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Abstract

The activities of most enzymes and drugs depend on interactions between proteins and

small molecules. Accurate prediction of these interactions could greatly accelerate pharma-

ceutical and biotechnological research. Current machine learning models designed for this

task have a limited ability to generalize beyond the proteins used for training. This limitation

is likely due to a lack of information exchange between the protein and the small molecule

during the generation of the required numerical representations. Here, we introduce Pro-

Smith, a machine learning framework that employs a multimodal Transformer Network to

simultaneously process protein amino acid sequences and small molecule strings in the

same input. This approach facilitates the exchange of all relevant information between the

two molecule types during the computation of their numerical representations, allowing the

model to account for their structural and functional interactions. Our final model combines

gradient boosting predictions based on the resulting multimodal Transformer Network with

independent predictions based on separate deep learning representations of the proteins

and small molecules. The resulting predictions outperform recently published state-of-the-

art models for predicting protein-small molecule interactions across three diverse tasks: pre-

dicting kinase inhibitions; inferring potential substrates for enzymes; and predicting Michae-

lis constants KM. The Python code provided can be used to easily implement and improve

machine learning predictions involving arbitrary protein-small molecule interactions.

Author summary

Understanding how proteins interact with small molecules, such as drugs, is critical to

advancing medical, biological, and biotechnological research. Our work introduces Pro-

Smith, a machine learning framework that improves the prediction of protein-small mole-

cule interactions. Protein-small molecule interactions can be predicted by using

numerical representations of proteins and small molecules as input to machine learning
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prediction models. Previous methods typically generated separate numerical representa-

tions for the proteins and small molecules without considering their interactions. Pro-

Smith, however, combines both protein sequence and small molecule structural

information in the input of a single multimodal Transformer Network to generate a joint

numerical representation. Unlike previous methods, this allows for a comprehensive

exchange of information between protein and small molecule, capturing the complex rela-

tionships and interactions between these two types of molecules. ProSmith successfully

predicts several biological interactions, including kinase inhibitions, potential enzyme-

substrate pairs, and enzyme kinetic parameters KM. We provide Python code that can be

easily adapted to improve predictions for any protein-small molecule interaction.

This is a PLOS Computational Biology Methods paper.

Introduction

Predicting interactions between proteins and small molecules is a long-standing challenge in

biological and medical research, and it plays a crucial role in the discovery of new drugs and in

the understanding of their action [1–12]. Moreover, they are essential for predicting enzyme

kinetic parameters [13–17] and for inferring diverse protein functions, such as the binding

between enzymes and their substrates [18–26].

The main obstacle to achieving such predictions lies in generating effective numerical rep-

resentations of the two molecule types that encode all the information relevant to the underly-

ing task. Ideally, these numerical representations should already incorporate information on

the molecular and functional interactions between proteins and small molecules. Some recent

models have made efforts to address this challenge by facilitating the exchange of information

between the small molecule representation and the protein representation during their genera-

tion [2, 7, 12]. While these approaches offer the potential to better capture the interplay

between the two modalities, they still cannot capture the full complexity of protein-small mole-

cule interactions.

Typically, protein information is incorporated into the small molecule representation only

after transforming the protein sequence into a single numerical vector, such that no detailed

information on individual amino acids is provided. Similarly, small molecule information is

presented to the protein representation only after transforming the small molecule informa-

tion into a single numerical vector that summarizes the properties of individual atoms and

their relationships across the whole molecule. This approach results in the loss of information

relevant to the downstream prediction task. Instead, one should consider the entirety of both

protein and small molecule simultaneously during the creation of their numerical representa-

tions. The resulting representation of a protein could be trained to incorporate information

specific to small molecules it interacts with according to the training data, while the small mol-

ecule representation could integrate information on its protein partners. However, achieving

this detailed information exchange poses a challenge, as proteins and small molecules are rep-

resented using different modalities. While proteins are commonly represented by their amino

acid sequences, small molecules are represented in much greater detail, often as strings con-

taining information about every atom and bond in the molecule [27]. Consequently, separate
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deep learning models are typically employed for each molecule type, obstructing effective

information exchange.

Popular models for the representation of proteins [28] and small molecules [29] are Trans-

former Networks, which were originally developed for Natural Language Processing (NLP)

tasks. Until recently, Transformer Networks focused primarily on a single input modality,

such as text or images. However, the past three years saw the development of multimodal

Transformer Networks that project two different modalities onto the same embedding space,

facilitating the processing of data that integrates both types of information [30–33]. Notably,

such multimodal approaches have achieved significant performance improvements over state-

of-the-art methods in tasks involving combinations of images and text.

Inspired by this progress, we here present a novel approach to the prediction of protein-

small molecule interactions. Our ProSmith model (PROtein-Small Molecule InTeraction,

Holistic model) leverages the power of a multimodal Transformer Network architecture to

process protein amino acid sequences and small molecule strings within the same input

sequence. For final model predictions, ProSmith combines predictions from three gradient

boosting models that utilize (i) a learned representation of the multimodal Transformer Net-

work, (ii) separate general representations of the proteins and the small molecules, and (iii) a

combination of all three representations.

This study presents the first multimodal Transformer Network capable of processing mole-

cules with different modalities. The goal of this study is not to provide new biological insights

into molecular interactions per se, but rather to demonstrate that the developed method can be

successfully applied to a variety of prediction problems involving interactions between pro-

teins and small molecules. We show that ProSmith outperforms previous models in predicting

protein-small molecule interactions across three diverse tasks: predicting the affinity between

protein kinases and drugs [1–12]; evaluating whether a small molecule is a natural substrate

for a given enzyme [18–26]; and predicting the Michaelis constant KM of an enzyme for its

substrate [13–17].

Results

Architecture of the multimodal Transformer Network for the prediction of

protein-small molecule interactions

As its input, the ProSmith model takes two modalities, a protein amino acid sequence together

with a SMILES string that represents the molecular structure of the small molecule. When con-

structing multimodal Transformer Networks, different architectural designs can be consid-

ered, each differing in how information between the modalities is incorporated [34]. This

subsection provides a detailed description of the architectural choices made in the develop-

ment of ProSmith.

We adopt a concatenation approach that combines the protein amino acid sequence and

the SMILES string into a single input sequence. This choice allows the exchange of all protein

and small molecule information at any update step. To process an input, Transformer Net-

works divide the input sequence into small chunks, referred to as tokens. For protein

sequences, each amino acid is treated as a separate token, while the SMILES strings for small

molecules are divided into tokens as described in Ref. [29]. To facilitate efficient training, Pro-

Smith leverages pre-learned token representations from Transformer Networks that were

trained independently on each modality. For amino acid representations, we utilize embed-

dings from the ESM-1b model, a 33-layered Transformer Network that was trained in a self-

supervised manner on 27 million protein amino acid sequences [28]. For the SMILES string

tokens, we use embeddings from the ChemBERTa2 model, a Transformer Network trained on
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a dataset of 77 million SMILES strings [29] (see level A in Fig 1). The token embeddings

derived from the ESM-1b model and the ChemBERTa2 model have different dimensions,

1280 and 600, respectively. To process these embeddings using the same Transformer Net-

work, we employ linear layers to map both sets of embeddings to a joint embedding space with

a shared dimension of 768, which is the hidden dimension of all tokens in the ProSmith Trans-

former Network (level B in Fig 1).

Fig 1. ProSmith model overview. In level A, a protein amino acid sequence and a small molecule SMILES string are transformed into input tokens.

The protein tokens are converted to embedding vectors using the trained ESM-1b model, while the SMILES tokens are mapped to embedding vectors

using the trained ChemBERTa2 model. In level B, all tokens are mapped to the same embedding space, and are utilized as input sequence for a

Transformer Network. In level C, the Transformer Network processes the input tokens and puts out an updated embedding of a classification token

(cls), which incorporates information from both the protein and small molecule. In level D, this cls vector, in combination with the ESM-1b and

ChemBERTa2 vectors, serves as the input for gradient boosting models trained to predict protein-small molecule interactions.

https://doi.org/10.1371/journal.pcbi.1012100.g001
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In addition to the protein sequence and the SMILES string tokens, we add two special

tokens: the classification token ‘cls’, its representation is trained as the combined enzyme-

small molecule input for downstream tasks, and the separation token ‘sep’, which is identical

across input sequences and indicates to the Transformer Network the end of the protein

sequence and the start of the SMILES string within the input sequence (level B in Fig 1). Dur-

ing the processing steps, the Transformer Network (level C in Fig 1) updates each input token

using the attention mechanism [35], which enables the model to look at the whole input

sequence and to selectively focus only on relevant tokens for making updates. After updating

all input tokens for a pre-defined number of steps, the classification token cls is extracted. This

token is then used as the input for a fully connected neural network, which is trained to predict

an interaction between the small molecule and the protein. By training the entire model end-

to-end, ProSmith learns to store all relevant information for the interaction prediction within

the cls token.

We set the number of attention layers in the Transformer Network to six, each with six

attention heads. In Transformer Networks, the numerical representation of the input sequence

is processed in every layer by each attention head separately, updating the input tokens. The

updated tokens from all six attention heads are then concatenated and passed as input to sub-

sequent attention layers. The resulting token embeddings from each attention head have a

dimension of 128, resulting in the model’s hidden dimension of 768.

ProSmith feeds the learned representations to gradient boosting models

Following the training of the Transformer Network for predicting interactions between pro-

teins and small molecules, we extract the cls token as a task-specific joint representation for a

given protein-small molecule pair. However, due to the limited size of the cls token and the

number of update steps, we hypothesized that some relevant general information of the pro-

tein and the small molecule might be lost during the generation of the representation. To

address this concern, we also more directly use the information contained in the ESM-1b

representation of the raw protein sequence and the ChemBERTa2 representation of the

SMILES string. We create a single representation for a given protein by calculating the ele-

ment-wise mean [36] across its ESM-1b token embeddings and a single representation for a

given small molecule by calculating the element-wise mean across its ChemBERTa2 token

embeddings. In the following, we refer to these compressed vectors as ESM-1b vector and

ChemBERTa2 vector, respectively.

Previous studies have demonstrated benefits of utilizing learned representations from

Transformer Networks as inputs for gradient boosting models, leading to improved outcomes

compared to directly using the predictions of a Transformer Network [18, 37]. We thus follow

a similar approach here. Gradient boosting models consist of multiple decision trees that are

constructed iteratively during training. In the initial iteration, a single decision tree is built to

predict a protein-small molecule interaction of interest for all training data points. By con-

structing new decision trees, subsequent iterations aim to minimize the errors made by the

existing trees. Ultimately, an ensemble of diverse decision trees is formed, each focusing on

different aspects of the input features and collectively striving to predict the correct outcome

[38, 39]. In this study, we leverage the learned cls tokens, ESM-1b vectors, and ChemBERTa2

vectors as inputs for the gradient boosting models.

When aiming to increase model performance, it is a common strategy to train multiple dif-

ferent machine learning models using the same input representations. Using an ensemble of

these models, i.e., calculating a (weighted) mean of the various model predictions, can lead to

more robust and accurate predictions [40]. We hypothesized that similarly, more robust and
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improved predictions can be achieved by an ensemble of the same machine learning model

trained with different input representations. In a previous study, we indeed observed that

training multiple gradient boosting models with different input vectors and combining their

predictions through weighted averaging yielded enhanced performance compared to a single

model using all input information simultaneously [15]. Thus, we train three distinct gradient

boosting models (level D in Fig 1): one using only the cls token, another using the

concatenated ESM-1b vector and the ChemBERTa2 vector, and a third model concatenating

all three input vectors. To obtain the final prediction, we compute a weighted mean of the pre-

dictions from these models, with the weights determined through hyperparameter

optimization.

Model training and hyperparameter optimization

Each dataset used in this study was divided into three subsets used for training, validation, and

testing, respectively. The training and validation sets were utilized for hyperparameter optimi-

zations, where different hyperparameter combinations were used to train the model on the

training data, and the set of hyperparameters that yielded the best results on the validation set

was selected for the final model. The hyperparameters include learning rate, number of hidden

layers, hidden dimension, and batch size (a full list is given in S1 Table).

Due to the substantial time and resource requirements associated with training large Trans-

former Networks, conducting a systematic hyperparameter search for the multimodal Trans-

former Network was not feasible on the available hardware. Instead, we employed a trial-and-

error approach to identify a suitable set of hyperparameters. We iteratively adjusted the hyper-

parameters with the aim of improving the results for the drug-target affinity prediction task

(see below) on the validation set. The resulting combination of hyperparameters (S1 Table)

was used for all tasks in this study. We trained each Transformer Network for 100 epochs. To

guard against overfitting, we performed early stopping, i.e., we saved model parameters after

each epoch and finally selected the model that achieved the best performance on the validation

set.

For the gradient boosting models, we were able to perform a systematic hyperparameter

search to identify the optimal configuration for each task. We conducted random searches

[41] that iterated through 2 000 combinations of hyperparameters, including learning rate,

depth of trees, number of iterations, and regularization coefficients (a full list is provided in S2

Table). After identifying the gradient boosting models that demonstrated the most promising

performance on the validation sets, we proceeded to train new models using both the training

and validation sets. This final model was then evaluated using the previously untouched test

set, ensuring an unbiased assessment of the model’s predictive capabilities and ability to

generalize.

ProSmith outperforms previous models for predictions of kinase

inhibitions

The process of drug discovery is inherently time-consuming and expensive. A crucial aspect of

drug discovery is the determination of interactions between potential drug compounds, typi-

cally small molecules [42], and their target proteins. Machine learning models that facilitate

large-scale predictions of drug-target affinities (DTAs) have the potential to accelerate the

overall drug discovery process by identifying appropriate drug molecules for desired target

proteins [43].

Here, we assess the performance of ProSmith on one of the most widely used datasets for

validating drug-target affinity prediction models, the Davis dataset [44]. The Davis dataset
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comprises 30 056 data points, consisting of binding affinities for pairs of 72 drugs (small mole-

cules) and 442 target protein kinases, measured as dissociation constants Kd (in units of nM).

To create target values for ProSmith, we follow previous prediction methods by using log-

transformed values, defined as pKd ¼ � log10

Kd
109nM

� �
. The resulting values range from 5.0 to

10.8. Since the Davis dataset consists only of protein kinases, its analysis does not allow direct

conclusions about ProSmith’s ability to predict drug affinities for other protein families. How-

ever, most druggable proteins are kinases [45], and therefore kinase datasets are the most com-

monly used data for evaluating target inhibition predictions.

To split the Davis dataset, we adopted the identical strategy employed by the previous state-

of-the-art method, NHGNN-DTA by He et al. [12]. He et al. split the Davis dataset into 80%

training data, 10% validation data, and 10% test data. Four different scenarios were investi-

gated [12]: (i) a completely random split that includes drugs and targets in the test and valida-

tion sets that also occurred in other combinations in the training set (random split); (ii) a split

that excludes target proteins used for training from the test and validation sets (cold target);

(iii) a split that excludes drugs used for training from the validation and test sets (cold drug);

and (iv) a split that excludes any drug and any target that were used for training from the vali-

dation and test sets (cold drug & target). To obtain accurate estimates of the true model perfor-

mance, He et al. created five random splits for each of the four aforementioned scenarios. To

ensure a fair comparison between ProSmith and NHGNN-DTA, we followed the same proce-

dure, generating the random splits with the code provided in Ref. [12].

The Davis dataset contains only approximately 30 000 data points, which can be consid-

ered relatively small. When the available training data for a specific prediction task is limited,

a common strategy in deep learning is to pre-train the model on a related task for which

more abundant training data is available [46, 47]. To construct such a larger pre-training

dataset, we extracted drug-target pairs from BindingDB [48] with experimentally measured

IC50 values; these values indicate the concentration of a drug required to inhibit a target by

50%. We excluded all targets and drugs present in the Davis dataset, thereby ensuring that

for the cold splitting scenarios, ProSmith has indeed never seen any of the relevant test tar-

gets or test drugs before. The resulting dataset comprised approximately one million drug-

target pairs with known IC50 values. We pre-trained the ProSmith Transformer Network for

six epochs on this dataset (see Methods for additional details). Subsequently, the learned

parameters were used as initial parameters to train the ProSmith Transformer Network on

the Davis dataset.

We trained ProSmith on the training and validation data of all five random training-valida-

tion-test splits for all four splitting scenarios introduced in Ref. [12]. In the following, we state

model performance metrics for each scenario as the mean scores resulting from model valida-

tion on the five different test sets. To evaluate model performance, we employ performance

metrics that have been used widely in previous DTA prediction studies: the mean squared

error (MSE); the concordance index (CI); and the r2
m metric. The CI assesses the ability of a

predictive model to correctly rank pairs based on their predicted values. It is defined as the

fraction of correctly ordered pairs of predicted values among all comparable pairs in the test

set. The r2
m metric is a commonly used performance metric for quantitative structure-activity

relationship (QSAR) prediction models, which penalizes large differences between observed

and predicted values. It is defined as r2
m ¼ r2 � ð1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

0

p
Þ; where r2 and r2

0
are the

squared correlation coefficients between observed and predicted affinities with and without

intercept, respectively [49, 50]. In addition, we also computed coefficients of determination

(R2; S3 Table), as R2 is a widely used measure of quantitative prediction accuracy in the

machine learning literature.
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ProSmith shows improved overall performance compared to previous methods. On the

random split (Table 1), ProSmith exhibits a concordance index of CI = 0.911, which is highly

similar but slightly lower compared to the previous state-of-the-art method, NHGNN-DTA

[12] (CI = 0.914)—thus, of all comparable pairs, NHGNN-DTA ranks 0.3% more correctly.

However, ProSmith achieves significant improvements over all previous methods in terms of

mean squared error (MSE) and the r2
m metric. ProSmith is the first method to achieve an MSE

below 0.19 on this dataset, lowering the MSE by 0.010 compared to NHGNN-DTA.

In the more practically relevant scenarios where the drug and/or target were not included

in the training set, ProSmith also outperforms all previous methods in almost all comparisons

(Table 2). In the two scenarios that exclusively contain target proteins not present in the train-

ing data (cold target and cold drug & target), ProSmith achieves substantial performance

improvements, clearly surpassing all previous models across all three performance metrics. In

the cold drug scenario, ProSmith achieves comparable but slightly worse MSE (0.578 vs. 0.554)

and CI (0.733 vs. 0.752) values compared to some previous methods. In contrast, ProSmith

demonstrates a clear improvement in r2
m (0.225 compared to the best previous score of 0.207).

It is important to note that previous methods did not provide the exact training-validation-test

splits, and thus, model performances were not evaluated using the exact same test data. How-

ever, since all performance scores result from randomly repeating the same splitting procedure

five times, the comparison remains meaningful.

We assessed the predictive capabilities of ProSmith for drugs with different occurrence fre-

quencies in the training set. We generated new training, validation, and test splits, varying the

presence of the test drugs in the training set. As expected, model performance improves with

increasing occurrence frequency of a test drug in the training data (Fig 2A). Accuracy is low

for drugs occurring between 0 and 10 times in the training set. High prediction performance

appears to require at least 30 drug-target pairs with the same drug in the training data. This

observation contrasts with our finding in a previous study for predicting enzyme-substrate

pairs that two training data points with a given substrate already facilitate accurate predictions

[18]. Thus, it appears that learning drug-target interactions is much more difficult than learn-

ing enzyme-substrate relationships. That enzyme-substrate relationships are easier to learn

may be related to the evolution of dedicated binding sites in response to natural selection for

the binding of specific substrates, leading to recognizable signatures in the amino acid

sequence.

Table 1. Performance metrics for ProSmith and previously published methods for DTA prediction on the random

split of the Davis dataset. Bold numbers highlight the best performance for each metric. Numbers in brackets indicate

the standard deviation across the 5 repeated training runs with different splits. Numbers after the method name show

year of publication. Performance scores, except for the results of ProSmith, are taken from Ref. [12]. Arrows next to the

metric names indicate if higher (") or lower (#) values correspond to better model performance.

Method MSE # CI " r2m "
DeepDTA (2018) 0.261 (0.007) 0.878 (0.002) 0.63 (0.015)

MT-DTI (2019) 0.245 0.887 0.665

GraphDTA (2021) 0.229 (0.005) 0.893 (0.002) 0.685 (0.016)

GEFA (2021) 0.228 0.893 -

rzMLP (2021) 0.205 0.896 0.709

EnsembleDLM (2021) 0.202 (0.005) 0.907 (0.004) -

FusionDTA (2022) 0.208 (0.002) 0.913 (0.001) 0.743 (0.002)

MgraphDTA (2022) 0.207 (0.001) 0.900 (0.004) 0.710 (0.005)

NHGNN-DTA (2023) 0.196 (0.004) 0.914 (0.002) 0.744 (0.003)

ProSmith (this work) 0.186 (0.003) 0.911 (0.004) 0.760 (0.004)

https://doi.org/10.1371/journal.pcbi.1012100.t001
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We also examined how model performance was influenced by the maximal sequence iden-

tity of a test target protein compared to proteins in the training set. This analysis is possible

using the cold target data. As expected, increasing protein similarity to training data again

leads to improved predictions (Fig 2B). Notably, ProSmith achieves favorable results even for

Fig 2. For accurate DTA predictions, ProSmith requires training on identical drugs but not on similar proteins. (a) We separately

analyzed model performance for dataset splits where drugs from the test set occur in the training set for a specified number of times (0, 1, 3,

10, 30, 100, and> 300). We calculated the coefficient of determination R2 for each of those test sets separately. (b) We divided all five

randomly created test sets under the cold target splitting scenario into subsets with different levels of protein sequence identity compared

to proteins in the training set, calculating the coefficient of determination R2 for each subset separately. Numbers above the plotted points

indicate the number of test data points in each category.

https://doi.org/10.1371/journal.pcbi.1012100.g002

Table 2. Performance metrics for ProSmith and previously published methods for DTA prediction for different splitting scenarios. Bold numbers highlight the best

performance for each metric under each scenario. Numbers in brackets indicate the standard deviation across the 5 repeated training runs with different splits. Arrows

next to the metric names indicate if higher (") or lower (#) values correspond to better model performance. Performance scores, except for the results of ProSmith, are

taken from Ref. [12].

Scenario Method MSE # CI " r2m "

Cold target GraphDTA 0.510 (0.086) 0.729 (0.012) 0.154 (0.014)

GEFA 0.433 (0.022) 0.759 (0.009) 0.289 (0.016)

FusionDTA 0.364 (0.021) 0.826 (0.011) 0.435 (0.023)

MgraphDTA 0.359 (0.023) 0.813 (0.008) 0.425 (0.028)

NHGNN-DTA 0.344 (0.029) 0.855 (0.016) 0.479 (0.021)

ProSmith (this work) 0.294 (0.048) 0.870 (0.016) 0.602 (0.057)

Cold drug GraphDTA 0.920 (0.029) 0.678 (0.036) 0.160 (0.019)

GEFA 0.847 (0.012) 0.709 (0.028) 0.182 (0.015)

FusionDTA 0.581 (0.094) 0.737 (0.012) 0.187 (0.034)

MgraphDTA 0.563 (0.065) 0.729 (0.022) 0.192 (0.021)

NHGNN-DTA 0.554 (0.091) 0.752 (0.017) 0.207 (0.030)

ProSmith (this work) 0.578 (0.006) 0.733 (0.027) 0.225 (0.054)

Cold drug and target GraphDTA 0.968 (0.096) 0.579 (0.017) 0.026 (0.016)

GEFA 0.944 (0.092) 0.610 (0.029) 0.032 (0.022)

FusionDTA 0.876 (0.091) 0.645 (0.043) 0.072 (0.048)

MgraphDTA 0.874 (0.090) 0.636 (0.021) 0.071 (0.041)

NHGNN-DTA 0.857 (0.096) 0.665 (0.038) 0.087 (0.051)

ProSmith (this work) 0.663 (0.159) 0.672 (0.005) 0.148 (0.097)

https://doi.org/10.1371/journal.pcbi.1012100.t002
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target proteins that are at most very distantly related to any proteins in the training set (maxi-

mal sequence identity< 30%), explaining over 40% of the variance in the target variable. Over-

all, our findings highlight the superior performance of ProSmith for DTA predictions

compared to previous approaches. The results again highlight the model’s remarkable ability

to generalize to previously unseen proteins.

In addition, we evaluated model performance for test drugs that were not present in the

training set based on their maximum similarity compared to all training drugs (S1 Fig). We

found that model performance for drugs increases when similar drugs are present in the train-

ing set: While model performance is low for drugs with a maximum similarity score below 0.6

compared to any training drug, good prediction results can be achieved for unseen drugs with

similarity scores above 0.6. If a test protein was already present in the training set, we also ana-

lyzed how model performance changes based on the number of occurrences of the protein in

the training set (S1 Fig). However, we did not find a strong correlation between protein occur-

rence in the training set and model performance. This may not be surprising, since model per-

formance is already high when at least one highly similar protein is present in the training set

(Fig 2B).

ProSmith leads to improved generalization for enzyme-substrate pair

prediction

Arguably the most comprehensive high-quality resource of protein sequence and functional

information is UniProt [51]. While this database lists over 36 million enzymes, less than 1% of

these entries contain high-quality annotations of the catalyzed reactions. Thus, the functions

of more than 99% of putative enzymes are currently unknown. To address this challenge, we

previously developed ESP, a method that predicts whether a small molecule is a potential sub-

strate for a given enzyme based on the enzyme amino acid sequence and on structural infor-

mation for the small molecule [18]. The ESP gradient boosting model uses as inputs an

enzyme representation from the ESM-1b Transformer model—after task-specific fine-tuning

—and a small molecule representation generated through a Graph Neural Network (GNN).

ESP, which is currently the only general model for the prediction of enzyme-substrate pairs.

By “general model” we refer to a model that, in principle, can be applied to any enzyme with-

out further adaptation. ESP achieves an accuracy of over 91% on this binary classification task.

However, the model fails to produce reliable predictions for small molecules that occurred in

the training set only once or not at all.

To train and test ProSmith for the same enzyme-substrate prediction task, we use training,

validation, and test datasets that are identical to the datasets used in the ESP study. The ESP

datasets [18] consist of positive enzyme-substrate pairs with experimental evidence, comple-

mented with sampled negative enzyme-small molecule pairs, with a positive-to-negative ratio

of 1 to 3. The dataset was divided into 80% training data and 20% test data, ensuring that no

enzyme in the test set has a sequence identity greater than 80% compared to any enzyme in the

training set. The training set comprises 55 418 training data points, while the test set contains

13 336 data points. To perform hyperparameter optimization, the training set was further par-

titioned into 90% training data and 10% validation data.

Given the requirement for a substantial number of data points for training the multimodal

Transformer Network, we expanded the training data—but not the test data—by including

data with phylogenetic evidence in addition to the data with experimental evidence. This train-

ing set, which comprises a total of 850 291 data points, was already utilized in the ESP study to

fine-tune the ESM-1b Transformer Network. To reduce the training time associated with this

large training set for the multimodal Transformer Network, we increased the batch size from
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12 to 24 for this particular task. While we trained the Transformer Network with the expanded

training set, we subsequently trained the gradient boosting models using only the smaller

training set based on experimental evidence.

The ProSmith results show remarkable improvements over the original ESP model

(Table 3). Notably, the accuracy (percentage of correct predictions) increased from 91.5% to

94.2%, the ROC-AUC score increased from 0.956 to 0.972, and the Matthews correlation coef-

ficient (MCC), which measures correlation in binary data [52], increased from 0.78 to 0.85.

With these results, ProSmith narrows the gap between the performance of the best available

method and perfect predictions by over 30% across all three performance metrics.

A key advancement achieved by ProSmith lies in its ability to produce reliable predictions

for small molecules that are not represented multiple times in the training set. As shown in

Fig 3A, ProSmith (blue dots) increases the MCC from 0.00 to 0.29 for small molecules not

present in the training set and from 0.28 to 0.69 for those present only once (Fig 3A). For test

substrates that were not present in the training set, we further investigated how model perfor-

mance depends on their maximum similarity compared to all training substrates (S2 Fig). As

in the drug target prediction task, we find that model performance increases when structurally

similar substrates are present in the training set: Model performance is low for unseen sub-

strates with a maximum similarity score below 0.6 compared to all training substrates, but

moderate prediction results are obtained for substrates with similarity scores above 0.6.

Furthermore, we investigated the predictive capabilities of ProSmith for enzymes that

exhibit different levels of sequence similarity compared to proteins in the training set.

Table 3. Performance metrics for ProSmith and ESP for the prediction of enzyme-substrate pairs. Bold numbers

highlight the best performance for each metric. Arrows next to the metric names (") indicate that higher values corre-

spond to better model performance.

Method Accuracy " MCC " ROC-AUC "

ESP 91.5% 0.78 0.956

ProSmith 94.2% 0.85 0.972

https://doi.org/10.1371/journal.pcbi.1012100.t003

Fig 3. ProSmith outperforms the ESP model in the prediction of enzyme-substrate pairs especially for molecules with limited representation in

the test data. (a) We grouped small molecules from the test set by how often they occur as substrates among all positive data points in the training set,

calculating the MCC for each group separately. (b) We divided the test set into subsets with different levels of maximal enzyme sequence identity

compared to enzymes in the training set, calculating the MCC for each group separately. The numbers of data points within each subset of panel (a) are

listed in S4 Table and for panel (b) in S5 Table.

https://doi.org/10.1371/journal.pcbi.1012100.g003
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Mirroring the results for small molecules, ProSmith leads to the most significant improve-

ments for enzymes dissimilar to any protein in the training set (Fig 3B): for test enzymes with

less than 40% sequence identity to any protein used for training, the MCC improves from 0.70

to 0.78. In sum, ProSmith clearly surpasses the performance of the original ESP model, show-

ing a much better ability to generalize to small molecules and enzymes with limited representa-

tion in the training set.

ProSmith facilitates improved predictions for enzyme-substrate affinities

The third protein-small molecule interaction task that we investigated is predicting the

Michaelis constants KM of enzyme-substrate pairs. KM represents the substrate concentration

at which an enzyme operates at half of its maximal catalytic rate, and thus indicates the affinity

of an enzyme for a specific substrate. Knowledge of KM values is crucial for understanding

enzymatic interactions between enzymes and metabolites, as it relates the intracellular concen-

tration of a metabolite to its consumption rate.

For this task, we utilize a dataset containing 11 676 experimental KM measurements, which

we had compiled to develop a previous model that predicts Michaelis constants [14]. We

adopted the same split used in that study, which divided the KM dataset into 80% training data

and 20% test data, while ensuring that the same enzyme-substrate pair would not be in the

training and test sets. To obtain a validation set, we further split the original training set in the

same way into 10% validation data and 90% training data.

Similar to the situation encountered for the DTA prediction task, the number of available

KM data points is relatively small for training the ProSmith Transformer Network. We thus

used the enzyme-substrate prediction task for pre-training, i.e., we initialized the ProSmith

Transformer Network for KM with the final parameters from training the model for the

enzyme-substrate prediction. This initialization provides a starting point that allows the model

to leverage previously learned knowledge. We also tested using the model parameters that

resulted from pre-training the ProSmith Transformer Network on the IC50 values, which we

used above for the DTA model. However, this led to slightly worse results.

ProSmith demonstrates superior performance compared to two previous KM prediction

models that utilized the same training and test data [13, 14] (Table 4). We cannot compare the

MSE between ProSmith and the ENKIE model, as Ref. [13] does not report this metric or the

individual predictions for the KM test set. Similar to what was seen for the other two prediction

tasks, ProSmith enhances the ability to generalize to proteins that differ significantly from

those in the training set (S3 Fig). However, its capacity to generalize to unseen substrates

remains limited and is very similar to the previous state-of-the-art method (S3 Fig).

Although the overall model performance exhibits clear improvement, the magnitude of per-

formance gain is smaller compared to the enzyme-substrate prediction and DTA prediction

tasks. We hypothesize that this comparatively small improvement may be related to the rela-

tively low number of training data points in comparison to the other two tasks. We tentatively

Table 4. Performance metrics of ProSmith and previously published methods for the prediction of Michaelis con-

stants KM. Metrics were calculated using the same training and test data for all three models. Bold numbers highlight

the best performance for each metric. Arrows next to the metric names indicate if higher (") or lower (#) values corre-

spond to better model performance.

Method MSE # R2 " Pearson r "
ENKIE (2022) [13] - 0.463 0.680

Kroll et al. (2021) [14] 0.653 0.527 0.728

ProSmith (this work) 0.604 0.563 0.752

https://doi.org/10.1371/journal.pcbi.1012100.t004
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conclude that ProSmith yields promising results even with small datasets, but its greatest per-

formance gains are observed when applied to larger training datasets.

Final predictions use complementary information from the multimodal

Transformer Network and the protein/small molecule representations

To obtain its final predictions, ProSmith calculates a weighted mean across the results of three

distinct gradient boosting models with different inputs. The weights for the weighted mean

calculation are treated as hyperparameters, i.e., they are chosen such that they maximize the

performance on the validation set for a given task. Fig 4 shows the weights assigned to each

model for all investigated prediction tasks; for the DTA prediction, we calculated the mean

across all 5 random splits for each splitting scenario.

The model using solely the cls token as its input and the model combining the Chem-

BERTa2 and ESM-1b vectors as its inputs have the greatest influence on the final predictions

(Fig 4). It is likely that some relevant information from the 1280-dimensional ESM-1b vector

and the 600-dimensional ChemBERTa2 vector cannot be captured fully within the 768-dimen-

sional cls token, which also stores information about the protein-small molecule interaction.

Adding separate, general protein and small molecule information appears to be advantageous

for the generation of more accurate overall predictions. Our findings indicate that the combi-

nation of multiple gradient boosting models trained on different input information yields bet-

ter and more robust performance compared to a single model utilizing all input information

(S6 Table), consistent with previous observations [15].

Fig 4. The optimal ProSmith models combine predictions based on the multimodal Transformer Network with predictions based on separate

numerical representations of proteins and small molecules. The bar plots quantify the weights assigned to the predictions of the three distinct

gradient boosting models contributing to ProSmith: the model trained only on the cls token from ProSmith’s multimodal Transformer Network (teal);

the model combining ESM-1b and ChemBERTa2 vectors (blue); and the model combining all three input vectors (grey). The weights are displayed

separately for the distinct prediction tasks: drug-target affinity (DTA) (four different splits); enzyme-substrate pairs; Michaelis constants KM. Numbers

in square brackets show the number of training data points.

https://doi.org/10.1371/journal.pcbi.1012100.g004
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When predicting Michaelis constants KM, the model utilizing only the cls token exhibits the

lowest influence on model performance (Fig 4). This observation might be related to the lim-

ited number of only * 9000 data points available for training the ProSmith Transformer Net-

work for this task. For tasks with more extensive training data, the influence of the cls token

on model predictions is much more substantial. These findings indicate that the ProSmith

model can adapt its predictions based on the availability of training data points, optimizing

model performance accordingly.

ProSmith’s model architecture has an important impact on model

performance

For the ProSmith model, we first train a multimodal Transformer Network end-to-end: input

is the protein amino acid sequence and a string representing the small molecule structure, and

output is the target feature—e.g., whether protein and small molecule form an enzyme-sub-

strate pair. The final ProSmith model does not use these predictions directly, but instead uses

the learned joint protein-small molecule representations to train gradient boosting models.

This strategy was motivated by previous studies that showed superior results when adding a

gradient boosting step [18, 37]. To investigate whether this additional step indeed contributed

to the superior performance of ProSmith, we re-examined the enzyme-substrate prediction

task, comparing the model performance of directly using the end-to-end trained multimodal

Transformer Network with that of a gradient boosting model that takes the learned joint pro-

tein-small molecule representation from this Network as input. The end-to-end trained Trans-

former network uses a fully connected neural network to process the learned protein-small

molecule representations. To facilitate a fair comparison, we explored different numbers of

hidden layers and dimension sizes, testing all combinations of one or two hidden layers with

hidden dimension sizes of 32, 64, or 128 (S7 Table). In comparison to the full ProSmith model,

the best-performing Transformer Network architecture (2 layers with 128 nodes) decreased

accuracy from 93.3% to 92.2%, MCC from 0.84 to 0.81, and ROC-AUC from 0.963 to 0.946.

Thus, using a gradient boosting model on top of the learned representation indeed improves

model performance.

We argue that the main architectural advancement of ProSmith is its ability to process

small molecule and protein information in the same input string, which facilitates the

exchange of information between protein and small molecule while generating a joint numeri-

cal representation. To test whether this is indeed the case and whether the improved perfor-

mance is not simply due to training a Transformer Network end-to-end, we trained an

alternative model for the enzyme-substrate prediction task that uses two separate Transform-

ers to process the protein amino acid sequence and the small molecule SMILES string sepa-

rately but in parallel. We concatenated the protein and small molecule representations only

after they passed through the Transformer Networks, and used the resulting vector as input to

a fully connected neural network. As for the ProSmith model, this model was first trained end-

to-end before extracting the protein and small molecule representations and using them as

input for gradient boosting models. This process is identical to our ProSmith model, except

that the model does not allow information exchange between protein and small molecule

while generating the numerical representations. Compared to the full ProSmith model, this

alternative model decreased accuracy from 94.2% to 93.4%, ROC-AUC from 0.972 to 0.966,

and MCC from 0.848 to 0.834. These results indicate that a major architectural advancement

of the ProSmith model is indeed its ability to simultaneously process protein and small mole-

cule information in the same input sequence using the multimodal transformer network.
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Discussion

In this study, we introduce ProSmith, a novel machine learning framework for predicting the

interactions between proteins and small molecules. The main methodological advance of our

model is the utilization of a multimodal Transformer Network that can effectively process

amino acid sequences of proteins and SMILES string representations of small molecules within

the same input sequence (Fig 1). The ability of this model architecture to incorporate informa-

tion on the interaction between a protein and a small molecule during the generation of the

corresponding numerical representation leads to a superior ability of the trained model to pre-

dict drug-target interactions for target protein kinases dissimilar to kinases included in the

training data. ProSmith also outperforms previous state-of-the-art methods in predicting pro-

tein-small molecule interactions for two different tasks of high relevance to biomedical, bio-

technological, and biological research: predicting enzyme substrates and of enzyme-substrate

affinities.

Our results highlight the potential of leveraging multimodal inputs to achieve significant

advancements in predicting complex molecular interactions. The proposed framework is not

limited to modeling protein-small molecule interactions. For example, a very similar approach

could be employed to predict protein-reaction interactions, which would be useful for the pre-

diction of enzymatic turnover numbers kcat [15, 16].

A previous study showed that training a specific model for each protein or each small mole-

cule can lead to superior performance compared to a more general model trained for handling

different proteins and small molecules [25]. However, such specific models can only be trained

for proteins and small molecules for which large amounts of experimental data are available.

In contrast, our goal was to develop a model that can generalize to previously unseen proteins,

protein families, and small molecules. In the vast majority of test cases in our study, a protein-

or small molecule-specific model as described by Goldman et al. [25] cannot be fitted due to a

lack of training data. While we have shown in a previous study that a general approach can

outperform state-of-the-art models designed specifically for individual enzyme families [18], if

one is interested in specific protein families or small molecules with sufficient experimental

data, it is conceivable that specific models could lead to superior results.

Due to the computational expenses associated with training Transformer Networks, we did

not fully optimize ProSmith’s performance for each individual task. Instead, we chose the

hyperparameters through trial and error for the drug-target interaction predictions, and we

used the same Transformer Network hyperparameters for the two additional tasks. However,

hyperparameter search for the Transformer Network, such as optimizing the learning rate,

batch size, number of layers, and embedding dimensions, is crucial for improving model per-

formance. In particular, while recent research suggests that some capabilities of Transformer

Networks only emerge after surpassing a certain network size limit [53], limited computational

resources led us to choose only six transformer layers. An extensive hyperparameter search,

executed separately for each individual task, will likely lead to more suitable ProSmith model

architectures with improved results.

For the token embeddings of protein amino acid sequences and SMILES strings, we utilized

pre-trained embeddings provided by the protein Transformer Network ESM-1b [28] and the

SMILES Transformer Network ChemBERTa2 [29]. The parameters of these two networks

were not adjusted during the training of ProSmith. In future investigations, it would be valu-

able to also explore the impact of adjusting the weights of these embeddings simultaneously

with the weights of the ProSmith Transformer Network.

Ensemble modeling has been proven effective in enhancing DTA prediction models, as

demonstrated in a previous study [9]. Averaging the predictions of multiple well-performing
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models, including ProSmith, could yield further performance gains. For instance, while Pro-

Smith exhibits a slightly lower concordance index (CI) than the previous state-of-the-art

method NHGNN-DTA [12] in the random splitting scenario, the latter shows worse MSE and

r2
m metric scores. Combining these models through a weighted mean prediction approach is

likely to overcome the limitations of the individual models, achieving state-of-the-art perfor-

mance across all three evaluation metrics.

ProSmith appears to show the most substantial performance gains when trained on larger

datasets. In deep learning, it is common to pre-train models on similar tasks with more abun-

dant data when training data is limited [46, 47]. We did this for two of the task explored above,

pre-training ProSmith on IC50 values before training the DTA prediction model, and on the

enzyme-substrate pair data before training the KM prediction model. Previous studies have

shown the benefits of training only the last layers of pre-trained models while keeping the ini-

tial layers fixed [47, 54]. Investigating the applicability of this approach to protein-small mole-

cule interaction tasks with small training datasets, such as for the KM prediction, could be

another avenue for future exploration.

The application of the ProSmith framework extends well beyond the three tasks presented

in this study. ProSmith can be applied to other protein-small molecule prediction tasks, such

as predicting substrates for transport proteins or predicting the activation of proteins through

small molecules [55]. Users can employ the Python functions provided on GitHub (https://

github.com/AlexanderKroll/ProSmith) to train the ProSmith model for arbitrary protein-

small molecule interaction tasks on datasets of up to *100,000 data points within a reasonable

time frame and without the requirement of an extensive GPU infrastructure, as detailed in

S1 Text.

Methods

Implementation details

All software was coded in Python [56]. We implemented the multimodal Transformer Net-

work in PyTorch [57]. We fitted the gradient boosting models using the library XGBoost [39].

Calculation of protein token embeddings

We use protein amino acid sequences to represent proteins in the input of the ProSmith

Transformer model. Every amino acid in a sequence is represented through a separate token.

To numerically encode information about the token, we used learned representations from the

ESM-1b model, a Transformer Network with 33 layers that was trained on *27 million pro-

tein sequences [28]. We applied the trained ESM-1b model to each protein amino acid

sequence and extracted the updated 1280-dimensional token representations from the last

layer of the model.

Calculation of small molecule token embeddings

We used SMILES strings to represent small molecules in the input of the ProSmith Trans-

former. To divide the SMILES string into disjoint tokens, we used the ChemBERTa2 model

[29]. ChemBERTa2 is a Transformer Network with 3 layers that was trained on *77 million

different SMILES strings. We applied this model to each SMILES string in our dataset, and we

extracted 600-dimensional learned token embeddings from the last layer of ChemBERTa2.
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Input representation of the multimodal Transformer Network

Every input sequence of the multimodal Transformer Network has the following structure:

first the ‘cls’ classification token, then the protein amino acid sequence tokens, followed by a

separation token, and finally, the SMILES string tokens. In the input, the cls token is repre-

sented by a vector of all ones, the separation token is a vector of all zeros, and the protein and

SMILES tokens were extracted from ESM-1b and ChemBERTa2, respectively, as described

above. The maximum length for protein sequences was set to 1024 and the maximum number

of tokens for SMILES strings was set to 256. For longer amino acid sequences, we only kept the

first 1024 amino acids; for longer smiles strings, we kept only the fist 256 tokens.

Model architecture of the multimodal Transformer Network

Before being processed by the multimodal Transformer Network, the amino acid tokens are

fed through a protein pooling layer, and the SMILES tokens are fed through a SMILES pooling

layer. Each of the two pooling layers is a single-layered fully connected neural network with

the ReLU activation function. The pooling layers are applied to each token embedding, map-

ping the embeddings to the hidden dimension of our multimodal Transformer Network, 768.

The parameters of the pooling layers are updated in each iteration of training the Transformer

Network.

The classification, protein, separation, and SMILES token embeddings of dimension 768

are used as the input of a Transformer Network called BERT, which stands for Bidirectional

Encoder Representations from Transformers [47]. The number of Transformer Layers was set

to 6, each with 6 attention heads. The activation function was set to GELU, which is a

smoothed version of the ReLU activation function.

After updating each token in the input sequence six times, we extract the updated

768-dimensional representation of the classification token and pass it through a fully con-

nected neural network with one hidden layer of dimension 32 and ReLU as the activation

function. The output layer has one node; it uses no activation function for regression tasks and

the sigmoid activation function for binary classification tasks.

Training of the multimodal Transformer Network

We trained the whole model described above end-to-end, i.e., the BERT model together with

the pooling layers and the fully connected layers applied to the update classification token. The

learning rate was set to 10−5. The loss function was set to the mean squared error for regression

tasks and to the binary cross entropy for binary classification tasks. We trained each Trans-

former Network for 100 epochs and saved model parameters after each epoch. After training,

to guard against overfitting, we selected the model that achieved the best performance on the

validation set.

Processing of batches for the Transformer Network training

Storing all protein sequence tokens and all SMILES string tokens during training requires too

much RAM for large datasets. To overcome this issue, we divided the set of all proteins into

smaller subsets of size 1000, and we did the same for the set of all SMILES strings. During

training, we only load one subset of protein sequences tokens and one subset of SMILES

sequence tokens at a time into the RAM, and we iterate over all possible combinations of pro-

tein and SMILES subset combinations.
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Pre-training of the Transformer Network on the IC50 dataset

We downloaded the Ligand-Target-Affinity Dataset from BindingDB [48]. We extracted all

drug-target pairs with experimentally measured IC50 values from this dataset. We excluded all

pairs where either the drug or the target were present in the Davis dataset [44]. This resulted in

a dataset with 1 039 565 entries. We split this dataset into 95% training data and 5% validation

data. We used the training data to pre-train the ProSmith Transformer Network for the drug-

target affinity (DTA) task. We trained the Transformer Network for 100 epochs and saved

model parameters after each epoch. After training, we selected the model that achieved the

best performance on the validation set. Because of the large training set size, we used a higher

batch size of 192 compared to the other tasks investigated in this study. As is common for

larger batch sizes, we also increased the learning rate slightly to 1.5 × 10−5.

Splitting the Davis dataset

The Davis dataset consists of 30 056 data points with 72 different drugs and 442 proteins with

measured Kd values. To split this dataset into training, validation, and test sets, we adopted the

identical strategy employed by the previously leading method, NHGNN-DTA [12]. We gener-

ated five random splits for each of four scenarios: random; cold target; cold drug; and cold

drug & target (for details, see the section “ProSmith leads to improved generalization for drug-

target affinity predictions” in the Results section).

Splitting Davis data with different occurrence frequencies of test drugs in

the training set

To assess the predictive capabilities of ProSmith for drugs with different occurrence frequen-

cies in the training set, we generated new dataset splits. We split the data in such a way that for

15 randomly selected drugs from the test set, only 1, 3, 10, 30, or 100 drug-target pairs with the

same drug but paired with different targets are present in the training set. Model performance

for drugs that do not occur in the training set or that are present more than 300 times was

extracted from the results for the cold drug and random splitting scenario, respectively.

Training of the gradient boosting models

To find the best hyperparameters for the gradient boosting models, we performed a random

grid search with 2 000 iterations. In each iteration, we trained a gradient boosting model with

a different set of hyperparameters on the training data and assessed the performance of the

resulting model on the validation set. After this random search, we selected the hyperpara-

meter set that led to the best performance on the validation set. We used the Python package

hyperopt [58] to perform the hyperparameter optimization for the following hyperparameters:

learning rate, maximum tree depth, lambda and alpha coefficients for regularization, maxi-

mum delta step, minimum child weight, and number of training epochs. For the task of pre-

dicting enzyme-substrate pairs, we added a weight for the negative data points. This

hyperparameter was added because the dataset is imbalanced, and it allows the model to assign

a lower weight to the overrepresented negative data points during training. We used the

Python package xgboost [39] for training the gradient boosting models.

Computational resources

To train the Transformer Networks and to perform hyperparameter optimization for all gradi-

ent boosting models, we used the High Performance Computing Cluster at Heinrich Heine

University Düsseldorf (Germany). All training processes were executed on a single NVIDIA
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A100 GPU. The only exception was the pre-training of the Transformer Network for the IC50

value prediction. To shorten the training time for the large training set with * 1 million data

points, we trained this model on four NVIDIA A100 GPUs.

Calculating small molecule similarities

To compute the maximum similarity of small molecules in the test set to small molecules in

the training set, we first compute for each small molecules a binary molecular fingerprint, the

extended connectivity fingerprint (ECFP) [59]. ECFPs are 1024-dimensional binary vectors

that encode structural properties of small molecules. We then use the Jaccard distance to calcu-

late the pairwise distance between any two ECFPs. The Jaccard distance is defined as the pro-

portion of elements that do not match, considering only those entries where at least one entry

is non-zero. The resulting distance measure is a value between 0 and 1, with lower values indi-

cating higher similarity. To convert this distance into a similarity score, we subtracted the dis-

tance value from 1 and re-scale all scores so that they range between 0 and 1. This resulted in a

similarity score where higher values indicate higher similarity between two molecules.

Supporting information

S1 Text. The ProSmith Transformer Network can be trained with limited computational

resources.

(DOCX)

S1 Table. Hyperparameters of the ProSmith Transformer Network.

(XLSX)

S2 Table. Hyperparameters of the ProSmith gradient boosting models.

(XLSX)

S3 Table. Coefficient of determination R2 of ProSmith for different splitting scenarios of

the Davis dataset. Numbers in brackets indicate the standard deviation for the results of the 5

repeated training runs with different splits.

(XLSX)

S4 Table. We divided the ESP test set into subsets according to the number of positive data

points with the same small molecule in the training set. The table shows the number of test

data points in each subset.

(XLSX)

S5 Table. We divided the ESP test set into subsets according to the maximal sequence iden-

tity of an enzyme compared to all training enzymes. The table shows the number of test data

points in each subset.

(XLSX)

S6 Table. Performance metrics for all three trained gradient boosting models with differ-

ent input vectors and for their combined weighted mean prediction. For the test sets for the

KM prediction task and for the four splitting scenarios of the Davis dataset, the table lists coeffi-

cients of determination R2; for the enzyme-substrate prediction, the table lists Matthews corre-

lation coefficients (MCCs).

(XLSX)

S7 Table. Replacing the final prediction layer of end-to-end trained Transformer Networks

with gradient boosting models improves performance. The table displays the performance

metrics for the end-to-end (E2E) trained Transformer Networks and for a gradient boosting
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model for the prediction of enzyme-substrate pairs. The E2E Transformer Network was

trained with different numbers of hidden layers and different numbers of nodes in the hidden

layers for its fully-connected neural network on top of the attention blocks. The gradient

boosting model was trained with the learned joint protein-small molecule embeddings as its

only input. Arrows next to the metric names (") indicate that higher values correspond to bet-

ter model performance.

(XLSX)

S1 Fig. Drug-target affinity predictions improve with increasing drug similarity score

compared to the training drugs. (a) For all cold drug splits, we divided the test set into subsets

with different levels of maximum drug similarity scores compared to the drug molecules in the

training set. We calculated the coefficient of determination R2 for each group separately. We

additionally calculated the coefficient of determination R2 for test drugs that were present in

the training set based on the results for the random split scenario. (b) For the random split sce-

narios, we grouped proteins from the test set according to how often they occur as target pro-

teins among all training data points. We calculated the coefficient of determination R2 for each

group separately. The numbers above the plotted points indicate the number of test data points

in each category.

(EPS)

S2 Fig. Enzyme-substrate pair predictions improve with increasing substrate similarity

compared to training substrates. For all substrates not present in the training set, we divided

the test set into subsets with different levels of maximum substrate similarity scores compared

to all substrates in the training set. We calculated the MCC for each group separately. The

numbers above the plotted points indicate the number of test data points in each category.

(EPS)

S3 Fig. ProSmith outperforms previous models in the prediction of Michaelis constants

KM especially for enzymes not highly similar to proteins in the training set. (a) We divided

the test set into subsets with different levels of maximal enzyme sequence identity compared to

enzymes in the training set, calculating the MCC for each group separately. (b) We grouped

substrates from the test set by how often they occur as substrates among all data points in the

training set, calculating the MCC for each group separately. Numbers above the plotted points

indicate the number of test data points in each category.

(EPS)
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