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Abstract

In experiments, the distributions of mRNA or protein numbers in single cells are often fitted

to the random telegraph model which includes synthesis and decay of mRNA or protein, and

switching of the gene between active and inactive states. While commonly used, this model

does not describe how fluctuations are influenced by crucial biological mechanisms such as

feedback regulation, non-exponential gene inactivation durations, and multiple gene activa-

tion pathways. Here we investigate the dynamical properties of four relatively complex gene

expression models by fitting their steady-state mRNA or protein number distributions to the

simple telegraph model. We show that despite the underlying complex biological mecha-

nisms, the telegraph model with three effective parameters can accurately capture the

steady-state gene product distributions, as well as the conditional distributions in the active

gene state, of the complex models. Some effective parameters are reliable and can reflect

realistic dynamic behaviors of the complex models, while others may deviate significantly

from their real values in the complex models. The effective parameters can also be applied

to characterize the capability for a complex model to exhibit multimodality. Using additional

information such as single-cell data at multiple time points, we provide an effective method

of distinguishing the complex models from the telegraph model. Furthermore, using mea-

surements under varying experimental conditions, we show that fitting the mRNA or protein

number distributions to the telegraph model may even reveal the underlying gene regulation

mechanisms of the complex models. The effectiveness of these methods is confirmed by

analysis of single-cell data for E. coli and mammalian cells. All these results are robust with

respect to cooperative transcriptional regulation and extrinsic noise. In particular, we find

that faster relaxation speed to the steady state results in more precise parameter inference

under large extrinsic noise.
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Author summary

Over the past decade, significant progress has been made in the theory and experiments of

single-cell stochastic gene expression dynamics. The most well studied and widely used

stochastic gene expression model is the two-state telegraph model. However, the conven-

tional telegraph model is too simple and limited in its predictive power because it lacks a

description of some important biological mechanisms, such as feedback regulation, multi-

ple gene activation steps, and multiple gene activation pathways. This raises a important

question: what can we learn when fitting a complex gene expression model to a simple

telegraph model? In this paper, we investigate four complex gene expression models by fit-

ting their steady-state mRNA or protein number distributions to the telegraph model and

then obtain estimates of the effective parameters. We show that while the estimated values

of the parameters in the “artificial” telegraph model are not always accurate, they are still

sometimes reliable and can also reveal important dynamical properties of the complex

models such as the ability for a complex model to produce bimodality. Moreover, we pro-

vide an effective method of distinguishing the complex models from the telegraph model

by using additional information such as gene expression data at multiple time points.

Finally, we show that fitting the mRNA or protein number distributions to the telegraph

model may even reveal the underlying gene regulation mechanism of a complex model by

using measurements under varying experimental conditions. The effectiveness of these

methods is well confirmed by analysis of single-cell gene expression data for E. coli and

mammalian cells.

Introduction

Recent experiments have revealed a large cell-to-cell variation in the numbers of mRNA and

protein molecules in isogenic populations due to stochasticity in gene expression and the low

copy numbers of DNA and important regulatory molecules [1–3]. Live-cell imaging

approaches allow a direct visualization of stochastic bursts of gene expression in living cells

[4]. However these experiments are challenging and more commonly one measures the

mRNA or protein expression in individual cells using flow cytometry, single-molecule fluores-

cence in situ hybridization (smFISH) [4], and single-cell RNA sequencing (scRNA-seq) [5].

Together with mathematical models, large amounts of single-cell gene expression data have

been used to understand stochastic gene regulation in various biological problems, ranging

from genetic engineering [6, 7] to cell fate decision [8, 9] and therapeutic targets of disease [10,

11].

Experimentally, the distributions of mRNA and protein numbers are often fitted to the pre-

dictions of mathematical models [12–18]. The most common and well-studied model of this

type is the random telegraph model [19–21], which is composed of four effective reactions (Fig

1A)

G!
�l
G∗; G∗!

�g
G; G∗!

�r
G∗ þ P; P!

d
⌀; ð1Þ

where the first two reactions describe switching of the gene between an active state G* and an

inactive state G, the third reaction describes synthesis of the gene product P, that can be either

mRNA [12] or protein [20], when the gene is active, and the fourth reaction describes decay of

the gene product either due to active degradation or due to dilution during cell division [22,

23]. The chemical master equation describing the two-state telegraph model can be exactly
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solved in steady-state and in time [20, 24]. Extensions of this model to include more than two

gene states have also been considered [25–27]. With tremendous efforts of quantitative and

qualitative analysis, the telegraph model has been successfully applied to understand stochasti-

city in gene expression through (i) clarifying the biological origins of different distribution

shapes [28], (ii) performing a fast and reliable inference of all parameters [17], and (iii) unrav-

elling the gene regulation mechanisms in response to environmental changes [29].

In experiments, there are three commonly observed patterns for the mRNA or protein dis-

tributions: a unimodal distribution with a zero peak, a unimodal distribution with a nonzero

peak, and a bimodal distribution with both a zero and a nonzero peak (Fig 1B) [28]. Actually,

the telegraph model can only produce the above three shapes of distributions. Among these

Fig 1. The simple telegraph model and four relatively complex gene expression models. A: In the telegraph model (TM), the gene switches between

an inactive (off) and an active (on) state with rates �l and �g. The gene product (mRNA or protein, denoted by P) is synthesized with rate �r when the

gene is active, and is degraded with rate d. B: The telegraph model can generate three different shapes of steady-state distributions: a unimodal

distribution with a zero peak (left panel), a unimodal distribution with a nonzero peak (middle panel), and a bimodal distribution with both a zero and

a nonzero peak (right panel). C: In the three-state model (TSM), the gene exhibits a “refractory” behavior: after leaving the active state with rate γ, the

gene has to progress through two sequential inactive states with rates λ1 and λ2 before becoming active again. D: In the cross-talk pathway model

(CPM), the gene can be activated via two signalling pathways with rates λ1 and λ2. The competition between the two pathways is modelled by equipping

them with two selection probabilities q1 and q2 = 1 − q1. E: In the positive feedback model (PFM), the protein produced from the gene activates its own

expression with feedback strength μ. F: In the negative feedback model (NFM), the protein produced from the gene inhibits its own expression with

feedback strength ν.

https://doi.org/10.1371/journal.pcbi.1012118.g001
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three shapes, the bimodal distribution attracts the most attention since it separates isogenic

cells into two distinct phenotypes [30, 31]. Bimodality of mRNA or protein distributions has

been used to describe the bet-hedging strategy in microorganisms [32, 33], and to quantify cell

fate decisions such as the differentiation of embryonic stem cells [34] and the activation of

HIV latency [11]. For the telegraph model, it has been shown that the occurrence of bimodality

requires relatively slow rates of gene state switching—a bimodal distribution can only occur

when both the gene activation and inactivation rates are smaller than the decay rate [35].

In previous studies, the mRNA or protein distributions for various genes (and even for the

whole genome) are often fitted to the telegraph model [12–18], by which one can obtain esti-

mates of the rates of the underlying gene expression processes. One of the most prevalent

methods of parameter inference is the maximum likelihood method which maximizes the log-

likelihood function [16, 17]

log LðyÞ ¼
X

n

NðnÞlogðPnðyÞÞ; ð2Þ

where θ is the parameter set, N(n) denotes the number of cells with n copies of mRNA or pro-

tein, and Pn(θ) denotes the mRNA or protein distribution with parameter set θ. The decay rate

d can be determined by measuring the half-life of mRNA or protein and the cell cycle duration

[36]. However, it rarely measured in experiments and hence what is often estimated are the

parameters �l, �g, and �r normalized by d [17]. To achieve fast and accurate estimation of �l, �g,

and �r, one important step is to select their initial values �l0, �g0, and �r0 for optimization. A com-

mon choice is to set �r0 to be the maximum number of mRNA or protein molecules among sin-

gle cells [16]. Once �r0 is determined, the initial values of the other two parameters, �l0 and �g0,

can be determined by matching the mean and variance of gene product fluctuations [16, 18].

By fitting gene expression data to the telegraph model, one can understand how all parame-

ters change in response to varying experimental conditions [12, 15, 37]. Previous studies have

revealed rich gene regulation mechanisms under different induction conditions or promoter

architectures. For instance, the up-regulation of gene expression levels can be achieved by

increasing the gene activation rate �l for zinc-induced yeast ZRT1 gene [6], decreasing the

gene inactivation rate �g for over 20 Escherichia coli (E. coli) promoters under different growth

conditions [7, 13], increasing the synthesis rate �r for serum-induced mammalian ctgf gene

[38], or a combined effect of both the burst frequency �l and burst size �r=�g in prokaryotic and

eukaryotic cells [29, 37, 39].

However, the conventional telegraph model is limited in its predictive power because it

lacks a description of some important biological mechanisms such as feedback regulation,

non-exponential gene inactivation durations, and multiple gene activation pathways (Fig 1C–

1F). The telegraph model can only be used to study genes that are unregulated, and it fails for

regulated genes. One of the most common gene network motifs is an autoregulatory feedback

loop whereby protein expressed from a gene activates or represses its own transcription (Fig

1E and 1F) [40–43]. It has been estimated that 40% of all transcription factors self-regulate in

E. coli [44] with most of them participating in negative autoregulation [45]. An effective

method of inferring the sign of autoregulation has been proposed based on gene expression

measurements under different feedback strengths [46].

Except feedback regulation, another important mechanism that regulates gene expression is

non-exponential gene inactivation periods. In the telegraph model, the time spent in the active

or inactive gene state has an exponential distribution. The exponential active period is gener-

ally a reasonable assumption [47]. However, recent studies in mammalian and bacterial cells

have shown that the inactive periods for some genes may have a non-exponential peaked
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distribution [48–51]. This suggests that the gene dynamics in the inactive period may contain

two rate-limiting steps and exhibit a “refractory” behavior: after leaving the active state, the

promoter has to progress through two inactive states before becoming active again (Fig 1C).

This refractory behavior is probably due to the fact that the activation of the promoter is a

complex multi-step biochemical process due to chromatin remodeling and the binding and

release of transcription factors or RNA polymerase [52]. Different Bayesian methods have

been applied to estimate all parameters of this refractory model based on time-course gene

expression data [53, 54].

Another possible mechanism that regulates gene expression is the existence of multiple sig-

nalling pathways during gene activation [47, 55]. In the telegraph model, there is only one

gene activation pathway. Recent studies [56, 57] have shown that the competition between two

gene activation pathways (Fig 1D) can well capture the rapid overshooting behavior of tran-

scription levels observed in mouse fibroblasts under the induction of tumor necrosis factor

[58]. Such behavior cannot be explained by a single gene activation pathway with one or more

rate-limiting steps since it either generates monotonic transcription dynamics or triggers a

long lag to reach the peak of the transcription level. Moreover, the existence of two gene activa-

tion pathways can also capture the time-course mRNA expression data observed for yeast

HSP12 gene under NaCl osmotic stress which exhibit unimodal distributions with a zero peak

for small and large times, while exhibit bimodal distributions for intermediate times [59, 60].

Such dynamic transitions between different distribution shapes are rarely observed in the tele-

graph model and other gene expression models [61–63].

Integrating the above biological mechanisms into the telegraph model can generate more

complex models of stochastic gene expression (Fig 1C–1F). An essential problem is, compared

to the telegraph model, there is still a lack of effective methods of theoretical analysis and

parameter inference for these models due to the increased complexity of model structures and

increased number of model parameters. Furthermore, it is also difficult to distinguish these

relatively complex models from the simple telegraph model since they often exhibit similar dis-

tribution shapes. This raises the questions of (i) whether some parameters for a complex

model can be accurately inferred, (ii) whether we can distinguish a complex model from the

telegraph model, and (iii) whether we can infer the gene regulation mechanism of a complex

model by using gene expression data under different induction conditions.

In this paper, we will provide insights to these questions. Our strategy is not to investigate

the complex models themselves; rather, we examine these models by fitting their steady-state

distributions to the telegraph model and then obtain estimates of the “effective” parameters. In

fact, the idea of fitting a complex model to the telegraph model has been previously carried out

in [17], where the authors realized that the three-state model shown in Fig 1C may be more

accurate in mammalian cells but they still fitted the mRNA distributions for thousands of

genes to the telegraph model since, as explained in [17], “the resulting steady-state distribution

for the extended (three-state) model is very close to the two-state model and to distinguish

between these similar models, additional information such as multiple time measurements

within the same cell is needed.” In general, the estimated values of the parameters (the mRNA

or protein synthesis rate and the gene activation and inactivation rates) in the “artificial” tele-

graph model may deviate largely from their real values in the complex models. However, we

find that the effective parameters are still sometimes reliable and can also reveal important

dynamical properties of the complex models such as the ability for a complex model to pro-

duce bimodality. Furthermore, using additional information such as gene expression data at

multiple time points or measurements under varying experimental conditions, we provide an

effective method of distinguishing the complex models from the telegraph model, and we also

show that fitting the mRNA or protein distributions to the telegraph model may even reveal
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the underlying gene regulation mechanisms of the complex models. The effectiveness of these

methods is confirmed by analysis of published data for E. coli and mammalian cells. All these

results are shown to be robust with respect to cooperative transcriptional regulation and

extrinsic noise.

Results

Four relatively complex gene expression models revisited

Here we recall four relatively complex models of stochastic gene expression including the

three-state model, cross-talk pathway model, positive feedback model, and negative feedback

model (see Fig 1C–1F for illustration and the detailed reaction schemes). All of them have

been extensively studied in the literature and are established by integrating a particular genetic

regulation mechanism into the telegraph model. Like the telegraph model, all the four complex

models are composed of gene state switching, synthesis of the gene product, and decay of the

gene product either due to active degradation and dilution during cell division. The gene prod-

uct for the former two models can be either mRNA [12] or protein [20], while for the latter

two models, the gene product must be protein since feedback regulation is realized by binding

of proteins to the promoter.

The three-state model assumes that the process of gene activation contains two rate-limiting

steps (Fig 1C); this explains the non-exponential gene inactivation period observed in experi-

ments [48–51]. The dynamics of the three-state model is controlled by two consecutive gene

activation steps with rates λ1 and λ2, gene inactivation rate γ, synthesis rate ρ of mRNA or pro-

tein, and decay rate d. For convenience, we set d = 1 in what follows. This is not an arbitrary

choice but stems from the fact that the time and parameters can always be non-dimensiona-

lized using d. Specifically, the time given below should be understood to be non-dimensional

and equal to the real time multiplied by d, while the parameters λi, γ, and ρ given below should

also be understood to be non-dimensional and equal to their real values divided by d.

The cross-talk pathway model describes competitive binding of two transcriptional factors

to the promoter: one actives the gene via a weak signalling pathway with rate λ1, and the other

actives the gene via a strong pathway with a larger rate λ2 > λ1 (Fig 1D) [64, 65]. The competi-

tion between the two pathways is modelled by equipping them with two selection probabilities

q1 and q2 satisfying q1 + q2 = 1. In other words, the gene is activated via the weak pathway with

probability q1 and is activated via the strong pathway with probability q2. The mRNA or pro-

tein is synthesized with rate ρ and is degraded with rate d = 1. This model has been successfully

used to explain the rich transcription dynamics observed in mouse fibroblasts and yeast under

different induction conditions [57, 60].

One of the most common gene network motifs is an autoregulatory feedback loop whereby

protein produced from a gene activates or represses its own expression [45]. It has been esti-

mated that 40% of all transcription factors self-regulate in E. coli [44]. The positive feedback

model describes an autoregulatory loop whereby protein expressed from a gene activates its

own transcription (Fig 1E). It has the same reaction scheme as the telegraph model except that

the protein activates the gene with rate constant μ, which characterizes the strength of positive

feedback. Note that it reduces to the telegraph model when μ = 0.

Among the 40% transcription factors that regulate their own expression in E. coli, most of

them participate in negative autoregulation [45]. The negative feedback model describes an

autoregulatory loop whereby protein expressed from a gene represses its own transcription

(Fig 1F). It has the same reaction scheme as the telegraph model except that the protein

represses the gene with rate constant ν, which characterizes the strength of negative feedback.
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In fact, the steady-state gene product distributions for the four relatively complex models can

all be solved analytically and the exact distributions can be found in Sec. 1 in S1 Text.

Note that there are three parameters for the telegraph model (assuming that d = 1), four

parameters for the three-state, positive feedback, and negative feedback models, and five

parameters for the cross-talk pathway model. It has been shown recently that the distributions

of protein numbers in E. coli measured using single-molecule fluorescence microscopy often

have a unimodal distribution [3] and the distributions of mRNA numbers measured using

scRNA-seq often have a negative binomial or zero-inflated negative binomial distribution [66–

68]. Given these (relatively simple) distributions, it is almost impossible to accurately infer all

the four or five parameters of a complex model. A solution of this is to fit the experimental dis-

tributions of mRNA or protein numbers to a simple telegraph model, by which one can obtain

estimates of the three “effective” parameters �l, �g, and �r [12–17]. However, it is not clear

whether a simple telegraph model can always capture the distribution of a complex model, and

it is also not clear whether these effective parameters can reflect the realistic gene expression

processes behind a complex model.

The telegraph model can accurately capture the distributions of complex

models

We first examine whether the gene product distribution of a complex model can be well

approximated by that of the telegraph model. To this end, for each of the four complex models,

we generate synthetic data of mRNA or protein numbers for N = 104 cells using the stochastic

simulation algorithm (SSA), and then fit the steady-state simulated distribution to the tele-

graph model using the maximum-likelihood method [12–17] (Fig 2A). The detailed descrip-

tion of the method can be found in Sec. 2 in S1 Text. Here the gene activation rate of the weak

signalling pathway for the cross-talk pathway model is fixed to be λ1 = 0.2 so that each complex

model has four independent parameters. To proceed, we proportionally select five different

values for each of the four parameters, which cover large swathes of parameter space and give

54 = 625 different parameter sets for each complex model (see Methods).

Like the telegraph model, each complex model can generate unimodal or bimodal distribu-

tions of gene product numbers (Fig 2A). For each of the 625 parameter sets, the synthetic data

obtained using the SSA are then fitted to the telegraph model. Interestingly, we find that the

simulated distributions for all complex models and all parameter sets can be well approxi-

mated by the predictions of the telegraph model with the Hellinger distance (HD) between the

two distributions always less than 0.08 (Fig 2A and 2B) and with the Kullback-Leiber diver-

gence (KLD) between the two distributions always less than 0.025 (Fig A in S1 Text). This

shows that the distributions of complex models can generally be well captured by the telegraph

model with effective parameters �r, �l, and �g. In what follows, the telegraph model equipped

with the effective parameters is referred to as the effective telegraph model of a complex model.

Intriguingly, both the HD and KLD seem to positively correlate with mean gene product num-

ber (Fig 2B). A possible reason is that a low mean copy number is usually associated with a

unimodal distribution with a zero peak that is easy to be captured by the telegraph model,

while a high mean copy number usually corresponds to a distribution with a nonzero peak

that is more difficult to be captured by the telegraph model, leading to a higher HD or KLD.

While the steady-state distributions of complex models can be well fitted by the effective

telegraph model, it is not clear whether the conditional distributions of complex models in the

inactive and active gene states can also be captured by the effective telegraph model. Specifi-

cally, let Pi,n denote the steady-state probability of observing n copies of the gene product

when the gene is in state i, with i = 0, 1 corresponding to the inactive and active states,
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respectively. Then the conditional gene product distribution in gene state i can be calculated as

Pnji ¼
Pi;nP1

n¼0
Pi;n

:

For each complex model, we generate the conditional distributions in the inactive and active

gene states (Pn|0 and Pn|1) using the SSA under all 625 parameter sets. Similarly to the total

gene product distribution (Pn = P0,n + P1,n), the conditional distribution in the active gene

Fig 2. Fitting the steady-state distributions of complex models to the simple telegraph model. For each complex model, synthetic data of gene product numbers are

generated using the SSA under 625 parameter sets. A: In steady state, all the simulated distributions (blue bars) are well captured by the predictions of the effective

telegraph model (red curve). For each complex model, the left panel shows a typical gene product distribution and the right panel shows the distribution with worse

telegraph model approximation, i.e. maximum HD value. B: For each complex model, the HD between the simulated distribution and its telegraph model approximation

is shown as a function of the mean expression level for the 625 parameter sets. The HD is less than 0.08 for all complex models. C: In steady state, the telegraph model not

only captures the total gene product distribution of a complex model, but also captures the conditional distribution in the active gene state. In contrast, for all complex

models except the three-state model, the conditional distribution in the inactive gene state in general fails to be captured by the telegraph model. For each complex model,

the left (right) panel shows the conditional distribution when the gene is on (off) with worse telegraph model approximation, i.e. maximum HD value. D: For each

complex model, the HD is shown as a function of the mean expression level for the 625 parameter sets. The blue circles (grey diamonds) show the HD between the

conditional distribution when the gene is on (off) and its telegraph model approximation. The maximum HD for blue circles is only 0.08 for all complex models, while

the maximum HD for grey diamonds can be as large as 0.78.

https://doi.org/10.1371/journal.pcbi.1012118.g002
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state (Pn|1) for each complex model can always be well approximated by the predictions of the

effective telegraph model with an HD less than 0.08 (Fig 2C and the blue dots in Fig 2D). The

situation is different for the inactive gene state. We find that for each complex model except

the three-state model, the conditional distribution in the inactive gene state (Pn|0) fails to be

captured by the effective telegraph model, manifested by significantly larger HD values. The

worst approximation occurs for the positive feedback model where the HD can be as large as

0.78 (Fig 2C and the grey dots in Fig 2D). According to our simulations, poor approximations

generally occur when the gene is mostly in the active state. To explain this, note that the total

gene product distribution can be represented as Pn = (1 − Poff)Pn|1 + PoffPn|0, where Poff ¼P1

n¼0
P0;n is the probability of the gene being in the inactive state. When gene is mostly on, we

have Poff� 1. In this case, even if the effective telegraph model can capture both Pn and Pn|1, it

fails to capture Pn|0 because Poff is too small.

Linking effective parameters to realistic gene expression processes

In the telegraph model, �r represents the synthesis rate of the gene product, while �l and �g rep-

resent the frequencies of the gene being activated and inactivated, respectively (Fig 1A). In

other words, hToni ¼ 1=�g and hToffi ¼ 1=�l represent the mean active and inactive durations

of the gene, respectively. However, it is not clear whether the effective parameters �r, �l, and �g

of the four complex models can reflect the same dynamic properties.

Note that the synthesis rate is ρ for each complex model (Fig 1C–1F). However, the mean

holding times in the active and inactive states for the four complex models have completely

different expressions. For the three-state model, since gene inactivation consists of only one

exponential step and gene activation consists of two exponential steps, the mean active and

inactive durations can be easily calculated as

hToni ¼
1

g
; hToffi ¼

1

l1

þ
1

l2

:

For the cross-talk pathway model, since there is only one pathway for gene inactivation and

two pathways for gene activation, the mean active and inactive durations can be easily calcu-

lated as

hToni ¼
1

g
; hToffi ¼

q1

l1

þ
q2

l2

:

The expressions of the mean holding times for positive and negative feedback models are

much more complicated and the detailed expressions can be found in Sec. 3 in S1 Text.

Next we examine whether the three effective parameters of a complex model can reflect the

realistic gene expression processes. To this end, we consider the relative error between �r and

ρ, the relative error between �l and 1/hToffi, and the relative error between �g and 1/hToni, i.e.

RE�r ¼
�r � r

r
; RE�l ¼

�l � 1=hToffi

1=hToffi
; RE�g ¼

�g � 1=hToni

1=hToni
:

Moreover, we say that an effective parameter is over-estimated (under-estimated) if the corre-

sponding relative error is greater (less) than zero. For each complex model, we calculate the

relative errors of the three effective parameters under all 625 parameter sets which are chosen

to be the same as in Fig 2. Fig 3A illustrates the sample mean and standard deviation of jRE�rj,

jRE�lj, and jRE�gj for all parameter sets (also see Fig B in S1 Text for the empirical distributions

of jRE�rj, jRE�lj, and jRE�gj). In addition, Fig 3A also shows the empirical proportions of jRE�rj,
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jRE�lj, and jRE�gj being greater than 0.2. If the relative error of an effective parameter has an

absolute value less than 0.2, then we believe that it can reflect the realistic dynamic property of

the corresponding complex model.

For the three-state model, the sample mean of jRE�l j and jRE�g j are large, while jRE�r j has a

relatively small sample mean; in particular, there are only 13.6% of parameter sets such that

jRE�r j > 0:2. This suggests that in most cases, the estimated value of �r is very close to the real

synthesis rate ρ. Similar phenomenon is also observed for the cross-talk pathway and positive

feedback models. In particular, for the positive feedback model, almost all values of jRE�r j are

less than 0.2, suggesting that fitting the steady-state protein distribution of the positive feed-

back model to the telegraph model can always provide a reliable estimation of the synthesis

rate ρ. The situation is different for the negative feedback model, where both jRE�g j and jRE�r j

have a relatively large sample mean, while jRE�l j has a relatively small sample mean. This sug-

gests that the estimated value of �l can reflect the realistic gene activation rate of the negative

feedback model. Interestingly, for all complex models, the gene inactivation frequency is the

worst estimated parameter when fitted to the telegraph model. This is consistent with the

results obtained in [69], which makes an extensive investigation of the accuracy of parameter

estimation using the telegraph model.

Interestingly, our simulations also reveal that the relative errors of the three effective param-

eters follow some consistent principles: (i) for the three-state model, all effective parameters

are over-estimated; (ii) for the cross-talk pathway and positive feedback models, all effective

Fig 3. Linking effective parameters to their real values in complex models. A: For each complex model, the absolute values of relative errors of the three effective

parameters �l, �g, and �r are computed under 625 parameter sets, along with their sample means, sample variances, and the sample frequencies of relative errors being

greater than 0.2. The effective parameter �r is closed to the synthesis rate ρ for the three-state, cross-talk pathway, and positive feedback models, while the effective

parameter �l is closed to the gene activation rate λ for the negative feedback model. B: Accuracy of the three effective parameters �l, �g, and �r for each complex model. For

the three-state model, all effective parameters are over-estimated; for the cross-talk pathway and positive feedback models, all effective parameters are under-estimated;

for the negative feedback model, �l is over-estimated, while �g and �r are under-estimated. C: For each complex model, 150 parameter sets are randomly generated such

that 1/hToffi and 1/hToni are between 0 and 2.5d (grey diamonds). For the three-state model, the scatter plot of ð�l; �gÞ escapes from the potential bimodal region of
�l; �g < d; for the cross-talk pathway and positive feedback models, the scatter plot of ð�l; �gÞmoves towards the potential bimodal region; for the negative feedback model,

the scatter plot of ð�l; �gÞ neither escapes from nor moves towards the potential bimodal region. The yellow (orange) bar shows the proportion of parameter sets that give

rise to a unimodal (bimodal) distribution.

https://doi.org/10.1371/journal.pcbi.1012118.g003
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parameters are under-estimated; (iii) for the negative feedback model, �l is over-estimated,

while �g and �r are under-estimated. Here the principles are consistent in the sense that it is

impossible that an effective parameter is over-estimated for a certain parameter set, while it is

under-estimated for another parameter set. These rules of over-estimation and under-estima-

tion are summarized in Fig 3B. These rules can be further used to characterize the ability for a

complex model to exhibit bimodality. For each complex model, we randomly select 150

parameter sets such that the values of 1/hToffi and 1/hToni are between 0 and 2.5d (see Meth-

ods), and for each parameter set, we fit the synthetic data obtained from the SSA to the tele-

graph model. The values of the real gene switching frequencies 1/hToffi and 1/hToni are shown

by the grey dots in Fig 3C. We then superpose the values of the effective parameters �l and �g

for the 150 parameter sets (shown by the blue dots) onto the same figure.

For the telegraph model, it has been proved that a bimodal distribution can only occur

when both gene switching rates are smaller than the decay rate, i.e. �l; �g < d [35]. The princi-

ples summarized in Fig 3B show that �l and �g are under-estimated for the cross-talk pathway

and positive feedback models. This is also shown in Fig 3C, where the scatter plots of ð�l; �gÞ for

the two models move towards the potential bimodal region, i.e. �l; �g < d. Hence compared to

the telegraph model, the cross-talk pathway and positive feedback models are more likely to

exhibit bimodality. This is consistent with experimental observations [70, 71] and is possibly

due to the fact that cross-talk pathway and positive feedback tend to increase gene expression

noise [46]. In contrast, both �l and �g are over-estimated for the three-state model (Fig 3B) and

thus the scatter plot of ð�l; �gÞ tends to escape from the potential bimodal region (Fig 3C). This

shows that the three-state model is less likely to display bimodality, possible due to the fact that

a multi-step gene activation process reduces gene expression noise [72]. For the negative feed-

back model, �l is over-estimated and �g is under-estimated (Fig 3B). Hence the scatter plot of

ð�l; �gÞ neither moves towards nor escape from the potential bimodal region (Fig 3C). This indi-

cates that negative autoregulation has weak influence on bimodality. Fig 3C also shows the

proportion of parameter sets that lead to a unimodal or bimodal distribution for each complex

model. Again, the fraction of bimodal distributions is significantly higher for the cross-talk

pathway and positive feedback models.

Here we show that the ability for a complex model to produce bimodality is closely related

to the under-estimation of the effective gene activation and inactivation rates, �l and �g, when

fitted to the telegraph model. This is consistent with previous findings that slow gene state

switching is an important source of bimodality [40, 73] and has the potential to be used to ana-

lyze bimodality for more complex gene expression models.

Identification of complex models using snapshot data at multiple time

points

Given the experimental distributions of mRNA or protein numbers in steady state, it is almost

impossible to distinguish a complex model from the telegraph model since the latter can accu-

rately capture the steady-state distribution of the former. To further test this, for each complex

model, we generate synthetic data of mRNA or protein numbers using the SSA for N = 102,

103, 104, 105 cells under 625 parameter sets. Then we fit the steady-state distribution obtained

from the SSA to the complex model and the telegraph model, respectively, by maximizing the

log-likelihood function L(θ). To distinguish between the two competing models, a common

strategy is to select the model with lower corrected Akaike information criterion (AICc) [74]

AICc ¼ � 2 log LðyÞ þ 2kþ
2kðkþ 1Þ

N � k � 1
;
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where k is the number of parameters (k = 4 for each complex model and k = 3 for the telegraph

model) and N is the sample size. Here we use the AICc because it imposes greater penalty on

the number of parameters than the conventional AIC, especially when the sample size is small.

According to simulations, the proportion of incorrect model selection, i.e. the telegraph model

has a smaller AICc, decreases with the sample size N. For each complex model, over 90% of

parameter sets lead to incorrect model selection for N = 102 cells (typical sample size for

smFISH and scRNA-seq data), and the proportion is still over 40% even for N = 104 cells (Fig

C in S1 Text). This clearly shows that reliable model selection fails to be made based solely on

steady-state data.

To distinguish a complex model from the telegraph model, additional information such as

snapshot data at multiple discrete time points within the same cell population measured using

e.g., live-cell imaging, flow cytometry, smFISH, and scRNA-seq, is needed [75, 76]. Recent

studies have proposed various statistical methods, such as the maximum likelihood method

[59, 75] and various Bayesian method [53, 54, 77], to search optimal kinetic parameters based

on single-cell data at multiple time points. However, no matter which method is used, the first

and most important step is to determine which model (the telegraph model or more complex

models) is the most competitive to describe the snapshot data [59].

We next examine how to distinguish a complex model from the telegraph model by using

snapshot data. Here we assume that initially there is no gene product molecules in the cell and

the gene is in the inactive state. This mimics the situation where the gene has been silenced by

some repressor over a period of time such that all gene product molecules have been removed

via degradation. At time t = 0, the repressor is removed and we investigate how gene expres-

sion recovers. Note that a complex model and its effective telegraph model have very similar

steady-state distributions; however, they may exhibit completely different dynamic behaviors

since their time-dependent distributions are generally different. For each complex model, we

compute the time-dependent mean M(t) and variance σ2(t) of gene product fluctuations using

the finite-state projection (FSP) algorithm [75] under all 625 parameter sets which are chosen

to be the same as in Fig 2. The time-dependent mean and variance for the effective telegraph

model are denoted by �MðtÞ and �s2ðtÞ, respectively.

Interestingly, for the three-state and positive feedback models, we find that the mean curve

M(t), as a function of time t, is always below its counterpart �MðtÞ for the effective telegraph

model for all parameter sets. In contrast, the mean curve M(t) for the cross-talk pathway and

negative feedback models is always above its counterpart �MðtÞ for the effective telegraph

model (Fig 4A). This is probably because compared to the telegraph model, the three-state and

positive feedback models have slower relaxation speed to the steady state, while the cross-talk

pathway and negative feedback models relax to the steady state faster [44, 78]. In particular,

the cross-talk pathway model may even perform overshooting behavior [79], where the maxi-

mum value of the mean curve M(t) exceeds its steady-state value (blue dashed curve in Fig

4A). Similar dynamic features are also observed for the time-dependent second moment

hn2i(t); however, common indicators of gene expression noise, such as the coefficient of varia-

tion squared σ2(t)/M2(t) and the Fano factor σ2(t)/M(t), present less easily distinguishable

dynamic differences between a complex model and its effective telegraph model (Fig D in S1

Text).

The above results provide an effective method of distinguishing a complex model from the

telegraph model. Given single-cell data at multiple time points, we can first fit the steady-state

distribution to the telegraph model and estimate the effective parameters �l=d; �g=d, and �r=d,

where the decay rate d = (log 2)/T + (log 2)/Tc can be determined by measuring the half-life T
of the gene product and the cell cycle duration Tc [36]. We then compare the experimental
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Fig 4. Determining the most competitive model to describe single-cell data at multiple time points. A: The three-state and positive feedback models have smaller

time-dependent mean curve compared to the effective telegraph model, while the cross-talk pathway and negative feedback models have larger time-dependent mean

curve. B: Box plots of d(τe − τc) for each complex model, where the τc is the response time for a complex model and τe is the response time for the effective telegraph

model. Here the response time is defined as the time for the mean curve to reach half of its steady-state value [44]. C: In E. coli cells, the mRNA of interest, under the

control of an inducible promoter Plac/ara, was consisted of the coding region for a red fluorescent protein mRFP1, followed by a tandem array of 96 MS2 binding sites (left

panel) [1]. The GFP, independently produced from the promoter PLtetO, tagged the target transcript by binding to the MS2 binding sites. The number of target transcripts

in a single cell was computed using fluorescence intensities of GFP at nine time points from 0—120 min. The steady-state mRNA distribution (at 120 min) was fitted to

the telegraph model with measured decay rate d = 0.014 min1 [1] (upper-right panel) and the three effective parameters are estimated to be

ð�l=d; �g=d; �r=dÞ ¼ ð0:36; 0:18; 12:5Þ. The real time-dependent mean expression levels (blue triangles in the lower-right panel) are much larger than the mean expression

levels predicted by the effective telegraph model (red curve), suggesting that the cross-talk pathway model is a potential candidate to describe the data. D: Point estimates

(red points) and confidence intervals (blue lines) for the six parameters q1, q2, λ1, λ2, γ, and ρ when fitting the data to the cross-talk pathway model. Here the confidence

intervals are computed using the profile likelihood method. E: The cross-talk pathway model (blue curves) provides a much better fit of the time-dependent mRNA

distributions than the telegraph model (red dashed curves). The parameters for the cross-talk pathway model are estimated to be q1 = 0.13, q2 = 1 − q1, and (λ1, λ2, γ, ρ) =

(0.0013, 0.055, 0.0042, 0.21) min−1.

https://doi.org/10.1371/journal.pcbi.1012118.g004
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mean curve M(t) obtained from the snapshot data and the mean curve �MðtÞ of the effective

telegraph model. If the former is above the latter, then we have good reasons to believe that the

cross-talk pathway or negative feedback model is more competitive. In contrast, if the former

is below the latter, then we may select the three-state or positive feedback model to describe

the data.

To gain deeper insights, for each parameter set, we compute the response time τc for a com-

plex model and the response time τe for its effective telegraph model, where the response time

is defined as the time required for the mean curve (M(t) or �MðtÞ) to reach half of its steady-

state value [44]. From Fig 4A, it is clear that τe< τc for the three-state and positive feedback

models and τe> τc for the cross-talk pathway and negative feedback models. We find that the

response time gap G = d(τe−τc) plays a vital role; here we multiply the true response time gap

τe − τc by d since we want to transform it into a non-dimensional quantity. The 625 parameter

sets yield 625 values of G. Fig 4B shows the box plots of G for all complex models. Interestingly,

in the average sense, the cross-talk pathway model has a much larger G compared to the nega-

tive feedback model. This suggests that the response time gap serves as an effective indicator to

distinguish between the two complex models. Note that the maximum of G is only 0.67 for the

negative feedback model. Hence if the experimental value of G is larger than 0.67 (here τc
should be understood as the response time obtained from the experimental mean curve), then

the negative feedback model can be safely excluded.

Validation of theoretical results using snapshot data at multiple time

points

To validate our method, we apply it to the data set of mRNA expression at multiple discrete

time points measured in living E. coli cells [1]. In this experiment, anhydrotetracycline was

first added to a growing culture, which induced the PLtetO promoter to produce MS2 protein

fused to green fluorescent protein (GFP) (Fig 4C). The mRNA target, under the control of

another inducible promoter Plac/ara, was consisted of the coding region for a red fluorescent

protein mRFP1, followed by a tandem array of 96 MS2 binding sites. MS2-GFP fusion protein

produced from the PLtetO promoter can then bind to the MS2 binding sites and hence the syn-

thesized transcripts from the Plac/ara promoter were tagged by GFP. In other words, the abun-

dances of mRFP1 protein were measured by red fluorescence and the corresponding mRNA

abundances were counted by green foci. The Plac/ara promoter can be repressed by LacI and

can be activated by AraC. Activation of the promoter was induced by adding arabinose to

obtain full activation of the ara system followed by adding isopropylthio-β-D-galactoside

(IPTG) to repress the lac component. Samples were imaged using fluorescence microscopy at

nine different time points from 0—120 min, and the number of transcripts in individual cells

was computed according to green foci. In what follows, we only focus on the dynamics of

mRFP1 transcripts and do not consider the expression of mRFP1 protein.

All cells contained no green foci at t = 0 min, suggesting that initially there are no mRNA

molecules. Under the induction of arabinose and IPTG, the mean number of transcripts

increases monotonically and approaches the steady state at t = 120 min (Fig 4C). The mRNA

expression in steady state exhibits an apparent bimodal distribution with a zero and a nonzero

peak. We then fit the steady-state mRNA distribution to the telegraph model (Fig 4C) and the

three effective parameters are estimated to be �l=d ¼ 0:36, �g=d ¼ 0:18, and �r=d ¼ 12:5. The

mRNA tagged by GFP is very stable and its decay rate is measured to be d = 0.014 min−1 [1].

Fig 4C compares the experimental mean curve M(t) and the mean curve �MðtÞ of the effective

telegraph model computed using the effective parameters. It is clear that MðtÞ > �MðtÞ for all

time points. Our theory then suggests that the cross-talk pathway and negative feedback
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models are more reasonable than the telegraph model. Since there is no evidence that mRFP1

protein binds to its own promoter to form an autoregulatory loop [1], we have good reasons to

believe that the cross-talk pathway model may be the most competitive to describe the snap-

shot data (this fact will be confirmed using two different methods based on data analysis; see

below).

We next estimate all the parameters of the cross-talk pathway model based on the time-

dependent distributions of transcript numbers. An accurate parameter inference can be

achieved by maximizing the following log-likelihood function summed over all nine time

points [75]:

log LðyÞ ¼
X9

l¼1

X

n

Nðtl; nÞlogðPnðtl; yÞÞ; ð3Þ

where θ is the parameter set for the cross-talk pathway model, N(tl, n) denotes the number of

cells with n transcripts at time t = tl, and Pn(tl, θ) denotes the theoretical mRNA distribution at

time t = tl. Here the theoretical distribution is computed using FSP assuming that initially

there are no mRNA molecules and the gene is off. Note that similar methods of parameter

inference based on time-course measurements have been performed in [80]. To handle the

positive constraint on rate parameters, we rewrite y ¼ e~y and set ~y to be the optimization vari-

ables [77]. One exception is the selection probability q2 2 (0, 1) of the strong pathway, for

which we rewrite q2 ¼ 1 � e� j~q2 j and set ~q2 to be the optimization variable. Note that while our

inference method is robust for the telegraph model (Fig E in S1 Text), there may be ambiguity

in parameter estimation for more complex models [80]. To check this, we compute the 95%

confidence intervals for all parameters (Fig 4D) using the profile likelihood method (see Meth-

ods). Following [81], the inference uncertainty for a given parameter is defined as the width of

the confidence interval divided by the point estimate. From Fig 4D, the uncertainty is com-

puted as 0.26 for q1, 2.1 for λ1, 0.5 for λ2, 1.1 for γ, and 0.5 for ρ. The parameter λ1 has a higher

uncertainty than other parameters because the value of λ1 is too small so that it is difficult to

precisely determine its value. These relatively low uncertainties ensure high precision of the

inferred parameters.

Fig 4E illustrates the experimental mRNA distributions at all measured time points and the

optimal fit of these distributions to the cross-talk pathway model (blue curves) and the tele-

graph model (red dash curves). It can be seen that the former indeed behaves much better

than the latter. First, the total HD for the cross-talk pathway model summed over all time

points is 1.03, which is less than a much higher HD of 1.67 for the telegraph model. Second,

the bimodal distributions after 30 min can be very well reproduced by the cross-talk pathway

model but fail to be captured by the telegraph model. To reinforce our result, we also fit the

time-dependent mRNA distributions to the negative feedback model. Interestingly, the esti-

mated negative feedback strength ν is always zero for 50 sets of initial optimization parameters.

This again shows that the negative feedback model fails to capture the time-course data since it

is even worse than the telegraph model. In addition, we also compute the experimental

response time τc and the response time τe for the effective telegraph model. They are estimated

to be τc = 45 min and τe = 105 min. Hence the response time gap is estimated to be G = d(τc −
τe) = 0.014 × (105 − 45) = 0.84, which is much larger than the maximum value of 0.67 for the

negative feedback model (Fig 4B). This again shows that the negative feedback model should

be excluded and confirms our previous choice to use the cross-talk pathway model to interpret

the data.

Our results imply that the activation of the Plac/ara promoter is likely to be realized by the

competition between a weak and a strong signalling pathway. This is supported by the
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biological fact that activation of the Plac/ara promoter, under the induction of arabinose and

IPTG, is regulated by both the repressor LacI and the activator AraC, which compete to bind

to the promoter [1]. The unbinding of LacI from the promoter and the binding of AraC to the

promoter correspond to two different pathways. The activation rate λ2 of the strong pathway is

estimated to be over 40-fold larger than the activation rate λ1 of the weak pathway. The selec-

tion probabilities of the weak and strong pathways are estimated to be q1 = 0.13 and q2 = 0.87,

respectively.

Inference of gene regulation mechanisms using parameter-varying data

Experimentally, gene expression data are often measured under different experimental condi-

tions. One of the most common experimental strategies is to modulate the value of only one

parameter and keep the values of other parameters invariant, e.g. to modulate the feedback

strength in a genetic feedback loop while keep the protein synthesis and decay rates, as well as

the gene switching rates the same [82]. Given gene expression data under different experimen-

tal conditions, a natural question is whether we can infer the underlying gene regulation mech-

anisms, e.g. whether there is a feedback loop, multiple gene states, or multiple gene activation

pathways.

To answer this, for each complex model, we generate synthetic data of mRNA or protein

numbers using the SSA under 40 different experimental conditions, where we tune the value

of only one parameter and fix the values of other parameters. The parameter that is modulated

will be called the tuning parameter in what follows. Here we fix λ1 = 0.2 for the cross-talk path-

way model so that each complex model has four tuning parameters. We choose 10 different

values for each tuning parameter and hence there are 4 × 10 = 40 experimental conditions for

each complex model. For each experimental condition, we then fit the steady-state simulated

distribution to the telegraph model and obtain estimates of the effective parameters �l, �g, and

�r.

Note that tuning a single parameter will lead to a change in the mean expression level and

will also give rise to changes in the effective parameters. For each complex model and each tun-

ing parameter, we illustrate �l, �g, and �r as functions of the mean expression level (Fig 5A). For

convenience, the value of each effective parameter is normalized to unity at the lowest mean

expression level. Interestingly, when modulating a single parameter, the changes in the effec-

tive parameters follow some consistent principles. The rules for the three-state model are sim-

ple: variations in the gene activation rate λ1 (or λ2), gene inactivation rate γ, and synthesis rate

ρ result in changes in their counterparts �l, �g, and �r in the effective telegraph model, respec-

tively (Fig 5A). For the cross-talk pathway model, variations in γ and ρ result in changes in

their counterparts �g and �r, respectively, while tuning either the selection probability q2 or the

gene activation rate λ2 of the strong pathway gives rise to simultaneous variations in both �l

and �g (Fig 5A). Furthermore, we can distinguish between the regulations of q2 and λ2 since the

increase in q2 leads to increasing �l and decreasing �g, while the increase in λ2 leads to non-

monotonic �l and decreasing �g.

For the positive and negative feedback models, variations in the gene switching rates λ and

γ result in changes in their counterparts �l and �g in the effective telegraph model, respectively

(Fig 5A). The situation is different when modulating the feedback strengths μ and ν, as well as

the synthesis rate ρ. It is clear that the increase in the positive feedback strength μ leads to

increasing �l and decreasing �g; the decrease in the negative feedback strength ν gives rise to

increasing �r and decreasing �g; the increase in the synthetic rate ρ results in simultaneous
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increase in both �r and �g for the negative feedback model and simultaneous variations in all

effective parameters �l, �g, and �r for the positive feedback model.

We emphasize that the above rules are actually independent of the choice of model parame-

ters. To see this, for each complex model and each tuning parameter, we repeat the above

Fig 5. Variation patterns of effective parameters under different induction conditions in all complex models. A: Tuning a single parameter of a complex model can

generate a series of steady-state gene product distributions, along with different mean expression levels. Fitting these distributions to the telegraph model leads to a series

of effective parameters �l, �g, and �r. Plotting �l, �g, and �r as functions of the corresponding mean expression level reveals how the effective parameters vary when a single

parameter of a complex model is tuned. B: Effective parameters changed when modulating a single parameter of a complex model. For example, for the positive feedback

model, the effective parameter �l changes when tuning the parameter λ, while all effective parameters �l, �g, and �r change when tuning the parameter ρ.

https://doi.org/10.1371/journal.pcbi.1012118.g005
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procedures under 53 = 125 parameter sets, where we choose five different values for each of

the three fixed parameters (see Methods). All 125 parameter sets give rise to the same princi-

ples as in Fig 5A. For clarity, we summarize them in Fig 5B. These principles not only reveal

the influence of the tuning parameter on the effective parameters, but also provide a potentially

useful way of inferring the underlying gene regulation mechanism by using gene expression

data under different induction conditions. For example, if we observe increasing λ (ρ) and

decreasing γ as a function of the mean expression level in a gene network in response to vary-

ing experimental conditions, then we have good reasons to conjecture that there is a positive

(negative) feedback loop within the network.

Validation of theoretical results using synthetic gene networks

To validate our theory, we apply it to a synthetic gene network (orthogonal property of a syn-

thetic network can minimize extrinsic noise) stably integrated in human kidney cells, as illus-

trated in Fig 6A [82]. In this network, a bidirectional promoter is designed to control the

expression of two fluorescent proteins: zsGreen and dsRed. The activity of the promoter can

be activated in the presence of Doxycycline (Dox). The green fluorescent protein, zsGreen, is

fused upstream from the transcriptional repressor LacI. The LacI protein binds to its own gene

and inhibits its own transcription, forming a negative autoregulatory feedback loop. The

strength of negative feedback can be tuned by induction of IPTG. As a control architecture,

the red fluorescent protein, dsRed, is not regulated by induction of IPTG, forming a network

with no feedback. The steady-state fluorescence intensities of zsGreen and dsRed are measured

under ten different IPTG concentrations from 0—50 μM and two different Dox concentra-

tions (low and high) using flow cytometry.

Note that in this experiment, it is the fluorescence intensities of the two proteins that are

measured, rather than their copy numbers. Hence it is crucial to determine the proportionality

constant between fluorescence intensities and copy numbers. In other words, we need to con-

vert the fluorescence intensity x into the copy number n = [x/β], where β represents the fluo-

rescence intensity per protein copy and [a] denotes the integer part of a. For zsGreen, since

negative feedback is weak when IPTG concentration is high, the value of β is chosen such that

the mean number of zsGreen is equal to 50 at the highest IPTG concentration (50 μM) and at

high Dox concentration, which is compatible with the typical number of LacI repressor in the

lac operon [83]. For dsRed, since its expression is not regulated by IPTG induction, the value

of β is chosen such that the mean number of dsRed is equal to 50 at high Dox concentration.

We then fit the distributions of zsGreen levels to the telegraph model at all IPTG and Dox

concentrations and obtain estimates of the effective parameters �l, �g, and �r. Note that increas-

ing IPTG concentration will lead to the increase in the mean expression level. Fig 6B illustrates

�l, �g, and �r as functions of the mean expression level as IPTG concentration varies. Clearly, at

both low and high Dox concentrations, the increase in IPTG concentration results in increas-

ing �r and decreasing �g, while the value of �l is almost unaffected by IPTG induction. This is in

perfect agreement with the consistent principle shown in Fig 5A and 5B for the negative feed-

back model as the negative feedback strength ν changes. Hence even if we do not know in

advance the topology of the network, we have good reasons to conjecture that it includes a neg-

ative feedback loop and increasing IPTG concentration weakens negative feedback. In other

words, our method correctly predicts the sign of the autoregulatory loop as well as the parame-

ter influenced by the induction conditions.

Similarly, we repeat the above procedures for dsRed. Interestingly, we find that fitting the

distributions of dsRed levels to the telegraph model will lead to extremely large values of �g and

�r, suggesting the copy number of dsRed has a negative binomial distribution (the steady-state
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Fig 6. Unravelling the regulation mechanism in a synthetic gene network integrated in human kidney cells [82]. A: In the network, a bidirectional promoter

transcribes the zsGreen-LacI and dsRed transcripts. The gene network includes two architectures: a negative-feedback network and a network with no feedback. The

zsGreen-LacI transcripts are inhibited by LacI, forming a network with negative autoregulation. The dsRed transcripts are not regulated, forming a network with no

feedback. The activity of the promoter can be activated in the presence of Dox, and the negative feedback strength can be tuned by induction of IPTG. B: Under both

high and low Dox levels, fitting the distributions of zsGreen levels under different IPTG concentrations to the telegraph model leads to increasing �r, decreasing �g, and
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distribution of the telegraph model reduces to a negative binomial when gene expression is

sufficiently bursty, i.e. �g � �l and �r=�g is finite [21, 84]). In this case, only the burst frequency

�l and burst size �r=�g can be accurately inferred [18]. Since dsRed expression is unregulated by

IPTG induction, at both high and low Dox concentrations, the values of �l and �r=�g are almost

invariant as IPTG concentration varies when plotted against the mean expression level (Fig

6C).

Robustness of results with respect to cooperative regulation and extrinsic

noise

Note that for the feedback models shown Fig 1E and 1F, feedback is mediated by binding of

only one protein copy to the gene. However, in living systems, cooperative transcriptional reg-

ulation is very common [85]. To investigate the influence of cooperative regulation, we con-

sider the positive and negative feedback models illustrated in Fig 7A, where feedback is

mediated by cooperative binding of two protein copies to the gene. Again, we fit the simulated

distributions obtained from the SSA to the telegraph model under 625 parameter sets and

obtain estimates of the effective parameters �l, �g, and �r.

We find that almost all results obtained previously remain unchanged. First, under cooper-

ative regulation, the steady-state protein distributions for the feedback models are still well fit-

ted by the effective telegraph model, manifested by low HD values (Fig 7B). The only

difference is that in the presence of cooperative binding, the positive feedback model may pro-

duce deterministic bistability, which means that the deterministic rate equation for the system

may have two stable fixed points (Fig 7C, left panel) [86]; this can even happen when the gene

switches very rapidly between the two states, i.e. λ + μhni2, γ� ρ, d. Interestingly, for a positive

feedback loop with deterministic bistability, the effective telegraph model still accurately repro-

duces the resulting bimodal distribution by setting very small effective gene switching rates �l

and �g (Fig 7C, right panel). This coincides with our previous finding that �l and �g are both

under-estimated in the positive feedback model.

Second, under cooperative regulation, fitting the steady-state distribution to the telegraph

model yields reliable estimation of the synthesis rate ρ for the positive feedback model and reli-

able estimation of the gene activation rate λ for the positive feedback model (Fig 7D). Compar-

ing Fig 3A with Fig 7D, we find that the inference of λ is even more accurate in the presence of

cooperative regulation—the mean relative error of �l is 0.13 for the non-cooperative case and

is only 0.04 for the cooperative case. Third, the time-dependent mean curve for the positive

(negative) feedback model is still below (above) its counterpart for the effective telegraph

model due to slower (faster) relaxation speed to the steady state (Fig 7E). Finally, the variation

patterns of the three effective parameters under different induction conditions also remain

unchanged (Fig F in S1 Text).

Thus far, we only consider models with intrinsic noise (Figs 1 and 7A). However, extrinsic

noise may contribute substantially to the gene product fluctuations, especially when intrinsic

noise is small [87]. Extrinsic noise may have various sources such as transcription factor con-

centrations, RNA polymerase number, cellular volume, and local cell crowding [69]. A recent

study [88] found that in the presence of extrinsic noise, fitting gene expression data to the

almost invariant �l against the mean expression level. Such variation pattern of the three effective parameters coincides with that in the negative feedback model when

the feedback strength ν is tuned. C: Under both high and low Dox levels, fitting the distributions of dsRed levels under different IPTG concentrations to the telegraph

model leads to almost invariant values of �l and �r=�g against the mean expression level. The error bars in B and C show the standard deviation of three repeated

experiments [82].

https://doi.org/10.1371/journal.pcbi.1012118.g006
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standard telegraph model may lead to inaccurate parameter inference. We next investigate

how the conclusions of the present paper are affected by extrinsic noise. To characterize extrin-

sic noise, following [77, 88], we add noise to the synthesis rate ρ for all complex models. Specif-

ically, we reset ρ in each complex model as a log-normal distributed random variable with its

Fig 7. Robustness of results with respect to cooperative regulation and extrinsic noise. A: Positive and negative feedback models with cooperative

regulation. Feedback is mediated by cooperative binding of two protein copies to the gene. B: For each cooperative feedback model, the HD between the

simulated distribution and its telegraph model approximation is shown as a function of the mean expression level for 625 parameter sets. The simulated

distribution is well captured by the telegraph model, manifested by HD<0.065. C: Under cooperative regulation and fast gene switching, the

deterministic rate equation for the positive feedback model is given by _x ¼ rðlþ mx2Þ=ðlþ gþ mx2Þ � dx. It may have two stable fixed points (and an

unstable fixed point) and thus gives rise to deterministic bistability. The intersections of y = ρ(λ + μx2)/(λ + γ + μx2) (blue curve) and y = dx (red dashed

curve) give the locations of the three fixed points (green circles). For a positive feedback loop with deterministic bistability, the effective telegraph model

still accurately captures the resulting bimodal distribution. The parameters of the positive feedback model are chosen as ρ = 50, d = 1, λ = 2, γ = 160, μ =

0.5. The effective parameters are estimated to be �r ¼ 42:3; �l ¼ 0:177; �g ¼ 0:028. D: For each cooperative feedback model, the (absolute values of)

relative errors of the three effective parameters �l, �g, and �r are computed under 625 parameter sets, along with their sample means, sample variances,

and the sample frequencies of relative errors being greater than 0.2. E: Under cooperative regulation, the positive feedback model still has smaller time-

dependent mean curve compared to the effective telegraph model, while the negative feedback model still has larger time-dependent mean curve. F: For

each complex model and each parameter set, the simulated distributions are fitted to the telegraph model under four noise levels (0%, 5%, 10%, and

50%). The relative errors of the three effective parameters are computed for all parameter sets, along with the three statistics of relative errors (same as

in D). The three statistics of �l are shown for the negative feedback model, and the three statistics of �r are shown for the other three complex models.

https://doi.org/10.1371/journal.pcbi.1012118.g007
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mean being the original value of ρ and standard deviation being equal to 0.05, 0.1, and 0.5 of

the mean, corresponding to noise levels of 5%, 10%, and 50%, respectively.

For each complex model and each noise level, we fit the simulated distributions obtained

from the SSA to the telegraph model under 625 parameter sets. We find that the almost all

results obtained previously remain unchanged when the noise level is below 10%, but some

results may be broken when the noise level is increased to 50%. First, the telegraph model can

still accurately reproduce the steady-state gene product distribution for all noise levels, mani-

fested by low HD values, although the HD increases slightly with respect to the noise level (Fig

G in S1 Text). Second, for a noise level less than 10%, the gene activation rate λ can still be

accurately estimated for the negative feedback model and the synthesis rate ρ can still be accu-

rately estimated for the other three complex models, similarly to models without extrinsic

noise (Fig 7F). When the noise level is increased to 50%, the estimate of ρ is still accurate for

the cross-talk pathway model and the estimate of λ is still accurate for the negative feedback

model; however, there is a sharp increase in the mean relative error for the other two complex

models. Interestingly, combining Fig 7E and 7F, we find that the robustness of parameter

inference with respect to extrinsic noise for a given model is closely related to its relaxation

speed to the steady state—faster relaxation speed results in more precise inference under large

extrinsic noise.

Third, for all noise levels, the three-state and positive feedback models still have slower

relaxation speed to the steady state compared to the effective telegraph model, while the cross-

talk pathway and negative feedback models relax to the steady state faster (Fig H in S1 Text).

Finally, the variation patterns of the three effective parameters under different induction con-

ditions remain unchanged for small and intermediate noise levels and may change dramati-

cally when the noise level is increased to 50% (Figs I-L in S1 Text). In summary, all the

conclusions in the present paper are robust in the presence of cooperative regulation and

(small or intermediate) extrinsic noise.

Conclusions and discussion

A central question in molecular biology is to understand various genetic regulation mecha-

nisms and how they modulate the production of mRNA and protein at the single-cell level [28,

47]. The classical telegraph model has been extensively used to explain single-cell gene expres-

sion data so that one can estimate the underlying kinetic parameters and unravel gene regula-

tion mechanisms in response to varying environmental changes [15, 17, 29]. However, the

telegraph model is limited in its predictive power since it lacks a description of some biological

mechanisms that are known to have a profound impact on the mRNA and protein distribu-

tions in single cells. In the presence of complex biological mechanisms, fitting gene expression

data to the simple telegraph model [17] may lead to inaccurate parameter inference and even

incorrect predictions of the underlying gene regulation mechanisms.

In the present paper, we investigate the dynamical properties of four relatively complex

gene expression models, including the three-state, cross-talk pathway, positive feedback, and

negative feedback models. Compared with the telegraph model, these models describe how

fluctuations are influence by complex biological mechanisms such as non-exponential gene

inactivation durations, multiple gene activation pathways, and feedback regulation. Our

method is to fit the steady-state mRNA or protein distribution of each complex model to a

simple telegraph model for a large sets of model parameters. Despite the potential risks, we

found that fitting these complex models to the telegraph model still provide a large amount of

valuable information. In fact, the idea of using the distribution of the telegraph model to

approximate that of a complex model has been applied in previous studies using analytical

PLOS COMPUTATIONAL BIOLOGY What can we learn when fitting a simple model to a complex model?

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012118 May 14, 2024 22 / 31

https://doi.org/10.1371/journal.pcbi.1012118


methods such as linear mapping or moment matching [89–91]. Here we evaluate the perfor-

mance of the effective telegraph model using statistical and computational methods.

First, we showed that the steady-state gene product distributions, as well as the conditional

distributions in the active gene state, of the four complex models can all be well fitted by the

telegraph model. We found that while most effective parameters may deviate significantly

from their real values in the complex models, there are still some parameters that can be reli-

ably estimated with very small relative errors. For the three-state, cross-talk pathway, and posi-

tive feedback models, the effective synthesis rate is very closed to its real value, while the

effective gene activation and inactivation rates deviate largely from their real values. At first

glance, only the gene activation mechanism in the three complex models differs from that in

the telegraph model. However, our results showed that fitting the steady-state distributions of

the complex models to the telegraph model may lead to unreliable estimation of both the gene

activation and inactivation rates [7], but does not significantly influence the synthesis rate. For

the negative feedback model, we showed that the effective synthesis and gene inactivation rates

are unreliable, while the effective gene activation rate is very closed to its real value.

The effective parameters also provide a natural and convenient way of characterizing the

capability for a complex model to exhibit bimodal gene product distributions. This characteri-

zation is based on a mathematical result [35] which shows that the telegraph model can gener-

ate a bimodal distribution only when its gene activation and inactivation rates are both smaller

than the decay rate. For the three-state model, the effective gene switching rates are both over-

estimated compared to their real values, which makes bimodality difficult to occur. In contrast,

for the cross-talk pathway and positive feedback models, the effective gene switching rates are

both under-estimated, and thus these two models are more likely to exhibit bimodality. For

the negative feedback model, one of the effective gene switching rates is over-estimated while

the other is under-estimated, which exerts a weak influence on bimodality.

Furthermore, we showed that the effective parameters can be used to distinguish a complex

model from the telegraph model by using additional single-cell data at multiple time points.

The good fit of complex models to the telegraph model in steady state indicates that it is

impossible to distinguish between the two models by only using the steady-state gene expres-

sion data. Previous studies showed that a non-monotonic dynamic feature of gene expression

mean can rule out the telegraph model since the telegraph model can only display a monotonic

time-dependent mean curve [56, 57]. However, this does not work when the gene expression

mean displays a monotonic dynamics. To solve this, we compared the time-dependent mean

curves of a complex model and its effective telegraph model, where the effective parameters

were estimated using the steady-state data. We showed that if the mean curve for the effective

telegraph model is below the real mean curve, then the three-state or positive feedback model

is more competitive to describe the data compared to the telegraph model. In contrast, if the

former is above the latter, we may select the cross-talk pathway or negative feedback model to

explain the data. A method based on the response times of a complex model and its effective

telegraph model can further distinguish the cross-talk pathway model from the negative feed-

back model. As a validation of our method, we apply it to the snapshot mRNA expression data

of the Plac/ara promoter at multiple time points measured in E. coli cells [1]. We showed that

among the four complex models, the cross-talk pathway model is the most competitive and

thus we predict that the activation of Plac/ara is very likely to be regulated by the competition

between two signalling pathways.

In addition, we showed that the effective parameters can be used to unravel the gene regula-

tion mechanism of a complex model in response to varying environmental conditions. For a

series of gene product distributions obtained by tuning a single parameter of a complex model,

fitting those distributions to the telegraph model gives a certain variation pattern of the three
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effective parameters. We found that the variation pattern of effective parameters is indepen-

dent of the choice of parameters of the complex model. Hence it is possible to determine the

underlying gene regulatory mechanism in response to environmental changes by identifying

the variation pattern of effective parameters. To test our method, we apply it to the protein

expression data of a synthetic autoregulatory gene circuit in human kidney cells which is

designed to suppress gene expression under IPTG induction [82]. Fitting the steady-state data

under all induction conditions to the telegraph model reveals a certain variation pattern of

effective parameters, which is in perfect agreement with that of the negative feedback model by

tuning the negative feedback strength. Hence our method correctly predicts the sign of the

autoregulatory loop as well as the parameter influenced by the induction conditions. In con-

trast, fitting the data for an unregulated system to the telegraph model results in almost con-

stant effective parameters as IPTG concentration varies.

Finally, we showed that almost all results in the present paper are robust with respect to

cooperative transcriptional regulation and extrinsic noise. In particular, we find that the

robustness of parameter inference with respect to extrinsic noise for a given model is closely

related to its relaxation speed to the steady state—faster relaxation speed results in more pre-

cise inference under large extrinsic noise.

In summary, the telegraph model should be used with caution when there are complex

mechanisms behind the underlying gene expression system. However, fitting the steady-state

distribution of a relatively complex gene expression model to the telegraph model can still

reveal rich information. Specifically, we learn that (i) some effective parameters are reliable

and can reflect realistic dynamic behavior of the complex model; (ii) the under-estimation of

the effective gene activation and inactivation rates reveals the ability for a complex model to

exhibit bimodality; (iii) time-resolved data are needed to distinguish between different mecha-

nisms; (iv) comparing the time evolution of the mean expression level with the prediction of

the effective telegraph model provides an effective method of model selection; (v) the variation

pattern of effective parameters can reveal gene regulation mechanisms in response to environ-

mental changes.

The current study has some limitations. First, in our feedback models, we assume that there

is no change in the protein number during gene activation and inactivation. However, in real-

ity, the protein number decreases by one when a protein copy binds to a gene and increases by

one when unbinding occurs [43]. Here we make this assumption because it leads to a simple

analytical expression of the protein distribution so that the mean active and inactive durations

can be solved exactly [40, 92]. Second, in our feedback models, we ignore the mRNA dynamics

and assume that protein is produced directly from the gene. This is a reasonable simplification

when mRNA decays much faster than protein and the burst size of protein is relatively small

[21, 92]. Here we make this assumption because incorporating the mRNA description into the

feedback models leads to two additional parameters which will complicate theoretical analysis

and parameter inference. Last but not least, while our model takes extrinsic noise into account,

it does not incorporate post-transcriptional sources of noise such as RNA splicing and nuclear

export, which affect mature mRNA but not nascent mRNA. Recent studies [69] have shown

that parameters estimated using the telegraph model or other models relying on mature

mRNA may be suspicious because they differ from those estimated using nascent mRNA data.

This cannot be removed even with time-dependent modelling unless one explicitly models

post-transcriptional noise.

Future work is required to further test our methods by adding more detailed biological

mechanisms into the telegraph model, including bursty production of mRNA and protein [93,

94], cell cycle events such as cell growth and division [95, 96], cell-volume dependence [22,

97], as well as complex gene regulatory networks [32, 89]. In addition, we anticipate that our
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theory can be enriched by fitting the time-dependent distributions (rather than only the

steady-state distributions) of complex models to the telegraph model. For complex models, a

detailed comparison between the maximum-likelihood method and other parameter inference

methods such as Bayesian inference is also expected.

Methods

Selection of parameter sets for complex models

In Fig 2, we generate synthetic data of gene product numbers under 625 different parameter

sets for the four complex models. For convenience, we set d = 1 for all models. For the three-

state model, we set ρ = 10, 15, 20, 25, 30 and λ1, λ2, γ = 0.3, 0.7, 1, 2, 4, which gives 54 = 625

combinations of the four parameters. For the cross-talk pathway model, the gene activation

rate for the weak signalling pathway is fixed to be λ1 = 0.2. The other four parameters are cho-

sen as ρ = 10, 15, 20, 25, 30,λ2, γ = 0.5, 1, 2, 4, 8, and q1 = 0.1, 0.3, 0.5, 0.7, 0.9. For the positive

and negative feedback models, we set ρ = 10, 15, 20, 25, 30, λ, γ = 0.3, 0.7, 1, 2, 4, and μ, ν =

0.05, 0.1, 0.5, 1, 1.5.

In Fig 3C, we randomly select 150 parameter sets such that the values of 1/hToffi and 1/

hToni are between 0 and 2.5d for each complex model. The synthesis rate ρ is randomly

selected so that ρ 2 [10, 30]. For the three-state, cross-talk pathway, and positive feedback

models, 1/hToni = γ is randomly selected so that γ 2 [0.1, 2.5]. For the negative feedback

model, 1/hToffi = λ is randomly selected so that λ 2 [0.1, 2.5]. Moreover, for the three-state

model, the gene activation rates λ1 and λ2 are randomly selected so that λ1, λ2 2 [0.1, 5]. This

ensures that

1=hToffi ¼ 1=ð1=l1 þ 1=l2Þ 2 ½0:05; 2:5�:

For the cross-talk pathway model, the selection probability q1 is randomly selected so that q1 2

[0.1, 0.9] and the gene activation rates λ1 and λ2 for the two pathways are randomly selected so

that λ1 2 [0.05, 0.5] and λ2 2 [1, 8]. This ensures that

1=hToffi ¼ 1=ðq1=l1 þ q2=l2Þ 2 ½0:05; 3:2�;

and we randomly select 150 parameter sets that satisfy 1/hToffi � 2.5. The analytical formula of

hToffi for the positive feedback model and the analytical formula of hToni for the negative feed-

back model are too complicated to directly calculate their upper and lower bounds. To over-

come this, we restrict λ 2 [0.1, 1.5] and μ 2 [0.01, 0.15] for the positive feedback model and

randomly select 150 parameter sets that satisfy 1/hToffi�2.5. Similarly, we restrict γ 2 [0.1, 1.5]

and ν 2 [0.01, 0.15] for the negative feedback model and randomly select 150 parameter sets

that satisfy 1/hToni � 2.5.

In Fig 5, we tune a single parameter while fix the other parameters for each complex model.

The values for parameters are chosen to be the same as in Fig 2. Hence each complex model

has four parameters to be tuned and each tuning parameter is equipped with five different val-

ues. For each complex model, we tune a single parameter among 10 different values, and

hence there are total 53 = 125 combinations for the other three parameters. To observe a signif-

icant effect of the tuning parameter on the mean gene expression level, we only consider those

combinations of the other three parameters such that the mean expression level changes by at

least two folds.
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Computation of the confidence interval

For the cross-talk pathway model, we use the profile likelihood method [17] to compute the

confidences intervals of all parameters. For example, for the parameter λ1, we start by fixing λ1

and vary all other parameters to maximize the log-profile-likelihood function

log ~Lðl1Þ ¼ max
y1

X9

l¼1

X

n

Nðtl; nÞlog Pnðtl; l1; y1Þ;

where θ1 is the freely varying parameter set (λ2, q1, q2, γ, ρ) for the cross-talk pathway model

and the meanings of other quantities are the same as in Eq (3). When the sample size is large,

the statistics

qðl1Þ ¼ 2½max
l1

ðlog ~Lðl1ÞÞ � log ~Lðl1Þ�

asymptotically approaches the chi-square distribution w2
1

with one degree of freedom [17]. The

point estimate of λ1 must satisfy q(λ1) = 0. To obtain the 95% confidence interval, we find the

parameter region of λ1 such that

qðl1Þ < w2
1
ð0:05Þ � 3:84;

where w2
1
ð0:05Þ is the cutoff value for w2

1
under the significance level of 0.05.
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49. Harper CV, Finkenstädt B, Woodcock DJ, Friedrichsen S, Semprini S, Ashall L, et al. Dynamic analysis

of stochastic transcription cycles. PLoS Biol. 2011; 9(4):e1000607. https://doi.org/10.1371/journal.pbio.

1000607 PMID: 21532732
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