fig 1B). Once both systems have been trained, sampling of conformations for a given peptide

sequence is accomplished by generating encodings via the diffusion model and converting

them to 3D structures with the decoder network of the AE (Fig 1C).

Since the DDPM of SAM operates over encoded representations of 3D conformations, the

performance of the decoder is a crucial component for generating 3D structures. To assess the

reconstruction accuracy of the decoder, we evaluated it on MCMC snapshots of test set pep-

tides encoded via the encoder network. In S1 Fig we show examples of how the decoder can

correctly recover Cα-Cα distances and α torsion angles of test encoded conformations. Quan-

titative analyses are reported in S1 Table. As a control, we computed the Cdist and Ctors values

(see Methods) for test set conformations with perturbed copies of themselves, generated by

adding Gaussian noise with σ values ranging from 0.01 to 0.1 Å. The average Cdist and Ctors val-

ues obtained via reconstruction with the AE are lower than the control performed with noise

as little as σ = 0.1 Å, indicating that the reconstruction quality is consistently high.

Transferable modeling of Cα structural ensembles

The goal of idpSAM as a transferable model is to generate 3D structural ensembles for

sequences not present in the training set. To evaluate its transferability, we used its DDPM and

decoder to generate ensembles for test set peptides. Properties of the generated ensembles for

5 selected peptides are reported in Fig 2. The remaining peptides are shown in S2 and S3 Figs.

Different amino acid sequences result in reference MCMC ensembles with sequence-spe-

cific patterns. IdpSAM closely reproduces various features for almost all peptides. Close agree-

ment is found for the probability distributions projected onto PCA space (Fig 2A), sequence-

specific patterns of residue-residue interactions, such as contact maps and average distances of

Cα atoms (Fig 2B and 2C), chain compactness, as shown by the histograms of radius-of-gyra-

tion of Cα atoms (Fig 2D), and the preferences in local backbone geometry, based on α torsion

angles formed by four consecutive Cα atoms along the peptide chain (Fig 2E). Significant devi-

ations are found only in a few cases, and in those, the sampling with idpSAM is qualitatively

still similar to the reference ensembles. Since none of the test set peptides, or peptides with

similar sequences, were present in the training set (see Methods) the ability to predict their

conformational ensembles in close agreement with the MCMC results demonstrates

transferability.

Comparison with idpGAN

In a previous study, we trained the idpGAN model [29] on data for 1089 peptides contained in

the full training set used here. To determine whether the latent DDPM of SAM has an algorith-

mic advance over the GAN-based model, we compared their performances. Since idpGAN has

been trained on fewer IDRs, we also re-trained idpSAM (both its AE and DDPM) only on

those same IDRs. Average evaluation scores (see Methods) are shown in Table 1. Pairwise

comparisons for all peptides are shown in S4A Fig. It is clear that SAM provides significantly

better approximations of the MCMC ensembles than idpGAN, even when SAM is trained

with the same smaller training set as idpGAN. The performance increases further when SAM

is trained with an expanded training set (Table 1 and S4B Fig). We note that we were unable

to train idpGAN using the expanded dataset, as we could not stabilize the fragile training pro-

cess of the GAN [41].

In S5 Fig, we compare idpSAM and idpGAN ensembles for Q2KXY0, a test peptide for

which idpGAN was not performing well in our previous study. We hypothesized that the poor

performance of idpGAN for Q2KXY0 was caused primarily by insufficient training data. We

find that idpSAM provides a better approximation already with the same training set, but the
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ensemble is further improved when the training set is expanded. Therefore, we conclude that

both, the improved generative model and an increased amount of training data, benefitted the

performance.

Sampling speed

The sampling speed of a molecular conformation generator is the key to its potential useful-

ness. DDPMs typically have slower sampling than GANs, because GANs need only one for-

ward pass to generate a sample, while DDPMs need multiple passes, in the order of 100–1000.

To assess the performance vs. speed tradeoff for idpSAM, we used the SAM version trained on

the full training set and sampled with different numbers of diffusion steps [42]. In Fig 3, we

show the average evaluation scores for test set ensembles with 10,000 conformations as a func-

tion of the average wall-clock time needed to generate them. Even with as little as 10 steps,

Fig 2. Structural ensembles from idpSAM. Each row shows the MCMC and SAM ensembles of a peptide from the test set: DP03125r003 (L = 15), his5

(L = 24), P02338_0 (L = 29), P83266 (L = 48) and drk_sh3 (L = 59). (A) Histograms of MCMC (left) and SAM (right) conformations projected along PCA

coordinates. Frequency values in colorbars are multiplied by 1 × 103. (B) Cα-Cα contact maps for the MCMC and SAM ensembles. Each cell represents a

residue pair and is colored according to its log10(pij) value, where pij is the probability of observing a contact between residues i and j in an ensemble. The

contact threshold is 8.0 Å. (C) Average Cα-Cα distance maps from MCMC and SAM. (D) Cα radius-of-gyration histograms from MCMC (blue) and SAM

(orange). The average values are reported in the legend. (E) Histograms of all α torsion angle values for four subsequent Cα atoms in a peptide backbone from

MCMC and SAM. For (B) and (C) the MCMC and SAM ensembles are shown in the lower and upper triangles respectively.

https://doi.org/10.1371/journal.pcbi.1012144.g002

PLOS COMPUTATIONAL BIOLOGY IDR sampling via machine learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012144 May 23, 2024 6 / 28

https://doi.org/10.1371/journal.pcbi.1012144.g002
https://doi.org/10.1371/journal.pcbi.1012144


SAM obtains on average better performance than idpGAN. The modeling accuracy of SAM

does not seem to substantially change when using 50 or more steps. We found 100 steps to be

a good tradeoff between speed and accuracy for Cα ensemble modeling. With 100 steps, the

average GPU wall clock time for generating a test set ensemble with 10,000 conformations is

about 4 min. For idpGAN it is 0.8 s, but the greater speed results in greatly reduced accuracy.

For comparison, generating an ensemble by running 5 MCMC simulations took on average

509 CPU hours on an Intel Xeon Gold 6248R CPU at 3.00GHz (CAMPARI, the software for

running training MCMC simulations, is a CPU-only package).

Case studies illustrating sequence and structure transferability

In the test set, we included a pair of similar sequences: the wild-type (wt) sequence and a

designed mutant [43] of the calcitonin gene-related peptide [44] (CGRP). The two 37-residue

Table 1. Evaluation scores of ensembles from SAM and other methods.

Strategy Training IDRsb MSE_c MSE_d [nm2] aKLD_d KLD_r aKLD_t

idpGAN 1,089 4.52 ± 1.57 0.08 ± 0.02 0.29 ± 0.06 0.67 ± 0.14 0.14 ± 0.05

idpSAM 1,089 3.30 ± 1.18 0.04 ± 0.01 0.14 ± 0.02 0.20 ± 0.03 0.09 ± 0.02

idpSAM 3,259 1.42 ± 0.5 0.01 ± 0.006 0.06 ± 0.02 0.05 ± 0.02 0.05 ± 0.02

idpSAM-Gb 3,259 1.48 ± 0.52 0.01 ± 0.004 0.05 ± 0.01 0.05 ± 0.02 0.04 ± 0.01

idpSAM-Ec 3,259 1.52 ± 0.61 0.01 ± 0.003 0.05 ± 0.02 0.05 ± 0.02 0.04 ± 0.01

MCMC-5d - 7.79 ± 2.8 0.02 ± 0.008 0.14 ± 0.03 0.10 ± 0.03 0.16 ± 0.04

Average scores are reported along with standard errors for the 22 test set peptides.
aNumber of peptides used in the training set.
bLarger SAM model with 20 transformer blocks (instead of 16).
cSAM model with FrameDiff edge update operations.
dEnsemble generated by randomly extracting 10,000 conformations from only 5 MCMC simulations at 298 K of a test peptide.

https://doi.org/10.1371/journal.pcbi.1012144.t001

Fig 3. Sampling speed of SAM. Average evaluation scores for the 22 test peptides as a function of the average wall-clock times used to generate their

ensembles. Error bars represent the standard error of the mean across peptides. Ensembles of 10,000 structures were generated by running models

implemented with PyTorch on a NVIDIA RTX2080Ti GPU. A batch size of 256 was used for all models. Each subplot reports a different score.

https://doi.org/10.1371/journal.pcbi.1012144.g003
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sequences differ by only 4 amino acid substitutions (S2 Table). We used them to assess the

capability of SAM to capture the effect of sequence variations. The reference MCMC ensem-

bles of the wild-type and mutant peptides share similarities, yet they have some clear distinc-

tions. For example, differences in contact and average Cα-Cα distance maps show that the C-

terminal region (residues 25–37) behaves differently in the two peptides. SAM appears to cor-

rectly capture such variations (Fig 4A and 4B).

To confirm this, we assessed the similarities among all MCMC and SAM ensembles of

CGRP variants by using aJSD_d, a score which evaluates divergences in Cα-Cα distance distri-

butions (Fig 4C). We found that the MCMC wild-type ensemble most closely resembles the

wild-type one from SAM (aJSD_d = 0.004) and the MCMC mutant ensemble most closely

Fig 4. Two case studies from the test set. (A) to (D) data for CGRP peptides. (E) to (G) data for the ak37 peptide. (A) Differences in Cα-Cα contact log10(pij)
between the wt and mutant CGRP ensembles. Values from reference MCMC ensembles are in the lower triangle, values from SAM are in the upper one. (B)

Differences in average Cα-Cα distances between the wt and mutant CGRP ensembles. (C) aJSD_d scores for the following CGRP ensembles: wt and mutant

from reference MCMC simulations (wt-R and mut-R, respectively) and wt and mutant ensembles generated by SAM (wt-G and mut-G). (D) aJS_t scores

considering α angle distributions. (E) PCA histograms for ak37 ensembles from: MCMC (left), default SAM (center) and a SAM version in which three ak

peptides were added for training (SAM-ak, right). Frequency values are multiplied by 1 × 103. For each histogram, two snapshots extracted from the

highlighted points are shown below. These snapshots belong to fully-helical (1) or helical hairpin (2) states. (F) Histograms of Cα Rg values for ak37 ensembles.

(E) Histograms for α torsion angle values for ak37.

https://doi.org/10.1371/journal.pcbi.1012144.g004
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resembles the mutant one from SAM (aJSD_d = 0.004). Their scores are smaller than the one

between the wild-type and mutant ensembles from MCMC (aJSD_d = 0.011), showing that

SAM specifically models the variations. We performed a similar comparison via aJSD_t, a

score to evaluate torsion angles distributions (Fig 4D) and observed similar trends also for

these features. When we inspected the Cα-Cα distance and α angle distributions with the high-

est JSD between the wild-type and mutant ensembles from MCMC, we observed that SAM

could correctly reproduce the differences (S6 Fig). Taken together, this data suggest that gen-

erative models trained on sufficiently large datasets can achieve a level of transferability neces-

sary for accurately modeling the impact of single amino acid mutations on structural

dynamics.

We also focused on ak37, the peptide for which idpSAM provides the worst approximations

(S2 Fig). This is a synthetic peptide [45] which assumes mostly helical states in simulations. It

was included here as it was part of previous simulation studies on intrinsically disordered pep-

tide conformations [13]. Its ABSINTH ensemble is populated by fully-helical or helical hairpin

conformations where two shorter helices are packed together. This results in bimodal distribu-

tions for Rg (Fig 4F) and Cα-Cα distances (S7 Fig), which idpSAM captures only approxi-

mately. Even if the model generates both types of conformations, their densities are incorrect

(Fig 4E). IdpSAM also underestimates helicity, as seen by α angle distributions (Fig 4G),

where values in the range of 50–60˚ correspond to helical backbone geometries. Our explana-

tion is that the training set of idpSAM, which consists of naturally-occurring IDR sequences,

does not contain examples with such high helicity (S8 Fig). The average helicity in the MCMC

ensemble of ak37 is 0.70. This is an outlier in the training set, where the mean value is 0.03.

However, idpSAM has enough capacity to model ak37. When we re-trained its DDPM only on

ak37, the resulting model faithfully replicates its ensemble (S9 Fig). To model ak37 without

explicitly including it in the training data, we re-trained the DDPM by adding to its full train-

ing set 5 MCMC simulations for the ak16, ak27 and ak31 peptides [45] respectively. These are

shorter versions of ak37 and have ensembles with similar properties (S3 Table and S10 Fig).

With this augmentation, the retrained model provides a closer approximation for ak37 (Figs

4E and S7) while maintaining good performance on the entire test set (S4 Table).

This analysis demonstrates how the composition of the training set determines the ability of a

model to generate conformations for unseen sequences. In the case of idpSAM, it means that the

sequence space is sufficiently diverse to predict the effects of mutations, but the model is limited

to mostly disordered peptides and not expected to perform as well for mostly folded peptides with

extensive secondary structures since such systems were not part of the training set.

Completeness of generated conformational ensembles

The goal of protein conformational sampling is ideally to generate complete structural ensem-

bles with correctly weighted conformations. Because higher-energy conformations do not con-

tribute significantly to thermodynamic averages, this means in practice ensembles of all low-

lying energy conformations within a few kT from the global free energy minimum. For a well-

folded system, this may be a narrow set of conformations, but, for more dynamic systems such

as IDRs, the relevant set of states can be quite broad. Simulations explore conformational land-

scapes via iterative sampling and reach new states only after crossing kinetic barriers. There-

fore, short simulations almost certainly do not sample all relevant states and it may require

significant effort, including enhanced sampling techniques, to generate complete converged

conformational ensembles in this manner. For the training systems used here, where we used

only five independent MCMC simulations for each IDR, we probably did not achieve con-

verged sampling for many peptides.
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Direct generation of conformational ensembles as with idpSAM is not subject to kinetic

barriers and there is no issue in principle to generate complete, correctly weighted ensembles

for all relevant states of a given system. The key question is whether this is possible with a

model trained on incomplete ensembles as in this study.

To address the question of sampling completeness, we ran much more extensive sampling

for the test peptides (S2 Table) with respect to the training ones. For a short test peptide, such

as DP03125r003 (15 residues) the ensemble obtained by running five simulations is similar to

the ensemble obtained from more extensive sampling from 73 simulations (S11 Fig). On the

other hand, for longer peptides such as drk_sh3 (59 residues), ensembles from five runs can be

entirely different from the extensive sampling ones (Fig 5) since the sampling problem

becomes harder for larger molecules. In fact, for drk_sh3 we had to run replica-exchange

enhanced sampling to construct the test set ensemble. Surprisingly, even though idpSAM was

trained on ensembles that originated via limited sampling, it managed to approximately

recover the full ensemble of drk_sh3 (Fig 5). The reference PCA landscape of drk_sh3, as well

as its Rg and Cα-Cα distance distributions after extensive sampling are mostly captured by the

model. Similar results are observed for other test peptides for which we applied enhanced sam-

pling to reach converged ensembles (S12 Fig).

To provide a quantitative analysis, we compared the evaluation scores of idpSAM against

traditional sampling via simulation, which we call the MCMC-5 strategy (Table 1). This strat-

egy simply consists of generating an ensemble from 5 MCMC runs at 298 K for each test set

peptide. This is the same amount of sampling that we used for the training peptides. We then

compare ensembles generated by idpSAM or MCMC-5 against the converged ensembles from

much more extensive sampling. For every score, idpSAM obtains better average values with

respect to MCMC-5. When comparing the scores for each peptide, we find that idpSAM

Fig 5. Modeling of drk_sh3 with idpSAM and different levels of MCMC sampling. (A) PCA histograms for drk_sh3 from ensembles: MCMC with extensive

sampling (left), 5 MCMC runs at 298 K (MCMC-5, center) and SAM (right). Frequency values are multiplied by 1 × 103. (B) Histograms of Cα Rg values for the

three ensembles. (C) Histograms for selected Cα-Cα distances in the three ensembles. The distances are the ones that exhibit the highest absolute loading value

for the five principal components (PCs) identified in a PCA on the MCMC ensemble from extensive sampling.

https://doi.org/10.1371/journal.pcbi.1012144.g005
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provides better approximations especially for longer peptides (S13 Fig). These results suggest

that protein conformational generators such as idpSAM may efficiently use training examples

with limited sampling data to provide close approximations of the full ensembles of peptides

unseen during training. This means that idpSAM is not just useful for generating ensembles

for different sequences but could also be used to generate more complete ensembles for sys-

tems for which limited simulation data is already available.

Impact of training data size

We showed above that idpSAM performs better than our previous model idpGAN because of

an improved generative model but also because of expanded training data. How the amount of

training data translates into better performance, especially with respect to transferability, is an

important question that has not yet been studied in detail for conformational generators.

More specifically, it is unclear what the benefits are of including more systems vs. more sam-

pling of the same systems, and how much additional data is necessary to improve performance

by a certain amount.

To address the question of system diversity, we re-trained the DDPM of SAM with various

numbers of training peptides and evaluated the models on the same test set. When training the

models with different nsystems, we kept the number of training steps constant by varying nframes,

the number of snapshots of a system used per epoch. In this way, differences in performance

are only caused by different compositions of the training sets. The general trend we observed

is that performance improves by adding more training sequences. In Fig 6A to 6E, we show

how evaluation scores improve as a function of the number of sequences. We find that model-

ing quality is relatively low when using less than 500 training sequences, and rapidly increases

as the number of sequences reaches 1,000 sequences. Adding even more sequences further

improves the performance, albeit at a lower rate. This is in line with what has been observed

for the OpenFold model [46]: protein modeling accuracy increases rapidly with the number of

training systems and then continues to slowly improve by providing more systems.

We also investigated the effect of increasing the amount of sampling in the training set. For

all the 1,089 training IDRs of the ABSINTH-based idpGAN model, we performed 2 extra

MCMC simulations, which we added to the 5 original ones. We trained SAM on these IDRs

using 3, 5 or 7 runs, again maintaining the same number of training steps. For most evaluation

scores, using more training runs appears to improve the average scores (Fig 6F). Given that

for shorter peptides the sampling is closer to convergence, we believe that what makes a differ-

ence in this case is probably the amount of sampling for the longer peptides.

Taken together, these results illustrate the centrality of training data for protein conforma-

tional generators. Both the diversity of sequences and the amount of sampling in the training

set are crucial for improving transferability. However, once a model such as idpSAM has been

trained with a sufficiently large training data set, additional training data is expected to lead to

diminishing returns in terms of further improved performance.

Ablation studies and neural network capacity

We also analyze the impact of different choices in model design for achieving increased perfor-

mance with idpSAM. The �θ noise prediction network is central to the capabilities of idpSAM.

To better understand the function of �θ, we conducted ablation studies on components which

we believed to be critical for its performance (S4 Table). The most important features are a

sufficiently large number of transformer blocks and the learning rate schedule. Also the

adaLN-zero mechanism for feeding conditional information [31] and the injection of the

input encodings at each block have an impact, but it is less relevant.

PLOS COMPUTATIONAL BIOLOGY IDR sampling via machine learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012144 May 23, 2024 11 / 28

https://doi.org/10.1371/journal.pcbi.1012144


We also tested the effect of changing the dimension c of residue encodings. IdpSAM uses

c = 16. We attempted to retrain the model with c values of 4, 8 or 32. For values of 4 and 8, we

found a decrease in modeling accuracy (S4 Table), which we attribute to the inferior recon-

struction capability (S1 Table). For a value of 32, the reconstruction ability is similar to the

default one. The average evaluation scores are slightly lower, though most differences do not

appear to be statistically significant.

Spurred by studies showing how the performance of DDPMs scales with the expressiveness

of their neural networks [47], we also explored two modifications of �θ (Table 1). First, we

increased the capacity of �θ by changing the number of its transformer blocks from 16 to 20

(SAM-G). Then, we attempted to improve its inductive biases [48] by adding 4 FrameDiff

edge update operations [26], while keeping 16 transformer blocks (SAM-E). Edge update

mechanisms have been shown to be crucial for attention-based networks for proteins [4,49].

Since they are computationally expensive, we only applied them to one out of every four trans-

former blocks, starting from the first. Both modifications mostly lead to slightly better average

scores with respect to the default SAM, but the differences are not significant according to a

Wilcoxon signed-rank test (with significance level of 0.05). Interestingly, although adding edge

updates improves the validation loss (S14 Fig) it does not translate into significantly better

ensemble modeling. The use of edge updates also comes at the cost of increased sampling

times. Using the regular SAM, the average time for generating a test ensemble of 10,000 con-

formations is 261 s, while for SAM-E it is 1,306 s (in both cases utilizing a batch size of 256).

We did not explore the possibility of combining the use of more blocks along with more edge

Fig 6. Training set dependance of SAM. (A) to (E) report the average evaluation scores for the 22 test set peptides as a function of the number of IDRs used to

train SAM. Models were trained with 250, 500, 1000, 1500, 2000, 2500 and 3000 IDRs. Error bars represent the standard errors observed in 5 replicas. Each

replica was trained with the same number of IDRs, but used a different random subset (uniformly sampled) from all the 3,259 training IDRs. The horizontal

lines represent scores from the SAM model trained with all IDRs. Each panel shows data for a different score. (F) Comparison between SAM models trained on

the set of idpGAN with 1089 IDRs. The DDPM of each model was trained with different numbers of MCMC simulations per peptide (3, 5 or 7). The heights of

the bars represent the average scores obtained on the set of 22 test peptides, while error bars represent standard errors. For each score, all mean values and

errors were divided by the mean value of the model trained with 5 runs per peptide, to plot different scores in similar numerical ranges.

https://doi.org/10.1371/journal.pcbi.1012144.g006
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updates, as this would have made the models excessively heavy. We believe that a key challenge

in this field will be to obtain a good tradeoff between the expressiveness of models and their

computational efficiency.

Agreement with experimental Rg and the limits of idpSAM

A key challenge of generative models for IDRs is to capture experimental properties. To inves-

tigate whether idpSAM has this capability, we examined 10 peptides from the test set for which

Rg has been characterized experimentally [45,50–53] (S5 Table). We converted their idpSAM

Cα ensembles to all-atom details via cg2all [40] and compared their average Rg with the experi-

mental measurements. Except for the two shortest peptides, idpSAM consistently underesti-

mates Rg (S15A Fig) and the root mean squared error (RMSE) of predictions is only 0.70 nm.

However, idpSAM Rg values are in excellent agreement with the ABSINTH simulation results

(S15B Fig), with an RMSE of 0.06 nm. Unfortunately, these simulations often underestimate

Rg (S5 Table) and idpSAM inherited this limitation from the training data. Overcompaction

of IDRs from simulations compared to experiments is a general problem that can be addressed

in principle via reparameterizations [54,55], including recent updates of the CAMPARI proto-

col used to run ABSINTH [56] that may improve Rg estimations.

To compare idpSAM ensembles with more recent ABSINTH simulations, we took as refer-

ence a study on a 81-residue IDR from the Ash1 protein [57]. The authors of the work simu-

lated this IDR and obtained a predicted Rg of 2.89 nm, which agreed well with an experimental

measurement of 2.85 nm. Simulating the same IDR with the CAMPARI protocol used in our

study [58] resulted in a more compact Rg of 2.41 nm. An idpSAM ensemble generated for this

IDR had a dramatically lower average Rg of 1.76 nm, in disagreement with the simulations.

Moreover, the generated 3D structures have numerous clashes (S16B Fig), highlighting an

important limit of idpSAM. Since its training set contains peptides with at maximum 60 resi-

dues, the model struggles with sequences exceeding the threshold. We wondered if idpSAM

could model shorter versions of Ash1. Therefore, we generated ensembles for truncated ver-

sions of the IDR, containing its first 10 to 70 residues. We also simulated these truncated

sequences again with our CAMPARI protocol. In the simulations, Rg changes in a non-trivial

way with sequence length. Nonetheless, idpSAM faithfully captures the behavior of fragments

up to 60 residues (S16A Fig), but the agreement diverges for longer sequences. This illustrates

that idpSAM recapitulates properties of its simulation protocol for sequences not significantly

longer than the maximum sequence length in the training set.

Biased diffusion to integrate experimental Rg

One way to address the overcompaction issue with idpSAM would be to generate new training

data with a different simulation model that samples conformations with Rg values closer to

experimental values. That is possible but would require significant computational effort.

Instead, we sought an alternative strategy where sampling could be biased towards Rg values

according to experimental data. This idea was first employed by the DynamICE generative

model for IDRs [24], which integrated NMR observables during training. Here, we explored a

slightly different strategy by incorporating experimental Rg target data during sampling with-

out retraining our model. Inspired by the external potentials used in RFDiffusion applications

[25], we modified the idpSAM sampling algorithm with a biasing potential to drive the Rg of

structures towards experimental values. Details of this approach are described in the Methods.

We applied biased diffusion to the 10 test IDRs from above. The agreement between idp-

SAM Rg values with experiment improves significantly (S15C Fig), with a RMSE of 0.22 nm.

The Rg distributions of the ensembles and their average distance maps are clearly shifted to
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more extended states (S17A and S17B Fig). The distribution of α torsion angles is partially

preserved, suggesting that the model samples structures with expanded Rg and maintains some

backbone preferences of the unbiased ensembles (S17C Fig). However, we found that biased

diffusion in idpSAM is not entirely stable, for systems with larger Rg it caused chain breaks in

33.2% of the structures (S5 Table), which we simply discarded from the final ensembles. How-

ever, the method represents an approximate way to guide a diffusion model away from train-

ing set biases, when experimental data is available.

Discussion

The direct generation of conformational ensembles via machine learning methods is a very

attractive alternative to traditional simulation approaches. The main advantage is a much

greater computational efficiency when the high cost of crossing kinetic barriers via iterative

sampling can be avoided. In addition, generative machine learning frameworks can be trained

in principle to reproduce any target data, including experimental data, and are not limited by

the specific functional forms or numerical algorithms that are commonly used in simulations.

Specifically, the main aim here was to train a model to learn the distribution of IDR conforma-

tions from an atomistic simulation method, focusing on the key challenge of how to achieve

transferability, i.e. the ability to generate ensembles close to what simulations would have pro-

vided for systems and/or conditions not seen in training.

Previously we focused on the generation of conformational ensembles for IDRs and showed

with idpGAN that transferability to sequences unseen during training can be reached in some

cases [29]. Here we demonstrate with idpSAM that consistent transferability necessary for

broader applicability is possible with a diffusion model and an expanded training set. We find

that idpSAM not only generates conformational ensembles for unseen sequences that closely

approximate what traditional simulations would provide, but, remarkably, the generated

ensembles reflect converged ensembles even though many of the training data were clearly too

short to reach full convergence. This suggests that the model learned general principles about

the conformational sampling of peptides that can be applied to arbitrary sequences. One way

in which idpSAM could have achieved this may be by combining information acquired from

shorter peptides and from incomplete sampling of longer peptides. For highly-flexible mole-

cules like IDRs, different sequences may share at least in part their conformational space, thus

making the transfer of knowledge via an effective fragment-based approach feasible.

Despite its improved transferability, our model still has some important limits, especially

when modeling systems with characteristics that are uncommon in the training set. It remains

an open question how to model such systems without further expanding the training set or

explicitly including them in the training data. On the other hand, a strong dependance on

training data comes with a different set of limitations. Crucially, if training data consists of

simulations with limited agreement to experiment, the trained model will suffer from the same

issue. We exemplified this by comparing idpSAM Rg values with experimental ones. A promis-

ing strategy to overcome this limit may be to integrate experimental information in the genera-

tive process either by retraining an already trained model, as demonstrated by DynamICE

[24], or by incorporate experimental restraints as a biasing potential to an already trained dif-

fusion model, an approach conceptually similar to biased sampling in simulations [9]. Further

work on these ideas is needed to identify optimal strategies for integrating experimental infor-

mation with generative models trained on imperfect simulation data. Another limitation is

that idpSAM does not give realistic ensembles for peptides that are much longer than the pep-

tides in the training set, as exemplified by results for the Ash1 IDRs. This is a significant limita-

tion since many biologically relevant systems are relatively long (i.e. > 150 residues).
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Given the limitations, idpSAM may be most useful for shorter disordered peptides up to

the training limit of 60 residues and for studying IDRs where the formation of partial second-

ary structures is more relevant than matching experimental Rg values. The biased sampling

technique may be able to correct for over-compactness at least partially, but further tests will

be needed to assert the robustness of this approach.

To improve performance for longer sequences, it may be necessary to obtain training data

for very long peptides, but the high computational costs may hinder the generation of suffi-

ciently comprehensive training data for such IDRs. In addition, increased capacity of the neu-

ral networks underlying the generative model is likely necessary to improve performance for

longer peptides, which comes at increased computational costs for sampling conformations.

In future research, we will explore the use of fast sampling methods [59] in conjunction with

these heavier models. Another way to improve SAM could be to use probabilistic decoders.

Our use of deterministic decoders is an approximation, but it seems to work well empirically.

We believe that this is because the encodings of SAM contain nearly complete information to

reconstruct a 3D structure, therefore decoding is a one-to-one mapping problem for which a

deterministic decoder is well-suited. Probabilistic decoders are instead indispensable for one-

to-many mappings, like generating all-atom structures from very low-resolution CG represen-

tations [60]. The use of probabilistic decoders could also improve the general modeling capa-

bilities of SAM. Despite these challenges, we show that transferable deep generative models are

a promising strategy for modeling protein structural ensembles.

From a methodological point of view, SAM represents a novel type of latent DDPM for mole-

cules. With SAM we observed stable training and scalability of performance with training set size. It

is reasonable to think that SAM could equally work well with more complex conformational ensem-

bles, such as those generated by explicit solvent MD simulations of IDRs or ensembles of natively

more ordered peptides. We also believe a generative model like SAM could be applied also to other

types of protein simulations, such as datasets of simulations of globular proteins [61]. In addition,

our class of latent DDPM could be adapted to also perform all-atom modeling by using an appropri-

ate reconstruction loss for the AE. For example, we envision the Frame Aligned Point Error [4] loss

from AlphaFold2 as an attractive function for training a SAM version with atomistic details.

While idpSAM generates coarse-grained representations that can be converted to atomistic

representations via other methods, such as cg2all [40], directly generating ensembles with

atomistic details may ultimately give physically more realistic ensembles. This is because all-

atom reconstruction methods trained on the PDB will be biased by the fact that most of the

PDB data is conformationally averaged and at least in part subject to modeling that resorts to

ideal stereochemical geometries when experimental data is not of sufficiently high resolution

to determine otherwise. Generating atomistic ensembles also provides an avenue for including

experimental data as conditional input. These directions will also be a focus of future efforts.

Finally, Arts et al. demonstrated [62] that learning diffusion models is essentially very simi-

lar to learning CG force fields. Therefore, our study has also implications for the development

of machine learning CG force fields for proteins, where the issue of transferability and depen-

dance on the size of the training set are open questions [17]. Our data show that there is hope

that an increase in training set size could translate into improved and more transferable neural

CG force fields. It also indicates that the amount of sampling for each training system does not

have to be complete to achieve transferability. Even as conformational generators may begin to

replace traditional simulation methods, more transferable CG force fields will still be needed

to address more complex biological questions, for example in systems of interacting molecules,

but ultimately, we see a convergence of traditional simulation approaches with machine-learn-

ing based conformational generators into new, more effective platforms for the generation of

realistic conformational ensembles of complex macromolecules.
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Methods

Training and validation sets

The data for training idpSAM consist of ABSINTH simulations of peptides. The dataset

includes data we collected previously [29] to train idpGAN. That set consisted of simulations

of 1,089 peptides with lengths ranging from 20 to 50 residues. Their sequences were obtained

from DisProt (version 2021_06), a manually curated database of IDRs [63]. For this study, we

added simulations for another 2,170 peptides from DisProt with lengths ranging from 12 to

60. The full training set used here therefore consists of 3,259 IDRs. Details of the selection pro-

cess of the sequences are reported in S1 Text.

The validation set is composed of ABSINTH simulations for 25 peptides (S6 Table) with

lengths ranging from 20 to 50. We randomly extracted them from UniProtKB/Swiss-Prot [64],

focusing on peptides with IDR-like properties [65] based on their sequences (S1 Text). We

used the validation set to evaluate the loss function of the models we trained and to select the

best model among training replicas (see below).

Test set

The test set consists of ABSINTH simulations for 22 peptides (S2 Table). 6 of those were used

before in the test set of the ABSINTH-based idpGAN model [29], while 16 are new test cases.

All of the sequences belong to unstructured or synthetic peptides and their lengths range from

8 to 59 residues. None of the proteins in the test have similar sequences in the new training set.

We define a query sequence to be similar to a training one if the E-value is less than 0.001 in a

phmmer search [66] over the training set with default parameters. We selected the test

sequences to cover different lengths and a range of net charge per residue values similar to the

distribution found in training IDRs (S8 Fig). We used the set to evaluate the structural ensem-

ble modeling performance of our method.

Simulations

Simulation data was collected via Metropolis MCMC sampling of IDRs with the OPLS-AA/L

force field [67] and the ABSINTH implicit solvation model [14] as implemented in the CAM-

PARI 4.0 package [11].

For each training and validation peptide, we performed respectively 5 and 3 independent

simulations at 298 K with the same protocol that we used to collect training data for idpGAN.

This protocol replicates the protocol described in the study from Mao et al. [58].

For test peptides, we employed the same protocol as for training and validation peptides,

but with more extensive sampling. For each test peptide we ran as many simulations as needed

to reach converged sampling (S2 Table). The rationale was to evaluate the ability of the genera-

tive model to recover the converged distributions of the test peptides even though training

data may not be fully converged. For four of the longest peptides (nls, protan, protac and

drk_sh3), we additionally performed enhanced sampling via thermal replica exchange (RE)

MCMC [30,68], since we could not reach convergence with regular constant temperature sim-

ulations. Details of all CAMPARI protocols in this study are reported in S2 Text.

Generative model framework

IdpSAM makes use of a DDPM as a generative model. DDPMs attempt to approximate proba-

bility distributions by learning the reverse of a diffusion process over the data. We adopted the

probabilistic and parameterization framework [19] introduced by Ho et al. 2020, which we

refer to for a detailed treatment of DDPMs. Briefly, the goal of DDPM training is to learn to
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sample from an unknown distribution q(x0) describing the elements x0 in the training data.

This is commonly achieved by training a noise prediction network �θ to denoise training set

objects perturbed with various levels of random Gaussian noise. Once the network is trained,

it can be used to generate samples distributed approximately as q(x0) by gradually denoising

samples extracted from a normal distribution N(0,I). In this work, we are interested in model-

ing the distribution of the Cartesian coordinates of Cα atoms of peptides. The latent DDPM

strategy that we explore here proceeds as follows: (i) we first train an autoencoder (AE) to

learn an Euclidean-invariant encoding of the coordinates of Cα atoms of proteins; (ii) we then

train a DDPM on encoded Cα coordinates; (iii) finally, for generating samples at inference

time, we sample from the DDPM and map the generated encodings to the corresponding Cα
coordinates using the decoder part of the AE.

Invariant structural AE

The first stage of training our latent DDPM is to train an AE. The goal is to learn to encode Cα
traces from protein structures into a representation that can be easy to model with a DDPM.

We define an encoder function Eϕ with learnable parameters ϕ as:

z ¼ E�ðxÞ ð1Þ

where x2RL×3 are the Cartesian coordinates of the Cα atoms of a protein with L residues and

z2RL×c is an encoding (that is, a “latent” representation) for that conformation. Importantly,

to simplify the learning task of the downstream DDPM, we aim to learn SE(3)-invariant

encodings. Formally:

z ¼ E�ðxÞ ¼ E�ðM � xÞ ð2Þ

requiring that any rigid transformation M consisting of rotations and translations in Euclidean

space preserves the object and its orientation [4,26] (i.e., a distortion or reflection of the coor-

dinates is not permitted). Therefore, these encodings can be viewed as a form of learnable

internal coordinates. This is different from other latent DDPM implementations for molecules

[34,35], where the encodings are points in Euclidean space.

The other component of the AE is a decoder function Dψ with learnable parameters ψ:

~x ¼ DcðzÞ ð3Þ

where ~x 2 RL�3
is a reconstructed conformation. To train an AE, the objective function is

based solely on reconstruction:

LAEð�;cÞ ¼ Ex�qðxÞ½CAEðx;DcðE�ðxÞÞÞ� ¼ Ex�qðxÞ½CAEðx; ~xÞ� ð4Þ

where q(x) is the distribution of conformations in the training set. The reconstruction loss for

a single conformation is composed of two terms:

CAEðx; ~xÞ ¼ Cdistðx; ~xÞ þ Ctorsðx; ~xÞ ð5Þ

Cdist is a term for evaluating the reconstruction of all Cα-Cα distances in the molecule. Ctors

is a reconstruction term for the torsion angles formed by four consecutive Cα atoms in the mol-

ecule, which we term as the α angles. The first term is a mean squared error (MSE) defined as:

Cdist x; ~xð Þ ¼
1

Npairs

X

i>j
ðsðdij; ji � jjÞ � sð~dij; ji � jjÞÞ2 ð6Þ

where Npairs = L(L−1)/2 is the number of Cα-Cα distances in a peptide, dij = kxi−xjk and ~dij ¼
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k~x i � ~x jk are the original and reconstructed Euclidean distances between Cα atoms i and j and

s is a standard scaler linear function with the sole purpose of numerically helping with training

(S3 Text). Because the set of all pairwise distances in a 3D point cloud can be used to define the

position of the points up to a E(3) transformation [69,70], the Cdist term is in principle sufficient

to obtain perfect molecular reconstructions up to a reflection. However, proteins are chiral mol-

ecules [71]. To break the reflection symmetry in the learned representations, one possibility

would be to rely on SE(3)-invariant neural networks [72,73]. Instead, we adopted a simple

approximation which consists in forcing the AE to learn the correct mirror images by using a

reconstruction loss for torsion angles α, which are molecular features with a chiral distribution

[29,74]. The term is expressed as:

Ctors x; ~xð Þ ¼
1

Ntorsion

X

i
kui � ~uik

2
ð7Þ

where Ntorsion = (L−3) is the number of torsion angles in a peptide chain, ui and ~ui are vectors

[4] storing the cosine and sine values of the torsion angle between Cα atoms i, i+1, i+2 and i+3

of training and reconstructed conformations, respectively. Empirically, we found that AEs

trained with LAE have high reconstruction accuracy and learn to correct mirror images (see

Results). Therefore, Eϕ can be viewed as an SE(3)-invariant encoder for practical purposes.

Finally, we note that the reconstruction objective considers only invariant geometrical features.

We do not aim to recover the rigid-body translation and rotation of the original conformation.

This choice allows us to circumvent the use of an additional equivariant function to store recon-

struction group actions, as prescribed by Winter at al. for geometrical autoencoders [34,75].

AE neural networks

The use of invariant encodings gives freedom over the choice of the architectures for Eϕ and

Dψ. For both networks, we use transformer architectures [36], which work well for protein

data [76] and naturally allow modeling protein chains with different lengths.

The Eϕ network takes as input the full distance matrix and the α torsion angles of a confor-

mation x. These features are all internal coordinates, which is what allows encodings to be

translationally and rotationally invariant [77]. The output of Eϕ is an encoding z. We set c, the

dimension of a Cα encoding, to 16. At first sight, it may seem counterintuitive to represent Cα
atoms via vectors with more dimensions than the 3 original Cartesian coordinates. However,

our goal is not to learn an efficient Euclidean-invariant dimensionality reduction for protein

structures, rather to optimize the performance of a latent DDPM. Empirically, we found c = 16

to work best for our data (see Results).

As for Dψ, the network takes as input an encoding and maps it back to 3D coordinates. Full

details of the two networks are reported in S3 Text and S18 Fig.

Latent DDPM

Once an AE is trained, it is possible to use Eϕ to encode training conformations and to apply a

DDPM to learn their distribution. Here, the DDPM is a conditional model. Its goal is to learn

q(z0|a), that is, the distributions of encoded conformations z0 for a peptide with amino acid

sequence a, which represents the condition. We train our model with the variational lower

bound objective Lsimple commonly used in DDPM applications [19]:

LsimpleðyÞ ¼ Et;�;aEz0�qðz0 jaÞ
½k� � �yðztðz0; �; tÞ; t; aÞk

2
� ð8Þ
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Here 1<t�T is an integer-valued diffusion time step and is extracted from a uniform distri-

bution. T is the total number of steps of the diffusion process. � 2 RL×c is random noise

extracted from N(0,I) used to perturb an encoded training set conformation z0. a is an amino

acid sequence associated with a conformation and is extracted from the distribution of

sequences in the training set. zt is the perturbed version of z0, which can be computed in closed

form [19] as a function of z0, �, and t. The task of the �θ network is, given its input zt, to predict

the � which can be used to reconstruct z0.

DDPM neural network

The noise prediction network �θ takes as input a perturbed encoding zt, the corresponding per-

turbation step t and the amino acid sequence a of the peptide. The architecture of �θ is again a

transformer. We incorporated in the network several modifications inspired by recent works

where transformers are used in latent DDPMs. The most important are the use of the adaLN-

Zero mechanism [31] for injecting timestep and amino acid embeddings in the network and

also the injection of the input perturbed encoding at each transformer block. Full details for �θ

are reported in S3 Text and S19 Fig.

Sampling and decoding

For the diffusion process during training, we use T = 1,000. We adopt a sigmoid noise schedule

[78] for the process. When sampling at inference time, we use 100 steps via the accelerated

generation algorithm introduced with denoising diffusion implicit models [42]. Unless other-

wise stated, all results presented in the article are obtained by generating samples with 100

steps.

We also employ a biased sampling strategy to integrate experimental Rg values in the gener-

ative process. We present the details of this method in S4 Text and S20 Fig.

For decoding the generated encoded conformations, we directly use the Dψ network

obtained in the AE training. In our work, the decoder is therefore a deterministic function. In

theory, to perfectly replicate the distribution of objects x0 (in our case, Cα coordinates), the

decoder of a latent generative model should be probabilistic [33], as for example variational

autoencoders [21]. However, we discovered that this approximation to work well in practice

and discuss this choice in the Results section.

Training process

For training the AE and the DDPM we define two parameters called nsystems and nframes. The

first is the total number of peptides used in training. With our full training set nsystems = 3,259.

The second parameter is the number of snapshots randomly extracted from the MCMC data

of each system during a training epoch. We use different nsystems and nframes values for the AE

and the DDPM (the former is trained with only a part of the full dataset to speed up training)

and different number of epochs. When training, we always adopt batches containing protein

conformations with the same number of residues to avoid padding strategies23.

During AE training, we perturb input conformations with Gaussian noise with σ = 0.1 Å as

a form of data augmentation which we found to help the learning process.

Both models are trained with the Adam optimizer. We found the use of learning rate sched-

ules to be critical in training and used different schedules for each model (see Results section).

When training a model, we run multiple replicas and, at the end of training, we select the

one with the best loss over the validation set. Full details of the training processes and their

computational times are reported in S7 Table.
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Implementation

All neural networks and deep learning algorithms in this work are implemented using the

PyTorch library [79]. We employ the Diffusers library [80] to run the forward (noising) and

reverse (generative) diffusion processes. The code and weights for a pre-trained idpSAM are

available at https://github.com/giacomo-janson/idpsam.

Evaluation

To compare the properties of ensembles generated by SAM (or other strategies) with the refer-

ence MCMC ones, we used different scores based on previous work [29]. Here we provide

brief descriptions. More details are given in S5 Text. The MSE_c score evaluates the similarity

between reference and generated Cα-Cα contact map frequencies, with 8 Å as a contact

threshold. MSE_d compares average Cα-Cα distance values. aKLD_d evaluates an approxima-

tion of the Kullback-Leibler divergence (KLD) between sets of reference and generated Cα-Cα
distance distributions. aKLD_t similarly evaluates the KLDs between α angle distributions.

The aJSD_d and aJSD_t are similar to the last two scores, but instead use the symmetric Jen-

sen-Shannon divergence (JSD). We use them to compare two ensembles when we do not con-

sider one of them to be a reference. Finally, KLD_r evaluates the distribution of Cα radius-of-

gyration (Rg) values.

For each test set peptide, we generated with SAM an ensemble of 10,000 conformations and

compared it via these scores against an ensemble composed of the same number of snapshots

from MCMC data. In case of the test peptides for which we did not employ RE, MCMC con-

formations were randomly extracted from all the available simulations at 298 K. For those pep-

tides with RE data, 25% of the snapshots were extracted from constant temperature

simulations at 298 K, the remaining 75% from the replicas at 298 K in the RE simulations.

All plots in the manuscript were generated for ensembles with 25,000 conformations

obtained using this protocol from MCMC data or generated by SAM. To visualize the distribu-

tion of conformations, we constructed histograms of features identified in principal compo-

nent analysis (PCA). We performed PCA on the reference MCMC ensembles using all Cα-Cα
distances as input features and then projected conformations from the generated ensembles

onto the principal components obtained from the reference simulation data.

The 3D structures in this work were analyzed and rendered via NGLview [81].

Supporting information

S1 Text. Selection of sequences.

(DOCX)

S2 Text. MCMC simulation protocol.

(DOCX)

S3 Text. Neural networks of idpSAM. [83,84,85].

(DOCX)

S4 Text. Biased latent diffusion sampling.

(DOCX)

S5 Text. Evaluation metrics.

(DOCX)

S1 Fig. Cα conformations reconstructed by the AE. Each row shows two MCMC conforma-

tions randomly extracted from simulation data of a test peptide (only five peptides are shown).
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Conformations were encoded and decoded back by the AE. For each conformation, we show:

(i) on the left, a scatter plot with the original Cα-Cα distances against the corresponding values

in the AE reconstruction; (ii) on the middle, a scatterplot with the original α angles against the

reconstructed values; (iii) on the right, a superposition of the original (blue) and reconstructed

(orange) Cα structures. In the scatterplots, original values are on horizontal axes, recon-

structed values on vertical axes. Examples were randomly selected.

(TIF)

S2 Fig. Additional structural ensembles from idpSAM. Each row shows the ensembles of a

peptide from the test set: angiotensin (L = 8), yesg6 (L = 12), Q9EP54 (L = 27), Q91185

(L = 32), Q2KXY0 (L = 33), P27205 (L = 34), synthetic (L = 34), ak37 (L = 37), cgrp_wt_fl

(L = 37) and cgrp_mt_fl (L = 37). See Fig 2 in the main text for more details.

(TIF)

S3 Fig. Additional structural ensembles from idpSAM. Each row shows the ensembles of a

peptide from the test set: n49 (L = 38), cytc (L = 39), sic1_nterm_40 (L = 40), O13030 (L = 44),

nls (L = 46), protac (L = 55) and protan (L = 55). See Fig 2 for more details.

(TIF)

S4 Fig. Evaluating SAM and idpGAN. (A) Each subplot confronts the evaluation scores of the

two models for the 22 test set peptides. The SAM version evaluated here was trained with the

same dataset of idpGAN. (B) Similar confrontations, but the SAM version evaluated here was

trained with the entire training set presented in this study.

(TIF)

S5 Fig. Modeling the ensemble of Q2KXY0 with SAM and idpGAN. (A) PCA histograms

for the structural ensembles of idpGAN, SAM-o and SAM-e. Here, SAM-o is a model trained

with original training set of idpGAN (1089 IDRs), while SAM-e was trained with the expanded

training set of this study (3,259 peptides) and is the model discussed in most of the main text.

Frequency values in colorbars are multiplied by 1 × 103. (B) Cα-Cα contact maps of the three

methods. The MSE_c scores of the ensembles are reported in brackets. (C) Average Cα-Cα
distance maps of the three methods, with their MSE_d scores reported in brackets. (D) Cα Rg

histograms the three methods, with KLD_r values in brackets.

(TIF)

S6 Fig. Cα-Cα distances and α torsion angle distributions in CGRP variants. (A) Histo-

grams of the five Cα-Cα distance distributions with the highest JS divergence between the

wild-type and mutant ensembles from MCMC simulations. Residue indices of the Cα atoms

are reported on top of the subplots (B). Histograms of the five α angle distributions with the

highest JS divergence between the wild-type and mutant ensembles from MCMC. Residue

indices of the Cα atoms defining the torsion angles are reported on top.

(TIF)

S7 Fig. Cα-Cα distance distributions in ak37 ensembles. The plots show data for those Cα-

Cα distances that exhibit the highest absolute loading value for 10 of the top principal compo-

nents (PCs) identified in a PCA on the MCMC ensemble (refer to the main text for PCA

details). The distances associated with PC 5 and 11 are not shown since it is the same shown

for PC 1. SAM-ak was trained on the full training set of SAM and additional simulation data

from three peptides with sequences similar to ak37.

(TIF)
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S8 Fig. Properties of the 3,259 training and 22 test sequences. Left panel: lengths of the pep-

tides. Central panel: net charge per residue. Right panel: average helicity in an ensemble of

10,000 conformations from MCMC simulations. Helicity is defined as the fraction of residues

in an all-atom peptide conformation found in a helical state according to the DSSP algorithm

[86]. The average helicity value of the ak37 peptide is highlighted in the plot.

(TIF)

S9 Fig. Overfitting on the structural ensemble of ak37. (A) to (E) Ensemble of ak37 modeled

by a SAM version trained only on ak37 data. See Fig 2 in the main text for more details. (F)

Cα-Cα distance distributions of the same ensemble. See S7 Fig for details.

(TIF)

S10 Fig. MCMC ensembles for the ak synthetic peptides. The ensembles consist of confor-

mations randomly extracted from MCMC simulations. (A) PCA histograms for the four pep-

tides. PCA was performed on each peptide independently and each row uses its own principal

axes. (B) Cα-Cα contact maps. (C) Average Cα-Cα distances. (D) Cα Rg histograms. (E) α tor-

sion angle histograms.

(TIF)

S11 Fig. Modeling of the DP03125r003 peptide (L = 15) with SAM and different levels of

MCMC sampling. Refer to Fig 5 in the main text for a description of the panels. The ensemble

from only 5 MCMC runs closely approximates the one from extensive sampling consisting of

73 MCMC runs (S2 Table).

(TIF)

S12 Fig. Modeling of the nls (L = 46), protac (L = 55) and protan (L = 55) peptides with

SAM and different levels of MCMC sampling. Refer to Fig 5 in the main text for a descrip-

tion of the panels. (A) to (C): data or nls. (D) to (F): data for protac. (G) to (I): data for protan.

(TIF)

S13 Fig. Evaluating SAM and the MCMC-5 sampling strategy. Each subplot confronts the

evaluation scores of the two strategies for the 22 test set peptides. Markers are colored accord-

ing to the length of the corresponding peptide.

(TIF)

S14 Fig. Validation losses observed during DDPM training for different idpSAM versions.

All the models with the “SAM” label have the same architecture for the noise prediction net-

work, but have different number of transformer blocks in it. The SAM model with 20 blocks

corresponds to the SAM-G model discussed in the main text. The SAM-E model has a differ-

ent architecture, it has 16 blocks and incorporates 4 FrameDiff edge update operations. In case

of the SAM models with 4 and 16 blocks, there is a large difference in validation loss at the end

of training, which translates into a large difference in ensemble modeling performance (S4

Table). SAM-E has slightly better validation loss with respect to SAM versions with compara-

ble numbers of layers, but it does not seem to significantly improve modeling performance

(Table 1). For each model, we show validation loss curves from 5 different training runs.

(TIF)

S15 Fig. Comparison of Rg from idpSAM ensembles and experimental measurements for

10 IDRs of the test set. (A) Average Rg values from idpSAM and ABSINTH ensembles col-

lected in our study. (B) Average Rg values from idpSAM and experimental measurements. (C)

Average Rg values from idpSAM ensembles generated via the biased diffusion method and
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experimental measurements. (A) to (C) See S5 Table for more information on the ensembles.

(TIF)

S16 Fig. Analysis of Ash1 peptides. (A) Violin plots with Rg distributions of Ash1 peptides

with different lengths in ABSINTH ensembles (blue) and idpSAM ensembles (orange). The

dashes lines inside violins represent the quartiles of the datasets. All ensembles contain 10,000

snapshots. Data for ABSINTH simulations was collected by running 20 MCMC replicas at 298

K using the protocol described in the Methods. IdpSAM ensembles were converted to all-

atoms via cg2all. (B) Average number of Cα-Cα clashes in snapshots of the same ensembles.

Here, a clash is defined as a distance < 0.4 nm between two Cα atoms with sequence

separation > 2.

(TIF)

S17 Fig. Comparison between idpSAM ensembles generated via simple diffusion and

biased diffusion for 10 test IDRs. (A) Rg histograms of unbiased (blue) and biased (orange)

idpSAM ensembles. Vertical gray lines are the experimental values. (B) Average Cα-Cα dis-

tances. Unbiased and biased ensembles are in the lower and upper triangles, respectively. (C) α
torsion angle histograms. (A) to (C) See S5 Table for more information on the ensembles.

(TIF)

S18 Fig. Encoder and decoder networks of SAM. (A) Outline of the encoder network. The

elements of the network are colored in blue, the tensors being processed by it are colored in

gray. The tensor r represents the numerical indices of the input peptide, which are used to gen-

erate a 2d relative positional embedding h2dpos. Embed: embedding layer. MLP: multilayer per-

ceptron. RBF: radial base function for embedding interatomic distances. LN: layer

normalization. (B) Preparation of the input of a transformer block in the encoder. (C) Outline

of the decoder network.

(TIF)

S19 Fig. Noise prediction network of SAM. (A) Outline of the entire noise prediction net-

work. SinEmb: sinusoidal embedding. (B) Illustration of a transformer block of the network.

FC: fully-connected module consisting of an activation and a linear layer. LN: layer normaliza-

tion (colored in white if does not have learnable elementwise affine parameters). Mod.: modu-

late operation for adaLN-Zero. Gate: gate operation of adaLN-Zero.

(TIF)

S20 Fig. Illustration of reverse biased latent diffusion. (A) Default step when sampling with

a diffusion model. Only the output of the noise prediction network guides reverse diffusion.

(B) Biased diffusion step. The output of the noise prediction network is summed to the gradi-

ent of a biasing potential. The biasing potential evaluates the 3D representation of an encoding

at time t. The 3D representation is reconstructed from the encoding via the decoder network.

The biasing potential can be used to guide diffusion to generate encodings representing 3D

conformations with some target structural property, such as a certain Rg value.

(TIF)

S1 Table. Reconstruction quality by the AE.

(DOCX)

S2 Table. Properties of the 22 test set peptides.

(DOCX)

S3 Table. Properties of the ak synthetic peptides.

(DOCX)

PLOS COMPUTATIONAL BIOLOGY IDR sampling via machine learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012144 May 23, 2024 23 / 28

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012144.s021
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012144.s022
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012144.s023
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012144.s024
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012144.s025
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012144.s026
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012144.s027
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012144.s028
https://doi.org/10.1371/journal.pcbi.1012144
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