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Abstract

Filopodia are thin synaptic protrusions that have been long known to play an important

role in early development. Recently, they have been found to be more abundant in the

adult cortex than previously thought, and more plastic than spines (button-shaped mature

synapses). Inspired by these findings, we introduce a new model of synaptic plasticity

that jointly describes learning of filopodia and spines. The model assumes that filopodia

exhibit strongly competitive learning dynamics -similarly to additive spike-timing-depen-

dent plasticity (STDP). At the same time it proposes that, if filopodia undergo sufficient

potentiation, they consolidate into spines. Spines follow weakly competitive learning,

classically associated with multiplicative, soft-bounded models of STDP. This makes

spines more stable and sensitive to the fine structure of input correlations. We show

that our learning rule has a selectivity comparable to additive STDP and captures input

correlations as well as multiplicative models of STDP. We also show how it can protect

previously formed memories and perform synaptic consolidation. Overall, our results can

be seen as a phenomenological description of how filopodia and spines could cooperate

to overcome the individual difficulties faced by strong and weak competition

mechanisms.

Author summary

Changes in the strength of synaptic connections between neurons are thought to be the

basis of learning in biological and artificial networks. In animals, these changes can only

depend on locally available signals, and are usually modeled with learning rules. Based on

recent discoveries on filopodia, a special type of synaptic structure, we propose a new

learning rule called Filopodium-Spine spike-timing-dependent-plasticity (FS-STDP). Our

rule proposes that filopodia follow strongly-competitive STDP and spines (mature synap-

ses) weakly-competitive STDP. We show that our model overcomes classic difficulties
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that these learning rules have separately, such as the absence of stability or specificity, and

can be seen as a first stage of synaptic consolidation.

Introduction

Filopodia are thin protrusions in dendrites [1] that have been long known to exist. Until

recently, though, they were thought to play an important role only at developmental stages of

brain formation [2]. However, filopodia have now been found to be more abundant than pre-

viously thought, as well as the structural substrate for silent synapses in the adult brain [3]. In

fact, these structures make up to 30% of the dendritic protrusions. Because they lack AMPA

channels, these synapses are effectively silent, meaning they cannot elicit a postsynaptic

response unless the postsynaptic neuron is depolarized. Furthermore, filopodia are sensitive to

plasticity induction protocols that are insufficient to potentiate spines (i.e., mature synapses

that do contain AMPA channels). In particular, when applied the same spike-timing-depen-

dent potentiation protocol, filopodia increased their synaptic efficacy but spines’ remained the

same. Finally, within minutes of being potentiated, the appearance of some filopodia started

resembling that of a spine [3]. These findings beg the question: what are the underlying learn-

ing mechanisms of filopodia, and how do they coordinate with spines to facilitate cognitive

functions? While there have been previous proposals of the distinct functional roles of filopo-

dia and spines [4], experimental evidence that supports these has been scarce, and their rela-

tion to computational models of synaptic plasticity unexplored. The protocol used in [3] to

change filopodia’s strength is inspired by early studies of spike-timing-dependent plasticity
(STDP) [5]. In STDP, changes in the weights’ strength are a function of the difference in tim-

ing between pre- and postsynaptic neurons. Two prominent computational models of STDP

are additive (add-STDP, see Table 1) [6, 7] and multiplicative (mlt-STDP and mlt/mlt-STDP,

see Table 1) [8, 9]. add-STDP yields highly selective, bimodal receptive fields. However, it is

intrinsically unstable, requires imposing hard-bounds on the weights, and is only able to cap-

ture the coarse structure of input correlations. On the other hand, multiplicative STDP creates

a weight distribution that continuously matches the correlation structure of presynaptic input.

These unimodal distributions are typically considered more realistic, since they better repro-

duce experimental results. However, the absence of synaptic specialization can hinder learning

by mapping very different patterns to the same neuronal output activity. How these two differ-

ent pictures can be reconciled has puzzled neuroscience modelling research for years [10].

One hypothesis is that the unimodal distributions found in experiments are in fact only the

observable part of all synapses. These would be complemented with a big proportion of silent
synapses [11, 12], which are not detectable via changes in postsynaptic potential, and would

form another pool of effectively silent synapses. Whether these putative silent synapses were in

fact present in the adult cortex remained, until now, largely unclear.

In this work, we present a computational model that explicitly distinguishes between filopo-

dia and spines (Filopodium-Spine STDP, FS-STDP). We hypothesize that filopodia follow

strongly competitive dynamics, implemented by approximating add-STDP, while spines learn

in a soft-bounded, weakly competitive manner, associated with multiplicative models of

STDP. As suggested by experiments [3], filopodia that undergo potentiation can be converted

into spines, and our model assumes that the inverse is also possible. We turn to previous

results of additive and multiplicative learning to predict the functional advantages of this type

of combined learning, and use simulations to confirm our hypothesis. In particular, we show

that FS-learning establishes a two-stage competition. The first stage is strongly competitive
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and classifies synapses in a bimodal fashion (as does add-STDP) depending on presynaptic

correlations. The second stage, governed by soft-bounded dynamics, continuously represents

the input correlations in the spines that emerge from the first stage. We also show that the soft-

bounded dynamics of mature spines shield them from becoming filopodia again. This makes

the gross structure of the existing receptive field resistant to new correlated input, thus protect-

ing previously formed memories from being erased instantaneously when environmental sta-

tistics change.

Results

FS-learning induces strong competition between filopodia and weak

competition between spines

Model assumptions and implementation. Our model considers the existence of filopodia
(Fig 1A, in grey), which can dynamically evolve through learning into spines (in purple). We

Table 1. Terms and definitions, spike-timing-dependent plasticity models.

Term Description Relevant Equation(s)

STDP Spike-Timing-Dependent Plasticity: Plasticity

mechanism in which the changes in synaptic

strength depend on the precise timings of pre-

and postsynaptic neurons’ firings. Refers both

to the experimental phenomenon and the

learning rules describing it.

Dwij ¼
fþðwijÞe� ðtj � tiÞ if tj > ti

� f� ðwijÞe� ðti � tjÞ if tj � ti

(

add-STDP (additive-STDP) STDP rule in which potentiation and

depression are independent of the synaptic

strength at update time

f+(w) = 1

f−(w) = α

mlt-STDP (linear/

multiplicative-STDP)

STDP rule in which potentiation is

independent of synaptic strength, but

depression of synapse i scales linearly with the

synaptic weight wi. While the label mlt-STDP is

usually reserved for this model (see [19, 37]), it

can also be called linear/multiplicative-STDP

[10] to make explicit that only depression

contains a multiplicative term.

f+(w) = 1

f−(w) = αw

mlt/mlt-STDP

(multiplicative/

multiplicative-STDP)

STDP rule in which potentiation and

depression are both linearly dependent on wi
[9]. It is important to note that both mlt-STDP

and mlt/mlt-STDP share that a weak

competition between synapses leads to

unimodal distributions. For this reason, they

are sometimes [13] simply called multiplicative

STDP wihtout making an explicit distinction.

f+(w) = 1 − w
f−(w) = αw

nlta-STDP (non-linear

temporally asymmetric-

STDP)

STDP rule that contains weight dependencies

at potentiation and depression, but where this

dependence is powered to a parameter μ. μ is

assumed to take values between 0 and 1. Note

that for μ = 0 one recovers the expression of

add-STDP, and for μ = 1 one recovers mlt/mlt-

STDP.

f+(w) = (1 − w)μ

f−(w) = αwμ

nlta*-STDP nlta-STDP with a non-zero lower soft-bound

w0

f+(w) = (1 − w)μ

f−(w) = α|w − w0|μ

FS-STDP (filopodium-

spine-STDP)

STDP rule presented in this this study

(together with with nlta*-STDP). It

additionally makes μ dependent on w

f+(w) = (1 − w)μ

f−(w) = α|w − w0|μ

tm
dm
dt ¼ � m � wþa

q

� �

https://doi.org/10.1371/journal.pcbi.1012110.t001
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Fig 1. Filopodia compete strongly to become spines, and spines compete weakly to represent input correlation. A: Filopodium (grey)—Spine

(purple) scheme. Filopodia can become spines if their efficacy is increased for a long enough time (observed experimentally in [3]). Similarly, spines can

become filopodia if their weight is consistently low (our model). B: Learning for filopodia (Top) and spines (Bottom). Filopodium-like dynamics

effectively lead to a strong competition, and spine-like dynamics to a weak competition. C: Diagram indicating the push-pull forces between the

different types of synapses in our model. Spines are strong weights and compete weakly between them. Filopodia are silent synapses that compete

strongly to become spines. While the push that spines exert over filopodia is strong, the pull that filopodia exert over spines is weak (due to the lower-

soft bound w0 in the dynamics of spines). D: Diagram of competition (dashed lines) and cooperation (solid lines). When a synapse increases its efficacy

(left circle from t to t+ 1), it has two opposite effects on the rest of the synapses. It equally increases depression (competition) and it also increases the

potentiation of those it is correlated with (cooperation). E: Competition (dashed lines) and cooperation (solid lines) factors, as a function of weight w,

for a fixed μ. The areas are bounded by the curves corresponding to the μ range of typical filopodia (weight from 0 to 0.1) and spines (weight from 0.5 to

1). Small subpanels on the left and right show, respectively, how the same plot would look for add-STDP and nlta*-STDP. The shape of competition and

cooperation factors is very similar to additive learning for weights below w0, but resembles soft-bounded learning for efficacies above this value. For the

exact expressions plotted see Table 6. F: Diagram of network architecture. Our model consists of one postsynaptic LIF neuron that receives many

Poisson realizations of presynaptic input, which can be either excitatory (PE) or inhibitory (PI). Only excitatory synapses are plastic. Excitatory

presynaptic neurons are temporally correlated via a correlation structure~c. The spike times of presynaptic neurons i and j will be correlated only if both

ci and cj are sufficiently high (Cþij �
ffiffiffiffiffifficicj
p

). G: Example of FS-learning imprinting a pattern with correlation structure~c. G1: Distribution of correlation
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hypothesize that filopodia, which are more sensitive to potentiation protocols, compete

strongly to become spines, which is implemented by making them approximate additive

STDP. In add-STDP, changes in weights depend exponentially on the differences of spike

times between the pre- and postsynaptic neuron. Furthermore, these changes are independent

of the synaptic state, so they are not affected by the current strength of the weight (Fig 1B,

Top). As has also been found in experiments [3], we assume that if a filopodium is potentiated

for a long enough time, it can be converted into a spine (Fig 1A). We propose that spines, in

contrast, have soft-bounds that make weight changes dependent on the synaptic state (Fig 1B,

Bottom). These soft-bounds, which are associated with models that induce a weak competi-

tion, can be found in mlt-STDP [8] (only for depression), mlt/mlt-STDP [9] and nlta-STDP

[13] (for certain parameter regimes; for more details on the nature of these models see

Table 1). All these learning rules have in common a higher degree of stability, and have been

related to experimental results in spines [14, 15].

To describe our model mathematically, we make use of a modified version of nonlinear
temporally asymmetric (nlta)-STDP [13]:

dwiðtÞ
dt
¼ lð1 � wiðtÞÞ

mziðtÞSpostðtÞ � lawiðtÞ
mzpostðtÞSiðtÞ ð1Þ

where wi is the synaptic efficacy of synapse i, λ the learning rate, and zi, and zpost the pre- and

postsynaptic traces, and Si and Spost the pre- and postsynaptic spike trains (see Methods for fur-

ther definition of these variables). α indicates the imbalance between potentiation and depres-

sion for an equivalent spike time difference. In its original form (Eq (1)), nlta-STDP

incorporates a parameter μ such that, depending on its value, it induces a stronger or weaker

competition between synapses. For example, in the presence of a highly correlated subgroup of

synapses, if μ is very small, the steady-state distribution of synaptic weights is bimodal, but as μ
increases, the modes of the distribution get closer and closer, resembling what one obtains

with mlt-STDP or mlt/mlt-STDP. In particular, for μ = 0 one recovers exactly add-STDP, and

for μ = 1, mlt/mlt-STDP. As our model assumes that filopodia follow additive STDP, but

spines have soft-bounded weight updates, a simple implementation could be that filopodia fol-

low nlta-STDP with μ = 0, and spines have a μ value that falls within the multiplicative range.

However, instead of imposing this in a rule-based manner, we make parameter μi (ith synapse)

low-pass filter the synaptic efficacy of that synapse wi

tm
dmiðtÞ

dt
¼ � miðtÞ �

wiðtÞ þ a
q

� �

ð2Þ

with a and q model parameters (which have implications in the synaptic consolidation aspect

of this learning rule, see last section in Results) and τμ is the time constant associated to the

transformation of filopodia into spines. One can see how for a synaptic efficacy of 0, μi con-

verges to a/q� μfilo << 1 (Eqs 2 and 9), so this fulfills the model assumption that silent synap-

ses follow additive STDP. Then, as wi increases, μi also increases, leading to a degree of

softness in the bounds that is controlled by a and q. For better interpretability, instead of

directly fixing a and q, we define two model parameters μfilo and μspine, and solve Eq (2) for a
and q under equilibrium for typical synaptic values of filopodia and spines (Eq 9 in Methods

strength c, sampled from a Gaussian distribution with mean 0.3 and standard deviation 0.1 (lower values clipped at 0) and then normalized to have ctot

� ∑ ci = 60. Distributions for synapses that become filopodia (grey) and spines (purple). The label filopodia is assigned to synapses with a mean (over 10

seconds) weight smaller than w0. Synapses with a value equal or higher than w0 are labeled as spines. G2: Trajectories of synapses and μ under FS-STDP

and a correlation structure as in Fig 1G1. G3: Distribution of weights after learning. G4: Scatter plot of final weight wi as a function of ci.

https://doi.org/10.1371/journal.pcbi.1012110.g001
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and Fig 1G2). This way, μfilo and μspine dictate what will approximately be the μ value (and thus

level of competition) associated to filopodia and spines (respectiely). Our choice of μ dynamics

is also related to a potential connection with physiology. If, as seen experimentally, filopodia

learn differently than spines, and if the transformation of one to the other is influenced by an

increase in synaptic efficacy (unsilencing), it is very likely that this is governed by some physio-

logical signal that takes time to be processed and integrated. Hence, we use a slow time con-

stant that decouples the synaptic dynamics (happening in the order of milliseconds) and the

evolution of filopodia into spines, which was reported to take place within minutes. We use a

slightly quicker (τμ = 20s) time constant to speed-up simulations, which is still considerably

slower than synaptic plasticity. Imposing slow dynamics in μ also has a functional motivation,

as it makes learning more stable and less prone to oscillatory behaviours, as well as truly

dependent on the long-term input statistics rather than instantaneous synaptic states. One last

modification of nlta-STDP as originally proposed is in the weight dependence for depression,

which takes the form of

Dwdepressioni / jwi � w0j
miðtÞ ð3Þ

such that the lower bound at 0 that soft-bounded models traditionally incorporate is general-

ized to an arbitrary synaptic efficacy w0. This is crucial for the consistency of the model, as it

maintains spines in an efficacy range such that their μ leads to a weak competition. Then, in

turn, this leads to a synaptic distribution within that range. The implications of this form of

depression for filopodia are not substantial, in the sense that their μ value is so small that

depression is constant irrespectively of the synaptic strength. Instead, this bound is related to

the consolidation aspect of the model, so that once a synapse has consolidated into a spine it is

hard to be depressed beyond w0, due to the existence of this lower bound (the synapse is pro-

tected). In view of the study that eminently inspires this computational work [3], one can

think of w0 as imposing a minimum order of magnitude in the synaptic efficacy of spines,

which in that case would be around 0.1mV. This would explain why there is not a continuum

of efficacies between zero and 0.1mV, as that region would be reserved to filopodia and would

be intrinsically unstable (leads to either reaching the w0 threshold and eventually become a

spine or becoming silent again). Altogether, this gives rise to the final expressions (Eqs (4) and

(2)) of our learning rule (FS-STDP), which we will investigate throughout this study:

dwiðtÞ
dt
¼ lðwþ

0
� wiðtÞÞ

miðtÞ
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{

nlta∗

ziðtÞSpostðtÞ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
“vanilla” STDP

� l a
z}|{

pot:=dep: imbalance

jwiðtÞ � w�
0
j
miðtÞ

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{
nlta∗

zpostðtÞSiðtÞ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
“vanilla” STDP

ð4Þ

tm
dmiðtÞ

dt
¼ � miðtÞ �

wiðtÞ þ a
q

� �

ð2Þ

nlta* refers to standard nlta-STDP with an arbitrary lower and upper soft-bound, or equiva-

lently, FS-STDP with a fixed value of μ for all synapses.

Competition profile of FS-STDP. An interesting behaviour that collectively arises from

plastic synapses in a feed-forward network is that of selectivity. For example, if presynaptic

activity can be found in two different states when a stimulus A or a stimulus B is present in the

environment, it is useful for the activity of postsynaptic neurons to convey information about

the presence of either A or B. This can be achieved with a mix of competition and cooperation
between synapses. One way of implementing competition is to have a mean synaptic depres-

sion proportional the total synaptic efficacy. This means that the higher the strength of a group

of synapses is, the more the rest is depressed (Fig 1D, dashed lines). The notion of cooperation,
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instead, refers to a scenario in which the average potentiation a synapse receives is propor-

tional to the efficacy of other synapses. However, while competition is independent of the cor-

relation in the activity between presynaptic neurons, cooperation is correlation-dependent, so

when a synapse is potentiated, it favors the potentiation of other synapses, but only those its

presynaptic activity is correlated with (Fig 1D). These notions of competition and cooperation

can be related to the exact equations of an STDP model via a mean-field analysis of the learn-

ing rule (see Methods or [13]). This gives an approximation to the average instantaneous

potentiation and depression _wi that a synapse i receives:

_wi ¼
ltSTDPr2

pre

Npre

zfflfflfflfflffl}|fflfflfflfflffl{
ð1Þ effective learning rate

� Df ðwiÞ|fflfflffl{zfflfflffl}
competition factor

X

j

wj

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
ð2Þ correlation-independent interaction

þ fþðwiÞ
|fflffl{zfflffl}

cooperation factor

X

j

Cþij wj

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
ð3Þ correlation-dependent interaction2

6
4

3

7
5 ð5Þ

One can break down this weight update (Eq (5)) into: (1) An effective learning rate that deter-

mines the overall rate of change in synaptic efficacy, which depends on the actual learning rate

λ, the STDP time constant τSTDP, the presynaptic firing rate rpre and the total number of synap-

ses Npre. (2) A correlation-independent interaction, which depends on the difference between

potentiation and depression expressions in the learning rule (Δf(wi)� f−(wi) − f+(wi)). These

are the amplitudes of the negative and positive curves (respectively) in Fig 1B (also see Meth-

ods and Table 2). It is called an interaction because it also depends on the rest of the synapses

via ∑j wj. Note how, for a positive Δf(wi), this interaction leads to the type of competition

described above, as all synapses receive greater average depression if the total synaptic efficacy

increases. For this reason, Δf(wi) is called the competition factor (Table 3). (3) A correlation-

dependent interaction, which depends on f+(wi) (called the cooperation factor, Table 3). Again,

this relates to the previous notion of cooperation, as an increase in a synapse j will increase the

overall potentiation of wi only if the correlation between the corresponding presynaptic activ-

ity Cþij is high. Given that this second interaction cannot have a depressing effect, if the compe-

tition factor Δf(wi) was negative, that would lead to an intrinsic instability of the synapse, as

both the correlation-independent and correlation-dependent terms would be positive, so

under equilibrium it is safe to assume that wi leads to a positive Δf(wi). It should be noted how

Eq (5) is a mean-field approximation of STDP, but the notion of competition can also be intui-

tively extracted from its exact form (see Relevant Equations for STDP in Table 1). If one

Table 2. Terms and definitions, mean-field dynamics.

Term Description Relevant Equation(s)

Strongly competitive learning

(or dynamics)

When a pool of synapses is split into distributions around two distant modes, we say

that the competition between them is strong.

Weakly competitive learning

(or dynamics)

When a group of synapses form a unimodal distribution that continuously represents

input correlations within their input, we say that they are following multiplicative

learning (or dynamics, and that the competition is weak). Because this distributions

can be obtained with soft-bounded rules of STDP, they can also be called soft-

bounded.

Mean-field dynamics Expression describing the mean weight change experienced by a synapse in a Poisson-

linear model. This is an approximation of the actual trajectories followed in a Leaky

Integrate-and-Fire (LIF) model, but gives rise to expressions (see below) that

qualitatively describe the behaviour of the learning rule.

_wi ¼
ltSTDP r2

pre
Npre

� Df ðwiÞ
P

jwj þ fþðwiÞ
P

jwjCþij
h i

Correlation-dependent

(mean-field) interaction

This term is called correlation -dependent because the magnitude of its effect over a

synapse i depends on how its input is correlated with that of other synapses j (via Cþij ).

fþðwiÞ
P

jwjCþij

Correlation-independent

(mean-field) interaction

This term, has a magnitude proportional to ∑ wj, so is the same for all synapses wi
irrespectively of the input correlation structure.

−Δf(wi)∑j wj

https://doi.org/10.1371/journal.pcbi.1012110.t002
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synapse increases its efficacy, it decreases the average spike-time difference between its pre-

and postsynaptic neurons (and increases its own potentiation). However, it also increases the

postsynaptic firing rate, which leads to an overall increase of depression for all synapses

(assuming depression has a higher amplitude than potentiation). This influence of the total

synaptic efficacy on the average depression experienced by all synapses is what the correlation-

independent interaction (Eq (5)) represents. On the other hand, when another presynaptic

neuron is temporally correlated with that of a synapse that has been potentiated, the difference

in spike times will also (indirectly) decrease. This can compensate the extra depression, and

allows the two synapses to cooperate in mutually increasing their weights. This is the effect

described by the correlation-dependent interaction (Eq (5)).

Under this paradigm, the behaviour of a learning rule can be predicted by its competition
profile (Fig 1E), which is simply the curves of both Δf and f+ as a function of the synaptic

strength. add-STDP is said to induce a strong competition, because synapses are split between

winners and loosers, thus following a bimodal distribution. Multiplicative models, like mlt-

STDP or mlt/mlt-STDP, induce instead a weak competition, where more correlated synapses

have bigger synaptic efficacy, but the distribution is rather unimodal. nlta-STDP can have dif-

ferent competition profiles depending on the chosen value of μ, which is why it can lead to

both strong and weak competition. In this context, one wonders what is the competition pro-

file of FS-STDP, and how it compares to that of other models of STDP. The answer is that it

depends on the synapse you are looking at, and whether it has become a filopodia or a spine.

For the μ corresponding to typical synaptic efficacies of filopodia (which usually range from 0

to 0.1), the competition profile observed (grey areas in Fig 1E) are virtually independent of the

weight w, being almost exact to add-STDP competition profile (left subpanel). Similarly, we

find that for μ corresponding to a synaptic range of w0 to 1 (range of spines), the competition

Table 3. Terms and definitions, competition and cooperation factors.

Term Description Relevant

Equation(s)

Cooperation

factor

Within the correlation-dependent interaction, f+(wi) is fixed by the learning

rule, and it describes how the amplitude of synaptic potentiation depends on

its specific state wi. Because the greater the correlation- dependent term is the

more a synapse is potentiated, and the more other correlated synapses also

are, this is called the cooperation factor. This means that when a synapse

increases its value, it favors the potentiation of other synapses with which it is

correlated, which in turn can have the same effect back. This leads to a

positive-feedback loop between correlated subgroups, effectively making

correlated synapses cooperate to increase the overall subgroup synaptic

efficacy.

f+(w)

Competition

factor

In the correlation-independent interaction, also appears a factor (Δf(wi) �

f−(wi) − f+(wi)) fixed by the learning rule. Because of the negative sign in front

of the correlation- independent interaction, the sign of Δf(wi) will dictate if

this interaction leads to potentiation or depression. In the case Δf(wi) > 0.

This interaction becomes depressing and proportional to the total synaptic

efficacy (∑ wj). This means that, when a synapse increases its weight, the rest

(and itself) effectively experience a slightly more depressing field. This leads

to a competition between synapses that try each to allocate for themselves a

fraction of the total synaptic efficacy available. While in practice this term can

sometimes be positive (Fig 1E), one can see how that only happens for a

specific weight interval. If one synapse was in that interval, it would be

intrinsically unstable, as both correlation-dependent and independent mean-

field interactions become positive. No synapse can be found in this region

under equilibrium, and it is safe to say that, effectively, this term results in

competition.

Δf(wi) = f−(w) −
f+(w)

https://doi.org/10.1371/journal.pcbi.1012110.t003

PLOS COMPUTATIONAL BIOLOGY Learning with filopodia and spines

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012110 May 14, 2024 8 / 26

https://doi.org/10.1371/journal.pcbi.1012110.t003
https://doi.org/10.1371/journal.pcbi.1012110


profile from w0 to 1 is very similar to nlta-STDP with μ = 0.1 (right subpanel). For this reason,

for timescales where μ can be considered constant, changes of filopodia follow strongly com-

petitive dynamics (irrespective of their instantaneous synaptic efficacy), and the same applies

for spines and a weak competition. The study of the competition profile of FS-STDP confirms

that this particular implementation is consistent with the assumption that filopodia’s dynamics

are approximately additive and strongly competitive, and spines following bounded dynamics,

associated with a weaker competition. Furthermore, we would like to point out that while it is

common to refer to models of STDP as strongly or weakly competitive, competition happens

at the synapse pair level. In this sense, how filopodia and spines compete (between these two

groups) is actually asymmetric. Because filopodia approximate add-STDP, they receive a high

pushing force from spines, as the latter result in a high total synaptic efficacy. However, filopo-

dia that could potentially become spines play with a disadvantage, which comes from the

lower soft bound of spines. For this reason, the pull force that a filopodia could produce by

increasing its synaptic efficacy is much weaker (Fig 1C) than it would if spines followed addi-

tive dynamics. This becomes an important result for FS-STDP as a model of synaptic consoli-

dation, which is studied further below.

An example of FS-STDP in action. We now test with simulations the evolution of synap-

ses following FS learning, connected to a postsynaptic neuron (Fig 1F), and in the presence of

input correlations (Fig 1G1). We use a conductance-based Leaky Integrate-and-Fire (LIF) neu-

ron that contains 1000 excitatory and 200 inhibitory presynaptic inputs, each modelled as a

Poisson process (Fig 1F). Excitatory connections are plastic and follow FS-learning (Eqs (4)

and (2)). Presynaptic inputs are not independent from one another, but instead have a tempo-

ral correlation structure~c ¼ fcig that determines how correlated the spike times of neuron i
are to the rest of the presynaptic pool (Fig 1G1). To do this, we generate a reference spike train,

and then ci indicates how similar are the spike times of presynaptic neuron i with that refer-

ence. Indirectly, this makes two neurons i, j that are very correlated with the reference spike

train also very correlated between them, inducing cross-correlations of the order Cþij �
ffiffiffiffiffifficicj
p

(Methods, Eq (23)). All presynaptic neurons have the same temporally averaged firing rate,

denoted by rpre. In this initial example, we use a correlation structure sampled from a Gaussian

distribution (Fig 1G1). Starting with a homogeneous synaptic state (wi = 0.3 to avoid quies-

cence), if μi is set to 0 as initial condition (all synapses are filopodia), the mean field analysis

predicts that filopodia will compete strongly, as in add-STDP, such that only a fraction of them

(those more correlated) will increase their synaptic efficacy, pushing the rest of the synaptic

pool to remain silent. Furthermore, after that first stage of competition is completed, winning

synapses will increase their μ, and start a competing weakly between them, distributing them-

selves around a single mode. As predicted (Fig 1G2, 1G3 and 1G4), due to the first stage of the

competition, FS learning results in two qualitatively distinct groups, filopodia (w< w0) and

spines (w� w0). These two groups have very different averages compared to their variance

(Fig 1G3). In addition, as also predicted by the second stage of the competition, weights wi

depend on the correlation value ci of each synapse (Fig 1G4). Simulations support our two-

stage competition proposal, which predicts an initial bimodal classification (first stage) and a

continuous representation of the correlation strength in the synaptic efficacy (second stage).

Furthermore, we investigated whether the mean-field dynamics of filopodia approximate those

of add-STDP and (and spines those of nlta*-STDP, which is nlta-STDP including the same

lower bound w0, see Methods or Table 1). We computed, at every timestep, the correlation-

dependent and correlation-independent interactions (Table 2), as well as the competition and

cooperation factors (Table 3). We did this for the correlation structure presented in this section

(S1 Fig), a squared pulse (Methods and S2 Fig) and a von Mises structure (Methods and S3
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Fig), which will be used throughout the rest of the study. Our results indicate that the competi-

tion and cooperation factors, as well as the mean-field interactions, of filopodia and of spines

are very similar to those of an equivalent setup with add-STDP and nlta*-STDP (respectively).

FS-learning represents input correlations better than add-STDP, and is

more selective than mlt-STDP

Having seen that FS-learning inherits properties of both additive and multiplicative learning,

now we quantify how the receptive fields obtained via filopodia and spines compare to pure

add- and mlt-STDP. We choose von Mises shaped input correlations (Fig 2A) for our simula-

tions for two reasons: First, the experimental study that motivates our research [3] is based on

visual cortex cells. Second, this choice gives input patterns a rich non-binary correlation struc-

ture, which allows us to test the correlation representational power. In this sense, using simpler

correlation structures like squared pulses does not allow a quantification of the learning rule

sensitivity to input correlations (see S4 and S5 Figs). We stimulate our neuron for 200 seconds

and then extract two measures: (i) the Pearson correlation r between the developed synaptic

efficacies and the correlation strength of their corresponding presynaptic activity (Fig 2B and

Methods), and (ii) the Discrimination Index DI that results from averaging the neuron

response to different correlation patterns (Fig 2C and Methods). We use r as a proxy to how

well the formed receptive fields (RFs) represent input correlations, and DI to quantify the abil-

ity of our neuron to discriminate different inputs. We start by noting the differences seen in

both the weights trajectories and developed receptive fields (Fig 2D and 2E, respectively). Both

FS and add learning result in very similar initial trajectories, which are associated with the first

(strong) stage of the competition (Fig 2D1 and 2D2). In terms of the RFs formed, this initial

strong competition makes both FS-STDP and add-STDP present a group of synapses with 0

efficacy along with a subgroup with significant synaptic strength (Fig 2E1 and 2E2). This is not

the case of mlt-STDP, where all of the synapses are located around a single mean (Fig 2E3). If

one focuses on non-zero synapses, however, then FS-STDP is more similar to mlt-STDP, as

both learning rules continuously match the input correlation structure. In contrast, add-STDP

erases this information and yields a binary RF resulting from classifying presynaptic input as

correlated enough or not. We quantify the differences in discriminability (as measured by DI)

and input representational capacity (as measured by r) of FS-learning across different values of

potentiation-depression imbalance (parameterized with α), and across different values of cor-

relation strength (given by ctot). These two terms control the ratio between the cooperation

and competition factors, which strongly affects the formation of the RFs (see Eq (29) in Meth-

ods). We obtain r and DI for each combination of these two parameters, as well as for every

learning rule (Fig 3A and 3B). r measures the strength of the linear relation between a synapse

wi and the correlation strength (ci) of its corresponding presynaptic neuron with the rest of the

pool. Assuming no higher order relationships exist between the two, we take this metric to

indicate how well the input correlations are imprinted into the weight structure, with r ranging

from 0 (not well represented) to 1 (well represented). In general, there is a high degree of cor-

relation in FS-learning (Fig 3A1). Due to the second stage of the competition, the input struc-

ture is much better imprinted in FS-STDP than in additive learning (Fig 3A2), reflected by

higher r values for FS-STDP. In terms of discriminability, FS-STDP performs similarly to add-

STDP (Fig 3B2, FS − add). The lack of synaptic specialization induces a discriminatory capac-

ity of mlt-STDP near zero. Our results propose a biologically plausible explanation of how

highly specialized RFs that continuously represent the input correlations can emerge via the

strong competition of filopodia and the weak competition of spines. In addition, it explains

how unimodal yet selective distributions could arise in the experimentally observed synaptic
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Fig 2. Receptive Fields (RFs) formed with FS-STDP inherit the bimodality and sparsity of add-STDP, and the correlation structure

representation of mlt-STDP. A: Input correlation structure used in our stimulation protocol. Each presynaptic neuron i is assigned an angle as a

Neuron ID, and a correlation strength value ci according to the pdf of a von Mises distribution at that angle. ctot controls the total amount of correlation

such that ∑ci = ctot (Methods, Eq (25)). B: Example scatter plot of weights after learning. To obtain r in Fig 3F we compute the Pearson correlation

between spines’ synaptic efficacy and the corresponding ci value. Grey corresponds to filopodia, and purple to spines. The straight line represents the

linear regression of the synaptic efficacy after convergence of spines and the correlation strength ci. C: Example scatter plot of neuron output activity yθ
(sampled over 1 second) for different input correlation structures. The neuron is first trained with a correlation structure centered at θ = θpref. After

training, the average firing rate ypref for that correlation structure is obtained. Then, the neuron is tested for input correlations centered around the rest

of angles (Rotation of Input Correlations θ, also see S6 Fig), to obtain DI(θ). DI (discrimination index) is obtained by averaging DI(θ) over θ. To reduce

the bias in DI, the output activity at the preferred angle (θ = θpref) is measured for 100 seconds. Note how rotations in the input correlations influence

the overall correlation structure but not rpre. D: Example of weight trajectories for FS-STDP (D1), add-STDP (D2), and mlt-STDP (D3). E: Example of

receptive fields formed (weights at t = 200 s), same order as in D.

https://doi.org/10.1371/journal.pcbi.1012110.g002
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distributions [12]. While we have compared our model to add-STDP and mlt-STDP as bench-

marks of strongly competitive and weakly competitive learning, nlta-STDP itself can find a

compromise between selectivity and stability with intermediate values of μ. In what sense, if

any, is FS-STDP different to pure nlta-STDP? nlta-STDP does offer the possibility of compro-

mise, but precisely by finding intermediate values of either sensitivity to input correlations or

specificity (which results from bimodal splits of synapses, i.e., the strong stage of the competi-

tion). In this sense, if one transitions from μ = 0 (equivalent to add-STDP) to μ = 0.1, one can

qualitatively observe this effect (S10 Fig), where every increase in sensitivity to input correla-

tions implies a decrease in specificity. This effect is more notable the less bimodal is the corre-

lation structure itself. For example, while final discriminatory index in nlta and nlta* with μ =

0.1 is not very different to FS-STDP with μspine = 0.1 (S11 Fig) one can observe a general

increase in DI when there is a small background correlation (S12 Fig), where having interme-

diate values of μ makes the learning rule less competitive. Thus, while nlta-STDP can some-

times approximate FS-STDP, the second is more general in that it it can have an arbitrarily

strong competition between filopodia and spines (governed by μfilo) and simultaneously make

Fig 3. Spines in STDP represent correlation structure as well as mlt-STDP, and the filopodia-spine distinction is as selective as add-STDP.

Figure shows RF correlation representation (r) and discriminatory index (DI) across total correlation ctot and potentiation/depression imbalance α
(FS-STDP and difference with add-STDP and mlt-STDP). All values are averaged over 5 seeds. A: Heatmaps showing the Pearson correlation for wi vs

ci (see Fig 3B). Subindex labels indicate what learning rule is being shown/compared (e.g. rFS − radd means, r value for RFs obtained via FS-learning

minus r value obtained via additive learning). x-axis shows increasing values of total correlation and y-axis increasing values of potentiation-depression

imbalance α. Colormap ranges from Red to White to Green for values -1, 0, and 1. White regions found for small correlation values correspond to

points in the parameter space where a RF has not (fully) formed. Red regions in panel F are points where a RF has formed with one rule but not the

other. See S7, S8 and S9 Figs. B: Same for Discrimination Index averaged for all possible Neuron ID = θ (see Fig 2C).

https://doi.org/10.1371/journal.pcbi.1012110.g003

PLOS COMPUTATIONAL BIOLOGY Learning with filopodia and spines

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012110 May 14, 2024 12 / 26

https://doi.org/10.1371/journal.pcbi.1012110.g003
https://doi.org/10.1371/journal.pcbi.1012110


spines compete as weakly as one desires (via μspine), instead of depending on an intermediate

compromise between selectivity and sensitivity.

FS-learning makes changes resistant to new correlated input

So far, we have restricted our simulations to the case where initial weights are all the same, and

salient statistical patterns in the environment have not yet been imprinted in the weight struc-

ture. Usual environments, though, don’t have fixed statistics, and are subject to abrupt

changes. This posits a trade-off whereby the brain needs to adapt to integrate new information,

but cannot just immediately throw away any past memories. One classic solution to this prob-

lem is synaptic consolidation, which prevents memories from being erased after their forma-

tion [16–18]. In our model, synaptic consolidation is implemented with the existence of a

lower soft-bound w0 (Eq (4), also see Fig 1B), which makes depression approach zero when w
! w0 from above. Whether this bound is effectively hard (impossible to trespass) or soft (diffi-

cult to trespass) is controlled by μspine. Parameter μspine defines the approximate fixed point of

μ for spines (Eqs (2) and 9). Specifically, given a consistent synaptic efficacy w, greater μspine

values will result in higher μ values at convergence. This will, in turn, result in a harder soft-

bound, and increase the protection of the formed receptive field. To investigate how changes

in input correlations affect the preexisting synaptic structure we apply a new stimulation pro-

tocol. In this scenario, there exist two non-overlapping groups of input patterns, A and B (pur-

ple and yellow in Fig 4A, respectively). Pattern A and B are orthogonal in the sense that the

neurons with nonzero correlation are disjoint. We start with pattern A for 200 seconds, and

then we change the correlation structure from pattern A to pattern B for 400 seconds more.

Applying this protocol, one can encounter three different scenarios: (i) the previous memory

is erased with the new pattern taking over (Fig 4B2, Total Overwriting), (ii) the previous mem-

ory is maintained, but pattern B is also imprinted (the neuron becomes an A or B detector, Fig

4B3, Partial Overwriting), and (iii) the previous memory is maintained, and the new pattern is

not imprinted (Fig 4B4, No Overwriting). We classify the trajectories obtained for each simula-

tion as one of these three qualitatively different cases. To do that, we compare the RFs formed

with pattern A or B alone (~wA and ~wB respectively, Fig 4B1–4B4) with the one formed when

first A and then B is presented ~wAB (Fig 4C and Eq (28) in Methods). We study how the above-

mentioned regimes are affected by the total amount of correlation of pattern B ctot, the potenti-

ation/depression imbalance α, and μspine. Higher levels of correlation in pattern B facilitate the

formation of the new pattern, as the new correlated synapses can cooperate more strongly.

This leads to an abundance of transitions from no overwriting to partial or total overwriting

with ctot given a fixed α (Fig 4D). The effect of increasing the imbalance between potentiation

and depression is not trivial, as increasing depression prevents the new memory from taking

over but also increases the pressure over the previously formed memory. In consequence, and

as shown in simulations, increasing α can drift the system from memory protection to memory

overwriting but also the opposite, with the process being also coupled to the specific amount of

correlation of pattern B (Fig 4D). Increasing μspine consistently protects the previously formed

memory (more extended green or grey regions for higher values of μspine, Fig 4D). Neverthe-

less, doing so also decreases the competition between filopodia and spines, thus favoring the

formation of the new RF while the previous one is maintained (changes from green to grey).

Compared to additive STDP, FS learning has two advantages: first, it allows a non-existing

regime of memory linking/overlapping (Fig 4D4). Secondly, it allows transitioning from an

add-like scenario (Fig 4D1 and 4D4) to regimes in which previously formed memories are

more and more protected (Fig 4D2 and 4D3). Altogether, this shows a richness of possible

interactions between previous and new environmental statistics in FS-STDP. Our learning
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rule allows for an intermediate state in which receptive fields aggregate (grey), not allowed in

classic models of STDP. Furthermore, it provides an active protection mechanism that goes

beyond quiescence and preserves weight structure in the presence of postsynaptic activity.

Interestingly, these different regimes can be controlled with model parameters like α or μspine,

so one could imagine these being physiologically driven to favor one or another depending on

developmental stages or the measured environmental uncertainty.

Fig 4. FS-learning makes changes resistant to new correlated input. A:Stimulation protocol. Input neurons have an input correlation profile as in

purple (pattern A) for the first 200 seconds of the simulation. Then, it switches to the yellow correlation profile (pattern B, shifted by π with respect to

pattern A). B: There exist different scenarios: (i) The new memory (which would lead to B1 in the absence of previous structure) takes over the previous

one (red, B2). (ii) The new memory is imprinted but the old RF is conserved (grey, B3). (iii) The original RF is preserved and the new memory is not

imprinted (green, B4). Orange traces correspond to weights that become spines with pattern B alone, and purple ones weights that become spines with

pattern A alone. C: By comparing the final RF ~wAB with that corresponding to pattern X alone (X = A,B), one can obtain a similarity score that

determines whether the memory X is present or not (Methods, Eq (28)). D: Classification of receptive fields formed across potentiation/depression

imbalance α and total correlation ctot for different protection parameter a values in FS-STDP (D1, D2, and D3) and in add-STDP (D4). Colors as

indicated in panels B2, B3, B4. Ranges of α and ctot were chosen so that a RF was always formed (see Fig 3, S7 and S8 Figs).

https://doi.org/10.1371/journal.pcbi.1012110.g004
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Discussion

We have presented a computational model that describes how filopodia and spines are differ-

ently affected by plasticity, as well as their transition from one to the other. Our learning rule,

Filopodium-Spine Spike-Timing-Dependent-Plasticity (FS-STDP), posits that highly volatile

and plastic filopodia exhibit strongly competitive dynamics, which we implement through an

additive-like plasticity rule. In contrast, spines are assumed to follow weakly competitive dynam-

ics, implemented via soft-bounds similar to those found in nlta-STDP with an intermediate μ or

multiplicative models of STDP. We use nonlinear-temporally-asymmetric (nlta) learning to gen-

eralize the learning rules that follow both silent synapses (filopodia) and spines, with the addition

of weight dependence in the parameter that governs the strength of competition of each synaptic

population. FS-STDP contains two key ingredients that make it functionally appealing: (i) it is

able to selectively encode, in the synaptic state, a rectified version of the correlation structure of

input and (ii) it acts as a memory consolidation mechanism by protecting previously formed

receptive fields. We have shown that the encoding properties of our learning rule derive from a

two-stage competition (strong, followed by weak), such that synapses are first bimodally distrib-

uted (as in add-STDP) and then also continuously represent the correlation structure of the

input. This is therefore an alternative solution to the Stability vs Neuronal Specialization dilemma

[19]. Here we have focused on weights between zero and one, and have excluded the possibility

of further representing the correlation structure using long-tail distributions, which could be

obtained via intrinsic noise in the synaptic plasticity [20, 21]. A similar two-stage learning could

be implemented by imposing a parameterized log dependence such that filopodia follow add-

STDP whilst spines follow log-STDP. Our model, together with experiments, is in accord with

the hypotheses that optimal network capacity can be obtained when a large fraction of the synap-

ses are silent [11] and with the sparsity of network connectivity found in experiments [22]. Fur-

thermore, FS-STDP proposes a functional explanation of how this sparse connectivity might be

obtained in the first place via strongly competitive dynamics, and how it can flexibly adapt to

changes in the environment statistics. In a sense, this effectively makes the first stage of FS learn-

ing a structural plasticity rule [4, 23]. The bimodality observed in filopodia versus spines is thus,

structural, leading to an overall spine sparsity. It should be noted how this is different to a poten-

tial bimodality in the distribution of spines itself (as found in [24]).

The second property of FS-learning is the protection of formed receptive fields in the pres-

ence of new input correlations. This fits within the literature of synaptic consolidation, where

it can be understood as a cascade model [16] where the spineness (controlled by parameter μ)

is an internal variable of the weight. It can also be placed in the more recent context of bidirec-

tional dynamic processes [25], where the weight push-pulls μ and in turn high values of μ sta-

bilize the weight. We have restricted our analysis to the interplay between fliopodia and spines,

but the model could be extended to include other well-known processes of synaptic consolida-

tion that would affect spines (as could be the experimentally [26, 27] and computationally [17,

28, 29] tested Synaptic Tagging and Capture (STC) mechanism).

FS-learning can also account for spine volatility [30]. If the μ value associated with the lower

soft-bound w0 leads to additive dynamics, then not all spines are protected. Instead, they decay

even in the absence of a new correlated input. Decay would happen in order of previous correla-

tion strength (less correlated decay first) until the competitive term is weak enough. This would

imply an active synaptic turnover (instead of passive) making spines that are less relevant decay

into filopodia first. While we do not examine directly the implementation of FS-learning in a

recurrently connected network, we hypothesize that it could be beneficial for learning neuronal

assemblies. While the advantages of graded synapses in memory formation via attractors have

been described before [31], the representational power of FS-learning could also lead to
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imprinting more complex conceptual structures. Assembly formation in recurrent networks is

usually limited to independent groups of neurons that represent orthogonal inputs, as classic

models of competitive learning would otherwise lead to representational collapse and the merg-

ing of assemblies. FS-STDP could potentially overcome this by distinguishing between intra-

assembly and inter-assembly synaptic strengths, while maintaining a sparse connectivity. The

intrinsic protection that our model gives to spines could additionally make the assemblies

formed resistant to new correlated inputs that would otherwise erase them (preventing cata-

strophic forgetting). Our model assumes that all filopodia that reach a certain synaptic efficacy

are converted into spines but, experimentally, that was found for only 9 out of 15 samples [3].

Whether the reason for this discrepancy is that (i) this transition is stochastic, (ii) the filopodia

that had not become spines had not reached a high-enough synaptic efficacy, or (iii) there was an

uncontrolled variable influencing this transformation remains unknown. Further studies investi-

gating how filopodia become spines and what physiological variables affect this transformation

could further constrain our model. Similarly, we assume the reverse (spines becoming filopodia)

can also happen, which has not been studied yet. However, our conversion of spines into filopo-

dia could still be considered a simplification of a renewal process in which a spine disappears

and, randomly, a close-by filopodium is created. We have also focused on a simplified picture

limited by the experimental results on the plasticity of filopodia, but the nature of plasticity and

metaplasticity could incorporate even more states than only filopodia and spines, as can be

found in the hippocampus [32]. Our study naturally suggests a systematic characterization of

spike-timing-dependent plasticity in filopodia, which could help confirm if they actually follow

additive dynamics and how the learning kernels vary across the filopodium-spine spectrum. This

could confirm the accuracy of our implementation of filopodia dynamics and/or wether they in

fact learn in a strongly competitive manner. Furthermore, we have not modelled AMPA and

NMDA channels separately, while filopodia are known to contain NMDA channels even in the

absence of AMPA receptors [1, 3]. We speculate that including this distinction could be benefi-

cial for the formation of neuronal assemblies in recurrent networks, given the slow dynamics of

these channels and their role as coincidence detectors [33, 34]. Finally, we leave open the ques-

tion of what physiological signal(s) could represent a temporally averaged version of the synaptic

strength, which in our model is called μ. Since we interpret synaptic strength as the amount of

AMPA receptors at the postsynaptic level, variable μ could depend on retrograde signals, which

can play an important role in synaptic maturation [35]. However, it could also be dependent on

other locally available signals such as synaptic volume. In summary, we have presented a model

of synaptic plasticity that distinguishes between two synaptic structures: filopodia and spines. We

have assumed that filopodia follow highly competitive STDP and spines learn according to soft-

bounded STDP, which leads to the formation of sparse but graded receptive fields that continu-

ously represent input correlations. Furthermore, our model proposes that the transformation of

filopodia into spines can be seen as a first stage of synaptic consolidation, thus making protecting

the synaptic weights learned from changes in the environmental statistics.

Methods

Terms and definitions

Neuron model

We use a conductance-based Leaky Integrate-and-Fire model with excitatory and inhibitory

input. Passive membrane potential dynamics are described by the following equation:

Cm
dvðtÞ
dt
¼
ðvrest � vðtÞÞ

Rm
þ gexcðtÞðEexc � vðtÞÞ þ ginhðtÞðEinh � vðtÞÞ ð6Þ
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where the conductance response to excitatory (gexc) and inhibitory (ginh) presynaptic spikes is

shaped using alpha functions:

gAðtÞ ¼ ĝA
X

j

wj

X

t�tkj

ðt � tkj Þexp½� ðt � tkj Þ=tA� A ¼ exc; inh
ð7Þ

If at time tki neuron i has membrane potential v� vth, then v is reset to vrest at t ¼ tki þ dt, and

tki included in the spike train Si(t). Parameter descriptions and values used in simulations are

specified in Table 4.

Synaptic plasticity model

Filopodium-spine STDP. Our model adds intrinsic dynamics to the parameter μ intro-

duced in [13], making it coupled to the weight wi (i denotes presynaptic index, there is only

one postsynaptic neuron):

dwiðtÞ
dt
¼ lðwþ

0
� wiðtÞÞ

miðtÞ
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{

nlta∗

ziðtÞSpostðtÞ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
“vanilla” STDP

� l a
z}|{

pot:=dep: imbalance

jwiðtÞ � w�
0
j
miðtÞ

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{
nlta∗

zpostðtÞSiðtÞ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
“vanilla” STDP

ð4Þ

tm
dmiðtÞ

dt
¼ � miðtÞ �

wiðtÞ þ a
q

� �

ð2Þ

SiðtÞ ¼
P
dðt � tk

i Þ are the spike trains of presynaptic neuron i and Spost the spike trains of the

only postsynaptic neuron. The pre (sub-index i) and post (sub-index post) synaptic traces are

low-pass filtered versions of the corresponding spike trains:

tSTDP
dzi=postðtÞ

dt
¼ � zi=postðtÞ þ Si=postðtÞ ð8Þ

These equations combined implement a special weight-dependence such that only small

weights experience strong competition. a and q control what is the μi associated to a synaptic

efficacy wi under equilibrium. In practice, we define instead μfilo and μspine, which indicate to

what value converges a synapse with strength wfilo and wspine (respectively), and then compute

Table 4. Neuron parameters.

Symbol Value Description

v Variable (mV) Membrane Potential

Cm 200 pF Membrane Capacitance

Rm 100 MO Membrane Resistance

vth -54 mV Threshold Potential

vrest -70 mV Resting Potential

Eexc 0 mV Excitatory Reversal Potential

Einh -70 mV Inhibitory Reversal Potential

ĝ exc 0.15 nS Excitatory Conductance Amplitude

ĝ inh 0.25 nS Inhibitory Conductance Amplitude

τexc 5 ms Excitatory Time Constant

τinh 5 ms Inhibitory Time Constant

https://doi.org/10.1371/journal.pcbi.1012110.t004
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the associated a and q:

mfilo ¼ ðwfilo þ aÞ=q

mspine ¼ ðwspine þ aÞ=q
)

a ¼ ðmspinewfilo � mfilowspineÞ=ðmfilo � mspineÞ

q ¼ ðwfilo þ aÞ=mfilo

((

ð9Þ

This allows us to explicitly control the strength of the competition of filopodia and spines, by

fixing what will be the typical μ values of each type of synapse. Throughout this study, we let

wþ
0
¼ 1, and simply write w�

0
¼ w0. Synaptic efficacies are clipped between wmin = 0 and wmax

= 1. All parameters used in simulations are specified in Table 5.

add-STDP. We define add-STDP as in [7]:

dwi

dt
¼ lziðtÞSpostðtÞ � alzpostðtÞSiðtÞ ð10Þ

using same parameter values as in Table 5.

mlt-STDP. We define mlt-STDP (mlt-STDP) as in [8]:

dwi

dt
¼ lziðtÞSpostðtÞ � alwizpostðtÞSiðtÞ ð11Þ

using same parameter values as in Table 5.

nlta-STDP. We define nlta-STDP as in [13]:

dwiðtÞ
dt
¼ lð1 � wiðtÞÞ

mziðtÞSpostðtÞ � lawiðtÞ
mzpostðtÞSiðtÞ ð12Þ

using same parameter values as in Table 5.

Table 5. Synaptic plasticity parameters.

Symbol Value Description

wi Variable (a.u.) Synaptic Efficacy

μi Variable (a.u.) Spineness Parameter

μfilo 0.01 target μ of filopodia

μspine 0.1–0.4 target μ of spines

wfilo 0.1 typical filopodium efficacy

wspine 0.75 typical spine efficacy

wmin 0 minimum synaptic efficacy

wmax 1 maximum synaptic efficacy

λ 0.006 a.u. Learning Rate

α 1.00–1.75 a.u. Potentiation/Depression Imbalance

wþ
0

1 a.u. Higher Soft-Bound

w�
0

0.5 a.u. Lower Soft-Bound

Si Variable (Hz) Presynaptic Spike Train (neuron index = i)
Spost Variable (Hz) Postsynaptic Spike Train

τSTDP 20 ms STDP time constant

zi Variable (a.u.) Presynaptic Trace

zpost Variable (a.u.) Postsynaptic Trace

τμ 20 s μ time constant

https://doi.org/10.1371/journal.pcbi.1012110.t005
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nlta*-STDP. We define nlta*-STDP as FS-STDP without μ dynamics, or equivalently, as

nlta-STDP incorporating arbitrary soft-bounds wþ
0

and w�
0

dwiðtÞ
dt
¼ lðwþ

0
� wiðtÞÞ

mziðtÞSpostðtÞ � lajwiðtÞ � w�
0
j
mzpostðtÞSiðtÞ ð13Þ

using same parameter values as in Table 5.

Mean synaptic dynamics in a linear Poisson neuron

Following [13], we recover some of the main results assuming a Poisson linear neuron, which

allows for an exact solution of the weight mean-field dynamics. In this context, the output neu-

ron is the realization of an inhomogeneous Poisson process with an instantaneous firing rate

RpostðtÞ ¼
1

Npre

X

i

wiðtÞSiðt � �Þ ð14Þ

where Npre is the number of presynaptic neurons and � a small constant delay. Under these

conditions, and if one has a stimulation protocol without backward correlations (as is our

case, see below), one can obtain the mean-field description of the time evolution of wi:

_wi ¼
ltr2

pre

Npre
� Df ðwiÞ

X

j

wj þ fþðwiÞ
X

j

wjC
þ

ij

" #

ð15Þ

where rpre is the presynaptic firing rate, f+(wi) and f−(wi) are the time-difference-independent

amplitudes of potentiation and depression (respectively) and Δf(wi)� f−(wi) − f+(wi). Cþij is

called the integrated normalized cross-correlation and is a function of the normalized cross-cor-
relation G0

ijðDtÞ, and are defined as:

G0

ijðDtÞ �
hSiðtÞSjðt þ DtÞit

r2
pre

� 1 ð16Þ

Cþij �
Z 1

0

dDt
1

t
KðDtÞG0

ijðDt � �Þ ð17Þ

with K(Δt) the learning kernel, which defines how the weight changes as a function of the

spike-time difference between pre and postsynaptic spikes, and is usually an exponential decay

of the absolute difference of spike times.

Competition and cooperation factors in models of STDP

For completeness, we include in Table 6 the competition and cooperation factors (see previous

section and also Table 3) associated to each model of STDP mentioned in this study:

Generating temporally correlated spike trains

To correlate a pool of presynaptic Poisson neurons, we generate a reference spike train:

rrefðtÞ ¼
P
dðt � tk

refÞ ð18Þ

via a homogeneous Poisson process: Pðt 2 ftk
refgÞ � PðXreft ¼ 1Þ ¼ rpreDt (Δt a small timestep).

Now, for each neuron i in with correlation strength ci, the probability of firing at time t

PLOS COMPUTATIONAL BIOLOGY Learning with filopodia and spines

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012110 May 14, 2024 19 / 26

https://doi.org/10.1371/journal.pcbi.1012110


depends on whether that time is included in the reference spike train or not:

PðXi
t ¼ 1jXreft ¼ 1Þ ¼ rDt þ ffiffiffici

p
ð1 � rDtÞ ð19Þ

PðXi
t ¼ 1jXreft ¼ 0Þ ¼ rDtð1 � ffiffiffici

p
Þ ð20Þ

This ensures an average firing rate r over the defined period of time, while also imposing the

following instantaneous cross-correlations:

G0

ijðDtÞ ¼
1

r
cijdðDtÞ ð21Þ

where cij denotes the pair-wise correlations

cij ¼
CovðXi

t;X
j
tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXi
tÞVarðX

j
tÞ

q ¼
ffiffiffiffiffiffi
cicj

p
ð22Þ

In turn, this results in the following integrated normalized cross-correlations, which define the

level of cooperation between synapses:

Cþij ¼
ffiffiffiffiffifficicj
p

tr
ð23Þ

Note how, opposed to [13], here we have generalized to an arbitrary correlation structure~c, so

not all neurons within a correlated pool are necessarily equally correlated.

von Mises shaped correlation

The von Mises distribution is often used to describe tuning to different inputs that have a cir-

cular or periodic relationship. Its density function over an angle θ is given by

fvMðyjypref ; kÞ ¼
exp
�
k cosðy � yprefÞ

�

2pI0ðkÞ
ð24Þ

with I0(κ) =
R

exp(κ cos θ)dθ. θpref denotes the center of the distribution (or preferred angle)

and κ controls its width (or variance). Given a Neuron ID = θi, we assign each presynaptic neu-

ron a correlation strength ci = fvM(θi) and then normalize according to parameter ctot such

that:

ctot ¼
P

ci ð25Þ

Parameter ctot gives a measure of the total drive that the postsynaptic neuron effectively

receives due to presynaptic temporal correlations.

Table 6. Competition and cooperation factors across models of STDP.

Rule cooperation factor f+(w) competition factor Δf−(w)

add-STDP 1 1 − α

mlt-STDP 1 1 − wα

mlt/mlt-STDP 1 − w 1 − w(1 + α)

nlta-STDP (1 − w)μ (1 − w)μ − αwμ

nlta*-STDP (1 − w)μ (1 − w)μ − α|w − w0|μ

FS-STDP (1 − w)μ(t) (1 − w)μ(t) − α|w − w0|μ(t)

https://doi.org/10.1371/journal.pcbi.1012110.t006
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Squared pulse correlations

Squared pulse correlation structures are 0 for every neuron except for a number Ntot = 200

neurons. Correlated neurons are assigned a correlation value ci = ctot/Ntot.

Discrimination index

We define yθ as the firing rate of the output neuron in the presence of an input correlation

structure centered at θ. Then, the Discrimination Index at angle θ (DI(θ)), of a neuron trained

with input centered at θ = pref, is

DIðyÞ ¼
ypref � yy
ypref þ yy

ð26Þ

We then define the general Discrimination Index (DI) as:

DI ¼
1

jNeuron IDj

X

y2Neuron ID

DIðyÞ ð27Þ

That is, the discrimination index evaluated at θ averaged over all possible values of θ.

Memory overlap

Given a set of conditions X, and a set of conditions Y, the memory after convergence is defined

as ~wX and ~wY (respectively). Then, we measure the overlap between both memories via their

cosine similarity:

cosðaXYÞ ¼
h~wX; ~wYi

jj~wXjj � jj~wY jj
ð28Þ

where h~a;~bi is the dot product of vectors~a and~b, jj~ajj is the norm
ffiffiffiffiffiffiffiffiffiffiffi
h~a;~ai

p
of~a, and αXY is

the angle between ~wX and ~wY . We use a threshold of 0.5 to determine whether a memory is

present or not. The threshold was chosen such that the colormap in Fig 4D qualitatively corre-

sponds with the regimes presented in Fig 4B2, 4B3 and 4B4 (total, partial or no overwriting).

Also see S13, S14, S15 and S16 Figs.

Implementation details

We use BRIAN2 [36] in our simulations. Additional implementation parameters used in simu-

lations (not specified in the Figures or Figure Captions) can be found in Table 7.

Presynaptic firing rates. Inhibitory neurons have a fixed 10 Hz firing rate. For excitatory

neurons, we use a presynaptic firing rate (rpre) of 30 Hz in all our simulations except for com-

puting the Discrimination Index (DI). A relatively high (30 Hz) presynaptic rate speeds-up

simulations and avoids quiescence modes with an absence of plasticity. For example, in the

simulations of Fig 4, a low presynaptic rate would lead to an effective No Overwriting regime

because the postsynaptic neuron is silent and the weights are frozen. However, we are inter-

ested in the case where the learning rule inherently protects the RF even with ongoing neuro-

nal activity and synaptic plasticity. At high presynaptic firing rates, however, the postsynaptic

neuron firing rate does not depend on the selectivity of the RF to the presented pattern. This is

because the neurons with non-zero weight are able to excite the postsynaptic neuron even in

the absence of correlations. To use the DI as a selectivity measure, which has the advantage of

being normalized, we use a presynaptic firing rate of 10 Hz once the RF has formed.

Use of total correlation ctot and potentiation/depression imbalance α as parameter

space. If one takes the mean-field learning dynamics (Eq (15)) and substitutes the cross-
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correlations Cþij obtained in Eq (23), the following expression is obtained:

_wi ¼
ltr2

pre

N
� Df ðwiÞ
zfflfflfflfflffl}|fflfflfflfflffl{
linear in a

X

j

wj þ
ctot fþðwiÞ

rpre

zfflfflfflfflffl}|fflfflfflfflffl{
linear in ctot

X

j

wj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cnormi cnormj

p

t

2

6
6
4

3

7
7
5

ð29Þ

where cnormi are the normalized correlation values (
P

ic
norm
i ¼ 1), which are fixed given θpref

and κ. One can see that the effect of increasing rpre is equivalent to: (i) quadratically increasing

the learning rate and (ii) inversely decreasing cooperation. Instead of changing rpre (which

would have with the aforementioned inconveniences), we sweep over the parameters α and

ctot. This allows exploring different ratios of competition (modulated by α) and cooperation

(modulated by ctot), while yielding similar stability and training times.

Table 7. Simulation parameters.

Symbol Value Description

Δt (int.) 0.5 ms Integration timestep

Δt (input) 1 second Input timed array width

Δt (w recording) 1 second Weight recording timestep

w (initial) 0.3 a.u. Initial synaptic efficacy

κ 8 a.u. von Mises pdf width parameter

rpre (default) 30 Hz Presynaptic firing rate (training)

rpre (discrimination index) 10 Hz Presynaptic firing rate (testing)

rpre (inhibition) 10 Hz Presynaptic firing rate (inhibitory

neurons)

Figure Variable Value

Fig 1 α 1.35

Fig 1 μspine 0.1

Fig 1 ctot 60

Fig 2 μspine 0.1

Fig 2 α 1.35

Fig 2B, 2C, 2DX and 2EX ctot 60

Fig 3AX and 3BX μspine 0.1

Fig 4BX α 1.35

Fig 4BX ctot (pattern A and pattern B) 60

Fig 4B1 and 4B2 μspine 0.1

Fig 4B3 μspine 0.15

Fig 4B4 μspine 0.3

Supporting Information Figures

S1, S2 and S3 Figs Same as 1G

S4, S5, S7, S8, S9 and S11

Figs

Same as Fig 3

S10 Same as Fig 2

S12 Same as Fig 3 (with background

correlations)

S13, S14, S15 and S16 Figs Same as Fig 4

https://doi.org/10.1371/journal.pcbi.1012110.t007
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Supporting information

S1 Fig. Example trajectories of synaptic efficacies (top), mean-field interactions (middle)

and competition/cooperation factors (bottom), using a correlation structure sampled

from a Gaussian (same as Fig 1). Obtained for add-STDP, nlta*-STDP and FS-STDP (left to

right). As usual, gray means filopodia in the case of FS-STDP, and simply wi> 0 for the rest of

learning rules. Note how grey curves of FS-STDP approximate those of add-STDP, and purple

ones those of nlta*-STDP. μ = 0.91 (for nlta*-STDP) taken as the average μ of spines obtained

via FS-STDP.

(TIF)

S2 Fig. Same as S1 Fig, but with a squared pulse correlation structure (all synapses equally

correlated and the rest with 0 correlation). μ = 0.12 (for nlta*-STDP) taken as the average μ
of spines obtained via FS-STDP.

(TIF)

S3 Fig. Same as S1 Fig, but with a von Mises correlation structure. This structure is used

throughout the paper for its similarity to a squared pulse (used in most previous studies), its

yet rich structure (not exaclty binary) and the plausibility of these type of correlations in visual

cortex. μ = 0.11 (for nlta*-STDP) taken as the average μ of spines obtained via FS-STDP.

(TIF)

S4 Fig. Receptive Fields after convergence for a squared pulse correlation structure

(FS-STDP). ctot and α as in the 10x10 pixels of heatmaps in Fig 3.

(TIF)

S5 Fig. Receptive Fields after convergence for a squared pulse correlation structure (add-

STDP). ctot and α as in the 10x10 pixels of heatmaps in Fig 3.

(TIF)

S6 Fig. Heatmap showing the correlation of every neuron (by Neuron ID) with rotation of

input correlations θ.

(TIF)

S7 Fig. Receptive Fields after convergence for FS-STDP. Each subpanel corresponds to each

of the 10x10 pixels in the heatmaps shown in Fig 3A1 and 3B1.

(TIF)

S8 Fig. Receptive Fields after convergence for add-STDP. Each subpanel corresponds to

each of the 10x10 pixels in the heatmaps shown in Fig 3A2 and 3B2.

(TIF)

S9 Fig. Receptive Fields after convergence for mlt-STDP. Each subpanel corresponds to

each of the 10x10 pixels in the heatmaps shown in Fig 3A3 and 3B3.

(TIF)

S10 Fig. Example of nlta-STDP receptive fields from μ = 0 to μ = 0.1.

(TIF)

S11 Fig. Same as Fig 3, but comparing FS-STDP (Left) to nlta-STDP both in its standard

form (Center) and with a lower bound w0 as in FS-STDP (nlta*-STDP, Right). μ = 0.075.

(TIF)
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S12 Fig. Same as S11 Fig, but with a correlation increase of 0.05 in every presynaptic neu-

ron with respect to S11 Fig (then renormalized).

(TIF)

S13 Fig. Receptive Fields after convergence for FS-STDP, μspine = 0.1, (pattern A and then

pattern B). Each subpanel corresponds to each of the 10x10 pixels in the heatmaps shown in

Fig 4C1.

(TIF)

S14 Fig. Receptive Fields after convergence for FS-STDP, μspine = 0.25, (pattern A and then

pattern B). Each subpanel corresponds to each of the 10x10 pixels in the heatmaps shown in

Fig 4C2.

(TIF)

S15 Fig. Receptive Fields after convergence for FS-STDP, μspine = 0.4, (pattern A and then

pattern B). Each subpanel corresponds to each of the 10x10 pixels in the heatmaps shown in

Fig 4C3.

(TIF)

S16 Fig. Receptive Fields after convergence for add-STDP (pattern A and then pattern B).

Each subpanel corresponds to each of the 10x10 pixels in the heatmaps shown in Fig 4C4.

(TIF)
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