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Abstract

Recent pandemics like COVID-19 highlighted the importance of rapidly developing diagnos-

tics to detect evolving pathogens. CRISPR-Cas technology has recently been used to

develop diagnostic assays for sequence-specific recognition of DNA or RNA. These assays

have similar sensitivity to the gold standard qPCR but can be deployed as easy to use and

inexpensive test strips. However, the discovery of diagnostic regions of a genome flanked

by conserved regions where primers can be designed requires extensive bioinformatic anal-

yses of genome sequences. We developed the Python package krisp to aid in the discov-

ery of primers and diagnostic sequences that differentiate groups of samples from each

other, using either unaligned genome sequences or a variant call format (VCF) file as input.

Krisp has been optimized to handle large datasets by using efficient algorithms that run in

near linear time, use minimal RAM, and leverage parallel processing when available. The

validity of krisp results has been demonstrated in the laboratory with the successful design

of a CRISPR diagnostic assay to distinguish the sudden oak death pathogen Phytophthora

ramorum from closely related Phytophthora species. Krisp is released open source under

a permissive license with all the documentation needed to quickly design CRISPR-Cas diag-

nostic assays.

Author summary

Pathogens continue to emerge at accelerated rates affecting animals, plants, and ecosys-

tems. Rapid development of novel diagnostic tools is needed to monitor novel pathogen

variants or groups. We developed the computational tool krisp to identify genetic

regions suitable for development of CRISPR diagnostics and traditional amplification-

based diagnostics such as PCR. Krisp scans whole genome sequence data for target and

non-target groups to identify diagnostic regions based on DNA or RNA sequences. This

computational tool has been validated using genome data for the sudden oak death patho-

gen Phytophthora ramorum. Krisp is released open source under a permissive license

with all the documentation needed to quickly design CRISPR-Cas diagnostic assays and

other amplification-based assays.
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Introduction

Invasive organisms continue to emerge at accelerated rates worldwide, likely due to increased

global trade, movement of live plants, a growing human population, and stresses imposed by

the Anthropocene on hosts [1–5]. Most pathogens, whether bacteria, fungi, oomycetes, viruses,

nematodes, or other protists, are hard to detect without appropriate diagnostics. The biosur-

veillance of the future will require affordable, robust, accurate, and field deployable diagnostic

methods that can be developed quickly. The capacity to develop novel diagnostics in response

to an emergent pathogen in weeks, rather than months or years, would be transformative.

Whole genome sequences (WGS) of new variants combined with computational tools to iden-

tify diagnostic loci provides a new means of accelerating developing diagnostics in response to

emerging or reemerging invasive pathogens and pests.

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences

found in prokaryotes to detect and counter viral infections [6]. These loci consist of a series of

conserved repeats alternating with equal length variable sequences referred to as spacers. The

spacers are sequences copied from viruses that the microbe or its progenitors have encoun-

tered in the past. CRISPR-associated proteins (Cas) use RNA transcribed from the spacer

sequences as guides to recognize and, depending on the CAS enzyme, degrade specific strands

of DNA or RNA. For example, the Cas9 protein introduces double-stranded breaks near DNA

sequences complementary to the bound guide RNA (Jinek et al., 2012). In addition to

sequence-specific cleavage, the Cas12, Cas13, and Cas14 families of proteins cause cleavage of

off-target nucleic acid polymers after binding to and cleaving a target sequence, a phenomena

referred to as collateral cleavage [7–10]. For Cas13 orthologs, both sequence-specific cleavage

and collateral cleavage target RNA [11], whereas Cas12 and the smaller Cas14 variant target

ssDNA or dsDNA and cleave bystander ssDNA [8,10]. Cas enzymes also differ in regard to

which 2-6bp sequence motifs are most effected by collateral cleavage [11]. As part of the bacte-

rial immune system, collateral cleavage is thought to limit pathogen propagation via pro-

grammed cell death or dormancy induction [7], thereby sacrificing the individual to benefit

the population as a whole.

The discovery and understanding of the CRIPSR-Cas immune system has led to many prac-

tical advances in molecular biology, including CRISPR-based diagnostic assays for detecting

specific RNA or DNA sequences (CRISPR-dx). Many techniques rely on using the collateral

cleavage activity of the Cas12, Cas13, and Cas14 enzymes to degrade ssDNA or RNA reporters

as a measurable signal of sequence recognition. The degradation of reporter molecules can be

detected by a variety of ways, including measuring fluorescence, imaging fluorescent bands on

a gel, or observing bands on a lateral flow device [12]. In the case of solution-based fluoromet-

ric detection, short off-target RNA or ssDNA polymers, each with a fluorescent probe on one

end and a quencher on the other, are cut by the collateral cleavage of Cas proteins upon

sequence recognition, resulting in fluorescence [9]. This general technique has been used to

create highly specific CRISPR-based diagnostic assays. SHERLOCK [12] and DETECTR [8]

achieve high sensitivity using amplification of target DNA by recombinase polymerase amplifi-

cation (RPA), an isothermal alternative to PCR [13]. HOLMES [14] uses loop-mediated iso-

thermal amplification (LAMP), another isothermal amplification technique [15]. CONAN

achieves high sensitivity without preamplification by using a sophisticated DNA/RNA hybrid

reporter that, when degraded, releases a guide RNA that matches a fragment of DNA added to

the reaction, resulting in exponential activation of the Cas12a enzyme [16]. These assays have

been shown to be both highly specific, allowing single nucleotide discrimination, and very sen-

sitive, with detection thresholds in the attomolar range [8,11]. Sensitivity can be further

increased by scaling up preamplification or adding multiple guide RNAs targeting different
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parts of the same target sequence into the same reaction [17]. These methods can be adapted

to single-tube isothermal reactions or lateral flow strips, allowing for on-site detection of path-

ogens with minimal specialized instruments or training for as little as $0.60 per assay [12].

Other CRISPR-dx techniques involve engineered tracrRNAs to make the target RNA act as a

guide RNA (LEOPARD) [18], observing liquid-liquid phase separation caused by collateral

cleavage [19], engineered hydrogels that change their material properties in response to a tar-

get [20], measuring the byproducts of the polymerase activity of Cas10 [21], using two guide

RNAs to initiate strand displacement amplification (CRISDA) [22], and the electronic mea-

surement of genomic sequence binding to graphene field-effect transistors [23]. Although still

a new technology, there are already CRISPR-based tests approved by the United States Food

and Drug Administration to target SARS-CoV-2 [24].

CRISPR-dx assays can generally be designed to target any sequence, but the criteria for

designing optimal guide RNAs depend on the specific method and Cas enzyme used. Cas

enzymes differ in their requirements for adjacent sequence motifs, the length of guide RNA

required, and how mismatches between the guide RNA and target affect cleavage efficiency.

For example, Cas12 enzymes target both ssDNA and dsDNA, but for dsDNA targets, a proto-

spacer adjacent motif (PAM) (e.g. TTTV) must be present in the target sequence near where

the guide RNA binds [12]. This requirement can restrict which portions of the genome can be

targeted, unless the PAM sequence is added to the 5’ end of one of the primers during a pream-

plification step [14]. The optimal length of the guide RNA can be different for each Cas ortho-

log: Cas13a uses a 28nt guide RNA, Cas13b uses a 30nt guide RNA, and Cas12a uses a 20nt

guide RNA [12]. Finally, how much of an effect a mismatch between the guide RNA and the

target has depends on both the location of the mismatch and the Cas enzyme used. For exam-

ple, Cas13a is more sensitive to mismatches at the 3rd position, whereas Cas12b is more sensi-

tive to mismatches in the 10th to 16th positions [14].

In addition to a specialized guide RNA, many methods require designing primers for pre-

amplification of target DNA to increase sensitivity enough for the method to be useful for

detecting pathogens in clinical settings. Amplification of target DNA is often done using an

isothermal technique such as RPA or LAMP to minimize the need for expensive equipment

and make it easier to conduct tests outside of laboratories [24]. Various non-target sequences

may have to be added to the primer sequences, such as the previously mentioned PAM

sequence required by Cas12 when targeting dsDNA [14]. Cas13 orthologs detect and cleave

RNA, so to detect a DNA target a T7 promoter must be added to the 5’ end of one of the prim-

ers used for preamplification to allow for transcription [12]. These modifications can affect

how primers and loci are chosen when designing a CRISPR-dx diagnostic assay.

Development of CRISPR-dx assays typically require the design of a diagnostic CRISPR

guide RNA (crRNA) that discriminates between target and non-target sequences and

sequence-specific primers for amplification of the target region. The abundance of public

WGS data, combined with the affordability of generating new sequences for novel variants,

has the potential to make designing new diagnostic assays fast and reliable. However, finding

optimal candidate regions can be difficult when the assay is applied to organisms with large

genomes or populations with high sequence diversity. Although many tools exist to discover

crRNAs for genetic engineering, few exist that identify the crRNA and associated primers

needed for CRISPR-dx. Current approaches either only work on some model organisms [25],

do not incorporate primer design [26], or are designed towards specific types of CRISPR-dx

assays [27]. We developed the Python package krisp to identify candidate regions and prim-

ers for development of CRISPR-dx assays as well as any other amplification-based assays

requiring primers flanking a diagnostic region, such as PCR krisp takes as input either a set

of unaligned FASTA files representing assembled genomes or a Variant Call Format (VCF) file
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containing variants called against a reference genome. krisp has been designed to run in par-

allel, use minimal RAM, and have run times that correlate linearly with input size, allowing for

the comparison of hundreds to thousands of genomes. For FASTA input, krisp breaks

sequences into k-mers and applies sequential filtering steps to find diagnostic regions that dis-

tinguish a target group from all outgroups and are flanked by conserved regions where primers

can be designed. For VCF input, krisp identifies clusters of diagnostic variants flanked by

regions without variants and infers the sequence for each group by applying variants to the ref-

erence sequence. For both input types, primers can be designed automatically using Primer3

[28] and the candidate regions can be filtered based on the presence and quality of possible

primers. Candidate regions are reported as either human readable alignments or tabular data,

allowing the user to apply further processing steps in a custom pipeline. Finally, krisp is

highly flexible and can be configured to search for regions and primers compatible with any

DNA/RNA probe/primer diagnostics as well as specific CRISPR-dx assays, such as SHER-

LOCK or DETECTR.

Materials and methods

The krisp Python package has two principal functions: krisp_fasta and krisp_vcf.

Krisp_fasta is used to infer diagnostic sites from whole genome assemblies based on

shared unique k-mers. Krisp_vcf infers diagnostic sites from VCF files by analyzing a slid-

ing window of variants and doing localized sequence inference. Each of these functions have a

command line interface that is installed along with the package. Krisp is open source and

available on GitHub with a user guide and test data (https://github.com/grunwaldlab/krisp)

and on the Python PyPI package repository (https://pypi.org/project/krisp/).

Krisp_fasta
The krisp_fasta command is designed to find all diagnostic regions differentiating one

set of sequences from another. Sequences for both target and nontarget organisms are broken

down into k-mers representing potential diagnostic regions and primer sites. These k-mers are

filtered on the following criteria: 1) The presence of polymorphisms that distinguish the target

group from the non-target group and 2) sequence conserved in the target group on either side

of the polymorphic region where primers can be designed. Krisp_fasta accepts a FASTA

file representing each sample. FASTA files can be passed to the command as an “ingroup” file

or “outgroup” file, corresponding to target and non-target organisms. Results in comma-sepa-

rated value (CSV) format are streamed to standard output or saved to a file. Optionally, a more

human-readable alignment format can be saved to a text file as well.

The algorithm relies on extracting, sorting, and intersecting k-mers to find diagnostic

regions. For each input FASTA file, all k-mers of length ‘A’ (short for amplicon) are extracted.

Included in length ‘A’ are regions of length ‘F’ and ‘R’, corresponding to conserved regions

where primers could be designed on the ends of the amplicon. ‘F’ and ‘R’ surround a diagnos-

tic region of length ‘D’, such that A = F + D + R (Fig 1). K-mers of length ‘A’ are extracted and

sorted by the sequence content in the ‘F’ and ‘R’ regions. Sorted k-mers for each input FASTA

file are written to intermediate files in parallel, along with the name of the file they came from.

Pairs of k-mer files are then read in tandem and combined into new files of sorted k-mers that

include the names of the files each k-mer was observed in. Pairs of k-mer files are processed in

parallel. This process is repeated with its own output, combining pairs of files, until a single file

is left that includes the sorted k-mers for all input FASTA files. In this file, k-mers that share

identical ‘F’ and ‘R’ regions, but differ in the ‘D’ region, are grouped together since they were

sorted previously. Each of these groups of consecutive k-mers is referred to as an alignment.

PLOS COMPUTATIONAL BIOLOGY Krisp python package for designing diagnostic assays from whole genome data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012139 May 20, 2024 4 / 16

https://github.com/grunwaldlab/krisp
https://pypi.org/project/krisp/
https://doi.org/10.1371/journal.pcbi.1012139


Alignments with a single k-mer present in all the target group files and not present in any of

the non-target group files are considered diagnostic. Primer3 is then used to search for poten-

tial primer sites in these diagnostic k-mers. Alignments with diagnostic k-mers and predicted

primers are formatted for output in two formats: a human-readable alignment format in a

plain text file and a CSV file for further bioinformatic analysis. Both output formats contain

the sequence of the diagnostic region and the output of Primer3 for the best primers found.

Krisp_vcf
The krisp_vcf function looks for clusters of diagnostic variants, referred to here as diag-

nostic regions, flanked by regions without variants where primers can be designed. Diagnostic

variants are those that are conserved and exclusive to the target group. Variants are read from

a VCF file with an associated reference file in FASTA format. A CSV file must be supplied that

encodes which samples in the VCF belong to which group. Diagnostic regions can be discov-

ered for two or more groups with a single execution of krisp_vcf. VCF data can be

streamed from standard input or read from a file. The output of krisp_vcf can be streamed

to standard out or written to a file. Additionally, a log containing progress and error messages

can be streamed to standard error or written to a file.

Krisp_vcf uses a sliding window analysis of consecutive variants for each group of diag-

nostic regions evaluated. First, each chromosome (i.e., each sequence in the reference FASTA)

is broken up into chunks to enable parallel processing, unless VCF data is being streamed

from standard input, in which case parallel processing is not possible. For each chunk, variants

are read in order and filtered by number of reads, number of samples, genotype quality, and

other quality control metrics. For each group, variants passing these filters are supplied to a

series of first in, first out (FIFO) queues representing the upstream region where the reverse

primer will be designed, the diagnostic region where the crRNA will be designed, and the

downstream region where the forward primer will be designed. When a variant is added to

any of these queues, the sequence length spanned by the variants is inferred and if this is longer

than a set value, variants from the queue are moved to the next queue until the inferred

sequence length is short enough. The diagnostic region queue holds the maximum number of

variants that can fit in the length of a crRNA and the maximum length of the primer queues is

determined by the maximum amplicon length. Once a variant is removed from all of the

queues, it is removed from memory, so only variants present in the queues contribute to the

RAM usage of the program. Once all the queues have been filled, each time a variant is added

to the series of queues described above, the variants in the queues are subjected to a series of

Fig 1. Definition of amplicon, diagnostic, and primer regions for developing candidate CRISPR-Cas assays with Krisp_fasta. The total amplicon length A is

subdivided into non-overlapping regions of length F, D, and R, such that A = F + D + R, where F and R correspond to the forward and reverse primer regions, and D

corresponds to the diagnostic region.

https://doi.org/10.1371/journal.pcbi.1012139.g001
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tests to determine if they represent a diagnostic region. This effectively scans all possible

regions in all samples. The following conditions must be met in order for the region to be con-

sidered diagnostic: 1. The diagnostic region queue must have enough diagnostic variants, 2.

the variants in the diagnostic region queue must be conserved in the group of interest, 3. there

must be enough conserved sequence in the group of interest in the primer queues to design

primers, 4. A suitable primer pair must be found by Primer3 within the sequence inferred

from the primer queues. These checks are ordered such that the most commonly failed and

fastest to execute are done first in order to minimize processing time.

For regions passing all checks, the consensus sequence for the group of interest is inferred

by applying the variants to the reference sequence and returned in the output. The output

takes the form of a CSV file with columns for which group the region/primers is diagnostic

for, the chromosome it occurs on, the coordinates of the reference genome where the primers

and diagnostic region occur, the inferred sequence of the amplicon and surrounding sequence,

and the Primer3 output. This format allows for additional downstream analysis with program-

ming languages or spreadsheet programs, including giving users the sequence needed to

design their own primers manually if desired. In addition to the CSV output, a human-read-

able text-based alignment output is provided that contains a multiple sequence alignment of

the consensus sequence for each group being distinguished with annotations for the primer

and crRNA locations. All Primer3 output is included in both the CSV and alignment-based

formats.

Performance evaluation

The performance of krisp_fasta was tested using a dataset of 12 assembled yeast genomes

downloaded from NCBI: 6 genomes of baker’s yeast (Saccharomyces cerevisiae), and 6

genomes of the closely related budding yeast (Saccharomyces kudriavzevii), each roughly 10–

12 mega-bases in length (Table 1). The effect of the number of cores used on run time was

tested on two computing systems, a desktop with a 3.20GHz 6-core Intel i7-8700 CPU and

32GB of RAM, and a computing cluster with a 2GHz 64-core AMD EPYC 7992 CPU and 4GB

of RAM. For both systems, krisp_fasta was instructed to find all genomic regions which

distinguish these two species with a diagnostic region of length 10 and conserved primer

region of length 20. The effects of the number of samples, mean genome length, and the length

of the amplicon (i.e., k-mer) on run time and RAM were also evaluated on a laptop computer

with an Intel Core i7-10875H CPU @ 2.30GHz × 16 processor.

Table 1. Saccharomyces genomes used to validate the krisp algorithm.

Species Strain Accession Sequence length (Mbp) Number scaffolds Reference

S. cerevisiae S288C GCA_000146045.2 12.2 17 [35]

S. cerevisiae ySR127 GCA_001051215.1 12.1 17 [36]

S. cerevisiae BY4742 GCA_003086655.1 12.2 16 [37]

S. cerevisiae KSD-Yc GCA_003709285.1 12.0 16

S. cerevisiae ySR128 GCA_004328465.1 12.1 17 [38]

S. cerevisiae IMF17 GCA_018219195.1 12.4 19 [39]

S. kudriavzevii IFO 1802 GCA_000167075.2 11.2 2,054 [40]

S. kudriavzevii ZP591 GCA_000257045.1 10.7 1,814 [41]

S. kudriavzevii IFO1803 GCA_000257065.1 10.4 1,798 [41]

S. kudriavzevii IFO10990 GCA_000257105.1 10.5 1,817 [41]

S. kudriavzevii CR85 GCA_003327635.1 11.9 17

S. kudriavzevii CR85 GCA_900682695.1 11.6 16

https://doi.org/10.1371/journal.pcbi.1012139.t001
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The performance of krisp_vcf was evaluated using a 20Gb VCF file containing

174,743,308 variants for 656 Phytophthora ramorum samples, grouped by clonal lineage. The

57.5 Mb reference genome of strain PR-102_v3.1 was used [29]. These tests were conducted

on a laptop computer with an Intel Core i7-10875H CPU @ 2.30GHz × 16 processor. The

effect of the number of cores on execution time was evaluated on a subset of this dataset. The

effects of number of samples, the number of groups compared, and the number of variants

were evaluated using the same dataset and computer by subsetting the dataset as needed.

Validating krisp_fasta and krisp_vcf
The output of krisp_fasta and krisp_vcf were validated in the lab by using both to

design a SHERLOCK diagnostic assay to differentiate the plant pathogen Phytophthora
ramorum from closely related Phytophthora species [30]. P. ramorum is a destructive pathogen

killing a variety of forest trees on the west coast of the United States [31]. It is thought to be

spread primarily through trade of nursery stock and regulations are in place to stop the selling

of infected plants. Diagnostic assays are needed to quickly and cheaply identify P. ramorum
infections in order to prevent its spread and comply with regulations. For krisp_fasta,

whole genome sequences from 5 P. ramorum isolates (PR-102, PR-15-019, PR-18-069, PR-18-

108, and PR-18-126) were used to represent the diversity within P. ramorum and genome

sequences of P. brassicae, P. cryptogea, P. foliorum, P. hibernalis, P. lateralis, and P. syringae
were used to represent non-target Phytophthora species. In addition, a version of the P.

ramorum genome PR-102 with variable regions masked with Ns was included. The masking

was done by analyzing a VCF file containing published variants of P. ramorum samples [32–

34] and converting any position homozygous for the alternative allele to N. This allowed for

the incorporation of data from many samples that do not have assembled genomes available.

For krisp_vcf, a VCF file containing variants of P. ramorum samples from available

genomes [32–34] and the PR-102_v3.1 reference sequence was used as input [29]. A promising

diagnostic site was selected from the many options produced by krisp_fasta and checked

against analogous VCF data using krisp_vcf.

Briefly, we evaluated the ability to distinguish P. ramorum from other Phytophthora taxa

with a SHERLOCK assay. SHERLOCK is a two-step assay starting with RPA of target DNA.

The forward Primer for RPA included a T7 promoter region at the 5’ end that, when combined

with the reverse primer, produced a 117 bp amplicon in the target region (Forward primer:

GAAATTAATACGACTCACTATAGGGTGCATTTTCGACAAATTCGAGTGCGGGGT

CAG, Reverse primer: ATCGAAATATCGGCGCGTCCATAACGGTCATA). Amplification

reactions were prepared according to Kellner et al. [12], using a master mix that included

10μM primers, water, and TwistAmp rehydration buffer (Twistdx, Maidenhead, UK). This

master mix was used to rehydrate the TwistAmp polymerase followed by the addition of

280mM of magnesium acetate. Ten microliter aliquots of the reconstituted RPA were added to

PCR tubes along with 1μl of template and placed in a thermocycler set at 37C for 30 min. The

crRNA 5’-UUAUCCGAGCCCGUGAUGAAGUUGUUGC-3’ was designed for the Protein

phosphatase 2 (PP2A) regulatory subunit B locus. The 5th base was modified from an ’A’ to a

’C’ to introduce 1 mismatch into the crRNA-target alignment. For P. ramorum, this meant

that the crRNA and target have a single mismatch. For other Phytophthora species, there were

at least two mismatches and thus no collateral cleavage should occur. Adding the conserved

DR region for LwaCas13a results in 5’-ACUACCCCAAAAACGAAGGGGACUAAAACUU

AUCCGAGCCCGUGAUGAAGUUGUUGC-3’. For detection, a master mix was prepared

containing ultrapure water, 20mM HEPES pH 6.8, 9.5mM MgCl, 1mM rNTP solution mix,

6.7μg LwaCas13a (MCLAB, San Francisco, CA or Genscript, Piscataway, NJ), 40U Murine
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RNase inhibitor (New England Biolabs, Ipswitch, MA), 2.5U T7 RNA polymerase (New

England Biolabs), 10ng/μl CRISPR guide RNA (IDT, Coralville, IA), and 0.13μM RNaseAlert

v2 (Thermo Fisher, Waltham, MA) per reaction. Four replicates of each sample were aliquoted

into a 384 well plate (20μl per well), centrifuged and immediately placed in a fluorescent plate

reader (Tecan, Switzerland) preheated to 37C. Fluorescence (490/520nm) was recorded for 3h

at 5min intervals. Positive controls included known samples of P. ramorum from clonal line-

ages NA1, NA2, EU1 and EU2, whereas negative controls included samples of Phytophthora
species including P. cinnamomi, P. foliorum, P. lateralis, and P. plurivora as well as water. Back-

ground subtracted fluorescence was graphed over time.

Results

Krisp is a Python package for finding candidate regions for the development of CRISPR-dx

diagnostic assays. Krisp can analyze whole genome sequence data in the form of FASTA files

or variant data in the form of a VCF file with an associated reference in FASTA format.

Primer3 is used to screen potential diagnostic regions for suitable primer binding sites. Diag-

nostic regions are output in the form of a CSV file or human-readable plain text alignments.

Krisp has been optimized to minimize RAM use and can run in parallel, allowing large data-

sets to be processed on personal computer in a matter of hours.

Performance

On both the desktop and the cluster, krisp_fasta ran about twice as fast when 6 cores

were used compared to using a single core. Further increasing the number of cores on the

desktop computer provided no increase in speed. When run on the computing cluster, speed

increased through 12 cores (Fig A in S1 Text). In terms of absolute time, the desktop computer

took ~40 minutes to complete processing the test dataset of 12 yeast genomes with 1 core,

which decreased to ~20 minutes when using 6 cores. The computing cluster utilizes a slower

CPU and took ~80 minutes to complete with 1 core, which decreased to ~25 minutes with 12

cores (Fig A in S1 Text). The krisp_fasta algorithm utilizes very little memory during exe-

cution, since it uses intermediate files instead of RAM for memory-intensive steps. Although

RAM usage appears to correlate with input sequence length (Fig 2), this is due to the Linux

sort utility taking advantage of excess RAM to operate faster. If less RAM were available the

program would still run. Krisp_vcf achieves a low memory footprint as well by only load-

ing variants present in a sliding window. This allows krisp to run on computing systems

with as little as 4GB of RAM, making it suitable for laptops, desktops, and similar personal

computers. The effects of the number of samples, mean genome length, and the length of the

amplicon (i.e. k-mer) on run time and RAM were confirmed to be linear as expected (Fig 2).

Krisp_vcf completed analysis of an entire 20Gb VCF file containing 13 million variants

for 656 samples in 24 minutes when using 16 cores on a laptop. The effect of the number of

cores used on the execution time was tested using a subset of the same data. Increasing the

number of cores from 1 to 4 decreased execution time nearly 4-fold, but additional cores had

little effect (Fig B in S1 Text). The effects of number of samples, the number of groups com-

pared, and the number of variants on execution time was confirmed to be approximately lin-

ear, although the trend was somewhat noisy (Fig 3). RAM usage was consistently around

170Mb regardless of dataset scale.

Laboratory validation

The outputs of both krisp_vcf and krisp_fasta were used to design a SHERLOCK

proof-of-concept assay (Fig 4A). The assay was built to distinguish the sudden oak death
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Fig 3. The effects of variant count, sample count, and number of groups being distinguished on the execution time and maximum RAM usage of krisp_vcf. For

the sample count and group count tests, variant count was held constant at the number of variants that occur in the first 500,000bp of the first chromosome. For the

variant count and group count tests, sample count was held constant at a total of 6 and 24 samples respectively. For the variant count and sample count tests, the number

of groups was held constant at 2. Testing was done a laptop computer with an Intel Core i7-10875H CPU @ 2.30GHz × 16 using a single core.

https://doi.org/10.1371/journal.pcbi.1012139.g003

Fig 2. The effects of amplicon (k-mer) length, sample count, and mean genome length on the execution time and maximum RAM usage of krisp_fasta. For each

column, variables not being tested were held constant with the following values: amplicon length of 100bp, sample count of 2, and a mean sequence length of 69,808 (the

length of the first chromosome in the test dataset). Testing was done a laptop computer with an Intel Core i7-10875H CPU @ 2.30GHz × 16 using a single core.

https://doi.org/10.1371/journal.pcbi.1012139.g002
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pathogen Phytophthora ramorum from other closely related Phytophthora species. Our results

suggest that both programs work as expected. All P. ramorum variants NA1, NA2, EU1 and

EU2 resulted in fluorescence whereas negative controls, including 6 other Phytophthora spe-

cies, did not (Fig 4B and 4C).

Discussion

The ability to rapidly develop diagnostic tests to distinguish closely related organisms would

be a useful tool for tracking the spread of emerging pathogens and organizing an effective

response. CRISPR-dx technology has the potential to produce highly specific, sensitive, and

inexpensive tests that can be administered with minimal specialized equipment or expertise.

Quickly identifying candidate sequences to design diagnostic crRNAs and primers that can be

tested in the laboratory will decrease the time it takes to deploy new assays. Krisp can be

used to find candidate diagnostic regions in which to design CRISPR-dx or amplification-

based assays to differentiate one group of organisms from another for any species for which

assembled sequences or variant data is available. Krisp has been carefully optimized to

Fig 4. Proof-of-concept assay predicted by both krisp_vcf and krisp_fasta to create a SHERLOCK CRISPR-dx assay for the Protein phosphatase 2

(PP2A) regulatory subunit B locus to detect the species Phytophthora ramorum. A: Abbreviated output from krisp_vcf showing predicted primers and

diagnostic crRNA region for detection of P. ramorum. Note, that the primers we initially used for validation were different, but the crRNA locus is identical.

B: P. ramorum clonal lineages NA1, NA2, EU1, EU2 as well as Asian strains (purple solid lines) could be detected while non-target species Phytophthora
cinnamomi, P. foliorum, P. lateralis, and P. plurivora (shown in various colors as dashed lines) did not amplify. C: Distributions of background subtracted

fluorescence at 150 minutes for P. ramorum lineages and non-target species and controls.

https://doi.org/10.1371/journal.pcbi.1012139.g004
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handle large datasets of commonly available data formats and leverage parallel computing to

rapidly produce actionable results.

To demonstrate the usage of krisp_fasta, below we show how it can be used on the

yeast dataset described above to locate regions where a CRISPR-dx assay could be designed

(Table 1). We aim to find diagnostic regions which differentiate the 6 baker’s yeast genomes

from the 6 budding yeast genomes. More specifically, we instruct krisp to find all genomic

regions in which a diagnostic region of length 10 is flanked by conserved primer regions of 50

nucleotides in both directions:

krisp_fasta cerevisiae/*.fna.gz –outgroup kudriavzevii/*.fna.
gz –conserved 50 –diagnostic 10 –out_align align.txt –out_csv
out.csv –primer3

In this example, krisp_fasta was able to find 120 candidate regions which fit the criteria.

Below is one of those regions (parts of the output are abbreviated with ‘. . .’ for visualization):

Candidate regions can be output in an alignment format where each unique sequence is

stacked vertically and the corresponding genome files are listed on the right. In this example,

there are two sequences and twelve genome files with names starting with ‘SC’ or ‘SK’, corre-

sponding to the genome files for S. cerevisiae and S. kudriavzevii, respectively. The first

sequence is associated with six genome files, all of which correspond to S. cerevisiae, implying

that this sequence is conserved across the entire ingroup, whereas the second sequence was

found exclusively in the outgroup S. kudriavzevii. Since only unique sequences are displayed, it

is common to have multiple files associated with a single sequence in an alignment. When a

sequence is found multiple times in a genome file, the number of times it occurred is appended

to the genome file name in the format of ‘(n)’. For example, ‘SC1(2)’ would imply that this

sequence was detected twice in the genome file SC1. Near-identical sequence matches would

be listed as separate sequence entries, assuming the only differences are within the diagnostic

region. The last line of the alignment shows a summary, where ‘{}’ denotes the boundaries of

the diagnostic region, ‘-’ a conserved position, ‘*’ a non-diagnostic SNP, and ‘#’ a diagnostic

SNP with respect to the ingroup. In this case we see that the diagnostic region contains two

diagnostic SNP’s, a ‘T-C’ and ‘A-G’ difference, and zero non-diagnostic SNP’s. The alignment

is annotated with the locations of the best primers found by Primer3. The full output of

Primer3 for these primers is printed in a tabular format below the alignment for convenient

manual inspection.

In the case of VCF input, krisp_vcf can be used in a similar way to krisp_fasta.

For this example, we will use a subset of the of P. ramorum VCF data described above

that is included in the package as a test dataset. We search for regions that distinguish

each of three clonal lineages of P. ramorum from all other lineages with the following

command:

TGCAAGTTAATTGGAACGGAAGCACC. . .TTGTCAACTTGAAC. . .AGATGAAATCTTACCTTCTTGACCCTT: SC1;SC2;SC3;SC4;SC5;SC6
TGCAAGTTAATTGGAACGGAAGCACC. . .TTGTCAACCTGGAC. . .AGATGAAATCTTACCTTCTTGACCCTT: SK1;SK2;SK3;SK4;SK5;SK6
└────────Forward────────┘ . . . {————#–#} . . . └────────Reverse────────┘

Primer statistics:
Direction Penalty Sequence Tm Gc Percent Self Any Th Self End Th . . .

Forward 7.22384 TGCAAGTTAATTGGAACGGAAGCAC 62.72384 44.0 0.0 0.0 . . .

Reverse 6.91895 AGGGTCAAGAAGGTAAGATTTCATC 58.58105 40.0 0.0 0.0 . . .

Pair statistics:
Penalty Compl Any Th Compl End Th Product Size Product Tm Product Tm Oligo Tm Diff . . .

14.14278 0.0 0.0 109 79.88148 21.30042 . . .
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krisp_vcf metadata.csv reference.fasta –vcf variants.vcf
–groups NA1 NA2 EU1 –out_align alignments.txt –gc_clamp 2

The “metadata.csv” file contains a table with two columns: each sample’s name as it appears

in the VCF file and what group (lineage in this case) that the sample belongs to. The “—

groups” option defines which groups assays should be designed for. The “—gc_clamp 2”

option is one of many Primer3 settings that can be changed; this option instructs Primer3 to

only consider primers with at least 2 bases that are G or C on the 3’ end of both primers. The

command above produces the following alignment, among many others (parts of the output

are shortened with ‘. . .’ for visualization):

In this format, columns in the alignment with a diagnostic variant have the alleles and their

counts listed in the form of the allele sequence followed by the number of samples that have

that allele. For example, the “C9” in the above output means that all 9 of the samples assigned

to the EU1 lineage have C in that position. If multiple alleles were present, they would be listed

in series (e.g., C5T1). Diagnostic alleles are highlighted with angle brackets. For example, in

the above output “<T11>” means that all 11 samples of NA2 have T at that position and none

of the samples from other lineages do. Variants not located in diagnostic columns are indi-

cated by capital letters, potentially using IUPAC ambiguity codes if a group has multiple alleles

at a given position. Like krisp_fasta, the Primer3 output for the best primers is presented

below the alignment.

Krisp is designed to leverage massive datasets of whole genomes to find diagnostic

regions suitable for any amplification-based assay, but this efficiency comes with some draw-

backs that could make other software more appropriate in some situations. While other soft-

ware for CRISPR-dx design, such as CaSilico [26] and PrimedSerlock [27], can estimate

optimal crRNA for specific types of Cas enzymes or assays, krisp is more generalized in

order to be useful for any amplification-based diagnostic assay. Similarly, the primer design

considerations change depending on assay type. Krisp uses Primer3 to find primers because

it runs quickly with minimal resources, allowing for huge numbers of potential sites to be

checked quickly. However, Primer3 cannot find primers for some isothermic amplification

techniques like LAMP. Given these limitations, users might have to modify the suggested loca-

tion of crRNAs or primers depending on the assay type, but krisp is designed to make this

process as easy as possible by providing the sequence surrounding each potential diagnostic

region. Krisp does not rely on multiple sequence alignments, which are difficult to produce

reliably and quickly for many genome-scale sequences, allowing it to analyze massive datasets,

## Phyram_PR-102_s0001:209731-209856 is diagnostic for NA2
Reference: gtcccgtcaccgtatatatgtactaaacgca. . .gtgggtagcatactgacgacgagaagt C
agt. . .ctggttaggacagttaaatgtaccGagag

EU1: . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. C9 . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .R. . ..
NA1: . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. C6 . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ...
NA2: . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ..<T11>. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ...

oligos: gtcccgtcaccgtatatatgtactaaacg . . . gggtagcatactgacgacgagaagt T ag . . . ggttaggacagttaaatgtaccgagag

└─────── Left primer ───────┘ . . . └─────────── crRNA ──────────┘ . . . └────── Right primer ─────┘

Primer statistics:
Direction Penalty Sequence Tm Gc Percent Self Any Th Self End Th Hairpin Th
Forward 3.42431 gtcccgtcaccgtatatatgtactaaacg 62.92431 44.82759 7.87208 10.60241 0.0 . . .

Reverse 3.60529 ctctcggtacatttaactgtcctaacc 61.10529 44.44444 1.18023 3.98189 0.0 . . .

Pair statistics:
Penalty Compl Any Th Compl End Th Product Size Product Tm Product Tm Oligo Tm Diff T Opt A . . .

7.0296 2.27423 0.0 126 83.22136 22.11607 61.68654 . . .
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but the alternative methods employed have their own considerations. Krisp_vcf uses VCF

data as input, which relies on mapping reads to a single reference. If the input sequences are

too diverse to map to a single reference, then false negative results are possible in the

unmapped areas. Krisp_fasta‘s reliance on k-mers mean that it does not handle indels,

which could also lead to false negatives.

We hope that the krisp algorithm will facilitate development of novel diagnostic assays. A

complete step-by-step design of a CRISPR-dx assay is beyond the scope of this paper; here, we

provide a starting point for more detailed and customized analyses. The designing of a typical

CRISPR-dx assay can be broken down into two steps, corresponding to primer-based amplifi-

cation and CRISPR-Cas based recognition via a crRNA. Krisp is designed to provide possible

candidates for both, but final selection of a crRNA and primers will depend on many factors,

including the Cas enzyme and type of amplification (e.g., RPA or LAMP) used. For example,

the LwCas13a enzyme used in SHERLOCK can only achieve single base pair resolution when

the SNP is in the 3rd position from the 3’ end and an artificial mismatch is added nearby.

Krisp_vcf takes this into account by positioning the diagnostic SNPs at a location specified

by the user. We hope to add additional functionality to krisp in the future to consider such

technique-specific details to further decrease the workload needed to design CRISPR-dx or

other diagnostic assays. Finally, krisp can be used beyond CRIPSR-dx applications to search

genome or VCF data for any combination of user specified diagnostic probes and/or primers

distinguishing target and non-target groups.

Conclusions

We developed the computational tool krisp to identify genetic regions suitable for develop-

ment of DNA or RNA based diagnostic assays. Krisp scans whole genome sequence data for

target and non-target groups to identify diagnostic regions based on DNA or RNA sequences.

This tool can be used for any organism at a variety of taxonomic levels (e.g. genus, species, sub-

species) for which assembled whole genome sequences or VCF data are available representing

the genetic diversity of the samples to be distinguished. Krisp‘s primary benefits over other

approaches are speed, scale, and automation. While it is possible to manually identify diagnostic

regions from whole genome sequences alignments, VCFs, or BAM pileups using programs with

graphical user interfaces, this usually requires a priori knowledge of which genes might be useful

in this regard to be done within a practical amount of time and effort. Krisp does not require

the user to know which part of the genome to look at because its efficiency allows the entire

genome to be searched. Additionally, krisp does not rely on multiple sequence alignments like

most similar programs do, since multiple sequence alignments are often unreliable and difficult

to produce when there are large scale genomic rearrangements and many genomes to align. This

computational tool has been validated in silico and experimentally with a species-specific SHER-

LOCK assay. Krisp is released open source under the MIT license and available on GitHub

(https://github.com/grunwaldlab/krisp) and the Python PyPI package repository (https://pypi.

org/project/krisp/). A user guide with examples is provided on the GitHub repository.
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