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Abstract

Considerable spatial heterogeneity has been observed in COVID-19 transmission across

administrative areas of England throughout the pandemic. This study investigates what

drives these differences. We constructed a probabilistic case count model for 306 adminis-

trative areas of England across 95 weeks, fit using a Bayesian evidence synthesis frame-

work. We incorporate the impact of acquired immunity, of spatial exportation of cases, and

16 spatially-varying socio-economic, socio-demographic, health, and mobility variables.

Model comparison assesses the relative contributions of these respective mechanisms. We

find that spatially-varying and time-varying differences in week-to-week transmission were

definitively associated with differences in: time spent at home, variant-of-concern propor-

tion, and adult social care funding. However, model comparison demonstrates that the

impact of these terms is negligible compared to the role of spatial exportation between

administrative areas. While these results confirm the impact of some, but not all, static mea-

sures of spatially-varying inequity in England, our work corroborates the finding that

observed differences in disease transmission during the pandemic were predominantly

driven by underlying epidemiological factors rather than aggregated metrics of demography

and health inequity between areas. Further work is required to assess how health inequity

more broadly contributes to these epidemiological factors.

Author summary

During the COVID-19 pandemic, different geographic areas of England saw different pat-

terns in the number of confirmed cases over time. This study investigated whether demo-

graphic differences between these areas (such as the amount of deprivation, the age and

ethnicity of the populations, or differences in where people spent their time) were linked

to these differences in disease transmission. We also considered whether this was associ-

ated with the number of cases in neighbouring areas as well. Using a mathematical model

fit to multiple data streams, we discovered that a statistically significant link between some

demographic variables (time spent at home, COVID-19 variant, and the amount of adult
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social care funding) and week-to-week transmission exists, but this relationship is very

small, and the influence of cases in neighbouring areas was far more impactful in explain-

ing differences in transmission between areas over time.

Introduction

During the COVID-19 pandemic, measures of deprivation have been identified as impacting

health outcomes, with more deprived areas reporting higher COVID-19 attributed mortality,

both in England [1] and globally [2]. Less well-understood is the impact these measures have

on disease incidence–confirmed cases. Descriptive studies early in the pandemic identified

that English administrative areas with a higher Index of Multiple Deprivation (IMD) reported

more cases of COVID-19 than those with lower IMD scores [3,4] during the first wave of dis-

ease incidence in 2020. However, such patterns do not persist throughout the entire epidemic,

and for some periods the opposite trend can now be observed (Fig 1B).

England is divided into Lower Tier Local Authorities (LTLA)–areas of social service provi-

sioning (see section 1.1 of S1 Appendix). For these different areas, data is available on the

socio-demographic makeup–the average age, ethnic population proportions, population den-

sity; on socio-economic metrics–median earnings, employment, education; and epidemiologi-

cal data throughout the pandemic–daily new cases, variant proportions, COVID-19 support

funding allocated, and mobility data recording time spent at different locations. These vari-

ables vary greatly across LTLAs, and similarly disease incidence and rates of infection have var-

ied across LTLAs during the pandemic [5]. Fig 1 demonstrates spatial variation in two

covariates of interest, and mean per capita weekly incidence of COVID-19 stratified by these

variables (see section 1.6 of S1 Appendix for plots of other covariates). Some variables change

weekly (community mobility, variant proportion), others change annually (funding allocation,

income), while others are fixed by LTLA for the entire duration.

Recognising the variation in disease incidence across administrative areas, the UK govern-

ment briefly implemented a tiered lockdown system on October 14th 2020 [6], where more

stringent rules on social mixing were applied to areas of the country with a greater incidence

of COVID-19. This system was retired the following month for a second nationwide stay-at-

home order. It remains unclear as to whether these observed epidemiological differences can

be explained solely by spatial drivers of disease spread, or whether the intrinsic factors associ-

ated with each LTLA influenced the epidemic trajectory in each respective LTLA. Hypotheti-

cally, for example, populations in wealthier LTLAs may have been more able to work from

home, or may have had more access to space to self-isolate in. LTLAs with a higher proportion

of elderly residents may have been more susceptible to infection, or may have seen less social

mixing. LTLAs that received more COVID-19 support funding per head, may have subse-

quently achieved better disease suppression.

Here, we model the number of weekly pillar 2 (general population testing) PCR-confirmed

COVID-19 cases in 306 English LTLAs, for 95 weeks, from the week beginning May 10th 2020

to the week beginning February 27th 2022. We assume the number of weekly cases in an LTLA

is determined by the previous week’s number of cases, plus a proportion of imported infec-

tions from adjacent LTLAs controlled by a model parameter. Additional model parameters

then control the relative influence of 16 socio-economic and -demographic variables, and

time- and LTLA- varying terms on the observed increases and decreases in cases. Model

parameters are fit to English COVID-19 surveillance data by LTLA through a Bayesian evi-

dence synthesis framework.
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Fig 1. Variation in socio-demographic factors by LTLA, and the respective differences in average per capita incidence of COVID-19 cases when stratified

by these socio-demographic factors. (A/C) Plots depict how IMD and White British population proportion vary across the 306 English LTLAs we consider.

(B/D) The 306 considered LTLAs are partitioned into quintiles (blue being the lowest values quintile and red the highest values quintile) based on their (B)

IMD scores and (D) White British population proportion respectively. Lines display the mean per capita weekly incidence of COVID-19 across all LTLAs in

each quintile. Shaded regions depict the 95% quantiles. Quintile binning in plots B/D is for illustrative purposes—model fitting is performed to the continuous

measures presented in plots A/C. Boundary source: Office for National Statistics licensed under the Open Government Licence v.3.0 [29]. Contains OS data

crown copyright and database right (2024).

https://doi.org/10.1371/journal.pcbi.1012141.g001
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Real-time modelling studies provided valuable insights and projections into key epidemio-

logical parameters throughout the pandemic [7], through regular reports integrating the latest

epidemiological data. In this study we investigate how the composition of a population, and

population-level covariates, contributes to week-to-week transmission potential. Identification

of such contributions would inform whether real-time-modelling efforts could be improved in

the future by integrating such socio-economic and -demographic data.

Results

Model fit

The model successfully captured the variation in LTLA-specific epidemic trajectories. Fig 2A

sums the model fit across all 306 LTLAs, while plots 2B and 2C show the model fit, for exam-

ple, to the two LTLAs with the greatest variation in their epidemic trajectory as assessed via

dynamic time warping (DTW) distance [8] (a metric for analysing similarity in time series

data). All LTLAs see broadly three principle epidemic waves, initiated by the emergence of the

Alpha, Delta, and Omicron variants respectively.

The effective reproduction number, Reff
i;t , is an epidemiological parameter dictating the num-

ber of secondary infections caused by a primary infection in LTLA i at week t. Hence, when

Reff
i;t > 1, cases are observed to increase in LTLA i at week t. Likewise, when Reff

i;t < 1, cases are

observed to decrease. Our model assumes that Reff
i;t is made up of three principle elements. First,

a time-varying random walk term, zt, observed across all LTLAs, capturing the impact of multi-

ple time-varying factors such as changes to non-pharmaceutical interventions (NPIs), vaccina-

tion uptake, school closures, and national holidays. Second, an LTLA-varying error term, θi, to

capture any unexplained intrinsic differences between the reproduction number across LTLAs.

Third, a term capturing the impact of 16 covariates of interest–data compiled from multiple

sources (see Section 1 of the S1 Appendix) capturing: the population ethnicity proportions, the

index of multiple deprivation (IMD) scores, the population age proportions, the population

densities, the median annual incomes, the time spent at certain locations, the proportion of

new COVID-19 variants, and the amount of COVID-19 funding allocated, across all 306

LTLAs considered. The impact of these variables is captured in the term xi,t β, where xi,t repre-

sents the 16 covariates introduced above for LTLA i at week t, and β is a model parameter of

coefficients controlling the relative contributions of each of the 16 covariates.

Fig 3 shows the mean and 95% CrI of the posterior distributions for these covariate coeffi-

cients (parameter β above). Model covariates (xi,t) were standardised to have mean 0 and stan-

dard deviation 1 before model fitting to enable comparison of relative covariate coefficients.

Unsurprisingly, the time spent at home was the strongest covariate effect (outside of

COVID-19 variant) in determining changes to transmission. LTLAs and weeks where popula-

tions spent more time in residential areas saw reduced effective reproduction numbers. Simi-

larly, LTLA-weeks with more visits to (non-home) workplaces saw increased reproduction

numbers. Additionally, the LTLAs with greater allocations of Adult Social Care (ASC) infec-

tion control funding per head saw reduced reproduction numbers.

Each new variant was associated with a sequential increase in the reproduction number, in

alignment with similar studies into the transmission potential of each variant [10].

Our analyses suggested there was no statistically significant impact on the effective repro-

duction number by population ethnicity proportions, IMD, population proportion over the

age of 65, population density, median annual income, visits to transit stations, un-ringfenced

funding or Contain Outbreak Management Fund (COMF) funding allocated–all these coeffi-

cients’ 95% CrI overlaps 0 in Fig 3.
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Our model also assumes that the number of weekly cases in an LTLA is not just driven by

the previous weekly number of cases in that LTLA, but that some new infections can be trig-

gered by infections in adjacent LTLAs. This is a process known as spatial exportation, whereby

a primary case in one LTLA may visit a neighbouring LTLA, and subsequently cause a

Fig 2. Model fit to data, at national level and two LTLAs as examples. (A) The number of weekly new COVID-19 cases in England, summing the model fit

across all 306 LTLAs. (B/C) The per capita weekly incidence of COVID-19 in two specific LTLAs with greatly different epidemic trajectories. Black dots show

data and the blue line represents mean model fit. Shaded blue regions depict the 95% credible intervals (CrI). Dashed lines represent significant changes in

nationwide non-pharmaceutical interventions imposed [9]. As shaded in the top bar, red areas depict times of full “stay-at-home” orders, orange depicts partial

restrictions on social mixing, green depicts no barriers to social mixing.

https://doi.org/10.1371/journal.pcbi.1012141.g002
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Fig 3. Posterior estimates of all covariate coefficients (parameter β). These values are separated into three categories: those capturing population effects,

those capturing variants-of-concern, and those capturing funding allocations. Black dots represent the mean estimate, black lines the 95% CrI. The dashed grey

line marks 0. A positive value indicates that the effective reproduction number increases with higher values of the associated covariate, a negative value

indicates that the effective reproduction number decreases with higher values of the associated covariate.

https://doi.org/10.1371/journal.pcbi.1012141.g003
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secondary infection outside of their home boundaries. We assume that the proportion of spa-

tial importations varies by LTLA, as some areas, like city centres, may attract more visitors

than other, more rural, LTLAs. The model parameter zi is defined as the proportion of all

weekly cases in adjacent LTLAs that contribute secondary infections each week in LTLA i.
Fig 4 shows the impact of all other model variables that contribute to the effective reproduc-

tion number–the proportion of case importations from neighbouring LTLAs, zi, (median

Fig 4. Model variables contributing to the LTLA-varying and week-varying effective reproduction number. (A) Estimates of the LTLA-varying parameter zi,

denoting what proportion of the cases in adjacent LTLAs cause secondary cases in LTLA i the following week. (B) The remaining spatial error term, θi, capturing

underlying differences in LTLA reproduction numbers not explained by the sixteen considered covariates (xi,t−1 β). (C) The random walk term applied to all LTLAs

capturing a baseline time-varying change to the reproduction number. Solid line shows the mean estimate and the shaded region the 95% CrI. Dashed lines and shaded

bar at the top of the plot again mark areas of full (red), partial (orange) and no (green) stay-at-home orders. Boundary source: Office for National Statistics licensed

under the Open Government Licence v.3.0[29]. Contains OS data crown copyright and database right (2024).

https://doi.org/10.1371/journal.pcbi.1012141.g004
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value 0.134, interquartile range (IQR) 0.069–0.247) the LTLA-varying error terms θi (median

value 0.028, IQR -0.159–0.222), and the time-varying random walk trajectory, zt (median

value -0.489, IQR -0.871 - -0.243). Fig 4A shows that the majority of LTLAs imported only a

small proportion of cases from neighbouring LTLAs—LTLAs shaded in blue saw less than

20% of the total cases in LTLAs they share a border with causing onwards infections within

their own boundaries. Denser populated LTLAs like city centres have higher zi values in gen-

eral, (areas shaded red in Fig 4A) demonstrating the increased transmission risk caused by

individuals travelling into population centres from more rural LTLAs. The greatest contribu-

tion of the three terms comprising our Reff
i;t is thus the random walk term, followed by the

covariate impacts and LTLA-specific error term θi.
Fig 4B shows the spatial variation in the reproduction number that is not explained by the

16 covariates (xi,t−1). The apparent clustering of higher and lower θi values suggests this pattern

may not simply be noise, but that there could be spatial variables yet to be identified that may

also be influencing the transmission of COVID-19 across LTLAs in England.

Fig 4C shows the random walk trajectory over time. There are multiple time-varying aspects

that will have influenced the epidemic in England. We specifically include COVID-19 variant

proportions, and our mobility covariates have been shown to capture the influence of NPIs over

time [11]. Fig 4C demonstrates a gradual decrease in the background effective reproduction

number for all LTLAs, in line with the uptake in vaccination and changes in behaviour.

Model comparison

To assess the relative contribution of each of these modelled mechanisms towards improving

model fit, the model is fit multiple times with some mechanisms removed.

Alongside the main analysis (MA) presented above, where all model terms are included,

three additional sensitivity analyses are presented: (SA1) we fit the model without any covari-

ates included–i.e. β is hard-coded to 0, (SA2) we fit the model with no spatial exportation

included (but covariates are still included)–i.e. zi is hard-coded to 0, (SA3) we fit the model

with no spatial exportation or covariates included–i.e. both β and zi are fixed at 0. θi and zt
remain in all three sensitivities.

Model comparison is performed using the expected log pointwise predictive density (elpd)

metric under a “leave future out” (LFO) cross-validation scheme, detailed in section 4.2 of the

S1 Appendix. elpd (LFO) assesses the relative goodness of fit and predictive performance of

different model versions by evaluating each model’s ability to predict held-out future sections

of the time series. Higher elpd (LFO) values (lower magnitude) indicate better model

performance.

The elpd (LFO) values for the main analysis (MA) and three sensitivity analyses (SA1-3) are

shown in Table 1 below. A greater elpd (LFO) value suggests a better model fit.

The greatest elpd value, and hence the best performing model, is the main analysis (MA),

containing both a nearest-neighbour spatial importation mechanism, and population / variant

Table 1. Model comparison via the elpd leave-future-out cross-validation measure. A greater value suggests a bet-

ter model fit. “Spatial importation excluded” indicates that zi is fixed to 0, and “covariates excluded” indicates that β is

fixed to 0. When included these are both fit model parameters.

Model Formulation elpd (LFO) value (point estimate / standard error)

(MA) Spatial importation included, covariates included. -81,006 (SE 505)

(SA1) Spatial importation included, covariates excluded. -81,124 (SE 502)

(SA2) Spatial importation excluded, covariates included. -83,945 (SE 667)

(SA3) Spatial importation excluded, covariates excluded. -84,018 (SE 666)

https://doi.org/10.1371/journal.pcbi.1012141.t001
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/ funding covariates. This is to be expected as the sensitivities are nested models of the main

analysis, and the elpd does not directly penalise increased model complexity. However, the

improvement offered by including the model covariates (MA vs. SA1, and, SA2 vs. SA3) is

insignificant once the standard errors in the elpd estimates are considered, and therefore not

worth the complexity trade-off of their inclusion. The improvement offered by the inclusion of

spatial importation mechanisms however (an estimated elpd increase of 2,939, MA vs. SA2)

are significant, and support the inclusion of spatial importation as important to explaining var-

iation in disease incidence between LTLAs.

Other model formulations are included as supplementary results for comparison in section

4 of the S1 Appendix, including alternate spatial kernels, alternate data sources, univariate

models, and consideration of different reporting assumptions.

Discussion

Our study explored the informative potential of multiple spatially varying health inequity,

socio-demographic, and socio-economic factors on week-to-week transmission potential

within a population. We investigated how these variables related to the observed differences in

COVID-19 week-to-week transmission across 306 administrative areas of England over a

period of 95 weeks. In conclusion, the majority of these variables were not found to be signifi-

cantly associated with COVID-19 transmission; however, we did detect a significant associa-

tion for two population variables–the time spent at home, and the number of visits to

workplaces, and one funding variable–the amount of ASC infection control funding allocated

per head to an LTLA.

Starting with ethnicity, Black and South Asian populations have been shown to have

increased COVID-19 mortality risk [12]. In their global systematic review of the impact of eth-

nicity on COVID-19 health outcomes, Irizar et al. (2023) [13] report mixed results when com-

paring the risk of infection for Asian and “other” ethnicity populations with White majority

populations, in accordance with our results in Fig 3. However, they show a far more conclusive

increased relative risk in Black populations compared to white majority populations. Our

results suggest a mild decrease in week-to-week transmission potential for LTLAs with a

higher proportion of Black African / Caribbean residents on average (though still statistically

insignificant). One possible explanation is that put forward by Harris & Brunsdon (2021) [14],

who show that the distribution of COVID-19 cases by ethnicity changes over time in England,

with Black populations reporting far higher relative incidence during the peak of the first

wave, before then changing to capturing the minority of cases proportionally. Similarly,

Mathur et al. (2021) [15] report a lower risk of infection in Black populations compared to

White populations during the second wave. They demonstrate this is likely due to the hetero-

geneity in spatial incidence over time. Our study both directly factors for spatial heterogeneity

in incidence and considers a longer time period than these studies investigating this associa-

tion, potentially explaining our finding. Section 4.3 of the S1 Appendix shows that the mean

coefficient magnitude for the population Black African / Caribbean proportion is further

reduced in the absence of all other covariates, suggesting that some degree of covariate correla-

tion is also influencing the estimated importance of the covariate.

Crucially; however, care must be taken when comparing our results to those of community-

targeted infection risk studies. Population prevalence studies, such as the REal-time Assess-

ment of Community Transmission (REACT) studies, and those conducted via the OpenSA-

FELY platform, directly investigate how COVID-19 prevalence differed by demographic

indicators like those considered in this study. Ward et al. (2021) [16] identified a three-fold

increase in testing antibody-positive within Black populations compared to White populations
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(reducing to two-fold when adjusted for confounding factors such as age, sex, IMD quintile,

household size). Mathur et al. (2021) [15] identified a similar risk for the period February 1st–

August 3rd 2020, though this increased risk is not identified for the “second wave” of Septem-

ber 1st–December 31st 2020. Such results should not be directly compared to the findings of

this study, which investigates a fundamentally different result–we do not consider denomina-

tor populations, or individual-level infection results; rather, we consider how the composition

of a population contributes to week-to-week transmission potential.

Our results also show an inconclusive impact of IMD on transmission, though lean towards

higher reproduction numbers seen in more deprived areas. In their systematic review of socio-

economic COVID-19 impacts, Benita et al. (2022) [17] list only nine UK-specific studies, and

report a global trend of mixed and inconclusive findings as to the impact of poverty metrics on

COVID-19 infection. The trend we have shown in Fig 1B, of differences in case incidence by

deprivation quantiles seeming pronounced in some time periods, before reversing in others is

seen in multiple other countries [18,19].

The strong negative effect of the “time spent at home” variable is unsurprising given its

inherent epidemiological importance, and its direct impact on disease cases has been demon-

strated for multiple countries [20]. While this variable predominantly changes temporally in

relation to NPI measures, strong variation is also observed across LTLAs at any given time

point (see section 1.6 of S1 Appendix). While it is possible that the impact of some other covar-

iates is captured within the “time spent at home” variable, i.e. LTLAs with higher incomes also

see more time spent at home on average, additional sensitivity analyses exploring the removal

of this variable in the S1 Appendix (section 4.3) shows that results are broadly unchanged by

their inclusion.

Of the three COVID-19 funding pools provided during the pandemic that we consider,

only the ASC infection control fund proved significant. COMF funds are provided for activi-

ties such as targeted testing of hard-to-reach bodies, additional contact tracing, community

support, communication materials, as well as enforcement and compliance expenditure [21].

The ASC infection control fund meanwhile was specifically for use in preventing onward

transmission in care home settings. As with many European countries, care homes in England

were hit particularly hard during the first wave of the epidemic in England [22], motivating

this specific fund. Our results show that this specific targeting of the most vulnerable popula-

tions was effective in reducing transmission and is the first study to our knowledge to investi-

gate the associated impact of these funding provisions. All funding allocations were informed

by the specific health needs and population demographics of respective LTLAs, meaning that

some covariates such as IMD and age distribution will have some degree of correlation.

To investigate the time-specific impact of these covariates, we conducted a sensitivity analy-

sis whereby the model was fit to three distinct subsections of the overall time series (section 4.5

of the S1 Appendix). Our results are unchanged across specific time periods, save for the sig-

nificance of the ASC infection control fund disappearing for August 8th 2021 onwards, as

would be expected, as this was when NPIs had been lifted.

Section 1.7 of the S1 Appendix presents the degree of autocorrelation present amongst vari-

ables. This unavoidable aspect of the dataset is a limitation of the study; however, we address

this through multiple supplementary sensitivity analyses including univariate model formula-

tions. All fundamental results presented in this study are maintained under these sensitivities,

save for the impact of IMD, which does achieve statistical significance upon exclusion of the

other fifteen covariates.

We have not included vaccination directly, as the vaccination rollout was itself influenced

by the epidemic trajectory, with greater dose uptake encouraged in response to novel variants

[23]. As such, since our model does not mechanistically include the effect of vaccination, nor
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the impact of waning effectiveness, the random walk term will capture both the uptake and

impact of vaccination, but also unique temporal aspects such as public holidays, sporting

events, seasonal patterns, and others. We see in general a reduction in the reproduction num-

ber over time, in line with the vaccine rollout, but also note increases in December likely

aligned with the Christmas holidays, and other adjustments such as an increase in June/July

2021 around the time of the UEFA European Football Championship [24], followed by a drop

after the event.

A caveat of this study is the heterogeneity within each LTLA for some covariates of inter-

est. LTLAs are areas of geographic administration and service provisioning, and as such dif-

fer in population sizes. While many LTLAs are close to the median LTLA population size of

142,622 people (IQR 104,869–237,616, see section 1.8 of the S1 Appendix), some outliers are

considerably different, the largest being Birmingham with a population of 1,140,525. Het-

erogeneity in covariates, such as IMD, within these larger LTLAs can be observed at the

Lower layer Super Output Areas (LSOAs) scale, of 32,844 areas in England, however

COVID-19 case data at this scale is too sparse to model. Thus, the LTLA-scale considered

demonstrates a trade-off between demographic detail, data availability, and modelling

feasibility.

We also note a modelling assumption made whereby reported “first episodes” of disease

incidence in an LTLA contributed to fully immunising protection against onwards infection.

While protection against repeat infection was strong for the majority of the time period we

considered [25], this was likely to wane more against the Omicron variant. We explored this

modelling assumption through multiple sensitivity analyses where the model was fit to differ-

ent time periods, and where waning of acquired immunity was assumed, which are presented

in sections 4.5 and 4.6 of the S1 Appendix. Our model results were unchanged in these

analyses.

The overarching question motivating this study was whether population health and demo-

graphic variables held informative potential such that their inclusion might improve real-time

modelling efforts that currently do not incorporate such data streams. Only a minority of

covariates were found to be impactful, and the improvement to model fit they offer is insignifi-

cant. However, substantive improvements are offered by including mechanisms of spatial

spread. Detailed study of lineage exports by Kraemer et al. (2021) [26] have previously demon-

strated how human travel alone was able to explain the spatial heterogeneity observed during

the emergence of the Alpha variant in the UK, further supporting our findings. The notable

impact of our simplified adjacency kernel would likely be strengthened further were it supple-

mented with such direct measures of individual mobility patterns.

It is important to note that the highlighted impact of epidemiological factors, such as mobil-

ity patterns and contact networks, does not exclude the importance of health inequity in pan-

demic response. Health inequity is a complex phenomenon that extends beyond aggregated

measures of deprivation and access-to-care, and further work is required to investigate its rela-

tion, both socially and quantitatively, to these underlying epidemiological factors. Our results

should not be interpreted as ruling out the impact of health inequity in shaping epidemic tra-

jectories; rather, that the aggregated measures considered do not directly improve model pre-

diction of week-to-week transmission within a geography.

While real time modelling efforts are often limited by computational power and thus are

limited in what level of spatial disaggregation can be allowed for, we have effectively demon-

strated that mechanisms of case exportation are a worthwhile inclusion for improving

model fit, and that the benefits of incorporating broader socio-demographic data are

unlikely to be worth the time needed to gather and incorporate the relevant and up-to-date

data.
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Methods

Ethics statement

Ethics permission was sought for the study via Imperial College London’s (London, UK) stan-

dard ethical review processes and was approved by the College’s Research Governance and

Integrity Team (ICREC reference 21IC6945). Patient consent was not required as the research

team accessed fully anonymised data only, which were collected as part of routine public health

surveillance activities by the UK Government.

Study population and data

Confirmed COVID-19 cases data were taken from the UK Health Security Agency (UKHSA)

national line list, collected by the Department of Health and Social Care as part of surveillance

activities and shared with us. Only pillar 2 cases (swab testing of the wider population, not set-

ting-specific) confirmed via PCR were used to account for changes in the availability of lateral

flow devices (LFDs), as well as changes in test-seeking behaviour. Cases were then aggregated

by week (beginning Monday) and LTLA. S-gene target failure (SGTF) data for each case was

similarly obtained from the UKHSA line list to identify the proportion of COVID-19 variants

each week. The cumulative number of first episodes by LTLA is obtained from the national

data dashboard. Population data on ethnicity, age, population density, income, was taken from

Office for National Statistics (ONS) reports. IMD data is taken from the Ministry of Housing,

Communities & Local Government (MHCLG) report on English Indices of Deprivation 2019

(IoD2019). Data on time spent at locations is taken from Google community mobility reports.

Data on COVID-19 funding allocations was taken from the associated Department for Level-

ling Up, Housing and Communities reports.

In 2021 England was split into 309 LTLAs. Following the format used for the COVID-19

cases data release, we combine the LTLAs of Cornwall and Isles of Scilly; City of London and

Hackney. The Isle of Wight LTLA is removed. Thus, this study reports on 306 English LTLAs

total.

Detailed descriptions of all covariates are provided in section 1 of the S1 Appendix.

Epidemiological model and fitting

Using Bayesian evidence synthesis inference we fit a probabilistic model to data Yi,t, the num-

ber of weekly pillar 2 PCR-confirmed COVID-19 cases in LTLA i at week t, via a negative

binomial distribution of the form

Yi;t � NegBinomðmi;t; �Þ

for mean μi,t and overdispersion parameter ϕ. The mean takes the form

mi;t ¼ lSi;t� 1 Yi;t� 1 þ zi

X

j2Oi

Yj;t� 1

� �
expðxi;t� 1bþ zt� 1 þ yiÞ

� �

where Si,t−1 is an estimate of the proportion of the population of LTLA i that has no acquired

immunity in week t−1, calculated as 1 –(total number of recorded “first episodes” in LTLA i by

week t / LTLA i population), and λ is a scaling factor parameter, between 0 and 1, scaling the

acquired-immunity lag term to account for the impact of under-reporting of first episodes,

incomplete protection of acquired immunity, and other nationwide scaling effects. Oi is the set

of all LTLAs that share a boundary with LTLA i, and zi is a model parameter between 0 and 1

denoting the proportion of cases in neighbouring LTLAs which will cause secondary cases in

LTLA i. This represents a “nearest neighbours” spatial kernel formulation. xi,t−1 is a vector of
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the sixteen covariates considered in this study for LTLA i, at week t−1. β is the vector of coeffi-

cients capturing the relative impact of each covariate. A covariate is considered statistically sig-

nificant if the 95% CI of its β coefficient posterior distribution does not span 0. zt−1 represents

the (t−1)th step in a Gaussian random walk process, and θi is an LTLA-specific error-term.

Heuristically, the left-hand side of the expression represents the number of cases contribut-

ing to the next week’s number of cases, and the right-hand side may be considered an estimate

of the time-varying reproduction number.

We model 95 weeks in total, from the week beginning May 10th 2020 to the week beginning

February 27th 2022, as case testing rates become inconsistent outside of this window.

Analyses were conducted in R version 4.1.1. The model was run in Stan via the rstan [27]

package. All associated code is available in our online repository (https://github.com/

thomrawson/Rawson-spatial-covid). See section 5 of the S1 Appendix for full details of pack-

age versions.

Further methodological detail is provided in sections 2 and 3 of the S1 Appendix.

Sensitivity analyses

Model comparison is performed via the expected log pointwise predictive density (elpd) score

under a leave-future-out cross-validation process, detailed in section 4.2 of the S1 Appendix.

As a supplementary result we also test the impact of using different data streams. While

SGTF is considered a highly accurate indicator for discerning between variants of concern

(VOC) [28], for completeness the S1 Appendix also presents analyses where variant proportion

is instead confirmed by whole genome sequencing (WGS). We also conduct a sensitivity analy-

sis where case data is expanded to include both pillar 1 and pillar 2 cases and includes LFD

cases. In both sensitivities, the results remain unchanged from the inclusion of these data.

Sensitivity analyses exploring acquired-immunity assumptions are presented in section 4.6

of the S1 Appendix.

Sensitivity analyses exploring differences in reporting by ethnicity and IMD are presented

in section 4.7 of the S1 Appendix.

Other model formulations are included for comparison in section 4 of the S1 Appendix,

including alternate spatial kernels and univariate models.

Supporting information

S1 Appendix. Supplementary Material.

(PDF)

Acknowledgments

We thank all colleagues at the UK Health Security Agency (UKHSA, formerly Public Health

England) and front-line health professionals who have not only driven and continue to drive

the daily response to the COVID-19 epidemic in England but also provided the necessary data

to inform this study. This work would not have been possible without the dedication and

expertise of said colleagues and professionals. The use of pillar-2 PCR testing data and the vari-

ant and mutation data was made possible thanks to UKHSA colleagues.

For the purpose of open access, the author has applied a ‘Creative Commons Attribution’

(CC BY) licence to any Author Accepted Manuscript version arising from this submission.

Author Contributions

Conceptualization: Thomas Rawson, Neil M Ferguson.

PLOS COMPUTATIONAL BIOLOGY Health inequity and COVID-19 transmission

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012141 May 28, 2024 13 / 15

https://github.com/thomrawson/Rawson-spatial-covid
https://github.com/thomrawson/Rawson-spatial-covid
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012141.s001
https://doi.org/10.1371/journal.pcbi.1012141


Data curation: Thomas Rawson, Wes Hinsley.

Formal analysis: Thomas Rawson.

Investigation: Thomas Rawson, Neil M Ferguson.

Methodology: Thomas Rawson, Raphael Sonabend, Elizaveta Semenova.

Resources: Thomas Rawson, Wes Hinsley.

Software: Thomas Rawson, Wes Hinsley, Raphael Sonabend, Elizaveta Semenova.

Supervision: Anne Cori, Neil M Ferguson.

Visualization: Thomas Rawson.

Writing – original draft: Thomas Rawson.

Writing – review & editing: Thomas Rawson, Wes Hinsley, Raphael Sonabend, Elizaveta

Semenova, Anne Cori, Neil M Ferguson.

References
1. Kontopantelis E, Mamas MA, Webb RT, Castro A, Rutter MK, Gale CP, et al. Excess deaths from

COVID-19 and other causes by region, neighbourhood deprivation level and place of death during the

first 30 weeks of the pandemic in England and Wales: A retrospective registry study. Lancet Reg Health

Eur. 2021; 7: 100144. https://doi.org/10.1016/j.lanepe.2021.100144 PMID: 34557845

2. McGowan VJ, Bambra C. COVID-19 mortality and deprivation: pandemic, syndemic, and endemic

health inequalities. Lancet Public Health. 2022; 7: e966–75. https://doi.org/10.1016/S2468-2667(22)

00223-7 PMID: 36334610

3. Morrissey K, Spooner F, Salter J, Shaddick G. Area level deprivation and monthly COVID-19 cases:

The impact of government policy in England. Soc Sci Med. 2021; 289: 114413. https://doi.org/10.1016/

j.socscimed.2021.114413 PMID: 34563867

4. Prats-Uribe A, Paredes R, Prieto-Alhambra D, Prats Uribe A. Ethnicity, comorbidity, socioeconomic sta-

tus, and their associations with COVID-19 infection in England: a cohort analysis of UK Biobank data.

medRxiv [Preprint]. 2020 [cited 2024 May 13]. Available from: https://doi.org/10.1101/2020.05.06.

20092676.

5. Elson R, Davies TM, Lake IR, Vivancos R, Blomquist PB, Charlett A, et al. The spatio-temporal distribu-

tion of COVID-19 infection in England between January and June 2020. Epidemiol Infect. 2021; 149:

e73. https://doi.org/10.1017/S0950268821000534 PMID: 33678199

6. Scott E. Covid-19 local alert levels: Three-tier system for England. 2020 Oct 13 [cited 2023 Oct 10]. In:

House of Lords Library [Internet]. Available from: https://lordslibrary.parliament.uk/covid-19-local-alert-

levels-three-tier-system-for-england/.

7. Scientific Pandemic Influenza Group on Modelling Operational sub-group (SPI-M-O). SPI-M-O: Sum-

mary of further modelling of easing restrictions–Roadmap Step 4 on 19 July 2021, 7 July 2021. 2021

July 12 [cited 2023 Oct 10]. In: GOV.UK [Internet]. Available from: https://www.gov.uk/government/

publications/spi-m-o-summary-of-further-modelling-of-easing-restrictions-roadmap-step-4-on-19-july-

2021-7-july-2021.

8. Giorgino T. Computing and visualizing dynamic time warping alignments in R: The dtw package. J Stat

Softw. 2009; 31: 1–24.

9. Brown J, Kirk-Wade E, Baker C, Barber S. Coronavirus: A history of English lockdown laws. 2021 Dec

22 [cited 2023 Oct 10]. In: House of Commons Library [Internet]. Available from: https://

commonslibrary.parliament.uk/research-briefings/cbp-9068/.

10. Perez-Guzman PN, Knock E, Imai N, Rawson T, Elmaci Y, Alcada J, et al. Author Correction: Epidemio-

logical drivers of transmissibility and severity of SARS-CoV-2 in England. Nat Commun. 2023; 14: 8099

https://doi.org/10.1038/s41467-023-44062-9 PMID: 38062038

11. Tully MA, McMaw L, Adlakha D, Blair N, McAneney J, McAneney H, et al. The effect of different

COVID-19 public health restrictions on mobility: A systematic review. PLoS One. 2021; 16: 12::

e0260919 https://doi.org/10.1371/journal.pone.0260919 PMID: 34879083

PLOS COMPUTATIONAL BIOLOGY Health inequity and COVID-19 transmission

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012141 May 28, 2024 14 / 15

https://doi.org/10.1016/j.lanepe.2021.100144
http://www.ncbi.nlm.nih.gov/pubmed/34557845
https://doi.org/10.1016/S2468-2667%2822%2900223-7
https://doi.org/10.1016/S2468-2667%2822%2900223-7
http://www.ncbi.nlm.nih.gov/pubmed/36334610
https://doi.org/10.1016/j.socscimed.2021.114413
https://doi.org/10.1016/j.socscimed.2021.114413
http://www.ncbi.nlm.nih.gov/pubmed/34563867
https://doi.org/10.1101/2020.05.06.20092676
https://doi.org/10.1101/2020.05.06.20092676
https://doi.org/10.1017/S0950268821000534
http://www.ncbi.nlm.nih.gov/pubmed/33678199
https://lordslibrary.parliament.uk/covid-19-local-alert-levels-three-tier-system-for-england/
https://lordslibrary.parliament.uk/covid-19-local-alert-levels-three-tier-system-for-england/
https://www.gov.uk/government/publications/spi-m-o-summary-of-further-modelling-of-easing-restrictions-roadmap-step-4-on-19-july-2021-7-july-2021
https://www.gov.uk/government/publications/spi-m-o-summary-of-further-modelling-of-easing-restrictions-roadmap-step-4-on-19-july-2021-7-july-2021
https://www.gov.uk/government/publications/spi-m-o-summary-of-further-modelling-of-easing-restrictions-roadmap-step-4-on-19-july-2021-7-july-2021
https://commonslibrary.parliament.uk/research-briefings/cbp-9068/
https://commonslibrary.parliament.uk/research-briefings/cbp-9068/
https://doi.org/10.1038/s41467-023-44062-9
http://www.ncbi.nlm.nih.gov/pubmed/38062038
https://doi.org/10.1371/journal.pone.0260919
http://www.ncbi.nlm.nih.gov/pubmed/34879083
https://doi.org/10.1371/journal.pcbi.1012141


12. Yates T, Summerfield A, Razieh C, Banerjee A, Chudasama Y, Davies MJ, et al. A population-based

cohort study of obesity, ethnicity and COVID-19 mortality in 12.6 million adults in England. Nat Com-

mun. 2022; 13: 1–9.

13. Irizar P, Pan D, Kapadia D, Bécares L, Sze S, Taylor H, et al. Ethnic inequalities in COVID-19 infection,

hospitalisation, intensive care admission, and death: a global systematic review and meta-analysis of

over 200 million study participants. eClinicalMedicine. 2023; 57: 101877. https://doi.org/10.1016/j.

eclinm.2023.101877 PMID: 36969795

14. Harris R, Brunsdon C. Measuring the exposure of Black, Asian and other ethnic groups to COVID-

infected neighbourhoods in English towns and cities. Appl Spat Anal Policy. 2021; 15: 621–46. https://

doi.org/10.1007/s12061-021-09400-8 PMID: 34493948

15. Mathur R, Rentsch CT, Morton CE, Hulme WJ, Schultze A, MacKenna B, et al. Ethnic differences in

SARS-CoV-2 infection and COVID-19-related hospitalisation, intensive care unit admission, and death

in 17 million adults in England: an observational cohort study using the OpenSAFELY platform. Lancet.

2021; 397: 1711–24. https://doi.org/10.1016/S0140-6736(21)00634-6 PMID: 33939953

16. Ward H, Atchison C, Whitaker M, Ainslie KE, Elliott J, Okell L, et al. SARS-CoV-2 antibody prevalence

in England following the first peak of the pandemic. Nat Commun. 2021; 12: 1–8.

17. Benita F, Rebollar-Ruelas L, Gaytan-Alfaro ED. What have we learned about socioeconomic inequali-

ties in the spread of COVID-19? A systematic review. Sustain Cities Soc. 2022, 86:104158. https://doi.

org/10.1016/j.scs.2022.104158 PMID: 36060423

18. Rohleder S, Costa DD, Bozorgmehr PK. Area-level socioeconomic deprivation, non-national residency,

and Covid-19 incidence: A longitudinal spatiotemporal analysis in Germany. eClinicalMedicine. 2022;

49: 101485. https://doi.org/10.1016/j.eclinm.2022.101485 PMID: 35719293

19. Landier J, Bassez L, Bendiane MK, Chaud P, Franke F, Nauleau S, et al. Social deprivation and SARS-

CoV-2 testing: a population-based analysis in a highly contrasted southern France region. Front Public

Health. 2023; 11: 1–11.

20. Ilin C, Phan SA, Tai XH, Mehra S, Hsiang S, Blumenstock JE. Public mobility data enables COVID—19

forecasting and management at local and global scales. Sci Rep. 2021; 11: 13531. https://doi.org/10.

1038/s41598-021-92892-8 PMID: 34188119

21. Department of Health & Social Care. Contain Outbreak Management Fund: guidance–financial year

2021 to 2022. 2020 May 6 [cited 2023 Oct 9] In: Gov.uk [Internet]. Available from: https://www.gov.uk/

government/publications/contain-outbreak-management-fund-2021-to-2022/contain-outbreak-

management-fund-guidance-financial-year-2021-to-2022.

22. Knock ES, Whittles LK, Lees JA, Perez-Guzman PN, Verity R, FitzJohn RG, et al. Key epidemiological

drivers and impact of interventions in the 2020 SARS-CoV-2 epidemic in England. Sci Transl Med.

2021; 13: eabg4262. https://doi.org/10.1126/scitranslmed.abg4262 PMID: 34158411

23. Imai N, Rawson T, Knock ES, Sonabend R, Elmaci Y, Perez-Guzman PN, et al. Quantifying the effect

of delaying the second COVID-19 vaccine dose in England: a mathematical modelling study. Lancet

Public Health. 2023; 8: e174–83. https://doi.org/10.1016/S2468-2667(22)00337-1 PMID: 36774945

24. Smith JA, Hopkins S, Turner C, Dack K, Trelfa A, Peh J, et al. Public health impact of mass sporting and

cultural events in a rising COVID-19 prevalence in England. Epidemiol Infect. 2022; 150: 1–9.

25. Kojima N, Shrestha NK, Klausner JD. A systematic review of the protective effect of prior SARS-CoV-2

infection on repeat infection. Eval Health Prof. 2021; 44(4): 327–332. https://doi.org/10.1177/

01632787211047932 PMID: 34592838

26. Kraemer MU, Hill V, Ruis C, Dellicour S, Bajaj S, McCrone JT, et al. Spatiotemporal invasion dynamics

of SARS-CoV-2 lineage B.1.1.7 emergence. Science. 2021; 895: 889–95. https://doi.org/10.1126/

science.abj0113 PMID: 34301854

27. Stan Development Team. RStan: The R interface to Stan. 2023 [cited 2023 Oct 10]. https://mc-stan.

org/.

28. McMillen T, Jani K, Robilotti EV, Kamboj M, Babady NE. The spike gene target failure (SGTF) genomic

signature is highly accurate for the identification of Alpha and Omicron SARS-CoV-2 variants. Sci Rep.

2022; 12: 1–8.

29. Office for National Statistics (ONS).Dataset, “Local Authority Districts (December 2021) Boundaries GB

BFC”. 2022 Feb 18 [cited 2024 April 5] Available from: https://geoportal.statistics.gov.uk/datasets/ons::

local-authority-districts-december-2021-boundaries-gb-bfc/about.

PLOS COMPUTATIONAL BIOLOGY Health inequity and COVID-19 transmission

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012141 May 28, 2024 15 / 15

https://doi.org/10.1016/j.eclinm.2023.101877
https://doi.org/10.1016/j.eclinm.2023.101877
http://www.ncbi.nlm.nih.gov/pubmed/36969795
https://doi.org/10.1007/s12061-021-09400-8
https://doi.org/10.1007/s12061-021-09400-8
http://www.ncbi.nlm.nih.gov/pubmed/34493948
https://doi.org/10.1016/S0140-6736%2821%2900634-6
http://www.ncbi.nlm.nih.gov/pubmed/33939953
https://doi.org/10.1016/j.scs.2022.104158
https://doi.org/10.1016/j.scs.2022.104158
http://www.ncbi.nlm.nih.gov/pubmed/36060423
https://doi.org/10.1016/j.eclinm.2022.101485
http://www.ncbi.nlm.nih.gov/pubmed/35719293
https://doi.org/10.1038/s41598-021-92892-8
https://doi.org/10.1038/s41598-021-92892-8
http://www.ncbi.nlm.nih.gov/pubmed/34188119
https://www.gov.uk/government/publications/contain-outbreak-management-fund-2021-to-2022/contain-outbreak-management-fund-guidance-financial-year-2021-to-2022
https://www.gov.uk/government/publications/contain-outbreak-management-fund-2021-to-2022/contain-outbreak-management-fund-guidance-financial-year-2021-to-2022
https://www.gov.uk/government/publications/contain-outbreak-management-fund-2021-to-2022/contain-outbreak-management-fund-guidance-financial-year-2021-to-2022
https://doi.org/10.1126/scitranslmed.abg4262
http://www.ncbi.nlm.nih.gov/pubmed/34158411
https://doi.org/10.1016/S2468-2667%2822%2900337-1
http://www.ncbi.nlm.nih.gov/pubmed/36774945
https://doi.org/10.1177/01632787211047932
https://doi.org/10.1177/01632787211047932
http://www.ncbi.nlm.nih.gov/pubmed/34592838
https://doi.org/10.1126/science.abj0113
https://doi.org/10.1126/science.abj0113
http://www.ncbi.nlm.nih.gov/pubmed/34301854
https://mc-stan.org/
https://mc-stan.org/
https://geoportal.statistics.gov.uk/datasets/ons::local-authority-districts-december-2021-boundaries-gb-bfc/about
https://geoportal.statistics.gov.uk/datasets/ons::local-authority-districts-december-2021-boundaries-gb-bfc/about
https://doi.org/10.1371/journal.pcbi.1012141

